
 Open access Proceedings Article DOI:10.1109/HIS.2001.946688

OC-3072 packet classification using BDDs and pipelined SRAMs — Source link

Amit Prakash, Adnan Aziz

Published on: 22 Aug 2001 - High Performance Interconnects

Topics: Longest prefix match, Logic synthesis, Routing table, Binary decision diagram and Digital electronics

Related papers:

 Packet classification on multiple fields

 Using the AT&T Labs PacketScope for Internet Measurement, Design, and Performance Analysis

 Layered protocol wrappers for Internet packet processing in reconfigurable hardware

 Design of a gigabit ATM switch

 Fast network layer packet filter

Share this paper:

View more about this paper here: https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-
3nm9658sqc

https://typeset.io/
https://www.doi.org/10.1109/HIS.2001.946688
https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-3nm9658sqc
https://typeset.io/authors/amit-prakash-3973r25vsj
https://typeset.io/authors/adnan-aziz-5amolz8ba6
https://typeset.io/conferences/high-performance-interconnects-2o13yde1
https://typeset.io/topics/longest-prefix-match-3jzvjezr
https://typeset.io/topics/logic-synthesis-2a2fdnre
https://typeset.io/topics/routing-table-2fdg2440
https://typeset.io/topics/binary-decision-diagram-n7nwv0zz
https://typeset.io/topics/digital-electronics-ugiloa4k
https://typeset.io/papers/packet-classification-on-multiple-fields-2f4q88xpwm
https://typeset.io/papers/using-the-at-t-labs-packetscope-for-internet-measurement-3hasugvzm4
https://typeset.io/papers/layered-protocol-wrappers-for-internet-packet-processing-in-3uusjgwsoj
https://typeset.io/papers/design-of-a-gigabit-atm-switch-mfrex18gxf
https://typeset.io/papers/fast-network-layer-packet-filter-4dh7112i95
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-3nm9658sqc
https://twitter.com/intent/tweet?text=OC-3072%20packet%20classification%20using%20BDDs%20and%20pipelined%20SRAMs&url=https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-3nm9658sqc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-3nm9658sqc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-3nm9658sqc
https://typeset.io/papers/oc-3072-packet-classification-using-bdds-and-pipelined-srams-3nm9658sqc

OC-3072 Packet Classification Using BDDs and Pipelined SRAMs

Amit Prakash Adnan Aziz

Department of Electrical and Computer Engineering

The University of Texas at Austin

prakash
�
adnan@ece.utexas.edu

Abstract

We present a solution to the problem of quickly classi-

fying packets. Our approach is based on techniques from

logic synthesis. Specifically, we express the classification

rules as Boolean logic equations, build Binary Decision Di-

agrams for these equations, and then map the BDDs to a

logic network consisting of a pipeline of static RAM banks.

We illustrate our approach by applying it to the longest pre-

fix matching for IP forwarding, and present evidence that

our scheme can perform a billion matches per second on a

CAIDA backbone forwarding table containing 60,000 pre-

fixes. We show how our approach generalizes to classifying

packets on multiple fields.

1 Introduction

Until relatively recently, routers were little more than

general purpose computers connected to specialized hard-

ware for transmitting and receiving packets over links. This

was because link bandwidth was low enough that general

purpose processors could implement all the functionality

needed for routing.

The advent of high-speed optical link technology has led

to a reversal to this situation — today routers and not links

are the bottleneck in moving information around the Inter-

net. One approach to make routers faster is to implement

performance-critical aspects of routing in custom hardware.

One of the basic operations that a router has to perform

is to take an incoming packet and determine which output

link to put it on. The “forwarding table” contains the in-

formation needed to make this decision. Conceptually, this

table consists of a set of (bitPrefix, outputPort) pairs. The

32 bit IP destination address ✁ of an input packet ✂ is com-

pared with the prefixes in the set and the packet ✂ is forward-

ed to the output port that corresponds to the longest prefix

that matches ✁ . Routers participate in elaborate protocols to

compute forwarding tables which result in paths that are in

some sense optimum [8, Chapter 11].

We focus on one of the most performance critical com-

putations performed by a router, namely packet classifica-

tion, a special case of which is the longest prefix matching

problem previously described. In its more general form, the

problem consists of looking at multiple fields in the pack-

et header, and determining what actions to perform on the

packet. In addition to making forwarding decisions, pack-

et classification has applications to implementing class-of-

service, building firewalls, gathering statistics, enforcing

service-level-agreements, etc.

To keep our exposition simple, we will first illustrate our

approach on the longest prefix matching problem. We will

describe how our approach generalizes to classification on

multiple fields to the general problem at the end of the pa-

per.

1.1 Prior work

The longest prefix matching problem has received

widespread attention. Approaches can be grouped into two

classes: software-centric, e.g., [1, 9, 12, 11] and hardware-

based, e.g., [5, 6].

The state-of-the-art in software-based solutions is em-

bodied by the binary search on hash tables algorithm [12].

Since the data structures are large, its best case performance

is bounded by the latency of dynamic RAM, which is ap-

proximately 50 nanoseconds. In practice, the approach is

reported to achieve approximately 2 million matches per

second, which is too slow for today’s high speed opti-

cal links. Furthermore, incremental updates are extremely

complex; given that backbone routers change their forward-

ing table based on BGP updates every 30 seconds, this is a

major limitation. Finally, the approach involves relatively

complex operations (e.g., computing hash codes) and is not

“regular” enough to be easily mapped into a direct hardware

implementation.

A diverse set of hardware-based solutions have been of-

fered to the longest prefix matching problem. Gupta et

al. [5] describe a scheme which expands all the prefixes

up to 24 bits in length, and stores that portion of the for-

warding table in DRAM. Since the vast majority of prefixes

are no more than 24 bits long, for these prefixes they can

make a forwarding decision by simply doing a DRAM ac-

cess, thereby achieving up to ✄✆☎✞✝✠✟✡☎☞☛ matches per sec-

ond for 50 nanosecond DRAM. However, their approach

suffers from several limitations: it employs a large amoun-

t of (power hungry) DRAM (9–33 Mbytes are reported),

lookup times depend on the prefix length distribution, and

updates are complex. The approach does not scale — it

cannot be used for IP version 6, or for level 4 packet clas-

sification. Another hardware oriented approach is the use

of Content Addressable Memories (CAMs) [6]. A CAM

is a fully associative memory, i.e., it can perform an exact

match in a single clock cycle by doing multiple comparisons

in parallel. Longest prefix matching can be performed using

Ternary CAMs with some priority decode logic. CAMs can

be used to compute up to 50 million matches per second.

However, updating the CAM is difficult, since entries need

to be ordered by length. Furthermore, CAMs, being latch

based, burn a great deal of power.

1.2 Problem relevance

It is worth stressing that the longest prefix matching

problem is still important today. There are two arguments

that have been made that it is irrelevant: (1) since packets

are written in slow DRAM memory, this is more of a bottle-

neck to performance, and (2) deployment of multiprotocol

label switching (MPLS) does away with the need for doing

longest prefix matching.

We argue against the first point by noting that a fast

matcher can be used to perform the forwarding decisions

for multiple input ports. Furthermore, the general packet

classification problem is more complex, and needs corre-

spondingly more computation.

Similarly, the introduction of MPLS does not complete-

ly do away with the packet classification problem. It is not

clear whether MPLS will really be widely deployed, as it re-

quires a complex label management scheme in a distributed

environment. MPLS labels will still need to be computed at

entry points into MPLS networks. Furthermore, more gen-

eral classification (level 4 and above), cannot be achieved

by simple MPLS labels because MPLS labels are simply

too “coarse.”

2 Background — logic synthesis & BDDs

Logic synthesis [10] is the term given to the process of

realizing an optimized gate-level implementation of a logi-

cal specification. It is common to express the specification

using Boolean logic equations. The task of the synthesis

tool is to compute an optimized netlist of logic gates, drawn

from a target standard-cell library, which implements these

logic equations.

Truly optimum synthesis is extremely difficult to

achieve, due to the fact that the underlying decision prob-

lems are invariably NP-hard. As such, general purpose syn-

thesis tools make extensive use of heuristics. In our work,

we will develop a logic synthesis procedure that maps the

forwarding table expressed using Boolean logic equations

to a special reprogrammable architecture that is suitable for

implementing classification rules.

Given that synthesis tools operate with Boolean-valued

functions of Boolean-valued variables, it is imperative to

use a data structure that can compactly represent and ma-

nipulate a large class of useful Boolean functions. The data

structure of choice for representing Boolean functions is the

Reduced Ordered Binary Decision Diagram [2].

Binary Decision Diagrams have their roots in the decom-

position given by the Shannon expansion theorem, i.e., the

result that ✌✞✍✏✎✒✑✓✌✆✔✖✕✗✎✙✘✙✑✚✌✆✔✡✛ . Recursively applying this

decomposition leads to a tree structured representation. A

reduced ordered binary decision diagram (henceforth BDD)

for the function, is precisely such a representation, with the

added requirements that the variables about which Shannon

expansion takes place occur in a fixed order in the tree, n-

odes with equal children are removed, and isomorphic sub-

trees are merged. An example of a BDD is given in Fig-

ure 1(a). The two children of a BDD node are referred to as

the 0-branch and 1-branch; these correspond to the function

computed when the node variable is set to 0 or 1, respec-

tively.

3 Our classifier

Let us consider a router which has ✄☞✜ output ports. Given

a forwarding table, our goal in the longest prefix matching

problem is to find an optimized implementation of the func-

tion ✢ PM which takes as an argument a 32 bit address (i.e.,

has domain ✣✚☎✥✤✦✟✆✧✓★✪✩) and returns a ✫ -bit output port identi-

fier, i.e., has range ✣✓☎✬✤✡✟✆✧✭✜ .
Given a forwarding table, it is straightforward to write

Boolean logic equations specifying ✢ PM. In principle, we

can run logic synthesis on these equations to obtain an effi-

cient hardware implementation of ✢ PM. Performing longest

prefix matching is then just a matter of floating the destina-

tion IP address as an input to this hardware — the output

port identifier is the output of the synthesized circuit.

This approach differs from previous hardware approach-

es in that the forwarding table is encoded in the circuit itself,

instead of being fed as an input to a logic circuit. However

this also means that hardware has to be reprogrammable as

the table may change. Thus, our logic synthesis algorithm

needs to target reprogrammable hardware.

For reprogrammable hardware, Field Programmable

0 1 2 3

0 1 1 0 0 0 1 1

3210

0 1

10

(b)

1

10

0

1

1

X2

X1

X0

X1

X2

1

0
1

(a) BDD

1

0

0

0

Figure 1. (a) BDD for the Boolean logic function ✮✰✯✱✳✲✵✴✶✱✸✷✺✹✼✻✱✳✲✽✴✆✾✙✻✱✸✷✿✴❀✱✬❁❂✹❃✱✸✷✿✴❄✻✱✳❁❆❅ . (b) Representation of

the BDD in memory.

Gate Arrays (FPGAs) may seem to be the obvious choice,

but we found them to be ill-suited for this application. We

attempted to map logic equations corresponding to a back-

bone router’s forwarding table to a Xilinx FPGA using the

Xilinx logic synthesis tools. The tool ran for a day without

succeeding at synthesizing the equations. We then gave the

tool a mux-based gate-level netlist implementation derived

directly from the BDD representation of ✢ PM, and told it

to perform place-and-route the netlist. In one day it could

place-and-route only one of the BDDs (corresponding to the

least significant bit of ✢ PM), and the delay of the resulting

circuit was 85 nanoseconds, which is not competitive with

the existing state-of-the-art.

The problem with mapping a large, unstructured set of

logic equations to an FPGA is that fitting in so many nodes

and their interconnects is again a hard combinatorial opti-

mization problem, especially since there are relatively few

long wires in FPGAs. Furthermore, these wires go through

many switch boxes inside the FPGA, which adds to the de-

lay.

In summary, using generic logic synthesis on the logic e-

quations corresponding to the forwarding table is not possi-

ble because a hard combinatorial problem has to be solved,

and traditional reprogrammable architectures are not suited

to implementing the equations. In the next section, we de-

scribe our approach, which overcomes both these problems.

3.1 Our architecture: cascaded SRAMs

To illustrate our approach, we first consider the case

where there are exactly two output ports, i.e., ✢ PM ❇✣✚☎✥✤✦✟✆✧✓★❈✩❊❉❋●✣✓☎✬✤✦✟❍✧ .
Our approach consists of building the BDD for ✢ PM and

then mapping it to a pipeline of 32 SRAMs, numbered from

0 to 31, as in Figure 2. Conceptually, the ✫ -th SRAM holds

the BDD nodes for level ✫ ; the data-out lines of the ✫ -th

SRAM and the ■❏✫❑✕▲✟✚▼ -th bit of the input IP address feed

the address lines of the ■❏✫❄✕◆✟✚▼ -th SRAM. (Assume for now

that we do not skip levels when the children of a BDD node

are equal.) This is illustrated in Figure 1(b).

We have shown that the size of the BDD representation

of a forwarding table is bounded by the size of the forward-

ing table. Due to space restrictions, we omit a formal proof

of this result. (In fact the BDD will actually be significantly

smaller than the forwarding table because of node sharing.)

As an example, consider the forwarding table:✣☞■❖☎☞P◗✤✪☎❘▼✶✤✡■❙✟✭P◗✤✡✟✚▼❀✤✚■❚☎✥✟✓P◗✤✡✟✚▼✶✤✡■❚☎✥✟❍✟❘✤❈☎❘▼✶✤✡■❯✟✡☎❘P✳✤❈☎❍▼✶✤✡■❚☎✥✟❍✟✆✤✪☎❘▼❀✧ . The

BDD corresponding to this forwarding table mapping can

be translated to the BDD drawn with solid lines in Fig-

ure 1(a). When we want to translate this BDD into the

cascaded memory architecture, we will have to add extra

nodes on edges which skip levels. The dashed circles repre-

sent the new nodes. Figure 1(b) shows how these nodes can

be arranged in different SRAM banks.

A similar architecture can also be used to perform a trie

walk in hardware. However for our application, the BDD

representation is considerably smaller than the correspond-

ing trie because of node sharing. This is especially true at

the lower levels, where the width of the trie is much greater

than that of the BDD for same forwarding table. The small

size of the BDD lets us use very fast SRAMs, which would

otherwise be infeasible. Furthermore, since a trie can skip

multiple levels, it is impossible to pipeline

We now provide a more detailed description of the ar-

chitecture. Let us assume that maximum number of BDD

nodes at any level is bounded by ✄☞❱ nodes where ❲ is some

constant. Let each SRAM be capable of storing ✄◗❱❨❳✿❩ word-

s, each ❲ bits wide. The least significant address line of

the ❬ -th SRAM is driven by the ❬ -th bit of input IP address.

The remaining address lines of the ❬✵✕❭✟ -th line is driven

by the data-out lines of the ❬ -th SRAM. Again, assume that

each BDD node has its 0-child and 1-child in the next level.

(Later we will show we can get rid of this restriction with a

little overhead.) We store the nodes at level ❬ in an address

in SRAM ❬ (each node is two words, a pointer to the 0-child

and a pointer to the 1-child). Since the number of nodes is

limited by ✄❘❱ we can do this. As there will be only one top

node in the BDD we can let the ❪ ❲ ❇ ✟✦❫ address bits of S-

RAM 0 remain fixed. The matcher operates as follows: we

float the IP address as the input. The first bank generates the

DATA

(2^(k+1) x k) bits

1st bit of IP address
k

DATA

0th bit of IP address

address of top node

STATIC RAM

STATIC RAM

(2^(k+1) x k) bits

k

32nd bit of IP address

DATA

(2^(k+1) x k) bitsSTATIC RAM

output port

ADDRESS

ADDRESS

ADDRESS

Figure 2. SRAM implementation.

higher address bits of the correct node in the second level.

These bits combined with the second bit of IP Address go

to the second SRAM and we get the required address bits of

node in the third bank. This way when we get all the way

to the last bank we get the correct port out. Since all the

SRAM blocks have same delay we can easily pipeline this

architecture so that data coming out of each stage is latched

for the next clock cycle.

In the next section, we will show experimentally that if

we allocate 16K BDD nodes for each level, we can accom-

modate 60K prefixes with room to spare. Hence it suffices

for each SRAM to be ❴❘✄✆❵❃✝❛✟✦❜ bits in size. Thus a 64 Kbyte

SRAM will easily serve our purpose. Modern L2 caches are

of this size with a cycle time as low as 0.66 nanoseconds per

access. (For example, the Pentium-IV operates at 1.5 Ghz,

and has a single cycle access time to the L2 cache [7].) So

if each pipeline stage just does one memory access, we can

do one lookup every ✟ ns, i.e., a billion lookups per second.

(We are budgeting of 0.33 ns for interconnect delay; given

that the communication is very local, this should be more

than adequate.) Assuming 160 bit IP packets, we can serve

a line operating at ✟✚❝❍☎❞✝❡✟✡☎☞❢❄✍❣✟✡❝❍☎ Gbps, i.e., an OC-3072

link.

The above discussion has assumed that there were two

output ports, with ids ☎ and ✟ . We can generalize it to ✫ -

bit output port ids by building ✫ BDDs, one for each bit of

the output port id. The disadvantage with this approach is it

requires ■❖✫❤✑✡❴☞✄❍▼ SRAMs.

However there is a simple trick that allows us to get by

with 32 SRAMs even for ✫ -bit output port ids. Instead of

having just two nodes, zero and one, at the last level of the

BDD, we will have ✄❘✜ nodes, one for each output port. (This

data structure is referred to as a multi-valued BDD (mvBD-

D) [2].) We can easily construct this data structure by build-

ing the BDD of the function ✐ PM ❇ ■❚❥☞❦ ❧◗✁❘✁❘♠✭♥✭♦✚♦❘✤❖✂✙♣✓♠✓q❯▼✒❉❋✣✚☎✥✤✦✟✆✧ where ✐ PM(ip,port) = 1 iff the IP address ip matches

the port number port. While building this BDD, we force

the variables corresponding to the port id bits to be the low-

est variables of the BDD. Then if we cut the BDD at the lev-

el where port-id bits start, we get the corresponding mvBD-

D.

Reducing the number of levels

We note that if we are allocating 16K nodes for each lev-

el, we do not need the first 14 SRAMs — we can use the first

14 bits of IP address to directly index to the corresponding

nodes at level 14. For a given 14 bit prefix of IP address we

can walk down the original BDD and get the corresponding

BDD at 14-th level. So we just write that node at the ad-

dress formed by the 14 bit prefix. (Some of the nodes may

have multiple copies in the same level but that is accept-

able because number of nodes cannot exceed the total size

of memory.)

Another observation, in the spirit of Gupta et al. [5], is

that almost prefixes are less than or equal to 24 bits. So in

most cases we can get the result after the 24-th level. After

that we can have one bit to indicate whether we are done. In

case we are not done, we can use the remaining 8 bits and 7

bits from previous pointer (if we provision for at most 128

prefixes longer than 24 bits). Thus we need only 11 SRAM

banks, as opposed to 18. This significantly reduces the area

requirements, power dissipation and latency of the system.

Removing restrictions on BDDs

We previously imposed a restriction on BDDs that each

node must have its 0-branch and 1-branch nodes in the nex-

t level. However this is not the case for standard BDDs,

where edges can skip level. There are two solutions to this

problem. The trivial solution is to insert extra nodes on

edges which skip levels, as shown in Figure 1. An alter-

native approach is to use 2 bits with each pointer to tell how

many nodes we can skip. With a little more hardware we

can let each pipeline stage can check if the level skip bit-

s are zero or not. If they represent zero, then it function

as usual otherwise it just subtract the number of levels to

skip and pass the same address. With 2 bits we can skip

maximum up to 4 levels which will considerably reduce the

number of replicated nodes.

Updates

Performing updates in our system is straightforward.

When a prefix is changed, the number of nodes in the orig-

inal BDD that change is always less than equal to the num-

ber of levels. Since we have just 11 levels in our modified

decision diagram, in most cases we will have less than 12

nodes changing. Furthermore these words will be going to

different banks so they can be written simultaneously. How-

ever in the modified decision diagram since we start directly

at level 14, a single node can map to many addresses so a

change in a class A prefix (8 bits) will lead to ✄◗❩❙r✦s✉t❤✍✈❝✆❜
entries of two words each which is not excessive, and such

changes will be infrequent as there are very few class Ad-

dresses. Also because we expand all the bits from 25 to

32 in the last level, a change in 25 bit prefix can lead to✄✆✇❂✍✗✟✓✄✆① words. Prefixes longer than 25 bits are also very

infrequent. If we assume these problematic updates occur

less than ✟✚☎☞② of the time then average number of words to

be written on the memory banks will be less than 35.

If we assume 1000 BGP updates come every 30 seconds,

in the worst case we need to write ■❙✟✓✄✆①❤✕✈✟✚☎❘▼✵P③✟✡☎❘☎❍☎④✍✟✡❴❍①❘❵ words and in average case ❴❘⑤❍❵ words. This is very

little data over a 30 second time period — it can even be

downloaded via a serial link. Inside the chip all the SRAMs

can be written in parallel, so in the worst case one of the

banks will write 128 words for an update, meaning 128K

writes. If the write latency of SRAMS is 10 ns then this

will make the classifier unavailable for ✟✚✄✆①❘❵✼✝⑥✟✡☎ ns =

1.28 ms every 30 seconds. This reduced the throughput of

the classifier by only ⑦ ☎❘☎✬✟✚✄❍①☞⑧✆❴❍☎✺✍⑨☎✬⑦ ☎✆❜✳② .

3.2 Hardware implementation

One of the strengths of our architecture is that it is very

regular and consequently easy to implement. All we need is

a number of SRAM banks placed one after another. SRAM-

s are standard components; vendors such as LSI Logic sell

memory generators that create layout and timing models for

parametrized SRAMs. The control logic to perform writes

and multiplex addresses is minimal. For routing tables not

needing more than 16K nodes at any level we can do with

11 SRAMs each 64 Kbytes in size. A 128 Kbyte SRAM in

0.18 micron CMOS technology is about ✄❍⑤❍☎❍☎✵✝⑩❴❍☎❍☎❘☎ square

microns in area, and dissipates 0.25 Watts, so if we have 6

such banks, the die size would be 7.5mm ✝ 6mm and the

power requirement would be around 1.5W (these numbers

were obtained from a memory designer from a large semi-

conductor vendor).

Note that the total delay through the pipeline is ✟❘✟ times

the delay of each stage, i.e., 11 ns. This requires buffering

1760 additional bits for an OC-3072 line, and corresponds

to a propagation delay of 2.2 meters through copper wire.

Bit No. of nodes Bit No. of nodes

14 2164 20 6803

15 2678 21 5207

16 3675 22 2745

17 5096 23 1001

18 6093 24 335

19 6745

Table 1. Number of nodes at different levels.

❶✡❷⑨❶ ❶✚❸❺❹❞❹❭❶ ❶✦❸❺❹❞❹❼❻❾❽✪❿➁➀✓➂✦❿✦➃➄❶ ❶✓➅●❶
time

11546 23308 18512 19128 7.2

23132 34065 28042 28918 9.3

28769 37847 31444 32445 11.4

34550 40855 34211 35264 13.3

40222 43777 36763 37926 15.2

46092 46370 39119 40363 17.0

51867 48189 40726 42014 18.7

57668 45063 40995 42188 20.6

Table 2. Scaling of system with number of prefixes. Here❶✦❷➆❶
denote the number of prefixes,

❶✶❸✺❹❞❹❣❶
denotes the

number of BDD nodes,
❶➇❸❺❹❞❹❼❻➈❽❆❿❤➀✭➂✦❿✦➃➉❶

denotes the num-

ber of BDD nodes between level 14 and 24,
❶➊➅➋❶

is the total

number of nodes in memory, time is CPU time in second-

s to build the BDD on a PIII 500MHz/256Mbytes running

Redhat Linux 6.2.

3.3 Experiments

We evaluated our approach with a forwarding table for

MAE-WEST obtained from CAIDA [3]. The table has

57668 prefixes and 62 output ports. The table 1 shows the

number of nodes we need in different SRAM banks to map

this routing table. The maximum number of nodes needed is

6803 at level 20. So routing tables containing 60 K prefixes

should easily fit in the SRAMs by provisioning memory for

16K nodes in each SRAM.

We can get some idea of how the total number of BD-

D nodes scales with the number of prefixes by considering

subsets of the forwarding table selected randomly with sim-

ilar distribution of prefix lengths. Table 2 shows how the

number of BDD nodes scales with the number of prefix-

es. The second column shows number of nodes in the exact

mvBDD. The third column is the number of nodes between

level 14 and 24. The fourth column is the actual number of

nodes in memory after accounting for extra nodes to needed

to skip levels. From Table 2 it is clear that the number of

nodes grows sublinearly with the number of prefixes.

4 Packet classification on multiple fields

We now turn to the general packet classification problem,

which we illustrate by considering level 4 packet classifica-

tion. Level 4 packet classification requires examining mul-

tiple fields in the packet header, and is significantly more

complex than the longest prefix matching problem. In a

common formulation [4, page 21], a level 4 classification

rule consists of an ordered pair, with the first element being

a predicate, and the second element being an action. The

predicate is a conjunction of conditions on the source IP ad-

dress, destination IP address, source port, destination port

and protocol fields. The conditions themselves could be

ranges (e.g., source port ➌⑨✟✚☎❘✄❍❴), equality (destination port

= 80) or prefixes (source IP = 101 P). The action could be a

4-bit quantity denoting class-of-service, or even a single bit

denoting whether to block the packet. In the common for-

mulation, the set of rules is assumed to be totally ordered,

and if for a given packet, two rules’ predicates are true, then

the action taken is that of the higher ranked rule.

The direct approach of building a BDD for the classifi-

cation function computing the action as a function of the

header, and then mapping the BDD to a pipeline of memory

banks does not work well in case of generalized classifica-

tion. The BDD size for each individual predicate will be

small. However the fact that the rules may be ordered ar-

bitrarily can result in enormous BDDs. For example, we

generated 1000 random classification rules and found the

resulting BDD to have more than a million nodes.

We can avoid this BDD blowup by slightly modifying

the semantics of classification. Specifically, we allow the

user to assign a priority level to each rule from a small, pre-

defined set of priorities, e.g., ✣✚☎✥✤✦✟❍✤✡⑦✦⑦✡⑦❀✤❆➍☞✧ . Then if there are

multiple rules that match a packet, the highest priority rule

will be applied. If more than one rule with highest priority

is applicable to a packet, then the classifier is free to selec-

t any one of them to apply to the packet. We will shortly

describe how to use this flexibility to order predicates of a

given priority in such a way that the BDD for the classifica-

tion function is linear in the number of rules of that priority.

We believe that these restrictions will not be very significant

for most real-world applications.

Since there is a known number of priority classes, we can

build a pipeline of SRAMs computing the action for the set

of rules at a priority level exactly as before. The classifier

then consists of pipelines for each priority operating in par-

allel and a priority encoder, which then selects the highest

priority action to apply.

We now provide details on how we order predicates with-

in a priority level. First of all, the only conditions we con-

sider are prefixes on individual fields. Both equality and

range checks can be expressed as prefixes with at worst as

many prefixes as number of bits in the field. (If there are

ranges on multiple fields in a predicate and all the ranges

need splitting, there can be a multiplicative effect. How-

ever in practice arbitrary ranges are used for port number-

s only.) We define a prefix ✂ ❩ to be less than ✂ ✩ (denot-

ed by ✂ ❩➏➎⑩➐ ✂ ✩) if and only if ✂ ✩ is a proper prefix of✂ ❩ . We say ✂ ❩ and ✂ ✩ are incomparable if ✂ ❩➒➑➎⑩➐ ✂ ✩ and✂ ✩❑➑➎⑩➐ ✂ ❩ . We totally order the individual fields, e.g., source

IP ➌ destination IP ➌ source port ➌ destination port ➌
protocol. Given two predicates ➓⑥✍❣■❚❧ ❩ ✤❈❧ ✩ ✤❈❧ ★ ✤✪❧ r ✤❈❧◗➔✡▼ and→ ✍➣■❏↔ ❩ ✤❆↔ ✩ ✤❆↔ ★ ✤❆↔ r ✤❆↔❀➔✡▼ , we define ➓ ➎ →

if and only if❧◗↕ ➎ ➐ ↔❀↕ where ❬ is the smallest index such that ❧✳↕ and ↔❀↕
are comparable. Now if we make sure that rules are prior-

itized according to the order ➎ on the predicates, we can

prove that the size of the Shannon tree of resulting classi-

fication function will be linear in number of rules. A BDD

is a reduction of the Shannon tree, so it will also be linear-

ly bounded in number of rules (and possibly much smaller

because of sharing).

References

[1] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink. Smal-

l forwarding tables for fast routing lookups. In ACM SIG-

COMM, 1997.

[2] R. Bryant. Binary Decision Diagrams and Beyond: Enabling

Technologies for Formal Verification. In Proceedings Inter-

national Conference on Computer-Aided Design, November

1995.

[3] CAIDA. www.caida.org.

[4] P. Gupta. Algorithms for routing lookups and packet clas-

sification. PhD thesis, CS Department, Stanford University,

2000.

[5] P. Gupta, S. Lin, and N. McKeown. Routing Lookups in

Hardware at Memory Access Speeds. In Proceedings IEEE

Infocom, 1998.

[6] Lara Networks Inc. www.laranetworks.com.

[7] Intel. developer.intel.com/design/Pentium4/prodbref/.

[8] S. Keshav. An Engineering Approach to Computer Network-

ing. Addison-Wesley, 1997.

[9] B. Lampson, V. Srinivasan, and G. Varghese. IP Lookups

using Multiway and Multicolumn Search. In Proceedings

IEEE Infocom, 1998.

[10] G. De Micheli. Synthesis and Optimization of Digital Cir-

cuits. McGraw Hill, 1994.

[11] V. Srinivasan and G. Varghese. Fast IP Lookups Using Con-

trolled Prefix Expansion. In ACM SIGMETRICS, 1998.

[12] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-

able High-Speed IP Routing Lookups. In ACM SIGCOMM,

1997.

