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Occam’s inversion to generate smooth, two-dimensional models 
from magnetotelluric data 

C. deGroot-Hedlin* and S. Constable* 

ABSTRACT 

Magnetotelluric (MT) data are inverted for smooth 

2-D models using an extension of the existing I-D 

algorithm, Occam’s inversion. Since an MT data set 

consists of a finite number of imprecise data, an 

infinity of solutions to the inverse problem exists. 

Fitting field or synthetic electromagnetic data as 

closely as possible results in theoretical models with a 

maximum amount of roughness, or structure. How- 

ever, by relaxing the misfit criterion only a small 

amount, models which are maximally smooth may be 

generated. Smooth models are less likely to result in 

overinterpretation of the data and reflect the true 

resolving power of the MT method. The models are 

composed of a large number of rectangular prisms, 

each having a constant conductivity. A priori informa- 

tion, in the form of boundary locations only or both 

boundary locations and conductivity, may be in- 

cluded, providing a powerful tool for improving the 

resolving power of the data. Joint inversion of TE and 

TM synthetic data generated from known models 

allows comparison of smooth models with the true 

structure. In most cases, smoothed versions of the 

true structure may be recovered in 12-16 iterations. 

However, resistive features with a size comparable to 

depth of burial are poorly resolved. Real MT data 

present problems of non-Gaussian data errors, the 

breakdown of the two-dimensionality assumption and 

the large number of data in broadband soundings: 

nevertheless, real data can be inverted using the 

algorithm. 

INTRODUCTION 

It is well known that magnetotelluric (MT) inversion with 

a finite data set is nonunique and therefore an infinite number 

of conductivity structures exist which fit the data, if any 

exist at all. Despite this, a common approach to fitting a 

two-dimensional (2-D) MT data set is to construct a cross- 

section of the area based on prior geological knowledge and 

then to solve for the conductivities by least-squares inver- 

sion (Jupp and Vozoff, 1977) or by a trial-and-error forward 

modelling method (EMSLAB group, 1988). These solutions 

are highly dependent upon the model parameterization and 

the prior assumptions about the geology. Finding a model 

based on an assumed geological structure which has an 

adequate fit to the data may tempt one to believe that 

features appearing in the model are necessary rather than 

merely consistent with the data and one might argue that in 

using this method little is learned independently from the MT 

data about structure in the Earth. 

A more objective approach is to solve for model structure 

by overparameterizing the model; that is, dividing the model 

into more blocks than there are degrees of freedom in the 

data, and then solving for the conductivities. However, 

while underparameterizing the model may suppress signifi- 

cant structure, overparameterizing the model and conduct- 

ing a least-squares inversion will lead to unstable solutions 

which contain large oscillations. In the extreme case, the 

least-squares best-fitting model possesses structure which is 

rougher than is physically possible (e.g., Parker, 1980). 

Imposing a smoothness constraint on the model may stabi- 

lize the solution (Rodi et al., 1984; Sasaki, 1989), but unless 

the smoothest model is explicitly sought, features may still 

appear which are not required by the data. 

The approach presented in this paper is to find models 

fitting the data which are extreme in the sense of having the 
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minimum possible structure. A tenet of modern science 

known as Occam’s razor is followed: a simple solution is 

preferable to one which is unnecessarily complicated. The 

approach closely follows that of Constable et al. (1987) for 

1-D EM inversion in that the smoothest possible model is 

sought at a given level of misfit for an overparameterized 

model. Although these models are not necessarily closer to 

the truth than any other models which fit the data, they give 

lower bounds on the amount of structure required. It is then 

likely that the true Earth is at least as rough as the models. 

Also, smooth models give an indication of the resolving 

power of the EM method, since the data cannot distinguish 

between these models and those which incorporate sharper 

conductivity contrasts. 

THE MODEL MESHES 

For a 2-D model the earth is parameterized by means of a 

grid of rectangular prisms, each having a uniform conduc- 

tivity. The grid is terminated laterally by uniform layers and 

below by prisms elongated with depth. This grid is referred 

to as the regularization mesh. The individual blocks are 

made smaller than the data resolution length so that the 

locations of the block boundaries do not affect the final 

model. To perform the forward calculations required by the 

inversion scheme, a finite-element code described by Wan- 

namaker et al. (1987) is used. This program uses a rectangu- 

lar array of nodes to perform the finite-element calculations, 

which is called the finite-element mesh (see Figure I). The 

finite-element mesh must contain at least the regularization 

mesh as a subset since there must be a node at every 

conductivity boundary. In normal practice. many nodes 

would be used across a conductivity boundary to ensure that 

the EM fields are computed correctly. However, the regu- 

larization mesh contains a much larger number of conduc- 

tivity regions than is normally used for 2-D models based on 

assumed geologic structures, and so using several nodes for 

each conductivity element would be computationally expen- 

sive. The smooth inversion scheme will prevent large con- 

ductivity contrasts from appearing in the model, and several 

FIG. I.The model is defined by the regularization mesh, 
which has a distinct conductivity value for each block. The 
forward computations require a finite element mesh which 
must at least include the boundaries defined by the regular- 
ization mesh, but for greater accuracy may include more 
nodes than this, especially near the surface and the edge and 
lower boundaries, 

inversions have been conducted using no more nodes than 

defined by the regularization mesh. However, it is usually 

desirable to insert more nodes within the regularization mesh 

to maintain accuracy in the forward code, especially at the 

edges of the grid. 

To maintain accuracy of the forward code, the spacing 

between nodes is taken to be approximately one-third of a 

skin depth. where the skin depth (6) in a region of resistivity 

p (CL . m) is given in meters by 

6 = 5QOflf 

and J’is the frequency (Hz). The EM fields in a half-space 

decrease exponentially with depth, so the usual practice in 

MT surveys is to logarithmically space the frequencies at 

which the responses are calculated. Various depth scalings 

for I-D smooth inversion were investigated by Smith and 

Booker (198X). and it is not surprising that a logarithmic 

depth scaling was found to fit the data most uniformly. 

Accordingly, a logarithmic depth scale is used for the node 

spacings and block sizes. The ideal depth scale is, of course, 

structure dependent and cannot be determined a priori for 

any real data. 

Both the regularization and finite-element meshes remain 

fixed between iterations in this inversion method. To deter- 

mine the sizes of the resistivity blocks, an estimate of the 

resistivity is made based on a I-D inversion of the TE mode 

and inspection of the pu curves. Since the inversion mini- 

mizes the model structure, the initial determination of the 

block sizes is not a critical step. The data generally require 

little conductivity contrast between the blocks, so it is not 

essential to have a fine grid in order to represent the models, 

and an excessively tine grid is, of course, no problem. 

THE INVERSION METHOD 

To suppress model structure not required by the data, the 

model roughness must be minimized. For a 2-D structure 

with x in the direction of the strike axis a measure of the 

model roughness may be given by 

where m is the vector of model parameters, $r is a rough- 

ening matrix which differences the model parameters of 

laterally adjacent prisms, and 9; is a roughening matrix 

which differences the model parameters of vertically adja- 

cent prisms. This is the expression for a first derivative 

roughness penalty. The penalty for the second derivative 

roughness is given by 

R, = llgtrnil’ + Ilalrni12. (2) 

Since the model grid is terminated by uniform layers at the 

sides and uniform blocks below, first derivative smoothing 

best matches the boundary conditions imposed by the for- 

ward code. Therefore only the R, roughness penalty will be 

discussed. The vertical scale of the prisms is exponentially 

increased as a function of depth in order to coincide with the 

loss of resolving power; this is equivalent to increasing the 

penalty for roughness as a function of depth. The horizontal 

block boundaries and node spacings in the forward code 

extend to depth and are constrained by the requirement of 

having a fine mesh near the surface. Since the block widths 
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remain constant, the horizontal damping factors in the 

roughening matrix are adjusted to ensure that resolved 

features are not elongated in the vertical direction. That is, 

as the vertical scale of the prisms increases, a greater penalty 

must be given to differences in model parameters between 

laterally adjacent blocks. 

Suppose the grid consists of a total of N elements, with p 

elements in the horizontal direction, each having width h, 

and t elements in the vertical direction having widths 71,, i = 

1, 2, . . . , P. Numbering the elements from left to right 

starting at the top left element, the N x N vertical roughen- 

ing matrix 3, is given by 

I 

0 - 

0 . 

0 . 

0 I 0 

. . 0 I 

I 

!, 

where I, is a p x N matrix of zeroes. There are p - I zeroes 

between the entries in the rows of 3,. Thus 9; acts to 

difference the model parameters between vertically adjacent 

blocks. The N x N horizontal roughening matrix 3,. is given 

by 

[ 

a?., 0 

a,., 

* . . 

0 a,., 

where a,.; is the p x p horizontal roughening matrix for layer 

i, given by 

_ 
7,; Ii1 7,; Ii1 

_ 
71; lh l,i III 0 

.[ 1 ??.i = 
*.. (5) 

0 - lli ih 7li lh 

. . . 0 

Thus 3,; differences the model parameters between laterally 

adjacent blocks in layer i, basing the penalty for differences 

on the depth-to-width ratio of the blocks in that layer. 

If the data are represented by dj, j = I, 2, . . . , M, and one 

assumes that each of the data sets has known variances oj, 

a model’s ability to fit the data can be quantified using the 

two-norm measure, 

where F[m] are nonlinear forward functionals acting upon 

the discretized model m to produce a model response and W 

is the M x A4 diagonal weighting matrix 

W = diag {lint, l/u2. e.1 I/u,~}. (7) 

The smoothest model is sought subject to the criterion that 

it fit the data to a statistically reasonable tolerance. If it is 

assumed that the noise is uncorrelated and due to a zero- 

mean Gaussian process, then X’ is chi-squared distributed 

with an expected value X$ equal to M, the number of 

independent data. That is, a model with an rms misfit of I is 

sought. The expected value is the best guess at the X’ of the 

real Earth response. To be more conservative, one could 

choose to fit to 95 percent, or even 99 percent confidence 

limits, but since a larger number of data are used, there 

would be little difference in the resulting model. For exam- 

ple, for the 21@300 data items used in the examples, fitting 

to 95 percent confidence limits would require an rms error of 

I. I5 and fitting to 99 percent would require an rms error of 

I .2. The models generated for 95 and 99 percent confidence 

limits would not be substantially different, and the use of the 

expected value does not require significantly more structure 

than the use of more conservative statistics. Furthermore, it 

is unusual to have field data with e~~o~.s (not data) known 

accurately to within 15%. and so these arguments can only 

provide guidelines. 

To solve the minimization problem, a Lagrange multiplier 

formulation is used and a stationary point is found for the 

unconstrained functional 

U[m] = 119, ml/’ + llaZrnll’ + tC’{IIWd - \?iF(m)ll’ ~ A’:}, 

(8) 

where km’ is the Lagrange multiplier. This formulation 

resembles the regularization approach developed by 

Tihonov (1963a. b). It is common practice in regularization 

problems (e.g., Sasaki, 1989) to set the value of the Lagrange 

multiplier in advance and then solve for the model that best 

fits the data. However. this requires a priori knowledge of 

the model roughness and ignores the possibility of overfitting 

the data. Therefore, it is better to solve for a model that fits 

the data to within an acceptable tolerance. It is generally 

observed that as the tolerance is reduced, the model gets 

rougher. 

The functional U is minimized at points where the gradient 

with respect to the model is zero. Since the data functionals 

are nonlinear, the functional U is linearized and solved 

iteratively. For a starting model ml, the first two terms of a 

Taylor expansion give the following approximation 

F[mt + Al = FIrnIl+ JIA, (9) 

where li is the Jacobean matrix, or an M x N matrix of 

partial derivatives of F[m,] with respect to the model 

parameters, and 

A = mz -ml (IO) 

is a small perturbation about a starting model. If these 

expressions are substituted back into equation (9), then the 

expression is obtained: 



1616 deGroot-Hedlin and Constable 

d, =d-F[ml]+Jlml. (12) 

Note that U is now linear about m2. Differentiating with 

respect to mz to find the model which minimizes U gives an 

iterative sequence for finding models; 

A univariate search is conducted along p at each iteration to 

find a model that minimizes the misfit to the data until the 

desired tolerance is obtained. The use of 1-D optimization at 

each iteration to choose the Lagrange multiplier is described 

in Constable et al. (1987), but it is instructive to extend their 

description and present the diagrams shown in Figure 2. An 

MT data set which may be.fit conveniently with a I-D model 

of only two layers is used. Fixing the thickness of the first 

layer and parameterizing in terms of the logs of the resistiv- 

ities presents a problem that may be represented by contour 

diagrams of misfit versus the two parameters. 

The inversion was started using a half-space of 1000 n m 

and proceeded for four iterations before it converged. The 

upper frame of Figure 2 shows the whole arena for the 

inversion, while the lower frame is an enlargement of the 

region log (p) t.? = [-0.5, 1.51. The diagonal line on both 

frames is the set of maximally smooth models (i.e., pI = p2) 

that includes the starting model (the triangle in the upper 

frame). The model chosen at the first iteration is shown in 

both frames as a circle. The solid line drawn to contain this 

point defines the set of all possible models attainable at the 

first iteration as the Lagrange multiplier sweeps from zero to 

infinity. Infinite Lagrange multipliers place all the weight on 

the smoothness condition, ignoring the fit to the data, and so 

the resulting perfectly smooth model lies on the diagonal, at 

about (0.6, 0.6) in this case. The other endpoint of the line 

corresponds to a Lagrange multiplier of zero, where all effort 

is made to fit the data regardless of model structure; this is 

the least-squares, or Gauss, step. 

The starting model is well outside the region where 

linearization is a reasonable approximation (the roughly 

parabolic bowl in the lower frame), and the Gauss step is 

further from the solution than the starting point. The objec- 

tive misfit was chosen to be 0.7, which cannot be achieved 

on the first iteration, so the algorithm chooses the model 

with the minimum misfit of I .6. From this model, the second 

iteration can obtain the desired misfit (the model shown by 

the diamond). When the set of possible models intercepts the 

contour of desired misfit at two points, the intercept with the 

larger Lagrange multiplier corresponds to the smoother 

model. From now on the algorithm stays on the contour of 

desired misfit and moves to the point closest to the set of 

maximally smooth models. This is accomplished by iteration 

3 (the asterisk), and verified by iteration 4, which does not 

change the model any further. Note that models 3 and 4 are 

close enough to the actual least-squares best fit that now the 

Gauss step does indeed yield its least-squares model. 

Nearly all I-D and many 2-D inversions are well behaved, 

converging with 8 to 12 forward calculations per iteration for 

the univariate optimization, with no modification to the steps 

required. However, occasionally the set of possible models 

does not include one with a lower misfit than the last model, 

or. once the desired misfit is acheived, one smoother than 

the last. This is due to a breakdown of the local linearity 

assumption or errors in the calculation of response functions 

and derivatives. The usual approach to safeguarding itera- 

tive least-squares solutions is to cut back the step size along 

the direction of the original step, by successively trying 

models with a step length of, say. l/2, l/4, l/8 . . . of the 

original. Rather than using this approach, in keeping with the 

-2 0 2 4 6 8 10 12 14 

‘eq,o Pl 

FE. 2. Contours of the rms misfit in the log,Opt-log,Op~ 
plane. The lower frame is an enlargement of the area 
containing the minimum in the upper frame. The diagonal 
line on both frames is the set of maximally smooth models 
(i.e., pt = p?). The starting model is shown by the triangle, 
the result of the first iteration by the circle, the second by the 
diamond, and the third and fourth both plot where the 
asterisk lies. The solid lines containing the models at each 
iteration show the sets of models attainable at each iteration 
as the Lagrange multiplier sweeps from zero to infinity. 
Infinite Lagrange multipliers correspond to Draconian 
smoothing and lie on the diagonal lines. Zero Lagrange 
multipliers correspond to the least-squares or Gauss steps, at 
the end points away from the diagonal. 
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algorithm for the original step, a new set of models is defined 

as a function of the Lagrange multiplier, each a distance of 

l/2 (or l/4, l/8, etc.) between the present model and the set 

of models which has failed to provide an adequate step. That 

is, if the current model is rn; and the models which would 

normally be defined by the Lagrange multiplier are F(~,L), 

then the new set of models is 

G(F) = (1 - a)mi + OF(P), 

where u is one for a normal step and is successively halved 

until an adequate step is found. 

A flow chart indicating the steps used in the smooth 

inversion is shown in Figure 3. The method is completely 

general and may be applied to any nonlinear inverse prob- 

lem. An accurate method of computing the forward problem 

and Jacobean matrix is essential to the implementation of the 

inversion scheme. The finite-element code for 2-D MT 

modeling, described in Wannamaker et al. (1987), is used 

Generate or input a starting 

model (usually a l&space). 

I 

Construct a roughenI% matlx. a, for the 

problem: 1 D or ZD, 1 st or 2nd dernatlve, wllh 

qr without allowed ,umps In 0; compute aTa 

Compute F(m),J. ~2 for the current model 

computing the corraspondlng model. 

the larger mtercept 01 

x’(h) Wh the required x2 

increase even though last 

lteratlon achwed 

Compute stepsne and save model 

b) reqwed mlsflt obtained and 

i) 

0 stop 

FIG. 3. A simplified flow chart of the inversion algorithm. 

here. The derivatives, found using a method described in 

Oristaglio and Worthington (1980), are also computed in this 

code. 

EXAMPLES FOR SYNTHETIC DATA 

In the 2-D problem the electric and magnetic fields decou- 

ple into two modes: (1) the TE mode consisting of E,, the 

component of the field parallel to the strike direction x, as 

well as BY and Bz, the perpendicular components of the 

magnetic field; and (2) the TM mode consisting of B,, Ey , 

and E,. Based on forward modeling results, Wannamaker et 

al. (1984) argued that the response for a centrally located 

profile across an elongate 3-D body agrees with the TM 

response for a 2-D body with identical cross-section. They 

concluded that the 2-D interpretation of TE data anywhere in 

a 3-D setting or TM data near the edge of a 3-D anomaly 

would be erroneous because of the existence of current 

gathering. However, in the synthetic examples considered, 

the approximation to two dimensions is exact and the TE 

and TM modes are simultaneously inverted. 

The smooth inversion method is first applied to a conduc- 

tivity structure that consists of resistive and conductive 

prisms (2000 0 m and 5 0 m, respectively) embedded in 

a 100 R . m half-space. Data for both the TE and TM modes 

were generated at seven stations spaced at 10 km intervals, 

at eight periods ranging from 2.5 to 320 s. Figure 4a shows 

the model used to calculate the synthetic data. To simulate 

good quality, noisy data, two percent Gaussian noise was 

added to the data prior to inversion. The model is discretized 

into 392 resistivity blocks, with 14 rows of 28 blocks. A 

30 s1 . m half-space was used as the starting model for the 

inversion. 

Convergence was attained after 14 iterations, with one 

more iteration to verify convergence, yielding the model 

shown in Figure 4b. The parameters for the inversion in 

Figure 4b are given in Table 1 and the weighted residuals for 

every third station are shown in Figure 5. A resistivity 

contrast of a factor of 54 between the background and the 

conductive block is reached in the model, an overshoot of 

the original contrast of 20. However, a resistivity contrast of 

only 2.2 between the resistive block and the background was 

needed in order to fit the data. From the weighted residuals 

(Figure 5), it can be seen that the stations above the resistive 

structure are not underfit, so the lack of resolution for the 

resistive block is not an artifact of the inversion method. 

Some authors (Oldenberg, 1988; Smith and Booker, 1990) 

have suggested that, due to charge buildup on the sides of 

structures with conductivity contrasts, TM data are more 

sensitive to resistive structure than are TE data, suggesting 

that a TM-only inversion would yield better lateral resolu- 

tion than a mixed inversion. To test this, separate TE and 

TM inversions for the model shown in Figure 4a indicate 

that, while the resistive structure is imaged better for TM 

only than for TE only, the maximum resistivity contrast for 

the resistive block in the TM-only inversion is 1.7, and so the 

lateral resolution is in fact worse for TM-only than for the 

joint TE-TM inversion. Since the TM responses are spatially 

narrower than the TE responses, the number of stations was 

increased to one station every 5 km and data with 2 percent 

Gaussian noise were generated at the same frequencies as 
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before. Subsequent TM-only inversion showed only a slight 

improvement over the previous TM inversion for stations 

every 10 km, with the resistivity contrast for the resistive 

block increased to 1.8. It may be concluded that resistive 

structures whose size is comparable to the depth of burial 

can be only poorly resolved with MT data. 

Smith and Booker (1988) discuss the use of Spearman’s 

statistic to rule out systematic bias in fit as a function of 

frequency. Trends in the data residuals might indicate that 

(1) the assumption about the dimensionality of the region is 

incorrect, (2) the data errors are incorrectly estimated, or (3) 

there is a systematic bias in the inversion method. For 

synthetic data, the first two possibilities obviously can be 

ruled out. Smith and Booker call a fit in which the residuals 

are evenly distributed over all frequencies “white” and 

discuss how overfitting any particular frequency band im- 

plies that noise is being fit while underfitting data in a 

frequency band leads to the loss of significant structure. The 

plots in Figure 5 show that the weighted residuals in the 

model responses are essentially uncorrelated with frequency 

and TE and TM modes are fit equally well. Thus it appears 

that using exponential depth scaling and horizontal weight- 

FIG. 5. Normalized residuals for the model shown in Figure 
4 for the middle and end stations. The circles and squares 
indicate the TE and TM residuals, respectively, as a function 
of period. 

FIG. 4. (a) The model used to generate the data for the inversion. It consists of a high-conductivity block (5 R * m) 
and a low-conductivity block (2000 R - m in a 100 R. m) half-space. Two percent Gaussian noise was added to the 
data prior to inversion. (b) The results of the inversion after 14 iterations. 
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ing factors effectively eliminates preferentially fitting subsets 

of the data. 

The CPU time used for for the model in Figure 4a was 

approximately 11 hours per iteration on a Mac II computer 

and required 6.4Mb of memory. On a CRAY X-MP the time

per iteration is about 2 minutes. Approximately 80 percent of 

the CPU time is spent on partial derivatives, the forward 

calculations use about I5 percent of the time with the 

remaining 5 percent for the inversion code. As shown in 

Table 1, about seven forward calculations are required for 

each iteration. Since each forward calculation is 30 times 

faster than doing the partial derivatives for the whole model, 

completing a number of forward calculations to find the 

minimum in U at each iteration is an efficient means of 

convergence. As the model size grows, the matrix inversion 

will begin to dominate the CPU time This would be espe- 

cially true if the size of the inversion were increased by 

adding stations (rather than frequencies), which would add 

Table 1. Parameters for the inversion shown in Figure 4. 
Asterisks indicate that the step size was reduced to ensure 
convergence. The number of forward calculations performed 
at each iteration is given by N. 

Iteration rms 

23.1 
17.1 
12.0 
6.56 
4.02 
2.68 
2.23 
1.33 
1.28 
1.058 
1.055 
1.01 
1.00 
1.00 
1.00 
1.00 

R Step size 

7E 
1 x ‘10-s 

503 
644 

.52 99.1 
2.85 22.7 
4.75 3.39 
5.48 2.45 
7.41 3.02 
6.67 0.59 
7.58 0.52 
7.48 0.20 
7.96 0.24 
7.43 0.06 
7.10 0.11 
7.05 .016 
7.03 9.8 x lO-4 

loglo N 

1.16 7 

8.81 3.21 t: 

2.21 2.21 2 
2.21 
1.59 4 
1.75 
1.35 : 
1.35 
1.15 Z 
1.50 14 
1.53 7 
1.57 
1.58 :: 

very little to the forward model calculations but burden the 

inversion. Cholesky decomposition is used, which is not the 

fastest method of inverting a positive definite symmetric 

matrix but is very stable. 

It is possible that a number of minima in the functional U 

exist, leading to cases in which the final model depends upon 

the starting model. This cannot be ruled out on the basis of 

trial and error using different starting models because there 

always may be some other, untried, starting model which 

could lead to a different solution. If convergence to the same 

model is obtained starting from a very rough model and 

starting from a homogeneous half-space, one would have 

more confidence that the globally smoothest model had been 

found. According to the objectives of this inversion scheme, 

any unnecessary structure should be smoothed out of any 

model fitting the data. To test the approach, the true model 

was used as a starting point and after six iterations the same 

model as before was attained. 

A priori information about the location of discontinuities is 

a powerful tool in resolving structure. If it is known where 

sharp discontinuities in resistivity exist (e.g., the base of a 

sedimentary basin as determined by seismic information), 

then the penalty for roughness at those boundaries may be 

removed by zeroing the entries in the roughening matrices 

which correspond to the sharp boundaries. It should be 

stressed that structure may still appear at locations other 

than the known boundaries. As an example of this tech- 

nique, the penalty for structure at the outside boundaries of 

each zone was removed in the model containing high- and 

low-resistivity zones. The model after three iterations in an 

inversion of the same data as before is shown in Figure 6. 

The initial model is very nearly recovered and the resistive 

zone is now well-defined. Because insertion of a sharp 

boundary changes the resolving power so dramatically, 

caution must be exercised when using this technique. Incor- 

rect placement of boundaries may produce misleading re- 

sults. 

The next example shows the result of inverting data 

generated by a conductive sill (5 R . m) terminating short of 

an equally conducting body and embedded in a more resis- 

tive (100 n . m) host as shown in Figure 7a. A geologic 

FIG. 6. The maximally smooth model produced when the penalty for structure at known discontinuities is removed. 
The model discretization and data used for the inversion were the same as for the inversion in Figure 4. 
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analog of this example might be a conductive subducting slab 

terminating short of a conductive basement. A structure of 

this type may cause difficulty in approximate inversion 

techniques since, for some stations, the data are more 

strongly dependent upon the conductivity of the blocks in 

the resistive gap than on the blocks directly beneath the 

station. Seven stations were placed at a spacing of 10 km, 

and both TE and TM mode responses were calculated at 

each site for nine periods ranging from 4.5 s to 2128 s. Two 

percent Gaussian noise was added to the data set prior to 

inversion and a 50 R * m half-space was used as the starting 

model for the inversion. 

Convergence to the model shown in Figure 7b was at- 

tained at the thirteenth iteration. The high-resistivity blocks 

near - 10 km and + 10 km could be caused by fitting noise or 

instabilities in the forward model. These effects are not seen 

in the previous example (Figure 4), and it is concluded that 

these may be due to Gibb’s phenomenon. That is, in trying to 

fit a smooth model to a feature exhibiting sharp discontinu- 

ities an overshoot in the fit is obtained. Such behavior is very 

common in 1-D model studies. Inspection of the weighted 

residuals (not shown here) again indicates that there is no 

systematic bias in the fit. The model is still quite rough at a 

depth of 10 km, which indicates that the result is somewhat 

dependent upon the model parameterization but a finer grid 

of blocks would result in a smoother model. The resistive 

region separating the conductive areas is well resolved, 

indicating that the inversion algorithm is robust to a high 

degree of nonuniformity in the Jacobean matrix. This simple 

example suggests that a resistive gap between two conduct- 

ing areas may be resolvable using 2-D MT data. 

A priori information about the conductivity of a given area 

may also improve the ability to resolve structure in the 

remainder of the model. For example, if the shape and 

conductivity of a given structure are known, then one may 

include this information in the model and invert for the 

remainder of the model. Such a situation may arise if data 

are gathered near a coastline, where the conductivity and 

bathymetry are well known, or if the data are collected over 

a sedimentary basin in which the layer thicknesses and 

resistivities are known from seismic studies and well-logging 

information. As an example of this technique, data were 

FIG. 7. (a) The model used to generate the data for the inversion consists of a conductive ledge terminating short 
of a conducting body. (b) The model obtained after inversion. 
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generated from the model shown in Figure 8a. The model 

represents a sedimentary basin consisting of three layers 

having resistivities of 80, 200, and 50 R . m from top to 

bottom. Below the sedimentary basin is an anticlinal struc- 

ture having a resistivity of 50 s2 . m surrounding a structure 

having a resistivity of 500 R . m. These structures are 

embedded in a half-space having a resistivity of 1000 R . m. 

The data, with five percent Gaussian noise added, were 

generated at eight periods ranging from 0.01 to 33 s at 11 

stations placed 2 km apart. 

The data were inverted twice, once with the resistivity of 

the sedimentary basin held fixed and once with no a priori 

information. A 100 fi . m half-space was used for the starting 

model in the second inversion while the known resistivities 

of the sedimentary basin were embedded in a 100 fi . m 

half-space for the starting model in the first inversion. 

Convergence to the model shown in Figure 8b was attained 

after 10 iterations for the case where the resistivity of the 

sedimentary basin is known; convergence to the model 

shown in Figure 8c was attained after 14 iterations. The 

sedimentary basin shows up very poorly in the case where 

the known structure is not included in the model. There is a 

marginal improvement in the resolution of the anticlinal 

structure in the case where the known conductivity of the 

sedimentary basin is included. 

INVERSION OF FIELD DATA 

The 2-D inversion of field data introduces problems asso- 

ciated with computation and breakdown of assumptions 

FIG. 8. (a) The model used to generate the data for the inversion represents a sedimentary basin over an anticlinal 
structure. (b) The model obtained when the conductivity of the sedimentary basin is held fixed. (c) The model 
obtained for the case of no a priori information. 



1622 deGroot-Hedlin and Constable 

about dimensionality and noise. Computational difficulties 

include: (1) the amount of memory required for handling 

broadband data amount due to the amount of data, and (2) 

the large variation of skin depths involved. The skin depth of 

the highest frequencies require the resistivity blocks to be 

very small near the surface while the lower frequencies 

require the model to extend to large depths. Since the block 

widths propagate to depth, a very large mesh is required for 

the inversion. Another problem is that inversion of 2-D data 

is much slower than the 1-D case. Since the required time for 

the forward calculation increases linearly with the number of 

frequencies used, if the original data are oversampled in 

frequency, the computation time can be reduced by using a 

subset of the data for the initial iterations and adding more 

data as convergence is attained. 

The nature of the noise and noise estimates also presents 

difficulties. The two-norm measure assumes Gaussian errors 

in the data and is not robust to the presence of outliers which 

result from non-Gaussian noise. Also, if the actual structure 

is 3-D, then the data may be very accurate and still not 

correspond to any 2-D solution. The question of existence of 

a solution for any 1-D MT data set has been solved (Parker, 

1980; Parker and Whaler, 1981). However, there is not as yet 

a way of knowing whether any 2-D structure will fit a given 

data set, or, if so, what the minimum possible misfit would 

be. 

A subset of the COPROD data, provided by Alan Jones 

of the Geological Survey of Canada, was used as an example 

for the inversion of field data. These data were collected 

over the central plains anomaly in the province of Saskatch- 

ewan, Canada, and have been corrected for static shift 

(Jones, 1988). The survey line was east-west, with receiver 

spacings of approximately IO km. The TE and TM responses 

appear quite uniform over the high frequencies up to 4 s 

(Jones and Savage, 1986), suggesting that the surface struc- 

ture is 1-D to a first approximation. At lower frequencies the 

TE and TM responses diverge, indicating higher dimensional 

structure at greater depth. For this reason, four of the lower 

frequencies were chosen at 20 stations at the eastern end of 

the survey area as a subset for inversion. Since regional 

structure was the target for interpretation, relatively large 

blocks having widths of IO km were used and stations 

exhibiting large conductivity contrasts with its neighbours 

were eliminated. The inversion presented here is meant only 

to show the application of the 2-D MT inversion to real data 

and does not represent a full interpretation of the COPROD 

data set (to follow in a subsequent paper). 

If it can be assumed that the Earth structure is largely 2-D 

in this area, 3-D structure will appear in the data as noise. 

Some of the data used in the inversion had very small errors 

which the authors felt were unrealistic for the 2-D approxi- 

mation, so the minimum error was increased to 10 percent. 

Starting with a half-space of 100 R . m, convergence to an 

rms misfit of 1.0 was acheived after 28 iterations. The 

resulting model is shown in Figure 9. Two conductivity 

anomalies which have been identified in previous work 

(Jones and Craven, 1989) are indicated here: (1) the North 

American Central Plains (NACP) anomaly below the center 

of the array at a depth of 6-25 km, and (2) the shallower 

Thompson Belt anomaly to the east of the survey area. The 

NACP anomaly appears to be very discontinuous, possibly 

due to static shifts remaining in the data, which often have 

the effect of introducing vertical structure (Jones, 1988). This 

suggests that one might be able to remove static shift by 

introducing a shift parameter at each station and simulta- 

neously solving for the smoothest model. 

The data and model responses are plotted as a function of 

station location in Figure 10. A non-Gaussian error distribu- 

tion would be manifested as non-Gaussian residuals; how- 

ever, a Kolmogorov-Smirnoff test on the residuals cannot 

exclude the Gaussian hypothesis with any significant confi- 

dence. This indicates that the misfit is not likely due to 3-D 

structure, since in that event large outliers in the residuals 

would be expected. Since the inversion algorithm, which 

performs well on 1-D and 2-D synthetic data, could not 

FIG. 9. Inversion of a subset of the COPRODZ data with minimum 10 percent error. Two known anomalies are 
defined, the NACP anomaly at the center of the survey line and the Thompson Belt anomaly indicated at the left 
of the model. A linear depth scale is used here to more clearly indicate the geologic structure. 
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achieve a misfit of rms = 1 with the original data set, 

enlarging the errors in the data may be justified. 

DISCUSSION AND SUMMARY 

We emphasize that there is no guarantee that a 2-D model 

exists which adequately fits a given data set. The issues of 

existence and adequate fit depend on the choice of model 

dimension and parameterization and on the reliability of data 

errors. The model complexity must be adequate to represent 

the real complexity of the Earth, and the data errors must be 

well estimated. The number of dimensions of the model must 

be at least as large as the regionally significant dimensional- 

ity of the Earth. In the context of this paper. it is assumed 

that the Earth may be adequately represented by a 2-D 

model. There undoubtedly exists 3-D structure, but a 2-D 

model is adequate as long as the expression of this structure 

is within the estimated data error. It is obvious that the 

concept of an adequate fit depends greatly on the data errors. 

If the data errors are systematically underestimated, then it 

will be difficult or impossible to find a model which fits the 

data adequately. If the random scatter in the data exceeds 

the effect of 3-D structure, then 2-D modeling will allow one 

to fit the data, so long as the data errors have not been 

underestimated. 

An MT inversion algorithm was developed to solve for the 

smoothest 2-D model fitting a given data set. The resistivities 

FIG. IO. Data and model responses plotted as a function of 
station location. The circles and squares indicate the TE and 
TM data, respectively, while the solid and dashed lines 
respectively indicate the TE and TM responses. Negative 
TM phases are plotted. 

of a large number of blocks are determined iteratively, with 

convergence generally being attained in IO to 20 iterations. 

While it cannot be proven that a global minimum in model 

roughness has been reached, tests on a simple model indi- 

cate convergence to the same solution is reached from both 

a starting model which is rough and from a half-space 

starting model. Unlike most regularized inversion algo- 

rithms, the value of the trade-off parameter between data 

misfit and model roughness is not determined in advance. 

This gives greater flexibility in fitting the data to a statisti- 

cally reasonable tolerance while simultaneously keeping the 

roughness to a minimum. 

There is some similarity between this method and that of 

Smith and Booker (1990). Note, however, that these authors 

make several approximations in order to realize large im- 

provements in computation time A comparison of the 

resistive block model (Figure 4) suggests that their approx- 

imations result in models which are slightly rougher than 

necessary. although the models are generally in good agree- 

ment. However, even if the approximate methods were to 

yield identical results, the more exact method needs to be 

available before confidence in the faster algorithm is possi- 

ble. The reader should bear in mind that the models com- 

pared to date are very simple. In fact, Smith and Booker 

(1990) do not present inversions of real data and, have 

restricted themselves to inverting for simple prismatic struc- 

tures. 

Although computationally expensive, the algorithm pre- 

sented here is versatile, allowing extension to methods other 

than MT, such as resistivity, and incorporation of varying 

levels of a priori information. The most objective initial 

approach to using this method is, of course, to include no a 

priori information, allowing one to obtain an idea of the 

resolving power of the data. If the location of sharp discon- 

tinuities in resistivity is known, the penalty for roughness at 

the boundaries may be removed. Finally, if both the resis- 

tivity and boundary locations are known in advance, these 

may he specified and will not be updated in further itera- 

tions. Because the addition of incorrect a priori information 

produces misleading results, care must be used when incor- 

porating “known” structure. 

ACKNOWLEDGMENTS 

The authors would like to express their gratitude to Phil 

Wannamaker for providing his 2-D MT code. without which 

this work could not have proceeded. and for providing 

advice on its use. They also thank Alan Jones for making the 

COPROD? data available and for providing help with and 

computer time for the COPROD inversions. Finally, the 

authors owe a great debt to Bob Parker for originating 

the smooth inversion and his continued interest in this 

work. This work was supported by DOE contract 

DE-FG03-87ER13779. 

REFERENCES 

Constable. S. C.: Parker, K. L.. and Constable. C. G.. 1987, 
Occam’s inversion a practical algorithm for generating smooth 
models from EM sounding data. Geophysics, 52, 289-300. 

EMSLAB Group, 1988, The EMSLAB electromagnetic sounding 
experiment: EOS Trans.. Am. Geophys. Union, 69. 98-99. 

Jones, A. G., 1988, Static shift of magnetotelluric data and its 
removal in a sedimentary basin. Geophysics, 53, 967-978. 



1624 deGroot-Hedlin and Constable 

Jones, A. G., and Craven, J. A., 1989, The North American Central Rodi. W. L.. Swanger. H. J.. and Minster, J. B.. 1984. ESPIMT: an 
Plains anomaly and its correlation with gravity, magnetic, seis- 
mic, and heat flow data in Saskatchewan, Canada: Phys. Earth 

interactive system for two-dimensional magnetotelluric inversion: 

Planet. Inter., 53, 967-978. 
Geophysics. 49. 611. 

Jones, A. G.. and Savage, P. J.. 1986. North American Central 
Sasaki, Y.. 1989, Two-dimensional joint inversion of magnetotellu- 

Plains conductivity anomaly goes east: Geophys. Res. Lett., 13, 
ric and dipole-dipole resistivity data: Geophysics, 54, 254-262. 

_^_ _^_ Smith. J. T.. and Booker. J. R.. 1988. Maanetotelluric inversion for 
bU>+5U. 

Jupp, D. L. B.. and Vozoff, K., 1977, Two-dimensional magneto- 
telluric inversion: Geophys. J. Roy. Astr. Sot., 50. 333-3.52. 

Oldenburg, D. W., 1988, Inversion of electromagnetic data: an 
overview of new techniques: ninth workshop on electromagnetic 
induction in the Earth and Moon. 

Oristaglio, M. L., and Worthington, M. H., 1980, Inversion of 
surface and borehole electromagnetic data for two-dimensional 
electrical conductivity models: Geophys. Prosp., 28, 633657. 

Parker, R. L., 1980, The inverse problem of electromagnetic induc- 
tion: existence and construction of solutions based upon incom- 
plete data: J. Geophys. Res., 85, 4421-4425. 

Parker, R. L., and Whaler, K. A., 1981. Numerical methods for 
establishing solutions to the inverse problem of electromagnetic 
induction: J. Geophys. Res., 86, 9574-9584. 

minimum structure: Geophysics, 53, 15u65-1576. 

Smith. J. T.. and Booker. J. R.. 1990. The raoid relaxation inverse 
for two- and three-dimensional magnetotelluric data: J. Geophys. 
Res.. submitted. 

Tihonov. 1963a. Solution of incorrectly formulated problems and 
the regularization method: Soviet Math. Dokl., 4, 1035-1038. 

- 1963b, Regularization of incorrectly posed problems: Soviet 
Math. Dokl.. 4, 1624-1627. 

Wannamaker. P. E.. Hohmann. G. W., and Ward. S. H., 1984, 
Maanetotelluric resnonses of three-dimensional bodies in lavered 
earlhs: Geophysics: 49. 1517-1533. 

Wannamaker. P. E., Stodt, J. A., and Rijo, L., 1987, A stable 
finite-element solution for two-dimensional magnetotelluric mod- 
eling: Geophys. J. Roy. Astr. Sot., 88, 277-296. 


