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Abstract— We present a method to recover complete 3D mod-
els of articulated objects. Structure-from-motion techniques are
used to capture 3D point cloud models of the object in two
different configurations. A novel combination of Procrustes
analysis and RANSAC facilitates a straightforward geometric
approach to recovering the joint axes, as well as classifying them
automatically as either revolute or prismatic. With the resulting
articulated model, a robotic system is able to manipulate the
object along its joint axes at a specified grasp point in order
to exercise its degrees of freedom. Because the models capture
all sides of the object, they are occluded-aware, enabling the
robotic system to plan paths to parts of the object that are
not visible in the current view. Our algorithm does not require
prior knowledge of the object, nor does it make any assumptions
about the planarity of the object or scene. Experiments with
a PUMA 500 robotic arm demonstrate the effectiveness of
the approach on a variety of objects with both revolute and
prismatic joints.

I. INTRODUCTION

An important trend in robotics is that of autonomous

operation in unstructured and dynamic environments. As

robots move into unstructured environments such as homes,

schools, and workplaces, new approaches to sensing and

manipulation will be required to handle the greater variety

of objects encountered. For example, rather than expecting

the robot to have advanced knowledge of all objects that will

be encountered in the physical world, the ability to actively

learn about the scene will be crucial.

One problem that has recently caught the attention of

researchers is that of reconstructing articulated objects [9],

[19], [20], [21]. These objects consist of rigid links connected

by one or more revolute or prismatic joints. A number of

everyday objects, such as laptop computers, staplers, scissors,

cabinet drawers, doors, and some cell phones fit such a

model. Even a desk or chair sliding on the floor can be

modeled, to some degree, by prismatic and revolute joints.

Existing work on articulated objects has been limited,

however, to reconstructing surfaces from a single viewpoint.

By tracking features in video, clustering those features, and

triangulating, the 3D coordinates of a number of points can

be estimated, along with the axis of rotation or sliding.

However, such results do not yield any information about the

back side of the object. Such an approach leaves the robot

helpless in any scenario in which it needs to manipulate parts

of the object that are not visible in the current view.

In this paper we introduce the term occlusion aware to

refer to a system that has knowledge about parts of the

object that are not currently visible. In grasping systems in

which the robot has a complete 3D CAD model of the object,

such knowledge has always been assumed. However, in an

interactive system in which the robot is learning about the

environment as it moves in space, such complete knowledge

is not usually available.

We describe an occlusion-aware reconstruction system that

is able to recover complete 3D models of articulated objects.

Images are captured of the object in two configurations, and

structure-from-motion techniques are used to reconstruct two

3D models of the object. Procrustes analysis and RANSAC

sampling are then used to automatically segment the points

and align the links, from which a straightforward geometric

approach enables the estimation of the revolute or prismatic

axes. Once the model has been recovered, the robot can

align its coordinate system with that of the model and

then manipulate the object by exercising the degrees of

freedom captured by the model. Our approach makes no

planar assumptions, either on the shape of the object surface,

the motion of the object, or the viewpoint from the camera.

We show the results of the system on a variety of everyday

objects, demonstrating the effectiveness of the approach.

II. PREVIOUS WORK

One approach to articulated reconstruction is based upon

the factorization method [1], [22]. Exploiting the so-called

rank constraint, this method reveals the structure of mul-

tiple independently moving bodies by examining the block

diagonal structure of the measurement matrix consisting of

coordinates of tracked feature points. Building on this work,

Tresadern and Reid [23] add articulation constraints to the

formulation to decrease the rank, enabling the technique

to detect the articulated objects, determine their degrees of

freedom, and locate the joints. Because the factorization

method is limited to affine reconstruction, an additional self-

calibration step is needed to convert measurements to a

metric coordinate system.

Yan and Pollefeys [28] also investigate the subspace

properties of articulated motion in a factorization frame-

work. Their approach segments feature trajectories by local

sampling and spectral clustering, after which it builds the

kinematic chain as a minimum spanning tree of a graph

constructed from the segmented motion subspaces. Focused

on recovering human articulated motion, they derive rank

constraints for both revolute (1 DOF) and ball (2 DOF)



joints, assuming affine projection. Similar work by Ross et

al. [14] recovers the kinematic structure of the articulated

object as a skeleton using a probabilistic approach. Due to

the difficulty of tracking features through occlusion, their

video-based approach is also limited to single viewpoints,

as well as to affine projection. Other researchers focusing

on human motion aim to recover the joint parameters of the

human from video or motion capture [4], [7], [10], [13], [16].

In the robotics community, Katz et al. [9] track feature

points in video, then perform motion segmentation, and

finally 3D reconstruction. Assuming that the plane perpen-

dicular to the axis of rotation, or the plane in which sliding

occurs, is known, the revolute or prismatic axis is recovered.

Relying on feature points, this approach is also restricted

to single-view reconstruction. Other researchers have devel-

oped approaches to recover articulated motion using known

models [29] or revolute axes using planar surfaces [15].

In other robotics work, Sturm et al. [21] present an

approach to learn kinematic models based on observations

from a motion capture system that tracks the poses and

orientations of rigid parts. A mixture of parameterized and

parameter-free (Gaussian process) representations is used to

detect the connectivity of the rigid parts of the objects and to

find low-dimensional articulation models that best explain the

given observation. In related work, Sturm et al. [20] present

an approach to learn articulation models of cabinet doors and

drawers without using artificial markers. Rectangles in depth

images obtained from a self-developed active stereo system

are detected using a sampling-based approach, assuming that

object surfaces are planar. Then the robot uses generative

object models to estimate the type of articulation (revolute

or prismatic). Once obtained, these articulated models are

used to interact with the environment [19].

III. OCCLUSION-AWARE RECONSTRUCTION

The purpose of this work is to automatically learn the

properties of a priori unknown articulated objects in unstruc-

tured environments in order to facilitate further manipulation

of those objects. Figure 1 shows an overview of our system.

First, a set of images is captured by a camera of the object

from different viewpoints while the object remains stationary.

Structure-from-motion techniques are applied to the imagery

to build a 3D model of the object. In order to learn the

object’s kinematic structure, the configuration of the object

is interactively changed by exercising its degrees of freedom.

We assume that the capability of performing sufficient

exploratory interaction with the object to change its con-

figuration is present. In this way, the approach bears some

resemblance to interactive perception [8], [9], [25], [26],

[27], except that we allow a human to perform the interaction

due to the specific constraints of articulated motion in our

objects. Automatically planning the end effector motion

path for interactive perception in such situations remains an

unsolved problem, because a preliminary model (at least)

is needed in order to interact with the object, but the

interaction is necessary to estimate the model. Therefore,

having the user perform the interaction enables us to escape

this difficult chicken-and-egg problem. If progress is made

toward developing such autonomous exploratory behavior in

the future, the reconstruction method described in this paper

would still apply.

Additional images are gathered of the object in the new

configuration, and structure-from-motion is again applied to

obtain a different 3D reconstruction. These two 3D models

are segmented into the object’s constituent components (rigid

links) using the Procrustes analysis method combined with

a RANSAC sampling strategy. From this information, the

axis of each joint between neighboring links is found using

a geometric method utilizing an axis-angle representation.

Based on these models, the robot with eye-in-hand can

automatically compute the transformation between the object

and robot coordinate systems, enabling it to manipulate the

object around the articulation axis with a given grasp point.

Due to the complete 3D model, the robot can also interact

with occluded, unseen parts of the object, as shown in

Figure 2. We now describe these steps in detail.

Fig. 1. Overview of our system. Two 3D models of the object are
constructed using structure-from-motion techniques applied to two sets of
images of the object taken while the object is in two different configurations.
After segmenting and aligning the links, the joint axes between neighboring
links are found. Manipulation of the object is then enabled by automatically
registering the object and robot coordinate frames.

Fig. 2. The PUMA 500 robotic arm manipulates a toy truck using
the truck’s kinematic model obtained by the occlusion-aware articulated
reconstruction procedure.

A. Object Model

We assume that the articulated object is composed of rigid

links connected by joints. The object can have any finite

number of links and joints, and the joints can be revolute

or prismatic. Figure 3 shows the two object models for

simplified cases of just two links and one joint. In the case



of a revolute joint, the configuration between the two links is

represented by the joint angle, while in the case of a prismatic

joint, the configuration is represented by the displacement.

In both cases, the axis is a ray in 3D space about or along

which the movement occurs. The links are represented as 3D

point clouds, with a coordinate system attached to each link

to enable its position and orientation to be described.

Fig. 3. LEFT: Two rigid links connected by a revolute joint. RIGHT: Two
rigid links connected by a prismatic joint.

B. Camera Calibration and Initial 3D Models

Given a set of images from different viewpoints of the

object in one configuration, SIFT and patch-based feature

points are detected and matched, and structure from motion

(SfM) algorithms are used to estimate the camera positions

and the 3D coordinates of points on the object. The same

procedure is applied to a set of images obtained of the

object in a different configuration to yield a second 3D

model, where in the second configuration all adjacent links

have moved relative to each other. Note that only two

configurations are needed, no matter how many links and

joints. The Bundler algorithm [17], [18] is used to calibrate

the camera and compute the camera locations. Patch-based

multi-view stereo (PMVS) [5], [6] is used to reconstruct

dense 3D oriented points, where each point has an associated

3D location, surface normal, and a set of visible images.

Figures 4 and 5 show the dense 3D reconstruction of a

toy truck in two different configurations. Notice that no

assumption is made regarding the planarity of the object

geometry or the uniformity of the background. There is no

constraint on the set of images, except that there must be

sufficient overlap in the fields of view in order to facilitate

feature matching across different views. In our experience,

successive camera viewpoints should differ by no more

than about 10 degrees, so that approximately 36 images

are needed to capture an accurate 360-degree model; more

images are needed to reconstruct the top or bottom of the

object.

C. Rigid Link Segmentation

Once the 3D models have been found, the next step

is to segment the 3D oriented points into the constituent

rigid components of the object. This involves automatically

determining the number of links, segmenting the data into

the different sets (one set per link), and determining which

Fig. 4. Four images (out of 112 captured) of a toy truck. The last row shows
the 3D reconstruction (two different views) obtained by the structure-from-
motion procedure. An occlusion-aware model is produced in which points
on the back side, as well as the front, are recovered.

Fig. 5. Four images (out of 132 captured) after interacting with the
truck to change its configuration. The last row shows the 3D reconstruction
(two different views) by the structure-from-motion procedure. Notice the
significant change in lighting conditions.



links are connected. When there are just two links (as in

the case of the toy truck, which is composed of a cab

and bed), the latter step is trivial, but in more complicated

scenarios it is important to determine which links share a

joint. Segmentation is performed by clustering feature points

according to similarity transformations, using a combination

of SIFT, Procrustes, and RANSAC algorithms.

Feature points are found using the SIFT feature detector

[11] because of its invariance to image rotation, scaling, and

lighting changes. SIFT provides a local descriptor for each

feature in addition to the feature’s location. For every feature

point in the first configuration, a matching feature point in the

second configuration is sought. The matching feature point

is the one that yields the minimum Euclidean distance of

SIFT descriptors, if that distance is below a threshold. If

such a match is found, then the same matching algorithm

is run in reverse by switching the role of the images, and

matches are retained if they agree in both directions. These

2D matches are converted to 3D matches using the 3D model

points whose projection lies closest to the corresponding

SIFT features.

Given 3D feature correspondences between the two mod-

els, our aim is to segment the 3D model points according

to their similarity transformations. Similarity transforma-

tions include rotation, translation, and scale, the latter being

needed to handle the scale ambiguity in images. A RANSAC

sampling strategy [3] is adopted in which randomly selected

triplets of correspondences are used to compute putative

similarity transformations using Procrustes analysis. (For

Procrustes, we use the SVD algorithm [2].) Each resulting

transformation is used to align the 3D point clouds, yielding

an alignment error computed as the mean squared error

of the Euclidean coordinates of the corresponding points.

Within the RANSAC framework, this process is repeated

1000 times using different randomly selected triplets, and

the transformation that results in the smallest alignment

error is retained. Using this transformation, all model points

that transform to coordinates within some threshold of their

match are segmented as a new link. These points are then

removed from the models, and the entire process is repeated

until no more links can be found (i.e., the smallest alignment

error exceeds a threshold).

D. Classifying Joints

We assume that two rigid links are connected by either

a revolute joint or a prismatic joint. The type of joint

is automatically determined by examining the similarity

transformation R, t, and σ between the links determined by

Procrustes alignment, where R is the rotation matrix, t is

the translation vector, and σ is the relative scaling between

the two models. Although one might be inclined to use the

translation vector t to distinguish between the two types of

joints, it is important to note that t will not in general be

zero for a revolute joint. This is because the axis of the

coordinate system attached to the link does not necessary

(and usually will not) align with the axis of rotation. In other

words, although we are interested in rotation about the axis,

Procrustes computes the rotation about the origin of the coor-

dinate system, which is somewhat arbitrarily determined by

the structure-from-motion technique. While these rotations

themselves are identical, a non-zero translation t is needed

to compensate for the misalignment. As a result, we instead

determine the type of joint automatically by examining the

rotation matrix R: If R is close to the identity matrix, then

the joint is determined to be a prismatic joint; otherwise it

is a revolute joint. This procedure is repeated for each pair

of adjacent links.

E. Finding the Axes of Prismatic Joints

Locating the axis of a prismatic joint is straightforward.

Given two links connected by a prismatic axis, we assume

that the smaller link moves relative to the larger one, where

the size of the link is determined by the number of points

in the link. Therefore, the unit vector t/‖t‖ from the larger

link to the smaller link yields the direction of motion along

the prismatic joint, while the centroid of the points of the

smaller link provides the 3D coordinates of a point on the

axis.

F. Finding the Axes of Revolute Joints

Locating the axis of a revolute joint requires a bit more

care. In a two-dimensional plane, it is a simple matter to

show that any Euclidean transformation (rotation plus trans-

lation) can be represented as a rotation applied to translated

points. In other words, Rx+t = R(x−ω)+ω, where x ∈ R
2

is a point in the plane, and ω ∈ R
2 are the coordinates of the

axis of rotation. Thus, instead of rotating and then translating

a point, this alternate formulation involves shifting the origin

of the coordinate system, applying the rotation, then shifting

the origin back. As a result, the temporary origin ω about

which the rotation is applied specifies the axis of rotation.

Figure 6 shows the axis of rotation, indicated by a red dot,

estimated by our system for two different objects.

Fig. 6. Revolute axis estimation of pliers (left) and scissors (right) in 2D
found by our method. The red dot indicates the estimated axis of rotation.

In 3D, the axis of a revolute joint is defined by a unit vector

u indicating the axis direction and one (somewhat arbitrary)

point on the axis. Using the axis-angle representation, the

rotation matrix between two corresponding links in the two

configurations is parameterized as a unit vector indicating

the direction of a free vector parallel to the axis of rotation

(the axis direction), and an angle describing the magnitude

of the rotation about the axis in the right-hand sense. After

aligning the 3D models, and segmenting into links, the



transformation between two corresponding links in the two

configurations is computed using Procrustes analysis. Given

the rotation matrix, the axis direction is found by noticing

that any vector parallel to the rotation axis must remain

(by definition) unchanged by the rotation, i.e., Ru = u,

where u is a vector parallel to the rotation axis. From the

definition of eigenvalues and eigenvectors, this means that

the axis direction is the eigenvector of R corresponding to

the eigenvalue of one.

Once the direction of the axis u has been found, the 3D

rotation about this axis can be thought of as a 2D rotation

in the plane perpendicular to u. To find the rotation plane,

a series of rotations are applied to two configurations such

that the z axis of a new coordinate system points in the

u direction and the xy plane specifies the plane in which

the rotation occurs. Then, similar to the 2D axis estimation

above, a point in the 2D plane indicating the axis is found,

which then yields a 3D point on the axis by appropriate

transformations. Together these two parameters (the axis

direction and a point on the axis) determine the axis.

IV. MANIPULATING OBJECTS

The resulting occlusion-aware 3D articulated model can

be used to enable a robot to manipulate the object. Two

capabilities are supported by such a model. First, given a

particular point on the object, the robot can move its end

effector to that position, even if the point is not visible in

the current view. This is one of the main advantages of

the occlusion-aware approach, namely, that the robot is not

limited only to the side of the object that is currently visible,

but rather that a full 3D model is available. Secondly, given

a particular grasp point, the robot can grab the object at that

point and move in such a way so as to exercise the articulated

joint.

The first step for manipulation is to estimate the transfor-

mation between the object model and the robot coordinate

frame. To make this a Euclidean transformation, we first

must overcome the scale ambiguity. The scale of the object

can be estimated in one of several ways. If the camera is

attached to the robot during capture time, then the known

positions of the end effector can be compared with the

estimated camera positions to determine the overall scale

of the scene. Alternatively, a separate step can compute the

projective distance from the camera to the table, which is

then compared with the known height of the table. A third

alternative is to simply use a known length on the object.

In any case, once the scale is known, the perspective n-

point (PNP) problem [12] can be solved for the Euclidean

transformation between the object coordinate system and the

camera coordinate system. The transformation between the

latter and the robot coordinate system can be computed off-

line by a standard hand-eye calibration procedure [24], with

the camera mounted on the robot. The PNP procedure begins

with 3D-2D point correspondences found by extracting and

matching SIFT features [11] in the image with 3D points

in the model. Using these correspondences, it minimizes

the reprojection error that is the sum of squared distances

between the observed projections and the projected points,

using the camera matrix and lens distortion coefficients

obtained from camera calibration.

V. EXPERIMENTAL RESULTS

We evaluated the performance of our approach on several

different objects, including scissors, pliers, a toy truck, a

Barrett robot hand, and a drawer. For our experiments, we

used a PUMA 500 robotic arm and a Logitech Quickcam

Pro 5000. Images of the object were gathered at multiple

positions, then the configuration of the object was changed,

and a new set of images was collected. The sets of images

were fed to our procedure, which automatically produced the

3D models, registered the models, segmented the links, and

estimated the axis or axes. The collecting of images can be

performed either off-line by a person, or on-line by the robot

with a scripted path.

We first demonstrate the proposed approach on one-axis

revolute objects lying on a table, with the revolute axis

perpendicular to the table top, as shown in Figure 7. Similar

to the work of Katz and Brock [8], our approach is able to

accurately estimate the axes of objects such as pliers or scis-

sors. Unlike [8], however, our approach makes no assumption

about the objects lying on the table, and it does not have prior

knowledge about the perpendicularity of the rotation axis

and the table top. Rather, the axis is automatically estimated

in 3D, thereby also estimating the rotation plane for future

manipulation of the object from arbitrary positions. In the

case of the pliers, the angle between the axis and the table

(which was estimated by fitting a plane to 58 points on the

table) differed from 90◦ by just 7.2◦.

The next experiment involved a Barrett robot hand, which

is a three-fingered gripper. The middle finger (F3) is fixed

with respect to the central base, while the other two fingers

(F1 and F2) rotate about the base symmetrically, i.e. θ1 =
θ2, as illustrated in Figure 8. Sets of images were captured

of the hand in the two configurations. Figure 9 shows the

two configurations, along with the 3D models reconstructed

by our system and the axis of rotation which was correctly

estimated. By fitting a plane to 20 points on the table, the

angle of the axis with respect to the table was measured to

be 89.5◦, which is just 0.5◦ from 90◦.

Another articulated object with two links and a single

revolute joint is the toy dump truck shown in Figure 10.

During the interaction, 112 images were captured of the first

configuration, and 132 images were captured of the second

configuration. The 3D reconstructions and estimated rotation

axis of the bed are shown in the figure. The angle of the axis

with respect to the table (obtained by fitting a plane to 20

points) was measured to be 1.4◦.

Our approach also works with articulated objects with

prismatic joints. In Figure 11, the first row shows a drawer of

a cabinet in two configurations. Since drawers of the cabinet

are plastic with transparency, we attached a small textured

piece of cardboard to the face of the first drawer in order

to reconstruct the 3D models. The second row of Figure 11

shows the 3D models corresponding to the first row with the



Fig. 7. Revolute axis estimation of pliers in 3D. Shown are images of
the pliers (out of 65 and 81, respectively) in two configurations (top row),
along with 3D reconstructions from different views with the overlaid red
line indicating the estimated axis (bottom two rows). Results for scissors
are similar.

Fig. 8. The model of a Barrett robot hand with three fingers. The finger
in the middle (F3) is fixed with respect to the central base, while the other
two fingers (F1 and F2) move relative to the base in a symmetric manner
(θ1 = θ2).

Fig. 9. Two images of the Barrett hand (out of 87 and 87, respectively)
in two different configurations (top), and the 3D reconstructions with the
estimated axis overlaid (red line, bottom).

Fig. 10. Axis estimation of the toy dump truck. TOP: images (out of 112
and 132, respectively) of the two configurations of the truck. BOTTOM: 3D
reconstructions with the estimated axis (red line).

Fig. 11. Axis estimation of the drawer of the cabinet. The first row shows
two images (out of 115 and 83, respectively) of the two configurations, and
the second row shows 3D reconstructions with the estimated axis (red line).

estimated axis indicated by a red line. We can see that the

frame and first drawer of the cabinet were well reconstructed,

and that the prismatic axis was found correctly. The angle of

the axis with respect to a horizontal bar on the side of the

cabinet was found to be 3.4◦.

We have also experimented with objects having multiple

joints. Figure 12 shows an example of a scraper truck with

two revolute joints, showing that the estimated axes are

accurate. The angle between the estimated axes was 7.6◦, but

some of this deviation is due not to error from the algorithm

but rather to the pliability of the plastic toy resulting from im-

precise manufacturing. Note that the difficulty of automatic

segmentation increases significantly as the number of joints

increases, particularly with untextured objects. The rest of

the algorithm, however, is largely unaffected by the number

of joints.

VI. CONCLUSION

In this paper, we have proposed an approach to extract

the 3D surface and kinematic structure of articulated objects.

Multiple pictures are taken of the object in two different con-

figurations, and 3D models are reconstructed using structure-



Fig. 12. Occlusion-aware reconstruction of an articulated object with
multiple axes. For the two configurations, 111 and 134 images, respectively,
were captured.

from-motion techniques based on images captured by a sin-

gle camera. From these models, the rigid links of the object

are segmented and aligned, allowing the joint axes to be

estimated. The system supports both revolute and prismatic

joints. The learned kinematic structure can then be used to

perform purposeful manipulation. The proposed approach

does not require prior knowledge of the object nor does

it make any assumption regarding planarity. Experiments

have shown its effectiveness on a range of environmental

conditions and various types of objects.
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