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Occlusion-aware Unsupervised Learning of Depth
from 4-D Light Fields
Jing Jin, and Junhui Hou, Senior Member, IEEE

Abstract—Depth estimation is a fundamental issue in 4-D
light field processing and analysis. Although recent supervised
learning-based light field depth estimation methods have sig-
nificantly improved the accuracy and efficiency of traditional
optimization-based ones, these methods rely on the training
over light field data with ground-truth depth maps which are
challenging to obtain or even unavailable for real-world light field
data. Besides, due to the inevitable gap (or domain difference)
between real-world and synthetic data, they may suffer from
serious performance degradation when generalizing the models
trained with synthetic data to real-world data. By contrast, we
propose an unsupervised learning-based method, which does
not require ground-truth depth as supervision during training.
Specifically, based on the basic knowledge of the unique geometry
structure of light field data, we present an occlusion-aware
strategy to improve the accuracy on occlusion areas, in which we
explore the angular coherence among subsets of the light field
views to estimate initial depth maps, and utilize a constrained
unsupervised loss to learn their corresponding reliability for final
depth prediction. Additionally, we adopt a multi-scale network
with a weighted smoothness loss to handle the textureless areas.
Experimental results on synthetic data show that our method can
significantly shrink the performance gap between the previous
unsupervised method and supervised ones, and produce depth
maps with comparable accuracy to traditional methods with
obviously reduced computational cost. Moreover, experiments on
real-world datasets show that our method can avoid the domain
shift problem presented in supervised methods, demonstrating
the great potential of our method. The code will be publicly
available at https://github.com/jingjin25/LFDE-OccUnNet.

Index Terms—Light field, depth estimation, occlusion, unsu-
pervised learning, deep learning.

I. INTRODUCTION

Depth estimation is a crucial topic in the field of computer
vision and image processing, which aims at inferring the
scene geometry from 2D images. Compared with monocular
or stereo 2-D images, light field (LF) images intrinsically
record the scene geometry by capturing both the intensity and
direction of the light rays permeating the 3-D scenes [1], [2],
and thus, provide more accurate cues for depth estimation.
In addition, depth estimation is also a common step in 4-
D LF processing and analysis, which paves the way for
subsequent LF applications, such as 3-D reconstruction [3]
and virtual/augment reality [4], [5].
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Traditional methods for LF depth estimation mainly de-
sign different costs to explore the depth cues intrinsically
provided by the LF data [6], such as detecting the lines in
the epipolar plane images (EPIs) and computing their slopes
[3], [7]–[10], matching corresponding pixels among different
sup-aperture images (SAIs) [11]–[13], and finding optimal
refocused images [14]–[16]. However, the procedure of the
cost minimization and the followed global optimization always
bring a heavy burden of computation. Recent learning-based
methods [17]–[23] significantly improve both the efficiency
and accuracy of LF depth estimation by training deep neural
networks under the supervision of ground-truth depth maps.
As ground-truth depth maps are usually unavailable for real-
world LF images, these methods are always trained using
synthetic data that are costly to obtain. Moreover, due to the
inevitable domain shift between the synthetic and real-world
data, the models trained with synthetic data always suffer
from performance degradation when generalizing to real-
world images. Unsupervised learning-based methods [24]–[26]
overcome these limitations by training deep neural networks
without the need of ground-truth depth maps as supervision.
However, their performance is still limited.

Occlusion is a fundamental issue in LF depth estimation
and has been being studied these years. Generally, differ-
ent occlusion-aware LF depth estimation methods are built
upon the same fact or similar observations, but differ from
each other in the explicit realization and formulation of the
fact/observations, resulting in various estimation accuracy and
efficiency. Non-learning-based methods build cost volumes
by checking photo-consistency to estimate depth maps from
LFs, and then, handle occlusions based on a common fact
that the photo-consistency can only hold on non-occluded
pixels. Therefore, previous non-learning-based methods typi-
cally design different occlusion-aware cost volumes to improve
the accuracy of depth estimation on occlusion areas [10],
[11], [13], [16], which relies in time-consuming cost-volume
optimization. The learning-based method in [26] also considers
the occlusion issue. Following previous unsupervised methods
for stereo or optical flow estimation, it uses left-right or
forward-backward depth consistency for occlusion detection.
However, to check the depth consistency for computing the
symmetry loss, the depth maps of the eight SAIs neighboring
to the central one need to be predicted simultaneously, which
increases computational complexity.

In this paper, we propose an unsupervised learning-based
method for LF depth estimation, which overcomes the lim-
itations of supervised learning-based and optimization-based
methods. That is, the proposed method can not only be trained
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Fig. 1. Comparisons of the running time (in second) and the accuracy of the
depth estimation of different methods (in MSE, Mean Square Error). For the
learning-based methods, including EPINet [19], LFattNet [21], Unsup [24],
and Ours, we provide the results with and without the GPU acceleration,
denoted as GPU and CPU, respectively, while for non-learning-based methods,
including ACC [27], OCC [11], and CAE [16], we only evaluated them
without the GPU acceleration.

without using the ground-truth depth as supervision but also
infer the depth at a high speed. In contrast to supervised
learning-based methods that can directly regress the depth
map under the supervision of the ground-truth depth maps,
it is challenging for unsupervised learning-based methods to
predict the accurate depth map purely from the LF image,
especially on occlusion and textureless areas. Therefore, we
develop the network and loss function based on the knowledge
of the unique geometry structure of LF data, which is also the
general path for designing unsupervised learning methods [28],
[29]. Specifically, based on the observation that the angular
coherence always holds on a subset of the SAIs in an LF even
for pixels with occlusions, we propose a simple yet effective
strategy to handle the occlusion issue. That is, instead of
processing a 4-D LF as a whole, we partition it into sub-LFs,
each of which contains a certain subset of SAIs, and predict
multiple depth maps from sub-LFs. Meanwhile, we design a
constrained unsupervised loss to simultaneously predict their
reliability maps that are utilized to produce the final prediction.
Additionally, we adopt a multi-scale network together with a
global smoothness loss to propagate the depth estimation to
textureless areas.

Experimental results on both synthetic and real-world 4-D
LF datasets demonstrate the great potential of the proposed
method. Specifically, our method significantly improves the
accuracy of the state-of-the-art unsupervised learning-based
one [24], and compared with traditional optimization-based
methods, our method achieves comparable even better per-
formance at a much higher speed. Moreover, our method
can avoid the domain shift problem presented in supervised
learning-based methods and still produce satisfactory results
in real-world LF data.

The rest of this paper is organized as follows. Sec. II com-
prehensively reviews existing methods for depth estimation
from LFs. Sec. III describes the proposed method in detail.
Sec. IV presents extensive experimental results to evaluate and

further analyse the proposed method. Finally, Sec. V concludes
this paper.

II. RELATED WORK

We classify the existing depth estimation methods from
LFs into two categories, i.e., non-learning-based and learning-
based methods.

A. Non-learning-based Methods

Traditional non-learning-based methods typically involve
two steps, i.e., local depth initialization and global optimiza-
tion. These methods explore the geometric property of the
LF structure to design different data costs for local depth
estimation, mainly including EPI-based and angular patch-
based methods.

In the EPI of an LF image, the projections of the same scene
point captured by different SAIs construct a straight line, and
the slope of the line reflects the depth of the scene point.
Based on this observation, Bolles et al. [30] first proposed to
detect the straight lines in EPIs and compute their slopes for
depth estimation. Wanner et al. [7] used the structure tensor to
compute the direction of the local level lines in EPIs and used
the coherence of the structure tensor to measure the reliability.
Kim et al. [3] first estimated the slope of line edges on EPIs,
and then propagated the information throughout the EPI. They
also used a fine-to-coarse strategy to successively process the
EPI for the highest resolution to the coarser resolution. Zhang
et al. [8] proposed a spinning parallelogram operator to obtain
local depth estimation, which defines a parallelogram on the
EPI and figures out the straight line by finding the maximum
distance between the distributions of pixel values on either
sider of the lines.

Angular patch-based methods extend conventional stereo
matching to narrow-baseline multi-view geometry, and con-
struct different costs to measure the photo-consistency among
different SAIs of the LF. Jeon et al. [27] applied the phase
shift theorem to estimate the sub-pixel displacement between
SAIs of the LF, and built gradient-based and feature-based
matching costs to find correspondences. Some methods also
introduced the refocus image as the depth cue [14], [31],
[32]. The assumption of photo-consistency does not hold in
the presence of occlusions, and thus, different methods have
been proposed to address this issue. Wang et al. [11], [12]
developed the LF occlusion theory, i.e., the line separating the
view regions in the angular patch has the same orientation
as the occlusion edge in the spatial domain, and then com-
puted depth on half of the viewpoints that keep the photo-
consistency. Zhu et al. [13] further extended this occlusion
theory to the case of multi-occluder occlusion. Chen et al. [33]
defined the partially occluded border regions which suffer from
occlusion induced depth uncertainty, and employed superpixel-
based regularization to resolve such uncertainty. Williem et al.
[15], [16] proposed an angular entropy cost and an adaptive
defocus response to improve the robustness on occlusions and
noisy. Instead of utilizing partial angular patches for depth
estimation, Zhang et al. [34] leveraged the undirected graph to
jointly consider occluded and unoccluded SAIs in the angular



3

Fig. 2. Flowchart of the proposed unsupervised learning-based method for depth estimation from 4-D LFs. The sub-LFs generated from the LF image are
first transformed, and then fed into a multi-scale network to produce the initial depth maps and the corresponding reliability maps simultaneously, which are
further back transformed to match the central SAI, and fused to produce the final prediction of the depth map.

patch to exploit the structural information of the LF. Note that
in parallel to our work, one contemporaneous work [35] has
emerged recently, where the occlusion issue is addressed by
proposing a novel vote cost to count the number of refocused
pixels whose deviations from the central-view pixel are less
than a small threshold.

B. Learning-based Methods

Through data-driven training with the ground-truth depth
as supervision, recent learning-based methods significantly
improve the depth estimation accuracy while greatly saving
the computational time.

Heber et al. [17] applied a 5-layers network to two image
patches from the vertical and horizontal EPIs to predict the
depth value for individual pixels. They further improved the
methods by using a u-shaped network with 3-D convolutional
layers to predict the depth map for the full central view through
one pass forward [18]. Shin et al. [19] proposed a multi-stream
network to extract features from SAI stacks with 4 directions,
and then concatenate the features to regress the depth map.
Shi et al. [22] proposed a learning-based framework for depth
estimation, which obtains the initial depth map for stereo pairs
using fine-tuned model of FlowNet2.0 optical flow estimation
[36], [37], and then fuses the initial depth estimations based on
the warping errors to handle occlusions. Most recently, Tsai
et al. [21] introduced an SAI selection module to generate
attention maps that indicate the importance of each SAI, and
Chen et al. [23] also used the attention mechanism to fuse
features from different SAIs. To handle the occlusion issue,
Guo et al. [38] computed the occlusion regions based on the
groun-truth depth maps, and utilized a network for occlusion
detection in a supervised manner. Then they estimate the depth
map in occlusion and non-occlusion regions separately.

All the above-mentioned learning-based methods have to
be trained with ground-truth depth. However, the ground-truth
depth maps are challenging to obtain or even unavailable for
real-world LF data. Besides, they may suffer from performance
degradation when generalizing the models trained with syn-
thetic data to real-world data due to the domain difference
between synthetic and real-world data. Recently, Peng et al.
[24], [25] proposed an unsupervised learning method for
depth estimation from LFs, which can be trained without

the ground-truth depth maps. However, as the occlusion and
textureless issues are not expelicitly addressed, the accuracy
of the estimated depth maps is still limited. Apart from
the similar photometric consistency-based losses, Zhou et al.
[26] proposed a symmetry loss to handle occlusion areas.
However, to check the depth consistency for computing the
symmetry loss, the depth maps for the eight SAIs neighboring
to the central one need to be predicted simultaneously, which
increases the computational complexity.

III. PROPOSED METHOD

A. Overview

Let L(x, y, u, v) ∈ RH×W×M×N denote a 4-D LF image
with the spatial resolution of H×W and the angular resolution
of M × N . The LF image can be regarded as a set of 2-
D views observed from the viewpoints distributed on a 2-D
plane, and thus, it can also be denoted by L = {Iu = L(:
, :, u, v) ∈ RH×W |u ⊂ U}, where Iu denotes the SAI at the
angular position u = (u, v), and U is the set of the 2-D angular
coordinates, i.e., U = {u|u = (u, v), 1 ≤ u ≤ M, 1 ≤ v ≤
N}. Let Iu0 denote the central view of L, and our goal is to
estimate its depth map, denoted as D. Note that as the depth
is inversely proportional to the disparity, we do not make a
distinction between them in this paper.

Considering the limitations of supervised learning-based
methods and traditional optimization-based methods, we aim
at estimating D using an unsupervised learning-based frame-
work. With no ground-truth labels as the supervision during
training, the general guidance for designing an unsupervised
learning method is to take advantage of the prior knowledge
of the data [28]. In our method, we exploit the intrinsic
geometry structure of LF data to drive the training of the
network. To be more specific, based on the observation that
the photo consistency can always hold within a subset of the
LF views, we proposed an occlusion-aware strategy to address
the occlusion issue, i.e., we predict the initial depth maps from
sub-LFs and estimate their occlusion-aware reliability using a
constrained unsupervised loss. The final prediction of the depth
map can be produced by fusing the initial depth maps based
on their reliability maps. Additionally, we build the network in
a multi-scale manner and adopt an edge-weighted smoothness
loss to propagate the depth estimation to textureless areas.
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Image plane

Camera plane

(a) The imaging model when the occlusion occurs
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(b) Appearances of the spatial and angular patches of pixels with occlusions

Fig. 3. Illustration of the occlusion model. In (a), the blue dots are the scene
points on the image plane and their projections on the camera plane, and
red dots are the occluders and their projections. In (b), the green dots are
pixels with occlusions from the central view, and their surrounding areas,
namely spatial patches, are framed in green and zoomed in. The refocused
angular patch of each green dot with respect to its ground-truth depth value
is presented under its spatial patch, where the blue frame indicates the part
of the angular patch that obeys the photo consistency.

Fig. 2 illustrates the framework of our proposed method.
In what follows, we will first introduce the general idea for
unsupervised depth estimation and then describe our method
in detail.

B. Unsupervised LF Depth Estimation

The main cue for the depth estimation from L is the angular
coherence among the views, i.e., the projections of the same
scene point at different views have the same intensity under
the assumption of Lambertian and non-occlusion. This relation
can be represented as:

Iu0(x) = Iu(x+D(x)(u− u0)), (1)

where x is the spatial coordinate. Based on Eq. (1), we
can build a feature-extraction network to explore the angular
coherence among the LF for depth estimation. Moreover,
we can use an unsupervised loss to train the network by
minimizing the photometric reconstruction distance, i.e.,

`rec(L, D̃) =
∑
u⊂U

∑
x

∣∣∣Îu→u0

(
x; D̃

)
− Iu0(x)

∣∣∣ , (2)

where Îu→u0

(
D̃
)

denotes the image warped from Iu to Iu0

based on the predicted depth map D̃.
However, the relationship described in Eq. (1) no longer

holds when occlusions occur, and thus, the model trained with
the loss function in Eq. (2) will lose accuracy on occlusion
areas. To this end, we propose the following occlusion-aware
strategy for unsupervised learning of the LF depth estimation.

C. Occlusion-aware Model

We can use the refocused angular patch to represent the
unique structure of LF data described in Eq. (1) in a more
straightforward way. The refocused angular patch for the pixel
x of Iu0

with respect to the depth value d is denoted by
Ax,d(u, v) = L(x+d(u−u0), y+d(v−v0), u, v). Ax,d collects
the corresponding pixels of Iu0

(x) from each SAIs of the LF
refocused at depth d. Based on Eq. (1), pixels in Ax,d will
have the same intensity when d is the correct depth value of
Iu0

(x), i.e., d = D(x). However, when the occlusion occurs
at Iu0

(x), the photo consistency will not hold in Ax,D(x).

Fig. 3 (a) illustrates the imaging model when the occlusion
occurs. Suppose only one occluder exists, the occlusion will
only occur at one side of the central viewpoint along a 1-D
angular dimension. By extending this observation to the 2-D
angular plane of an LF image, we can deduce that one of
the 4 sides of the central viewpoint can avoid the occlusion
problem. As shown in Fig. 3 (b), we demonstrate 4 different
occlusion scenarios (as shown in the spatial patches framed
in green), and collect the refocused angular patches of the
occluded pixels using their ground-truth depth values. We can
observe that although the whole angular patches disobey the
color consistency, if we divide Ax,D(x) into 4 parts, then at
least one part can still keep the color consistency (as shown
in the blue frames). Moreover, the positions of the color-
consistent part differ with the spatial and geometric content
in the spatial patches.

Based on such an unique structure of LF data, we propose
a simple yet effective strategy to handle occlusions for the LF
depth estimation. Specifically, we estimate depth maps from
sub-LFs instead of the full LF, and predict their reliability
maps simultaneously. Then, we obtain the final prediction
of the depth map by fusing those from sub-LFs under the
guidance of their reliability maps.

1) Sub-LF generation: We first divide each of the angular
dimension with u0 = (M0, N0) as the center to get 4 sub-sets
of U , denoted as U = {U1,U2,U3,U4}. Note that u0 is the
angular position of the depth map to be estimated. Specifically,
U1 = {u = (u, v)|1 ≤ u ≤ M0, 1 ≤ v ≤ N0}, U2 = {u =
(u, v)|1 ≤ u ≤ M0, N0 ≤ v ≤ N}, U3 = {u = (u, v)|M0 ≤
u ≤ M, 1 ≤ v ≤ N0}, and U4 = {u = (u, v)|M0 ≤ u ≤
M,N0 ≤ v ≤ N}. Accordingly, we divide the LF image into
4 sub-LFs, i.e., L = {L1,L2,L3,L4}, where Li = {Iu|u ⊂
Ui}.

2) Uncertainty-aware depth maps: We apply a network
to predict the depth map from these sub-LFs, producing
D̃1, D̃2, D̃3, and D̃4. Each sub-LF contains structured views
to provide sufficient cues for depth estimation, but will fail
when the occlusion occurs. Fortunately, most pixels of Iu0

have at least one sub-LF that maintains the angular coherence.
To indicate which sub-LF is reliable for depth estimation,
we expect the network to learn a reliability map for each
prediction of the sub-LF simultaneously. To enable the training
of such a network, we propose a constrained photometric
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(a) (b) (c)

Fig. 4. Visual illustration of the uncertainty-aware depth maps estimated
from the sub-LFs. (a) The depth maps estimated from sub-LFs and their error
maps with respect to the ground-truth depth; (b) Zoom-in spatial patches; (c)
Zoom-in error maps of the depth maps estimated from sub-LFs (the results
from L1, L2, L3, and L4 are presented from left to right.)

reconstruction loss defined as:

`c−rec(L, D̃, W̃ ) =
4∑
i=1

∑
u⊂Ui

∑
x

W̃i(x)
∣∣∣Îu→u0

(
x; D̃i

)
− Iu0(x)

∣∣∣ , (3)

where W̃i is the reliability map corresponding to D̃i. We also
apply the softmax operation across different uncertainty maps
to ensure

∑4
i=1 W̃i(x) = 1.

By minimizing `c−rec instead of `rec, the network can
relax the optimization on occlusion areas of each sub-LF,
because the loss can be decreased by reducing W̃i(x) when
Îu→u0

(
x; D̃i

)
has difficulty to get close to Iu0

(x). Fig. 4
visually illustrates its effect by showing the error maps of
the initial depth maps estimated from sub-LFs, where it can
be observed that in each spatial patch with occlusions, some
of the depth maps show high accuracy while others contain
obvious errors. Moreover, the subset of the accurate depth
maps changes with the spatial content and geometric relations
of patches.

3) Occlusion-aware fusion: We generate the final predic-
tion of the depth map by fusing the 4 initial depth maps under
the guidance of their reliability maps. For pixels in occlusion
areas, only the sub-LFs without any occluded viewpoints
can hold the angular coherence and provide accurate depth
estimation. Therefore, we take the depth value with the highest
reliability as the final prediction, i.e.,

D̃max(x) = D̃j(x), j = argmax
i

W̃i(x). (4)

Considering that the reliability map in Eq. (3) may increase
the uncertainty of the non-occlusion pixels of the initial
depth maps from individual sub-LFs, we take the average
depth values weighted by the reliability to produce a smooth
estimation, i.e.,

D̃avg(x) =
∑
i

W̃i(x)D̃j(x). (5)

The detection of the occlusion areas is based on the variance of
the initial depth maps. As all the 4 sub-LFs on non-occlusion
areas obey the intensity consistency when refocusing on the
correct depth, they can produce relatively accurate predictions

Image/Mask Average Max Final

Fig. 5. Visual illustration of the occlusion-aware fusion. The image patch
of the central view, the occlusion mask, the depth maps from average and
max operations, and the final prediction of the depth maps are presented. The
corresponding error map is also provided under each depth map.

that are close to each other. While on occlusion areas, some
of the sub-LFs are influenced by the intensity inconsistency,
and others are not, and thus, the predictions show a relatively
large divergence. We compute the standard deviation over the
initial prediction for each pixel, and make a hard threshold to
generate the occlusion mask, i.e.,

Õ(x) = Tλ
(
STD

(
D̃1, D̃2, D̃3, D̃4

))
, (6)

where Tλ(x) =

{
1, x ≥ λ
0, x < λ

is the binarization operation with

the threshold λ, STD(·) copmutes the standard deviation, and
Õ is the estimated occlusion mask with 1 and 0 respectively
indicating occlusion and non-occlusion. We empirically set the
value of λ to 0.3. Finally, we can produce the final prediction
of the depth map at Iu0

by fusing the results on occlusion and
non-occlusion areas, i.e.,

D̃(x) = Õ(x)D̃max(x) + (1− Õ(x))D̃avg. (7)

As an example, Fig. 5 visualizes D̃max, D̃avg , Õ, and D̃
to illustrate the effectiveness of the occlusion-aware fusion,
where we can observe that D̃max performs well on occlusion
boundaries, while D̃avg can produce smooth results on non-
occlusion areas. Based on the occlusion mask, D̃ can leverage
the advantages of D̃max and D̃avg.

D. Implementation Details

1) Sub-LF 4-D transformation: To reduce the model size,
we apply a shared network to the 4 sub-LFs. As the target
view, i.e., the central view of the full LF, is located at different
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TABLE I
QUANTITATIVE COMPARISONS (MSE ×100) OF THE DEPTH ESTIMATION RESULTS FROM DIFFERENT METHODS ON SYNTHETIC LF DATA. THE SMALLER,

THE BETTER.

Methods HCI HCIold
Boxes Cotton Dino Sideboard Buddha Horses Medieval Monasroom Papillon StillLife

Non-Learning
ACC [27] 24.91 8.70 1.25 12.64 1.21 1.74 1.05 11.02 4.88 13.07
OCC [11] 8.14 1.04 0.59 2.31 0.76 0.70 0.85 0.55 0.75 2.49
CAE [16] 10.18 1.01 0.62 1.55 0.77 1.20 1.14 0.68 0.85 1.45

Supervised EPINet [19] 6.35 0.26 0.18 0.88 0.37 6.85 2.23 1.36 6.15 2.55
LFattNet [21] 4.17 0.19 0.10 0.54 0.36 5.79 1.45 0.75 5.15 15.36

Unsupervised Unsup [24] 12.74 7.31 1.88 4.62 1.11 1.65 1.27 1.92 4.58 33.90
Ours 7.45 0.80 0.63 1.79 0.34 1.52 0.70 0.57 1.11 1.57

TABLE II
QUANTITATIVE COMPARISONS (BPR (> 0.07)) OF THE DEPTH ESTIMATION RESULTS FROM DIFFERENT METHODS ON SYNTHETIC LF DATA. THE

SMALLER, THE BETTER.

Methods HCI HCIold
Boxes Cotton Dino Sideboard Buddha Horses Medieval Monasroom Papillon StillLife

Non-Learning
ACC [27] 25.39 7.36 17.57 24.40 9.33 14.44 7.92 12.07 18.14 22.32
OCC [11] 65.68 4.57 9.83 22.92 6.74 14.36 12.74 10.54 22.73 13.06
CAE [16] 29.48 7.84 18.17 21.47 5.69 14.82 23.80 9.56 18.59 20.41

Supervised EPINet [19] 13.10 0.47 1.41 5.19 1.62 16.59 18.83 10.56 36.16 11.87
LFattNet [21] 11.51 0.26 0.88 2.97 2.22 16.75 18.64 9.44 36.03 13.02

Unsupervised Unsup [24] 43.82 28.02 22.08 28.06 9.39 19.64 18.41 14.63 28.30 44.97
Ours 26.24 8.46 8.25 14.20 4.11 26.95 16.48 10.57 36.36 17.14

position on the angular plane of each sub-LF, we apply a 4-D
transformation, which include an angular flip followed by a
spatial flip, to the sub-LFs to ensure that they can produce the
depth map for the same target. Specifically, we first take L1 as
the reference and apply an angular flip on the rest of the sub-
LFs to adjust the angular position of Iu0

. As the angular flip
will destroy the original LF structure [39], we consequently
apply a spatial flip on the corresponding dimensions to recover
the LF structure. Explicitly, the 4-D transformations is written
as

L̂1(x, y, u, v) = L1(x, y, u, v),

L̂2(x, y, u, v) = L2(x,W − y, u,N − v),
L̂3(x, y, u, v) = L3(H − x, y,M − u, v),
L̂4(x, y, u, v) = L4(H − x,W − y,M − u,N − v),

(8)

where L̂i is the transformed sub-LF to be fed into the network
for depth estimation. Additionally, the predicted depth maps
will correspond to the flipped Iu0

, and thus, they are spatially
flipped back to align the same target. The left and right parts
of Fig. 2 illustrate the 4-D transformation applied on the sub-
LFs and the back transformation applied on the predicted depth
maps, respectively.

2) Network architecture: We use a multi-scale network
[40] with shared weights to estimate depth maps from L̂i
(i = 1, 2, 3, 4). To be specific, we stack the SAIs in L̂i
along the feature channel, and feed them into the network.
The features extracted from the SAI stack are gradually down-
sampled using max pooling layers with a kernel of size 2×2,
and then gradually up-sampled to the original spatial size using
transposed convolutional layers. The feature numbers increase

from 64, 128, 256 to 512 with the decrease of the spatial size.
In each scale, we use one layer of convolution and two residual
blocks [41] for feature extraction, and the features in the
same scale are skip-connected to enhance the information flow.
Finally, in the up-sampling branch, we apply two convolutional
layers to output the depth map and its corresponding reliability
map at each scale.

The multi-scale structure improves the receptive field of the
network, so that it can cover the correspondences on LFs with
relatively larger disparity ranges. Moreover, the multi-scale
network helps to propagate the depth estimation from rich-
texture to weak-texture regions.

3) Loss function: To improve the smoothness of the esti-
mated depth map, as well as encourage the depth discontinuity
on edges of the central view, we adopt an edge-aware smooth-
ness loss [44], [45], written as

`sm =
1

2

∑
x

exp
(
−γ
∣∣∣∣∂Iu0

∂x
(x)

∣∣∣∣)
∣∣∣∣∣∂D̃∂x (x)

∣∣∣∣∣
+exp

(
−γ
∣∣∣∣∂Iu0

∂y
(x)

∣∣∣∣)
∣∣∣∣∣∂D̃∂y (x)

∣∣∣∣∣ ,
(9)

where the edge weight γ is set to 150 empirically.
The final loss function is defined as ` = `c−rec + β`sm,

where β controls the trade-off between the fidelity and the
smoothness. We empirically set β to 0.1.

4) Training details: During training, we randomly cropped
LF patches of spatial size 128×128 and angular size 7×7 from
the training dataset. We set the batch size to 4 and initialized
the learning rate as 1e−4. We used Adam optimizer [46] with
β1 = 0.9 and β2 = 0.999.
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TABLE III
QUANTITATIVE COMPARISONS (MSE ×100) OF THE DEPTH ESTIMATION RESULTS FROM DIFFERENT METHODS ON THE HCI 4D BENCHMARK.

Methods Test Stratified
Bedroom Bicycle Herbs Origami Backgammon Dots Pyramids Stripes

Non-Learning
ACC [27] 0.467 11.729 21.335 6.757 13.007 5.676 0.273 17.454
OCC [11] 0.633 7.669 22.202 2.300 21.587 3.301 0.098 8.131
CAE [16] 0.234 5.135 11.665 1.778 6.074 5.082 0.048 3.556

Supervised
EPINet [19] 0.213 4.682 9.700 1.466 3.629 1.635 0.008 0.950
LFattNet [21] 0.366 3.350 6.605 1.733 3.648 1.425 0.004 0.892
AttMLFNet [23] 0.129 3.082 6.374 0.991 3.863 1.035 0.003 0.814

Unsupervised
Unsup [24] 0.924 11.737 145.551 8.817 34.709 72.998 0.035 11.759
Mono [26] 0.415 9.232 26.816 3.679 11.833 2.536 0.027 2.677
Ours 0.385 6.232 13.941 1.921 6.684 6.565 0.213 5.200

TABLE IV
QUANTITATIVE COMPARISONS (BPR (> 0.07)) OF THE DEPTH ESTIMATION RESULTS FROM DIFFERENT METHODS ON THE HCI 4D BENCHMARK.

Methods Test Stratified
Bedroom Bicycle Herbs Origami Backgammon Dots Pyramids Stripes

Non-Learning
ACC [27] 13.855 19.791 18.108 14.183 5.516 2.900 12.354 35.741
OCC [11] 17.565 21.562 36.830 22.431 19.006 5.822 3.172 18.408
CAE [16] 5.788 11.223 9.550 10.027 3.924 12.401 1.681 7.872

Supervised
EPINet [19] 2.403 9.896 12.100 5.918 3.580 3.183 0.192 2.462
LFattNet [21] 2.792 9.511 5.219 4.824 3.126 1.432 0.195 2.933
AttMLFNet [23] 2.074 8.837 5.426 4.406 3.228 1.606 0.174 2.932

Unsupervised Unsup [24] 21.604 30.239 63.940 53.408 36.419 56.102 0.809 62.864
Mono [26] 7.413 20.098 13.443 10.949 12.311 3.651 0.262 11.136
Ours 12.687 21.650 16.959 19.821 14.371 45.340 7.348 41.359

TABLE V
COMPARISON OF THE RUNNING TIME (IN SECONDS) OF DIFFERENT METHODS FOR INFERRING THE DEPTH MAP FROM A 512× 512× 7× 7 LF IMAGE.

THE INFERENCE TIME WITH AND WITHOUT GPU ACCELERATION ARE PROVIDED.

Non-Learning Supervised Unsupervised

ACC [27] OCC [11] CAE [16] EPINet [19] LFattNet [21] Unsup [24] Ours

w/o GPU 645.24 139.26 229.31 15.78 242.35 11.51 12.65
w/ GPU - - - 1.35 7.04 5.57 0.16

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we
compared with state-of-the-art algorithms, including three non-
learning-based methods, i.e., ACC [27], OCC [11], and CAE
[16], two supervised learning-based methods, i.e., EPINet
[19] and LFattNet [21], and one unsupervised learning-based
method, i.e., Unsup [24] .

We performed comparisons on both synthetic and real-world
LF data. For the synthetic dataset, we used 4 LF images
from the HCI benchmark [42] and 5 LFs from the HCI old
benchmark [43] for inference. All learning-based methods
were trained with the 4-D LF images from [42] which are
not included in the test set. For the real-world LF data, we
used 4-D LF images captured with a Lytro illum provided
by Stanford Lytro LF Archive [47], Kalantari et al. [48], and
EPFL LF dataset [49]. As the real-world datasets have no
ground-truth depth for supervised training, we only retrained
the models of 2 unsupervised learning-based methods using

100 LF images from [48], while directly applying the model
of supervised learning-based methods trained with synthetic
data. We also performed comparisons on the Stanford Gantry
dataset [50], which contains real-world LF images captured
with a camera gantry. For these datasets, we used the central
7× 7 SAIs of the LF for depth estimation.

Besides, we also submitted our results to the HCI online
benchmark1 for evaluation, which is composed of eight syn-
thetic LF images. In addition to the aforementioned methods
under comparison, we compared with two more state-of-the-
art methods, i.e., one latest supervised learning-based method
named AttMLFNet [23] and one unsupervised learning-based
method named Mono [26]2. Note that the results of all the
compared methods in terms of this online benchmark are

1https://lightfield-analysis.uni-konstanz.de/benchmark/table
2Note that as the source codes of AttMLFNet and Mono are not publicly

available when submitting this manuscript, we did not compare our method
with them on other datasets.
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Ground Truth EPINet LFattNet ACC OCC CAE Unsup Ours

Fig. 6. Visual comparison of the depth maps estimated by different methods on synthetic LF data from [42] and [43]. Selected regions have been zoomed
in for better comparison. The error maps with respect to the ground-truth depth maps are also provided.

online available.

A. Evaluation on Synthetic Data

The available ground-truth depth of the synthetic data [42],
[43] allows us to compare different methods quantitatively.
Specifically, We computed Mean Square error (MSE) and Bad
Pixel Ratio (BPR) between the estimated depth maps and the
ground-truth ones to measure the accuracy, i.e.,

MSE =
1

N

∑
x

(D̃(x)−D(x))2,

BPR = Card
({

x :
∣∣∣D̃(x)−D(x)

∣∣∣ > t
})

/N,

(10)

where D̃ and D are the estimated and ground-truth depth
maps, respectively, N is the number of pixels in a depth map,
and Card(A) denotes the element number of the set A. We set
t = 0.07 for evaluation. Note that to avoid the padding issue
in some methods, we cropped 20 pixels for the depth maps
when computing the evaluation metrics.

Tables I and II list the MSE and BPR values of different
methods on HCI and HCI old datasets, and Tables III and IV
on the HCI online benchmark, where we can observe that

• As ground-truth depth maps are not utilized to train the
model, the performance of unsupervised learning-based
methods is still obviously lower than that of supervised
methods on the synthetic dataset. Moreover, due to the
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Ground Truth w/o occ w/o smooth Ours

Fig. 7. Visual lillustration of the effectiveness of the occlusion-aware strategy
and the smoothness loss. w/o occ denotes the results produced without using
the occlusion-aware strategy, and w/o smooth means that the weight for the
smoothness loss was set to 0. The depth maps and the corresponding error
maps are provided.

lack of the consideration of the occlusions, previous
unsupervised learning-based method [24] performs much
worse than non-learning-based methods.

• Compared with non-learning-based methods [11], [16],
[27], supervised learning-based methods [19], [21], [23]
can achieve superior performance on the HCI dataset,
but the accuracy decreases seriously on the HCI old
dataset. The reason may be that the image characteristics
have great differences between these two datasets. Such
a degradation also indicates that the domain difference
between the training and testing data can limit the per-
formance of the supervised learning-based methods.

• Our method produces results with the accuracy com-
parable to non-learning-based methods [11], [16], [27].
Compared with supervised learning-based methods [19],
[21], [23], our method still has a performance gap on
the HCI dataset, but can produce results with lower MSE
values on the HCI old dataset.

• Our method can achieve much higher accuracy than the
unsupervised learning-based method [24]. Compared with
the unsupervised learning-based method [26], our method
performs better in terms of MSE values and produces
comparable BPR values on the Test set, but worse on the
Stratified set. The possible reason is that the stratified
set contains LF images greatly different from real-world
scenes to pose specific, isolated challenges, while our
model is not explicitly designed to handle them.

Besides, Fig. 6 visualizes the depth maps predicted by
different algorithms as well as their error maps compared with
the ground-truth ones. It can be seen that our method can well

TABLE VI
ABLATION STUDY FOR THE PROPOSED METHOD. w/o occ DENOTES THE

RESULTS PRODUCED WITHOUT USING THE OCCLUSION-AWARE STRATEGY,
AND w/o smooth MEANS THAT THE WEIGHT FOR THE SMOOTHNESS LOSS

WAS SET TO 0. THE QUANTITATIVE RESULTS (MSE ×100) OF THE DEPTH
MAPS ARE PROVIDED.

Boxes Cotton Dino Sideboard

w/o occ 10.55 2.84 1.16 3.67
w/o smooth 11.30 1.28 0.91 2.45

Ours 7.45 0.80 0.63 1.79

handle most occlusion areas, and produce globally smooth
depth maps, demonstrating the effectiveness of the proposed
occlusion-aware strategy and the multi-scale network with the
smoothness loss.

B. Evaluation on Real-World Data

We also compared the accuracy of estimated depth maps
by different methods on real-world 4-D LF images [47], [48]
and [49]. As the ground-truth depth maps are not available,
we only visually compared the results. Figs. 8, 9, and 10
present the estimated depth maps, where we can observe that
although supervised learning-based methods [19], [21] can
produce superior results on synthetic data, their performance
is degraded on real-world LF images, especially on textureless
areas. The reason might be that the camera and environmen-
tal noises exist in the real-world images. Traditional non-
learning-based methods require many hyper-parameters for
optimization, and thus, it is difficult for them to perform well
on different scenes. Additionally, although the unsupervised
learning-based method [24] was retrained on the real-world
dataset, it produces depth maps with obvious inaccuracy on
occlusion regions and textureless areas due to the intrinsic
limitation of the model. In comparisons, our method can
produce satisfactory and better depth maps on various scenes.

C. Comparison of Efficiency

We compared the efficiency of different methods measured
by the running time for inferring the depth map from a 4-D LF
image, and Table V lists the results. We provided the running
time with and without the GPU acceleration. All CPU-based
methods were implemented on a desktop with Intel CPU i7-
8700 @ 3.70GHz, 32 GB RAM, and the GPU versions were
accelerated by a NVIDIA Tesla V100. From Table V, we can
see that traditional non-learning methods suffer from the huge
burden of computational costs, while learning-based methods,
including EPINet [19], Unsup [24], and Ours, significantly
save the running time even without the GPU acceleration.
Particularly, our method is obviously faster than others under
the acceleration of GPU.

D. Ablation Study

We also conducted ablation studies towards the proposed
occlusion-aware strategy and the smoothness loss, and Table
VI and Fig. 7 provide the quantitative and qualitative results,
respectively.
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Central View EPINet LFattNet ACC OCC CAE Unsup Ours

Fig. 8. Visual comparison of the depth maps estimated by different methods on LF data from [47] and [48].

Central View EPINet LFattNet ACC OCC CAE Unsup Ours

Fig. 9. Visual comparison of the depth maps estimated by different methods on LF data from [49].

1) The occlusion-aware strategy: To demonstrate the ad-
vantage of the proposed occlusion-aware strategy, we devel-
oped a baseline named as w/o occ, which directly predicts
the depth map from the full LF image instead of the sub-
LFs, and trained it by replacing the constrained photometric
reconstruction loss in Eq. (3) with the unconstrained one
defined in Eq. (2). From Table VI, we can see that the accuracy
of the predicted depth maps obviously decreases without using
the occlusion-aware strategy. Fig. 7 shows that applying the
occlusion-aware strategy significantly reduces the prediction
error around occlusion boundaries.

2) The smoothness loss: To demonstrate the effectiveness
of the smoothness loss, we trained a model named as w/o
smooth by setting the weight β for the smoothness loss to
0. Experimental results presented in Table VI show that the
accuracy of the depth estimation seriously decrease without
using the smoothness loss. From Fig. 7, we can observe that
w/o smooth has difficulties to estimate the depth in textureless
areas, while Ours can produce accurate and consistent results
by using the smoothness loss.

3) The threshold λ for occlusion detection: To justify our
selection of the value of the threshold λ, we quantitatively
compared the predicted depth maps when setting different
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Central View EPINet LFattNet ACC OCC CAE Unsup Ours

Fig. 10. Visual comparison of the depth maps estimated by different methods on LF data from [50]
.

TABLE VII
QUANTITATIVE INVESTIGATION OF THE EFFECT OF THE THRESHOLD λ IN OCCLUSION DETECTION ON PERFORMANCE. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

λ Boxes Cotton Dino Sideboard Boxes Cotton Dino Sideboard

MSE ×100 BPR (> 0.07)

0.1 7.53 0.83 0.73 2.14 32.15 9.91 15.23 26.23
0.2 7.46 0.80 0.62 1.89 26.08 8.33 8.28 15.26
0.3 7.45 0.80 0.63 1.79 26.24 8.46 8.25 14.20
0.4 7.48 0.81 0.64 1.79 26.53 8.59 8.36 14.51
0.5 7.55 0.84 0.66 1.82 26.66 8.71 8.46 14.89

values of λ. As listed in Table VII, we can see that setting λ
to 0.3 produces the depth maps with highest accuracy on most
cases, while setting λ to 0.1 or 0.5 causes obvious performance
degradation.

4) The necessity of using Davg: To quantitatively demon-
strate the necessity of using Davg, we compared the accuracy
of predicted depth maps when using Dmax only and using both
Dmax and Davg. As shown in Table VIII, it can be seen that
only using Dmax indeed reduces the accuracy of the estimated
depth maps.

V. CONCLUSION

We have presented an unsupervised learning-based method
for depth estimation from 4-D LFs. By introducing an
occlusion-aware strategy incorporated with a constrained un-
supervised loss and utilizing a multi-scale network with the

smoothness loss, our method is capable of handling both the
occlusion and textureless areas that are challenging for depth
estimation, and produce satisfactory results on both synthetic
and real-world LF images. Experimental results demonstrate
that our method can reduce the computational burden of tradi-
tional non-learning-based methods, alleviate the performance
limitation of previous unsupervised methods, and overcome
the problem of domain shift on supervised methods.
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