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ABSTRACT
A precise definition is given of a class of
inferences in predicate logic which it la proposed
to ldentify with the class of "obvious" Inferences.

A mechanism for Implementing "obvious inference" as
a rule of Inference in proof checking systems is
discussed.

I. INTRODUCTION

Automatic proofchecking systems should be able
to certify the correctness of any Inference which
users can aee as obviously correct. It should only
be necessary for a user to specify the premises and
conclusion in calling for such certification. In
proofchecking systems for predicate logic based on
natural deduction, e.g. Stanford FOL [3], [6],
[7], this facility Is ordinarily available only for

such special cases as tautological inference. The
following example (taken from [5], p. 185) s
instructive:
(¥x)[(Px & ~ Cx) » (Jy){lixy & Jy))
(Ax){(Rx & Fx) & (Vy){Hxy + Ky)]
(¥x)[Kx +» ~ Gx]
(3 x)(kx & Jx]
Although this inference seems a bit
complicated at a first glance it is really obvious
to anyone experienced with elementary logic. (The

second and third premises provide an individual ¢
for which Fc, ~ Gc and (Vy)(Hcy * Ky) all hold.
The first premise then gives an individual b such
that Hcb and Jb. So Kb and Jb both must be true.)
However a typical FOL proof would run to 17 lines.
An "optimised" FOL proof using two calls to the
TAUT tautological Inference checker still runs 9
lines. A user is compelled to step-by-step
eliminate quantifiers, use proposltional calculus,
and finally relnatate quantifiers.

this communication, we will give a precise

In
definition of a class of inferences in predicate
logic we propose to identify with the classes of
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deductive inferences which, intuitively, are
"obvious". We will describe a simple mechanism
(based on a nonresolutlon Herbrand theorem-proving
procedure) by means of which "obvious inference"
can be Implemented as a rule of inference in
natural deduction systems, and we will deacrlbe mi
experimental version of this mechanism as an
extension of FOL. In particular the 9 to 17 steps
required In the example cited is reduced to 1 when

the new mechanism is available.

1. OBVIOUS HERBRAND PROOFS

What makes an inference obvious? Equivalentlyv,
what makes an inference complicated? We propose a*
an answer to the second question: an inference Is
complicated when it requires multiple substitutions
from the Herbrand universe in the same clause. In
such a case, a human being must  exercise
considerable Ingenuity in order to find exactly the

right substitutions from the typically infinite
Herbrand universe. These considerations suggest
the:

THESIS: An inference is obvious precisely when
a Herbrand proof of its correctness can be given
Involving no more than one substitution instance of
each clause.

Returning to our example, It is equivalent to
the unsatisflabllty of the list of clauses:
1) ;: ¥ Gx v Hx,g(x)
@ Fu v Cu v Jg(u)
{3) Ke
(&) Fc
(5) Hey v Ky
() Xz v Gz
O] Kv v Jw

A Herbdrand proof of the correctoess of the

infersnce is obtsined from the substitution:
X*eu=zwa, yuws gla)

by checking that the resulting list of clauses is

truth-functionally unsatlsflabia. Indeed: there Is

only one substitution instance of each clause used,

In accord with our thesis.



. AUTOMATING __ OBVIOUS INFERENCE

How could this treatment
automated? A

of our example be
first thought might be to use binary

resolution with the restriction that no clause may
be resolved upon more than once. But it is readily
seen that an inauspicious order of resolutions can
defeat this method. Thus, resolving (5) with (6)
would give

(8) Hey v Gy

Since the clauses (1), (2), (3), (4), (7), (8) are
readily seen to be satisfiable, further use of
resolution on these clauses alone cannot lead to a

refutation. Of course, a resolution theorem-prover
equipped with suitable heuristics could easily deal
with this example. But It is not clear how to
design an efficient resolution theorem-prover which
will effectively verify all obvious inferences.
Fortunately the method of linked conjuncts [1], (2)
(which historically preceded resolution), can be
used quite nicely for this purpose. The method is

based on the simple remark that a set of clauses
which is minimally truth-functionally unsatisfiable
(In the sense that any proper subset is
truth-functlonally satlsflable) must be linked:
that is, the negation of each literal occurring in
one of the clauses must occur |In one of the
remaining clauses. Thus in order to test for
obvious iferences one only need use the
unification algorithm to search for all possible
matches between literals and their negations using

only a_ single copy of each clause.

Our proposal is thus to adjoin to natural
deduction proofcheckers a new rule of inference,
OBVIOUS. OBVIOUS is invoked along with a list of
premises and a proposed conclusion. (In the
context of FOL, OBVIOUS has the same syntax as
TAUT.) Invoking OBVIOUS calls an algorithm
consisting of:

(A) a preprocessor which negates the
conclusion, Skolemlzes and produces a list of
clauses;

(B) a procedure which searches the space of
possible matches between literals and their
negations;

(C) a satisfiabilty tester (e.g. one based on
the Davis-Putnam procedure [2], pp. 25-26).

If (A), (B), and (C) lead
an unsatlsflable linked conjunct, the system adds
the proposed conclusion as a new line In the proof
being constructed. Otherwise, the system returns a
message such as NOT OBVIOUS.

to success, i.e. to

IV. EXPERIMENTS WITH FOL
During a brief stay at the Stanford Al
Laboratory, the OBVIOUS rule was Implemented along
the lines discussed. A theorem-proving program
based on the linked conjunct method that had been
written by D. Mcllroy and Peter Hinman (see [1])
In 1962 was resurrected and modified. The

nodiflcatlon consisted of: (1) translation into the
local dialect of LISP; (2) setting to 1 the
parameters determining the maximum number of
Instances of each clause to be permitted; (3)
placing a Skolemlting conjunctive normal form
preprocessor at the front end of the program.
Various proofs that had previously been
checked by FOL were redone using the new OBVIOUS
facility. It was found that the lengths of proofs

were shortened by a factor of approximately 10.
Opportunities for even more dramatic reduction
abound In Filman's dissertation [4], which contains
over a thousand lines of FOL.

A version of OBVIOUS for general use with FOL

will have to be modified to accommodate the rich

FOL faclltles for declaring variables to be of

various "sorts". This can easily be done, either

by modifying the unification algorithm subroutine
in OBVIOUS to permit only substitutions of the
correct sort, or by introducing into the
preprocessor a preliminary procedure for making
explicit the relativized quantifiers which the FOL
sort mechanism suppresses.
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