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This article describes estimation of the cell probabilities in anR × C contingency
table with ignorable missing data. Popular methods for maximizing the incomplete data
likelihood are the EM-algorithm and the Newton–Raphson algorithm. Both of these
methods require some modification of existing statistical software to get the MLEs of
the cell probabilities as well as the variance estimates. We make the connection between
the multinomial and Poisson likelihoods to show that the MLEs can be obtained in any
generalized linear models program without additional programming or iteration loops.
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1. INTRODUCTION

R×C contingency tables, in which the row variable and column variable are jointly
multinomial, occur often in scientific applications. The problem of estimating cell proba-
bilities from incomplete tables—that is, when either the row or column variable is missing
for some of the subjects—is very common. For example, Table 1 contains such data from
the Six Cities Study, a study conducted to assess the health effects of air pollution (Ware
et al. 1984). The columns of Table 1 correspond to the wheezing status (no wheeze,
wheeze with cold, wheeze apart from cold) of a child at age 10. The rows represent
the smoking status of the child’s mother (none, medium, heavy) during that time. For
some individuals the maternal smoking variable is missing, while for others the child’s
wheezing status is missing. One of the objectives is to estimate the probabilities of the
joint distribution of maternal smoking and respiratory illness.

Two popular methods for maximizing the incomplete data likelihood (assuming ig-
norable nonresponse in the sense of Rubin [1976]) are the EM-algorithm (Dempster,
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Table 1. Six Cities Data: Maternal Smoking Cross-Classified by Child’s Wheeze Status

Child’s wheeze status

Maternal Wheeze with Wheeze apart
Smoking No Wheeze Cold from Cold Missing

None 287 39 38 279
Moderate 18 6 4 27
Heavy 91 22 23 201

Missing 59 18 26

Laird, and Rubin 1977) and the Newton–Raphson algorithm (Hocking and Oxspring
1971). Both of these methods require some modification of existing statistical software
to get the MLEs of the cell probabilities as well as the variance estimates. In this article,
we establish a connection between the multinomial and Poisson likelihoods to show that
the MLEs can be obtained in any generalized linear models program, such as SASProc
GENMOD(SAS Institute Inc. 1993), Stataglm (Stata Corporation 1995), S functionglm
(Hastie and Pregibon 1993), or GLIM (Francis, Green, and Payne1993), without any
additional programming or iteration loops.

In Section 2, we formulate the missing data likelihood, and the connection between
the multinomial likelihood and the Poisson likelihood. Section 3 describes the Poisson
generalized linear model, including the design matrix and offset. Section 4 presents the
SAS Proc GENMOD code for a(2 × 2) table given in Little and Rubin (1987) and the
S functionglm code for the data in Table 1.

2. INCOMPLETE R × C TABLES

Suppose that two discrete random variables,Yi1 andYi2, are to be observed on each
of N independent subjects, whereYi1 can take on values 1, . . . , R, andYi2 can take on
values 1, . . . , C. Let the probabilities of the joint distribution ofYi1 andYi2 be denoted
by

pjk = pr[Yi1 = j, Yi2 = k],

for j = 1, . . . , R and k = 1, . . . , C. Because all of the probabilities must sum to 1,
there are(RC − 1) nonredundant multinomial cell probabilities. We letp denote the
(RC − 1) × 1 probability vector ofpjk ’s; for simplicity, we deletepRC . The marginal
probabilities arepj+ = pr[Yi1 = j] andp+k = pr[Yi2 = k], where ‘+’ denote summing
over the subscript it replaces. The joint probability function ofYi1 andYi2 can be written
as

f(yi1, yi2|p) =
R∏

j=1

C∏
k=1

p
I[Yi1=j,Yi2=k]
jk ,

whereI[·] is an indicator function.
Now, suppose, due to an ignorable missing data mechanism (Rubin 1976), some

individuals have a missing value for eitherYi1 or Yi2. When there is missing data, it is
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convenient to introduce two indicator random variablesRi1 andRi2, whereRi1 equals 1
if Yi1 is observed and equals 0 ifYi1 is missing. Similarly,Ri2 equals 1 ifYi2 is observed
and equals 0 ifYi2 is missing. It is assumed that no individuals are missing bothYi1

and Y12—that is, no individuals haveRi1 = Ri2 = 0 (if subjects are missing on both
variables, they would not be considered participants in the study). The “complete” data
for subjecti are(Ri1, Ri2, Yi1, Yi2), with joint distribution

f(yi1, yi2, ri1, ri2|p,φ) = f(ri1, ri2|yi1, yi2,φ)f(yi1, yi2|p), (2.1)

where

f(ri1, ri2|yi1, yi2,φ)

is the “missing data mechanism” with parameter vectorφ. We assume thatφ is distinct
from p.

Following the nomenclature of Rubin (1976) and Little and Rubin (1987), a hierarchy
of missing data mechanisms can be distinguished. First, whenf(ri1, ri2|yi1, yi2,φ) is
independent of bothYi1 andY12, then the missing data are said to bemissing completely
at random(MCAR). Whenf(ri1, ri2|yi1, yi2,φ) depends on the observed data, but not
on the missing values, the missing data are said to bemissing at random(MAR). Clearly,
MCAR is a special case of MAR, and often no distinction is made between these two
mechanisms when they are referred to as beingignorable. We caution, however, that the
use of the term ignorable does not imply that the individuals with missing data can simply
be ignored. Rather, the term ignorable is used here to indicate that it is not necessary
to specify a model for the missing data mechanism to estimatep in a likelihood-based
analysis of the data.

Our goal is to estimatep using likelihood methods when the missing data are MAR.
If Yi1 or Yi2 is missing, individuali will not contribute (2.1) to the likelihood of the data,
but will contribute (2.1) summed over the possible values ofYi1 or Yi2. In particular, if
Yit is missing(t =1 or 2), individuali contributes∑

yit

f(ri1, ri2|yi1, yi2,φ)f(yi1, yi2|p) (2.2)

to the likelihood. Then, the full likelihood can be written as

L(φ,p) = L1(φ,p)L2(φ,p)L3(φ,p),

where

L1(φ,p) =
N∏

i=1

[
f(ri1 = 1, ri2 = 1|yi1, yi2,φ)f(yi1, yi2|p)

]ri1ri2 ; (2.3)

L2(φ,p) =
N∏

i=1

[∑
yi1

f(ri1 = 0, ri2 = 1|yi1, yi2,φ)f(yi1, yi2|p)

](1−ri1)ri2

; (2.4)
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and

L3(φ,p) =
N∏

i=1

[∑
yi2

f(ri1 = 1, ri2 = 0|yi1, yi2,φ)f(yi1, yi2|p)

]ri1(1−ri2)

. (2.5)

Now, suppose the missing data are MAR. MAR implies thatf(ri1 = 0, ri2 =
1|yi1, yi2,φ) in (2.4) does not depend onyi1; that is,

f(ri1 = 0, ri2 = 1|yi1, yi2,φ) = f(ri1 = 0, ri2 = 1|yi2,φ).

Then,

L2(φ,p) =
N∏

i=1

[
f(ri1 = 0, ri2 = 1|yi2,φ)

∑
yi1

f(yi1, yi2|p)

](1−ri1)ri2

=
N∏

i=1

[
f(ri1 = 0, ri2 = 1|yi2,φ)f(yi2|p)

](1−ri1)ri2
,

where

f(yi2|p) =
C∏

k=1

p
I[Yi2=k]
+k

is the marginal distribution ofYi2. Similarly, MAR implies that f(ri1 = 1, ri2 =
0|yi1, yi2,φ) in (2.5) does not depend onyi2; that is,

f(ri1 = 1, ri2 = 0|yi1, yi2,φ) = f(ri1 = 1, ri2 = 0|yi1,φ).

Then,

L3(φ,p) =
N∏

i=1

[
f(ri1 = 1, ri2 = 0|yi1,φ)

∑
yi2

f(yi1, yi2|p)

]ri1(1−ri2)

=
N∏

i=1

[
f(ri1 = 1, ri2 = 0|yi1,φ)f(yi1|p)

]ri1(1−ri2)
,

where

f(yi1|p) =
R∏

j=1

p
I[Yi1=j]
j+

is the marginal distribution ofYi1.

Then, under MAR, the likelihoodL(φ,p) factors into two components,L(φ,p) =
L(φ)L(p), whereL(φ) is a function only ofφ, given by

L(φ) =
N∏

i=1

[
f(ri1 = 1, ri2 = 1|yi1, yi2,φ)

]ri1ri2

× [
f(ri1 = 0, ri2 = 1|yi2,φ)

](1−ri1)ri2
[
f(ri1 = 1, ri2 = 0|yi1,φ)

]ri1(1−ri2)
,(2.6)
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Table 2. Notation for a (3 × 3) Table With Missing Data

Variable Yi 2
Variable

Yi 1 1 2 3 Missing

1 u11 u12 u13 w1+
2 u21 u22 u23 w2+
3 u31 u32 u33 w3+

Missing z+1 z+2 z+3

andL(p) is a function only ofp, given by

L(p) =
N∏

i=1

[
f(yi1, yi2|p)ri1ri2f(yi1|p)ri1(1−ri2)f(yi2|p)(1−ri1)ri2

]
. (2.7)

Because the likelihood factors, the maximum likelihood estimate (MLE) ofφ can be
obtained fromL(φ) and the MLE ofp can be obtained fromL(p). We note here that
an appropriate MAR missing data mechanism forf(ri1, ri2|yi1, yi2,φ) is described in
detail in Chen and Fienberg (1974) and Little (1985).

We can simplify the likelihood in (2.7). We let

ujk =
N∑

i=1

Ri1Ri2I[Yi1 = j, Yi2 = k]

denote the number of subjects who are observed on bothYi1 andYi2, with response level
j on Yi1 and levelk on Yi2. Also, we let

wj+ =
N∑

i=1

Ri1(1 − Ri2)I[Yi1 = j]

denote the number of subjects with response levelj on Yi1 who are missingYi2, and let

z+k =
N∑

i=1

(1 − Ri1)Ri2I[Yi2 = k]

denote the number of subjects with response levelk on Yi2 who are missingYi1. The cell
counts for a(3 × 3) table using this notation are shown in Table 2. Using this notation,
the likelihood for the cell probabilitiesp in (2.7) reduces to

L(p) =

 R∏
j=1

C∏
k=1

p
ujk

jk

 R∏
j=1

p
wj+
j+

[
C∏

k=1

p
z+k

+k

]
; (2.8)

that is, the complete cases (subjects withRi1 = Ri2 = 1) contribute

L1(p) =

 R∏
j=1

C∏
k=1

p
ujk

jk

 , (2.9)
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a multinomial likelihood with sample size ‘u++’ and (RC − 1) probabilitiesp; subjects
observed only onYi1 contribute

L2(p) =

 R∏
j=1

p
wj+
j+

 , (2.10)

a multinomial likelihood with sample size ‘w++’ and (R−1) nonredundant probabilities
{p1+, ...pR−1,+}; and subjects observed only onYi2 contribute

L3(p) =

[
C∏

k=1

p
z+k

+k

]
, (2.11)

a multinomial likelihood with sample size ‘z++’ and (C − 1) nonredundant probabilities
{p+1, . . . p+,C−1}.

First, we consider the contribution to the likelihood from the complete cases(ujk ’s).
It is a well-known fact that a multinomial likelihood can be written as a Poisson likelihood
(Agresti 1990). The multinomial likelihood is written in terms of the probabilitiespjk,

whereas the Poisson is written in terms of the expected cell countsE(ujk) = u++pjk.
Letting theujk ’s be independent Poisson random variables, the Poisson likelihood con-
tributed by theujk ’s is

L1(p) = eE(u++)
R∏

j=1

C∏
k=1

[E(ujk)]ujk

= e(u++p++)
R∏

j=1

C∏
k=1

[u++pjk]ujk , (2.12)

wherep++ =
∑R

j=1

∑C
k=1 pjk = 1. To constrain the Poisson likelihood to be equivalent

to the multinomial likelihood with sample sizeu++, we must restrictE(u++) = u++p++

to equalu++—that is, we must make sure thatp++ = 1. This can be accomplished by
rewriting pRC = 1− ∑

jk 6=RC pjk in the likelihood, which is most easily handled using
an offset in the Poisson generalized linear model, as described in the next section.

Formally, E(ujk) = u++pjk is only true if the data are missing completely at
random. However, the MLEs under missing completely at random and the weaker missing
at random are identical, and it is easier to explain the connection between Poisson and
multinomial likelihoods when the data are missing completely at random. Thus, we
discuss obtaining the MLEs under missing completely at random, keeping in mind that
the MLEs are the same as under missing at random.

Next, we consider the contribution to the likelihood from the subjects only ob-
served onYi1—that is, thewj+’s. Again, we use the connection between the multi-
nomial likelihood and the Poisson likelihood. We again write the Poisson likelihood
in terms of the expected cell countsE(wj+) = w++pj+. Letting thewj+’s be inde-
pendent Poisson random variables, the Poisson likelihood contributed by thewj+’s is
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L2(p) = eE(w++)
R∏

j=1

[E(wj+)]wj+

= e(w++p++)
R∏

j=1

[w++pj+]wj+ . (2.13)

The Poisson likelihood will be equivalent to the multinomial if we forceE(w++) =
w++p++ to equalw++, which is again accomplished by rewritingpRC = 1−∑

jk 6=RC pjk

in the likelihood, resulting again in an offset in the part of the Poisson generalized linear
model corresponding to (2.13).

Finally, we consider the contribution to the likelihood from the subjects only ob-
served onYi2—that is, thez+k ’s. Letting the z+k ’s be independent Poisson random
variables withE(z+k) = z++p+k, the Poisson likelihood contributed by thez+k ’s is

L3(p) = eE(z++)
C∏

k=1

[E(z+k)]z+k

= e(z++p++)
C∏

k=1

[w++p+k]z+k . (2.14)

Here, (2.14) will be equivalent to a multinomial likelihood when rewritingpRC = 1 −∑
jk 6=RC pjk so thatE(z++) = z++p++ = z++. As before, we need an offset in the

part of the Poisson generalized linear model corresponding to (2.14).
Then, letting theujk ’s, wj+’s, andz+k ’s be independent Poisson random variables,

we can maximizeL(p) = L1(p)L2(p)L3(p) using a Poisson generalized linear model;
in particular, a Poisson linear model, as we show in the following section. To constrain
E(u++), E(w++), andE(z++) to equalu++, w++ andz++, respectively, we must use
an offset in the generalized linear model, which will be described next.

3. THE DESIGN MATRIX FOR THE POISSON LINEAR MODEL

Suppose we stack the(RC × 1) vector u = [u11, . . . , uRC ]′; the (R × 1) vector
w = [w1+, . . . , wR+]′; and the(C × 1) vectorz = [z+1, . . . , z+C ]′ to form the outcome
vector

F = [u′,w′, z′]′,

whose elements are independent Poisson random variables. In this section, we show that
the MLE for thepjk ’s can be obtained from a Poisson linear model forF of the form

E(F) = Xp + γ,

whereγ is an offset, and the elements of the design matrixX are easy to obtain.
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The model for the elements ofu is

E(ujk) = u++pjk (jk 6= RC); (3.1)

and

E(uRC) = u++

1 −
∑

jk 6=RC

pjk

 = u++ − u++

∑
jk 6=RC

pjk. (3.2)

For example, ifR = C = 3, then

E



u11

u12

u13

u21

u22

u23

u31

u32

u33


= u++



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 −1 −1 −1 −1 −1 −1 −1





p11

p12

p13

p21

p22

p23

p31

p32


+



0
0
0
0
0
0
0
0
u++


(3.3)

or

E(u) = (u++A1)p + γ1,

where, in general, theRC × (RC − 1) matrix A1 has its firstRC − 1 rows equal to
the RC − 1 identity matrix and the last row containing -1’s. Also,γ1 is an (RC × 1)
“offset” vector with all elements 0 except the last, which equalsu++. Finally, we write

E(u) = X1p + γ1,

where X1 = u++A1. The general partitioned matrix form ofE(u) is given in the
appendix.

Next, consider the linear model for the subjects who haveYi1 observed, but are
missingYi2, the wj+’s. In terms of the vectorp, we have

E(wj+) = w++pj+ = w++

C∑
k=1

pjk (j = 1, . . . , R − 1);

and

E(wR+) = w++

[
1 − ∑R−1

j=1 pj+

]
= w++

[
1 − ∑R−1

j=1

∑C
k=1 pjk

]
= w++ − w++

[∑R−1
j=1

∑C
k=1 pjk

]
,
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wherew++ becomes an offset. WhenR = C = 3 as in Table 1, we have E(w1+)
E(w2+)
E(w3+)

 = w++

 p1+

p2+

p3+



= w++

 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0

−1 −1 −1 −1 −1 −1 0 0





p11

p12

p13

p21

p22

p23

p31

p32


+

 0
0

w++

 , (3.4)

or E(w) = (w++A2)p + γ2. In general, theR × (RC − 1) matrix A2 has first(R − 1)
rows and(R − 1)C columns equal to a block diagonal matrix, with the blocks being a
(1×C) vector of 1’s. The last(C − 1) columns ofA2 are all zeroes. The last row ofA2

is the negative of the sum of the firstR − 1 rows, and thus has first(R − 1)C elements
equal to -1, and last(C − 1) elements equal to 0. Also,γ2 is an(R × 1) “offset” vector
with all elements 0 except the last, which equalsw++. Finally, we write

E(w) = X2p + γ2,

where X2 = w++A2. The general partitioned matrix form ofE(w) is given in the
appendix.

Finally, consider the linear model for the subjects who haveYi2 observed, but are
missingYi1, the z+k ’s. In terms of the vectorp, we have

E(z+k) = z++p+k = z++

R∑
j=1

pjk (k = 1, . . . , C − 1);

and, similar to the above derivation forwR+, we have

E(z+C) = z++

[
1 − ∑C−1

k=1 p+k

]
= z++

[
1 − ∑R

j=1

∑C−1
k=1 pjk

]
= z++ − z++

[∑R
j=1

∑C−1
k=1 pjk

]
,

wherez++ becomes an offset. WhenR = C = 3 as in Table 1, we have
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 E(z+1)
E(z+2)
E(z+3)

 = z++

 p+1

p+2

p+3



= z++

 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

−1 −1 0 −1 −1 0 −1 −1





p11

p12

p13

p21

p22

p23

p31

p32


+

 0
0

z++

 , (3.5)

or E(z) = (z++A3)p+γ3. In general, the firstC − 1 rows of theC × (RC − 1) matrix
A3 horizontally concatenatesR identical matrices of the form

[IC−1 0C−1],

whereIC−1 is a C − 1 identity matrix, and0C−1 is a (C − 1) × 1 vector of 0’s. After
concatenating theseR matrices, the last(RCth) column is deleted. The last row ofA3 is
the negative of the sum of the first(C − 1) rows. Also,γ3 is a (C × 1) “offset” vector
with all elements 0 except the last, which equalsz++. Finally, we write

E(z) = X3p + γ3,

whereX3 = z++A3. The general partitioned matrix form ofE(z) is given in the ap-
pendix.

Then, in any generalized linear models program, we specify a Poisson error structure,
a linear link, an outcome vector of the form

F =

 u
w
z

 ,

a design matrix

X =

 X1

X2

X3

 ,

and, finally, an offset

γ =

 γ1

γ2

γ3

 .

Note that the design matrixX does not contain an intercept.
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Table 3. Data from Little and Rubin (1987, p. 183)

Variable Variable Yi2

Yi1 1 2 Missing

1 100 50 30
2 75 75 60

Missing 28 60

4. EXAMPLE

In order to illustrate our method, we use the(2 × 2) table with missing data found
in Little and Rubin (1987), which is given here in Table 3. Little and Rubin (1987, p.
183), show the MLEs arêp11 = .28, p̂12 = .17, p̂21 = .24, and p̂22 = 0.31. Using the
results of the previous section, the Poisson linear model is

E



u11

u12

u21

u22

w1+

w2+

z+1

z+2


=



u++ 0 0
0 u++ 0
0 0 u++

−u++ −u++ −u++

w++ w++ 0
−w++ −w++ 0

z++ 0 z++

−z++ 0 −z++



 p11

p12

p21

 +



0
0
0

u++

0
w++

0
z++


,

whereu++ = 300, w++ = 90, andz++ = 88. The SAS Proc Genmod commands and
selected output are given in Table 4. The estimates of thepjk ’s in Table 4 agree with
those given in Little and Rubin (1987).

Next, we use the S functionglm to obtain the MLEs for the Six Cities data in Table
1. The models forE(u), E(w) andE(z) are given in formulas (3.3), (3.4), and (3.5),
respectively, withu++ = 578, w++ = 507, andz++ = 103. The commands and output
are given in Table 5.

Recall that the MLEs are the same under missing at random or missing completely
at random. However, when a generalized linear model program is used to estimate the
pjk ’s, the inverse of the observed information matrix (i.e., the inverse of the negative of
the Hessian matrix) should be used to estimate the variance. The inverse of the expected
information is consistent only if the data are missing completely at random, whereas the
inverse of the observed information is consistent under the weaker missing at random
(Efron and Hinkley 1978).

5. EXTENSIONS

5.1 MULTIWAY TABLES

In this article, we have shown how any generalized linear models program can
be used to obtain the MLEs of the cell probabilities in incomplete(R × C) tables.
Other methods for obtaining the MLEs, such as the EM algorithm, require additional
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Table 4. SAS Proc GENMOD Commands and Selected Output for Data in Table 3

data one;
input
count p11 p12 p21 off;

cards;
100 300 0 0 0

50 0 300 0 0
75 0 0 300 0
75 -300 -300 -300 300
30 90 90 0 0
60 -90 -90 0 90
28 88 0 88 0
60 -88 0 -88 88

;

proc genmod data=one;
model count = p11 p12 p21 /

dist=poi link=id offset=off noint;
run;

/* SELECTED OUTPUT */
Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr >Chi
INTERCEPT 0 0.0000 0.0000 . .
P11 1 0.2795 0.0223 156.9272 0.0001
P12 1 0.1740 0.0210 68.8169 0.0001
P21 1 0.2387 0.0227 110.9849 0.0001
SCALE 0 1.0000 0.0000 . .

programming steps. The method described here also easily extends to estimating the cell
probabilities of multiway contingency tables. Although the notation gets more involved,
the MLE can be calculated in any generalized linear models program with an offset and
a Poisson error structure. For example, consider data from the Muscatine Coronary Risk
Factor Study (Woolson and Clarke 1984), a longitudinal study to assess coronary risk
factors in 4,856 school children. Children were examined in the years 1977, 1979, and
1981. The response of interest at each time is the binary variable obesity (obese, not
obese). We letYit be the binary random variable (1=obese, 0=not obese) at timet, t = 1
for 1977,t = 2 for 1979, andt = 3 for 1981. We are interested in estimating the joint
probabilities

pjk` = pr[Yi1 = j, Yi2 = k, Yi3 = `],

j, k, ` = 0, 1. If there were no missing data, we would have a(2 × 2 × 2) contingency
table. Unfortunately, 3,086 (63.6%) of the subjects are observed at some subset of the
three occasions. The data are given in Table 6.
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Table 5. S function glm commands for Six Cities data in Table 1

count p11 p12 p13 p21 p22 p23 p31 p32 offs

1 287 528 0 0 0 0 0 0 0 0

2 39 0 528 0 0 0 0 0 0 0

3 38 0 0 528 0 0 0 0 0 0

4 18 0 0 0 528 0 0 0 0 0

5 6 0 0 0 0 528 0 0 0 0

6 4 0 0 0 0 0 528 0 0 0

7 91 0 0 0 0 0 0 528 0 0

8 22 0 0 0 0 0 0 0 528 0

9 23 -528 -528 -528 -528 -528 -528 -528 -528 528

10 279 507 507 507 0 0 0 0 0 0

11 27 0 0 0 507 507 507 0 0 0

12 201 -507 -507 -507 -507 -507 -507 0 0 507

13 59 103 0 0 103 0 0 103 0 0

14 18 0 103 0 0 103 0 0 103 0

15 26 -103 -103 0 -103 -103 0 -103 -103 103

Call:

glm(formula = counts -1 + p11 + p12 + p13 + p21 + p22 + p23 + p31 + p32

+

offset(offs), family = poisson(link = identity))

Coefficients:

p11 p12 p13 p21 p22 p23 p31

p32

0.4747281 0.07005741 0.0741947 0.03273146 0.01195075 0.008743729 0.206066

0.05585518

Degrees of Freedom: 15 Total; 7 Residual

Residual Deviance: 36.00067
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Table 6. Table of data from Muscatine Coronary Risk Factor Study

Year of obesity
Measurement

1977 1979 1981 Number

0 0 0 1209
0 0 1 91
0 1 0 66
0 1 1 78
1 0 0 64
1 0 1 31
1 1 0 62
1 1 1 169
0 0 . 426
0 1 . 54
1 0 . 33
1 1 . 118
0 . 0 125
0 . 1 27
1 . 0 5
1 . 1 27
. 0 0 463
. 0 1 63
. 1 0 37
. 1 1 82
0 . . 583
1 . . 173
. 0 . 293
. 1 . 77
. . 0 381
. . 1 119

(0= not obese, 1= obese, . =
missing )

Again, we assume the missing data are MAR. We letajk` denote the number of
subjects who are observed at all three times, with response levelj on Yi1, level k on
Yi2, and level` on Yi3; we let bjk+ denote the number of subjects with response levelj

on Yi1, level k on Yi2, and missingYi3; we let cj+` denote the number of subjects with
response levelj on Yi1, level ` on Yi3 and missingYi2; we let d+k` denote the number
of subjects with response levelk on Yi2, level ` on Yi3 and missingYi1; we let ej++

denote the number of subjects with response levelj on Yi1, and missingYi2 andYi3; we
let f+k+ denote the number of subjects with response levelk on Yi2, and missingYi1

and Yi3; and we letg++` denote the number of subjects with response level` on Yi3,

and missingYi1 andYi2.

Suppose we stack the vectors

a = [a000, a001, a010, a011, a100, a101, a110, a111]′;

b = [b00+, b01+, b10+, b11+]′;

c = [c0+0, c0+1, c1+0, c1+1]′;

d = [d+00, d+01, d+10, d+11]′;
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e = [e0++, e1++]′;

f = [f0++, f1++]′;

and

g = [g0++, g1++]′,

to form the outcome vector

F = [a′,b′, c′,d′, e′, f ′,g′]′,

whose elements are independent Poisson random variables. Using similar ideas as in the
previous sections, the MLE for thepjk`’s can be obtained from a Poisson linear model
for F of the form

E(F) = Xp + γ,

whereγ is an offset,X is the design matrix, andp = [p000, p001, p010, p011, p100, p101, p110].
We deletep111 = (1 − p000 − p001 − p010 − p011 − p100 − p101 − p110) from p since it is
redundant. In particular, the model fora is

E



a000

a001

a010

a011

a100

a101

a110

a111


=a+++



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1





p000

p001

p010

p011

p100

p101

p110


+



0
0
0
0
0
0
0
a+++


;

(5.1)
the model forb is

E(b00+)
E(b01+)
E(b10+)
E(b11+)

 = b+++


p00+

p01+

p10+

p11+



= b+++


1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0

−1 −1 −1 −1 −1 −1 0





p000

p001

p010

p011

p100

p101

p110



+


0
0
0

b+++

 ; (5.2)
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the model forc is
E(c0+0)
E(c0+1)
E(c1+0)
E(c1+1)

 = c+++


p0+0

p0+1

p1+0

p1+1



= c+++


1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 1

−1 −1 −1 −1 −1 0 −1





p000

p001

p010

p011

p100

p101

p110



+


0
0
0

c+++

 ; (5.3)

the model ford is
E(d+00)
E(d+01)
E(d+10)
E(d+11)

 = d+++


p+00

p+01

p+10

p+11



= d+++


1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1

−1 −1 −1 0 −1 −1 −1





p000

p001

p010

p011

p100

p101

p110



+


0
0
0

d+++

 ; (5.4)

the model fore is
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[
E(e0++)
E(e1++)

]
= e+++

[
p0++

p1++

]

= e+++

[
1 1 1 1 0 0 0

−1 −1 −1 −1 0 0 0

]


p000

p001

p010

p011

p100

p101

p110


+

[
0

e+++

]
; (5.5)

the model forf is[
E(f+0+)
E(f+1+)

]
= f+++

[
p+0+

p+1+

]

= f+++

[
1 1 0 0 1 1 0

−1 −1 0 0 −1 −1 0

]


p000

p001

p010

p011

p100

p101

p110


+

[
0

f+++

]
;

(5.6)
and the model forg is[

E(g++0)
E(g++1)

]
= g+++

[
p++0

p++1

]

= g+++

[
1 0 1 0 1 0 1

−1 0 −1 0 −1 0 −1

]


p000

p001

p010

p011

p100

p101

p110


+

[
0

g+++

]
.

(5.7)
The SAS Proc Genmod commands for obtainingp and selected output are given in Table
7.

5.2 OTHER M ODELS FOR p

The method can be used to obtain the MLE for any linear model forp, in any
generalized linear model program, without any additional programming. For example,
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Table 7. SAS Proc GENMOD Commands and Selected Output for Data in Table 6

data one;
input

count p000 p001 p010 p011 p100 p101 p110 off margtot;
p000 = p000*margtot; p001 = p001*margtot;
p010 = p010*margtot; p011 = p011*margtot;
p100 = p100*margtot; p101 = p101*margtot;
p110 = p110*margtot; p111 = p111*margtot;
off = off*margtot;
cards;

1209 1 0 0 0 0 0 0 0 1770
91 0 1 0 0 0 0 0 0 1770
66 0 0 1 0 0 0 0 0 1770
78 0 0 0 1 0 0 0 0 1770
64 0 0 0 0 1 0 0 0 1770
31 0 0 0 0 0 1 0 0 1770
62 0 0 0 0 0 0 1 0 1770

169 -1 -1 -1 -1 -1 -1 -1 1 1770
426 1 1 0 0 0 0 0 0 631

54 0 0 1 1 0 0 0 0 631
33 0 0 0 0 1 1 0 0 631

118 -1 -1 -1 -1 -1 -1 0 1 631
125 1 0 1 0 0 0 0 0 184

27 0 1 0 1 0 0 0 0 184
5 0 0 0 0 1 0 1 0 184

27 -1 -1 -1 -1 -1 0 -1 1 184
463 1 0 0 0 1 0 0 0 645

63 0 1 0 0 0 1 0 0 645
37 0 0 1 0 0 0 1 0 645
82 -1 -1 -1 0 -1 -1 -1 1 645

583 1 1 1 1 0 0 0 0 756
173 -1 -1 -1 -1 0 0 0 1 756
293 1 1 0 0 1 1 0 0 370

77 -1 -1 0 0 -1 -1 0 1 370
381 1 0 1 0 1 0 1 0 500
119 -1 0 -1 0 -1 0 -1 1 500

;

proc genmod data=one;
model count = p000 p001 p010 p011 p100 p101 p110 /

dist=poi link=id offset=off noint;
run;



374 S. R. LIPSITZ, M. PARZEN, AND G. MOLENBERGHS

Table 7. continued

/* SELECTED OUTPUT */

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr¿Chi

INTERCEPT 0 0.0000 0.0000 . .
P000 1 0.6633 0.0078 7190.7713 0.0001
P001 1 0.0578 0.0048 143.2562 0.0001
P010 1 0.0348 0.0037 86.5835 0.0001
P011 1 0.0439 0.0042 110.6773 0.0001
P100 1 0.0356 0.0039 83.4538 0.0001
P101 1 0.0207 0.0033 40.2450 0.0001
P110 1 0.0357 0.0039 82.6427 0.0001
SCALE 0 1.0000 0.0000 . .

the marginal homogeneity model (Firth 1989) is a linear model forp, say p = Dβ.

Thenβ can be calculated using any generalized linear model program without additional
programming since the model forF is still linear

E(F) = Xp + γ

= X(Dβ) + γ

= X∗β + γ,

whereX∗ = XD.

With additional programming in a generalized linear model program, our method
can be used to fit a nonlinear model forp. For example, log-linear models of the form
p = exp(Dβ), give rise to

E(F) = Xp + γ

= X[exp(Dβ)] + γ.
(5.8)

Unfortunately, without additional programming, the generalized linear models programs
discussed in the introduction only allow Poisson regression models of the form

E(F) = g(Aβ + γ),

for a design matrixA, and whereg(·) is the linear, exponential, or inverse functions.
Unfortunately, (5.8) does not fall in this class, and will require additional programming.
To use a generalized linear models program, one must write a macro that calculates (5.8)
as well as the derivative of (5.8) with respect toβ. Alternatively, a maximization proce-
dure based on ideas similar to this article is discussed in Molenberghs and Goetghebeur
(1997).



OBTAINING MAXIMUM LIKELIHOOD ESTIMATE 375

APPENDIX

In this appendix, we give the partitioned matrix form for the models forE(u),
E(w), andE(z). We define the following notation:Ia is ana × a identity matrix,1a is
an a × 1 vector of 1’s,0a,b is ana × b matrix of 0’s, and⊗ is the “direct product.”

In partitioned matrix form, the models are

E(u) = u++

[
IRC−1

−1′
RC−1

]
p +

[
0RC−1,1

u++

]
;

E(w) = w++

[
IR−1 ⊗ 1′

C 0R−1,C−1

−1′
(R−1)C 01,C−1

]
p +

[
0R−1,1

w++

]
;

and

E(z) = z++

{[
1′

R ⊗
(

IC−1 0C−1,1

−1′
C−1 0

)] (
IRC−1

01,RC−1

)}
p +

[
0C−1,1

z++

]
.
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