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Abstract The boundaries of objects in an image are often

considered a nuisance to be “handled” due to the occlusion

they exhibit. Since most, if not all, computer vision tech-

niques aggregate information spatially within a scene, infor-

mation spanning these boundaries, and therefore from dif-

ferent physical surfaces, is invariably and erroneously con-

sidered together. In addition, these boundaries convey im-

portant perceptual information about 3D scene structure and

shape. Consequently, their identification can benefit many

different computer vision pursuits, from low-level process-

ing techniques to high-level reasoning tasks.

While much focus in computer vision is placed on the

processing of individual, static images, many applications

actually offer video, or sequences of images, as input.

The extra temporal dimension of the data allows the mo-

tion of the camera or the scene to be used in process-

ing. In this paper, we focus on the exploitation of subtle

relative-motion cues present at occlusion boundaries. When

combined with more standard appearance information, we

demonstrate these cues’ utility in detecting occlusion bound-

aries locally. We also present a novel, mid-level model for

reasoning more globally about object boundaries and propa-

gating such local information to extract improved, extended

boundaries.
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1 Introduction

Consider the scene depicted in Fig. 1, taken from the La-

belMe database (Russell et al. 2005). There are many over-

lapping objects and surfaces in this scene. Indeed, almost

everything in the scene is occluded by, and/or occludes, an-

other object or surface! A user has begun to label a few

foreground objects thus far (indicated by the blue and red

dots), but the process of painstakingly labeling each and

every inter-related boundary is daunting.

In natural images, however, this type of complexity

is common. Objects are generally not conveniently laid

out in well-separated poses or in front of uniform back-

grounds. As a consequence, occlusion and dis-occlusion at

objects’ boundaries frustrate many processing techniques

frequently used in computer vision. Due to imaging noise

and the inherent lack of information (and resulting ambi-

guity) when considering an individual pixel, most process-

ing techniques in our field aggregate information spatially

in images. This aggregation may be the result of sim-

ple smoothing (e.g. , Gaussian blurring for the purpose

of down-sampling and multi-scale processing), the con-

sideration of discrete patches of pixels (e.g. , for feature-

based object recognition or face/pedestrian detection), or the

use of graphical models connecting neighborhoods of pix-

els (e.g. , Markov, Conditional, or Discriminative Random

Fields (Geman and Geman 1984; Kumar and Hebert 2006;

Lafferty et al. 2001)).

Each of these methods implicitly assumes that all the

nearby or connected pixels “belong together” (e.g. are from

the same object, motion layer, etc. ). But this assumption is

violated at object boundaries, where information from two

different physical surfaces is smoothed/transmitted across

the boundary or collected within a single patch (as shown

in Fig. 2), and thus subsequent results will be muddied or
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Fig. 1 Example scene

exhibiting extensive occlusion

(from Russell et al. 2005).

Almost every object or surface

is occluding and/or occluded by

another object or surface. Any

computer vision method which

spatially aggregates information

in this scene will almost

certainly simultaneously

consider data from two different

objects

Fig. 2 In cluttered scenes, any technique that aggregates information

spatially, such as a patch-based method, will erroneously combine in-

formation from physically different objects/surfaces, leading to poor

results

completely incorrect. For this reason, pixels near bound-

aries are often treated as outliers to be handled by ro-

bust methods, or multiple/adaptive-windowing techniques

are employed (Fusiello et al. 1997; Hirschmüller et al. 2002;

Kanade and Okutomi 1994). These sorts of approaches are

inherently focused on reasoning based on information con-

tained within the regions enclosed by the boundaries. By

contrast, this paper will focus on the boundaries themselves

and will attempt to detect and reason about them directly.

Note that these two sources of information, regions and their

boundaries, are complementary and are each useful in their

own way (Fowlkes et al. 2003; Heitz and Bouthemy 1993;

Smith 2001); we are not advocating the exclusive use of one

over the other.

The boundaries present in a scene are not only a nuisance

for many processing techniques, they are also a valuable

source of perceptual information important for understand-

ing a scene’s overall structure and content (Black and Fleet

2000; Stein 2008). Since occlusion boundaries exist at lo-

cations in an image where one physical surface is closer to

the camera than another, they correspond to the physical ex-

tent of objects and structures in a scene, providing strong 3D

shape cues without explicit 3D reconstruction.

Consider the methodology employed by feature-based

object recognition relying on appearance, e.g. the pop-

ular Scale Invariant Feature Transform (SIFT) approach

due to Lowe (2004). There are generally two stages: fea-

ture detection and feature description. Image information

is spatially aggregated during both. During detection, fil-

tering processes such as Gaussian smoothing, which are

used to create scale-space Difference-of-Gaussian pyramids,

will smear information across boundaries. Then, patches

of image data which may also cross object boundaries are

used to create descriptor vectors for matching. In particu-

lar, for scale-invariant methods, larger and larger neighbor-

hoods are considered as the scale of detection and descrip-

tion increases, resulting in many unusable large-scale fea-

tures which contain information from (multiple) objects and

background. Equivalently, as an object appears smaller and

smaller within a scene, we must rely more heavily on its

larger scale features (relative to observed size of the object)

for matching. Knowledge of the location of object bound-

aries in a scene could be used to combat these problems and

improve recognition in cluttered scenes (Stein and Hebert

2005).

Furthermore, while there has been impressive progress

in the last few years in recognizing specific objects in im-

ages such as cars, bicycles, people, etc. , using feature-based

methods, for example, the problem of detecting generic,

never-before-seen objects—i.e. without a given library of



Int J Comput Vis (2009) 82: 325–357 327

knowns—remains a difficult challenge. For instance, how

may we determine a telephone sitting on our desk is an ob-

ject separate from its surroundings, without already know-

ing what a telephone is? Or as Adelson and Bergen put

it in 1991, how do we distinguish the “things” from the

“stuff?” This goal is variously known as object segmenta-

tion, pop-out, or figure-ground labeling, and we believe that

detected occlusion boundaries, which themselves delineate

the physical extents of objects, can provide a strong cue for

tackling it (Stein et al. 2008).

With these high-level tasks as motivation, we propose to

revisit the use of motion cues in extracting occluding con-

tours as a step toward identifying object boundaries in a

scene. We use subtle motion cues, such as parallax induced

by a moving camera, in reasoning about these crucial bound-

aries which separate “things” in a scene.

After discussing related work and our dataset, we will be-

gin in Sect. 4 with an over-segmentation of the image, with

the assumption that the true object/occlusion boundaries of

interest are a subset of the fragmented boundaries formed

by the regions (or segments) in that over-segmentation. Next

we will estimate the motion of those segments and frag-

ments in Sect. 5. Combined with appearance cues (Stein

and Hebert 2007), this motion information will be used to

generate features for a classifier trained to distinguish frag-

ments that are merely surface markings from those that are

object/occlusion boundaries. Finally, by learning a notion

of fragment connectivity and constructing a factor graph to

model fragment and junction interdependencies (Sect. 6),

we will perform global inference to estimate the optimal la-

beling of the fragments jointly. Using this approach, we will

demonstrate in Sect. 8 improved object boundary labeling

when (a) using motion information and (b) additionally us-

ing global inference.

2 Related Work

Prior attempts to use motion cues to extract object contours

(or object segmentations implying the contours) can be di-

vided roughly into two groups: those that segment regions

directly from the motion input, and those that detect con-

tours via some local computation on the motion data. The

first category includes approaches that attempt to infer seg-

mentation or scene structure directly from reasoning about

large-scale occlusions observed through dynamic object mo-

tion (Brostow and Essa 1999; Ogale et al. 2005) and/or

the use of multiple, calibrated cameras for obtaining silhou-

ettes (Guan et al. 2007).

Also in this category is layered motion segmentation

(Darrell and Pentland 1995; Wang and Adelson 1994),

in which regions are segmented from an input image se-

quence based on the consistency of motion within each re-

gion, e.g. (Irani and Peleg 1993; Jepson et al. 2002; Jojic

and Frey 2001; Ke and Kanade 2002; Kumar et al. 2005;

Ogale et al. 2005; Shi and Malik 1998; Smith et al. 2004;

Xiao and Shah 2005). Most of these methods use a paramet-

ric motion model for each layer, and employ various tech-

niques, such as Expectation Maximization, for estimating

those models and for assigning pixels to the correct layer or

model. Typical models are restricted to near-planar, rigidly-

moving regions. In addition, many approaches assume a

known, fixed number of layers in the scene or do not scale

well as that number increases. We argue that attempting to

explain the scene generatively in terms of a specific number

of motion-consistent connected regions may not be neces-

sary, and instead we propose to detect a large fraction of the

objects’ boundaries by estimating local motion cues and us-

ing them in a discriminative statistical classifier combined

with a mechanism to enforce global consistency. Quite re-

cently, a method for binary segmentation of video was pre-

sented which combats some of the difficulties of layered mo-

tion segmentation methods by combining clustered motion

features (akin to the textons popularized by recognition re-

search) with a boosted tree-based classifier (Yin et al. 2007).

Usually, the erratic results near boundaries are treated

by methods such as those above as outliers to an underly-

ing smooth process. The subsequent delineation of precise

motion boundaries, if performed at all, is generally of sec-

ondary importance. A notable exception, however, is found

in Heitz and Bouthemy (1993), where vertical and horizon-

tal between-pixel motion boundaries plus their interactions

with nearby dense optical flow vectors are considered in an

MRF framework. Similarly, dual graphs on the pixels and

the edges between them (sometimes referred to as “cracks”)

are considered in a normalized cuts framework in Yu and

Shi (2001). Stereo or structure from motion techniques also

have trouble near occlusion boundaries and usually focus

on the interiors of regions while handling data near oc-

clusions as complex special cases (Fusiello et al. 1997;

Hirschmüller et al. 2002; Kanade and Okutomi 1994). Our

work, on the other hand, is not focused on the precise,

dense motion estimates themselves, nor on full 3D scene

reconstruction; we first seek only to identify boundary loca-

tions that correspond to visible occlusion, with the eventual

goal of employing those boundaries in higher-level reason-

ing (Stein 2008).

In the second category, techniques have been developed

based on the observation that occluding contours can be de-

fined as extremal boundaries, where the viewing ray is tan-

gent to the object’s surface. This led to the development of

algorithms that rely on an explicit geometric model of the

motion of occluding contours (Lazebnik and Ponce 2005;

Sato and Cipolla 1999; Sethi et al. 2004; Vaillant and

Faugeras 1992). These approaches are appealing because

they rely on well-defined, mathematically correct, geometric

models. However, one drawback is their sensitivity to devi-

ations of the actual data from the model. An alternative is
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to use an implicit model, either learned from local motion

cues estimated from training data or based on some fixed

model of the distribution of motion cues in the vicinity of oc-

cluding boundaries (Black and Fleet 2000; Fleet et al. 2002;

Nestares and Fleet 2001; Stein and Hebert 2006a, 2007;

Stein et al. 2007). Our work falls in this general category

in that we do not attempt to precisely model the motion of

occlusion boundaries directly. Instead we rely on the sta-

tistical discrimination of relative local motion cues at those

boundaries.

Finally, although we focus in this paper on the use of

motion cues, considerable prior work exists in extracting

boundaries from a single image. Two major threads emerge

from this line of work. The first one is the idea of combining

multiple cues into a single boundary classifier (Konishi et al.

2003; Martin et al. 2004; Dollár et al. 2006). The second key

idea, largely due to Ren et al. (2006), is to use the region

boundaries of an image’s (over-)segmentation as initial can-

didates to be labeled as occluding/non-occluding, thereby

inducing a labeling of the regions as figure/ground. We build

upon each of these ideas in our work. We combine many

local cues into a single classifier, with the difference that

we use motion cues in addition to appearance cues. We also

start with an over-segmentation of the image, with the goal

of filtering it to retain only those region boundaries that cor-

respond to physical object boundaries. In addition, we use

a novel model for inferring a globally consistent labeling of

the boundary fragments.

3 Our Dataset

We first need appropriate data for testing our methods as

well as ground truth labelings of that data in order to train

those techniques relying on learned classifiers. In addition,

using such a dataset with a significant number and vari-

ety of scenes offers a more complete, quantitative analy-

sis as compared to typical anecdotal examples often pro-

vided in research using motion data. While segmentation

datasets exist, most notably the Berkeley Segmentation Data

Set (BSDS) (Martin et al. 2001), they are not appropriate

for our task for two reasons. First, our use of a motion cue

requires that we have at least one additional image of each

scene in order to observe the effects of camera/scene motion.

The BSDS consists only of single isolated images, as do

all other segmentation datasets of which we are aware. Sec-

ond, the BSDS edge labels provided by the human subjects

do not necessarily correspond to physical occlusion bound-

aries: any edge which a subject found semantically salient

may be marked.

For these reasons, we have created a new publicly avail-

able dataset1 which addresses both of these issues (Stein and

1http://www.cs.cmu.edu/~stein/occlusion_data/

Hebert 2007; Stein et al. 2007): 30 short image sequences,

approximately 8–20 frames in length, are provided to allow

motion estimation, and only the occlusion boundaries are

labeled as ground truth in the reference (i.e. middle) frame

of each sequence.2 Note that all our processing and detec-

tion occurs in this reference frame; the remaining frames are

used solely as additional information for motion estimation.

Admittedly, 30 sequences may be considered a relatively

small set, particularly as compared to the size of datasets

commonly used in object recognition, for example. Still, we

believe this to be a significant and reasonable number of ex-

amples, particularly for work in motion analysis, where data

collection and labeling of video can be prohibitive. Further-

more, we are not making global image- or video-wide clas-

sifications in this work and therefore have far more than one

example or data point per sequence (though all examples in a

single sequence also may not be independent, see Stein and

Hebert 2007). Finally, we have made some effort to include

a wide variety of conditions, as described below, in order to

provide a degree of hope for the method’s application on a

larger data set.

Some example scenes are depicted in Fig. 3 along with

their ground truth occlusion/object boundary labels. The

dataset is quite challenging, with a variety of indoor and

outdoor scene types, significant noise and compression ar-

tifacts, unconstrained handheld camera motions, and some

moving objects. All sequences were collected with the same

video camera at 15 frames per second (thus they are approx-

imately one to two seconds in duration). For those scenes in

which the camera is moving, that motion is generally hori-

zontal (panning) with an effective total baseline on the order

of ten centimeters. The objects of interest (not considered

as “background”) are roughly one to five meters from the

camera, with between-object distances ranging from a few

centimeters to a few meters. The amount of motion within

the image plane is generally 2–20 pixels per frame.

4 Initial Segments and Fragments

We will begin by over-segmenting the image (Comani-

ciu and Meer 2002; Felzenszwalb and Huttenlocher 2004;

Hoiem et al. 2007a; Malisiewicz and Efros 2007; Mori 2005;

Ren and Malik 2003; Tao et al. 2001) in order to gener-

ate candidate boundary elements, or fragments, and asso-

ciated patches for cue extraction, or segments (also known

as “super-pixels” (Ren and Malik 2003)). In particular, the

boundaries of these segments will serve as our set of hypoth-

esized boundary fragments, and the segments on either side

2Admittedly, some subjectivity in labeling is unavoidable, but we be-

lieve the boundaries we seek are defined more clearly than typical

edges.

http://www.cs.cmu.edu/~stein/occlusion_data/
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Fig. 3 Ground truth occlusion

boundaries labeled for 12 of the

scenes from our dataset. Each

example is the reference

(middle) frame of a short

sequence, usually 8–20 frames

of each fragment will provide data-driven regions of support

for our motion and appearance cues.

Another option could be to start from (pixel-level) edge

detections and then perform an edge chaining procedure, as

in Liu et al. (2006) or Smith et al. (2004), for example. But

edge chaining is inherently brittle in natural cluttered scenes,

and perhaps more importantly, the over-segmentation ap-

proach offers two distinct advantages for our model. First,

by construction, fragments meet at intersections of regions,

and thus closed contours are immediately available. This

produces a natural graph structure suitable for global infer-

ence without the need to impose artificially such structure

later (e.g. with Constrained Delaunay Triangulation (Ren

et al. 2005)). Second, a direct link is established between

fragments and segments. It is clear that a set of segments

in an image imply a set of boundaries, but working in the

opposite direction to obtain a segmentation from a set of

disconnected boundary fragments is non-trivial.

We use a watershed-based over-segmentation driven by

the output of a learned, statistical, multi-cue edge detector,

after non-local maxima suppression. We have chosen the Pb

detector (Martin et al. 2004), though others exist, e.g. (Kon-

ishi et al. 2003). The use of such a detector allows the over-

segmentation simultaneously to consider color, brightness,

and texture in choosing where to create initial segments.

We chose the watershed approach for its more regularly-

shaped segments as compared to other methods (Comani-

ciu and Meer 2002; Felzenszwalb and Huttenlocher 2004),

and its simplicity and speed compared to methods rely-

ing on normalized cuts (Mori 2005; Mori et al. 2004;

Ren and Malik 2003). We first use non-local maxima sup-

pression on the raw Pb responses. Next we introduce ran-

dom “seeds” into large empty regions in the resulting edge

map. This helps break apart potentially large segments and

increases regularity. The watershed segmentation algorithm

is then applied to the distance transform computed from this

edge map. See Fig. 4 for an example of this process. A simi-

lar technique, which uses the Pb detector’s output directly in

a watershed segmentation, is suggested in Arbeláez (2006),

but we found that our approach tends to produce segments

with more regular shape. This allows for better cue extrac-

tion later, particularly in the case of motion.

From the over-segmentation, we produce a set of frag-

ments along the boundaries of each segment, starting and

stopping at junctions with other segments. Rather than op-

erating at the level of pixels when chaining, however, we

operate instead on the “cracks” between the pixels. These

cracks naturally form a graph and offer a simple, efficient

domain on which to chain. For details on our crack-chaining

procedure, see Appendix A. Besides efficiency, the fact that

cracks have no width in the image offers important advan-

tages. There is no need to decide which segment’s pixels

are boundary pixels (and thereby effectively assign bound-

ary ownership prematurely). In addition, a maximum of four

fragments can meet at any junction, limiting the number of

junction labeling cases we must consider when performing

the global inference described in Sect. 6 below.

5 Fragment and Segment Motion

As discussed in the introduction, we will employ motion

cues to help determine which of our hypothesized fragments

correspond to occlusion boundaries. At occlusion bound-

aries, there may exist an inconsistency in motion due to par-

allax induced by the observer’s motion, dynamic objects in
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Fig. 4 For an input image (a), we use the Pb edge detector to get edge

strength at each pixel (b). After suppressing non-local maxima, we in-

troduce random “seeds” to help break apart large uniform regions and

increase segment regularity (c). Then, from a distance transform (d)

of the resulting edge map, we use a standard watershed algorithm to

produce our over-segmentation (e)

the scene, or both. In our approach, unlike many which rely

on a static camera—e.g. , for background subtraction (Ross

and Kaelbling 2005; Veit et al. 2006)—we do not distin-

guish between these various cases: moving cameras and/or

dynamic scenes are handled equivalently.

The first type of motion inconsistency at a particular frag-

ment is based on the relative motions of the segments on

either side. The second type is based on the observation

that we can compare the segment motions not only to each

other but to the motion of the fragments which they neigh-

bor. Consider the common case in which the foreground side

of a boundary is nearly textureless and is moving against a

cluttered background. The foreground patch motion may be

difficult to estimate accurately due to the lack of texture,

but we can still use the fact that the occlusion boundary is

“owned” by the foreground surface and should move consis-

tently with it (Heitz and Bouthemy 1993). By recognizing

this discrepancy, we can still detect the occlusion.

In this work, we are interested in the estimation and

analysis of the instantaneous motions of fragments and seg-

ments. We do not explicitly track either over long periods

of time. Instead we examine only a few nearby frames in

a short temporal window around the reference frame under

consideration.

In the following sections we will discuss in more detail

the estimation of motion for our segments and fragments.

5.1 Segment Motion Estimation

A motion estimate for a patch of intensity data may be

computed from the patch’s spatio-temporal derivatives (Lu-

cas and Kanade 1981; Shechtman and Irani 2005; Tomasi

and Kanade 1991). This idea is based on the brightness

constancy assumption and forms the fundamental building

block for many optical flow, tracking, and registration meth-

ods. Such estimation of image motion is a classical problem

in computer vision (see Fleet and Weiss 2005 for a recent

tutorial on optical flow). In general, the goal is to determine

a motion vector (u, v) for each pixel or patch which indi-

cates its displacement from one frame to the next. Here, we

will consider several consecutive frames of video and com-

pute multi-frame motion estimates. As compared to using

only two frames, we find that the increased temporal inte-

gration when using multiple frames produces substantially

more robust estimates that are more discriminative for our

classification task in Sect. 7.

The segments from Sect. 4 naturally specify the spatial

support for estimating left- and right-side motions for each

boundary fragment. And since each segment is bounded by

multiple fragments, we need only compute the motion for

each segment in the scene once.

Given a set of frames {I (n)}Nn=−N our goal is to find the

translational motion, with components u and v, which best

matches a segment S in the central reference image, I (0),



Int J Comput Vis (2009) 82: 325–357 331

with its corresponding pixels in each of the other images,

{I (n)}n�=0:

[

u

v

]

= arg min

N
∑

n=−N

h(n)
∑

(x,y)∈S

w(x,y)

×
(

I (n)(x, y) − I (0)(x − nu,y − nv)
︸ ︷︷ ︸

r

)2
. (1)

Note that this implicitly assumes constant translation for the

duration of the set of frames, which is most reasonable over

brief time periods. First performing a global, translational

stabilization of each frame in the clip to the reference frame

can also help make the data better adhere to this constant-

translation assumption in addition to removing large mo-

tions and focusing subsequent processing on the more subtle

relative motions that are most important for our task (Stein

2008). We employ Gaussian-shaped weighting functions,

w(x,y) and h(n), with associated bandwidths σh and σw ,

to decrease the contribution of pixels spatially close to the

segment’s borders and temporally distant from the reference

frame.

Aggregating patches of pixels near occlusion boundaries

is problematic and addressing this problem specifically for

optical flow estimation is the subject of extensive research,

including multiple motion estimation, robust estimators, line

processes, and parametric models (Black and Fleet 2000;

Fleet and Weiss 2005). Recently, impressive results for com-

puting dense flow fields in spite of significant occlusion

boundaries by using a variational approach and bilateral fil-

tering were demonstrated in Xiao et al. (2006).

For our work, we iteratively estimate u and v using a

multi-frame, Lucas-Kanade style differential approach to

find the minimum of (1) (Lucas and Kanade 1981). Itera-

tion is employed because the use of finite-sized patches may

prevent us from finding the full translation vector (u, v) in

one application of least squares. Thus, to solve for the up-

date, (u′, v′) to the current estimate (uk, vk) at iteration k,

we replace the residual (or error) term, r , in our objective

function (1) by

r = I (n)(x + nuk, y + nvk) − I (0)(x − nu′, y − nv′). (2)

Here, the position of the patch in frame n has been adjusted

by the previous translation estimate, which can be initialized

to zero for the first iteration, when k = 0. According to the

classical brightness constancy assumption and a first-order

approximation we can approximate the second term as

I (0)(x − nu′, y − nv′)

≈ I (0)(x, y) − nu′I (0)
x (x, y) − nv′I (0)

y (x, y), (3)

where I
(0)
x (x, y) and I

(0)
y (x, y) represent the spatial deriva-

tives of the reference frame, estimated by finite central dif-

ferences. Substituting into (2) yields

r = I (n)(x + nuk, y + nvk) − I (0)(x, y)
︸ ︷︷ ︸

It (uk,vk,n)

+ nu′I (0)
x (x, y) + nv′I (0)

y (x, y). (4)

Finally, the objective function at each iteration becomes

[

u′

v′

]

= arg min

N
∑

n=−N

h(n)
∑

(x,y)∈S

w(x,y)
(

It (uk, vk, n)

+ nu′I (0)
x (x, y) + nv′I (0)

y (x, y)
)2

. (5)

The corresponding linear least squares formulation is as

follows (where Ix = I
(0)
x and Iy = I

(0)
y for clarity):

⎡

⎢
⎢
⎢
⎣

n1Ix1
n1Iy1

n2Ix2
n2Iy2

...
...

nMIxM
nMIyM

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

A

[

u′

v′

]

= −

⎡

⎢
⎢
⎢
⎣

It1(uk, vk, n)

It2(uk, vk, n)
...

ItM (uk, vk, n)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

b

(6)

AT A

[

u′

v′

]

= −AT b (7)

[ ∑

n2I 2
x

∑

n2IxIy
∑

n2IyIx

∑

n2I 2
y

]

︸ ︷︷ ︸

G

[

u′

v′

]

= −

[∑

IxIt (uk, vk, n)
∑

IyIt (uk, vk, n)

]

,

(8)

where the sums are taken over all M pixels within the patch,

across all frames. (For reduced clutter, we have omitted the

weights, w(x,y) and h(n), in this formulation.) The next

translation estimate, (uk+1, vk+1), is computed from the pre-

vious estimate, combined with the current update:

(uk+1, vk+1) = (uk, vk) + (u′, v′). (9)

As is well known, motion estimates near occlusion

boundaries are prone to error (Heitz and Bouthemy 1993),

but accurate estimates near such boundaries are a crucial

component of our approach, rather than outliers to be ig-

nored or filtered out. Therefore, in addition to using the spa-

tial and temporal weighting functions w(x,y) and h(n), we

also use iteratively reweighted least squares to solve (8)—

further details may be found in Stein (2008).

Furthermore, we initially consider only frame I (0) and

its two immediate neighbors. We then gradually increase

the temporal window, initializing with the previous transla-

tion estimate, until finally considering all frames from −N
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to N . Since the true corresponding pixels in frames tempo-

rally distant from the reference frame could be quite far spa-

tially from their initialized locations, especially when there

is significant motion, this process prevents frames at ex-

tremes of the temporal window from pulling the solution to

poor local minima of (1). Note that the same effect could

also be achieved by gradually increasing the bandwidth of

h(n). This approach alleviates the need to initially align the

patches spatio-temporally to the moving edge, as was sug-

gested by Stein and Hebert (2006a).

Finally, we place a prior on small motions, since the

relative motions we seek are quite subtle. In practice, this

amounts to adding a small value, inversely proportional to

the expected variance of the motion components, to the di-

agonal of G in (8):

[∑

I 2
x + 1

2σ 2
u

∑

IxIy
∑

IyIx

∑

I 2
y + 1

2σ 2
v

]
[

uk+1

vk+1

]

= −

[∑

IxIt (uk, vk, n)
∑

IyIt (uk, vk, n)

]

, (10)

where we use σu = σv = 1 in this work.

Computing the necessary derivatives within each win-

dow (via finite central differences), we can now estimate

the motions of the segments on either side of each fragment,

uL = [uL vL ]T and uR = [uR vR ]T , using the least squares

approach outlined above.

While one can always find a solution to the least squares

formulation for motion estimation in (8) or (10), our “con-

fidence” in the resulting estimated vector, (u, v), depends

on the presence of strong spatial gradients within the patch.

Loosely speaking, in a patch taken from a nearly-uniform

region of the image, the uncertainty on the estimated motion

will be much higher than the uncertainty for a patch contain-

ing strong gradient information (see Fig. 5).

It is important that we take this uncertainty into ac-

count when comparing motion estimates from different

patches (Barron et al. 1994; Simoncelli et al. 1991), espe-

cially since it is common in practice that one side of an oc-

clusion boundary is nearly uniform, particularly for indoor

scenes. In solving for (u, v) according to (8), the Hessian

matrix G defines the shape of the solution surface around

the particular local minimum of our least squares formu-

lation in (1). Considered in a probabilistic sense, this lo-

cal minimum also corresponds to the Maximum Likelihood

solution for (u, v) under an assumption that the data likeli-

hood, Pr(It |u,v), can be approximated by a Gaussian. When

a prior is added, as in (10), we find the Maximum a Poste-

riori (MAP) solution. In either case, G specifies the covari-

ance of that Gaussian distribution. Thus we can use this

matrix to capture the uncertainty in our solution: when G

Fig. 5 As horizontal and vertical texture within a patch increases, so

too does our confidence in the estimated motion

indicates a flat solution surface around our estimated mini-

mum or, equivalently, a Gaussian with large covariance, then

we are less certain about the precise location of that mini-

mum than if the surface or Gaussian is strongly peaked. It is

worth nothing that the Gaussian assumption does not always

hold (Simoncelli et al. 1991). In our experience, though, it

is a good enough approximation to be of practical utility in

a large number of cases. In addition, resorting to local sam-

pling techniques in order to obtain better estimates of the

true underlying distribution of Pr(It |u,v) can be computa-

tionally prohibitive (Black and Fleet 2000).

5.2 Fragment Motion Estimation

A second type of motion cue available related to occlu-

sions is the motion of the boundaries themselves. One ap-

proach for estimating this motion would be to attack the

problem from a frame-to-frame matching or tracking stand-

point (Smith et al. 2004). Perhaps fragments in one frame

could be matched to those in the next frame by solving a

correspondence problem. However, over-segmentation is an

inherently unstable process, so one cannot assume that the

fragments found in a subsequent frame will even have a true

match in the reference frame. And without any appearance

data, short fragments are likely not distinctive enough to

be matched reliably without resorting to a more global ap-

proach such as Leordeanu and Hebert (2005).

Using tracking approaches like those used in feature

tracking (Tomasi and Kanade 1991) is also problematic

since, by definition, the pixels on either side of an occlu-

sion boundary belong to different surfaces. Since these two

surfaces can move independently, they can confound an ap-

proach which assumes all the local data moves contiguously.

Thus it would be dangerous to employ local patches of ap-

pearance data to estimate motion as described above in or-

der to estimate the boundary’s motion by simple tracking.

Instead, we need fragment motion estimates derived inde-

pendently from the neighboring segments.

Therefore, consider treating the video data as a spatio-

temporal volume, rather than processing individual frames

separately. A moving edge traces out an oriented path along

the temporal dimension of the data (Adelson and Bergen
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Fig. 6 A moving edge sweeps out an oriented path in a temporal slice

of the video volume. The speed of the edge is given by tan(θt )

1985; Bouthemy 1989; Heeger 1988), as depicted for a sim-

ple vertical edge in Fig. 6. The tangent of the angle of this

path corresponds to its speed. So applying an oriented edge

detector to a temporal slice of data would detect edges not

at some spatial orientation in the image, but at an orientation

corresponding to the speed of the edge’s motion. The speed

estimated by such a detector will correspond to the orienta-

tion of a spatio-temporal plane in the video volume, rather

than an oriented line in a single frame or temporal slice. Note

also that this reasoning only requires a consistently different

appearance on either side of the edge as it moves, but it does

not make any assumptions about the consistency of motion

on either side of that edge (which still may or may not be an

occlusion boundary).

Having cast the problem of motion estimation at bound-

aries into one of spatio-temporal edge detection, we can

rely on extensions of existing edge-detection techniques, of

which there are two main types: filtering-based and patch-

based, with the former being the most common.

For video data, 3D spatio-temporal filters, based on

Gaussian derivatives like their 2D counterparts, were de-

signed in the classical work of Adelson and Bergen (1985),

Heeger (1988). An example quadrature pair of spatio-

temporal filters can be found in Fig. 7. Thus, as described,

the combined spatio-temporal orientation of the maximum

response of such a filter indicates an edge’s orientation and

speed. Their potential for efficient implementation via sepa-

rability was recently reported by Derpanis and Gryn (2005).

Unfortunately, filtering performance is often poor at

edges which do not conform to the particular intensity pro-

files for which the filters were designed (Stein and Hebert

Fig. 7 A quadrature pair of spatio-temporal filters

2006b). In practice, this is a problem at boundaries border-

ing textured or cluttered regions, which are also the ones

providing the most evidence of occlusion since the texture

and clutter can offer the key indicative motion information.

Thus we need an edge detector which will perform well in

such cases.

Instead of using classical filtering, then, one can also

take a more general, non-model-based view of edges. In

this case, the profile of the edge is not assumed to have

any particular form. Locally, an edge is instead defined to

be a line segment which divides a patch of data into halves

which contain significantly different distributions of some

property (e.g. brightness, color, texture, etc. ). By compar-

ing histograms computed in each half of a circular patch,

such approaches have been shown to produce good re-

sults even on textured/cluttered data (Martin et al. 2004;

Maxwell and Brubaker 2003; Ruzon and Tomasi 1999;

Stein and Hebert 2006b; Wolf et al. 2006).

Now, to determine the normal speed at a particular edge

pixel, we can use a cylindrical detector, analogous to the

standard spatial, circular one described above, but rotated

into the temporal dimension and aligned to the edge’s ori-

entation. By dividing the cylinder into halves with a plane,

we can detect the speed of the edge’s motion in the direction

normal to its orientation. In Fig. 8 we see a standard patch-

based, oriented spatial edge detector for use in a single frame

to the left and the analogous cylindrical, edge speed detector

in the middle. As described in Stein and Hebert (2006b), it is

also possible to design a spherical detector capable of simul-

taneous orientation and speed estimation (shown at the right

of Fig. 8), but here the local orientation is provided by the

fragments’ normals. So a speed-only, cylindrical detector is

sufficient for our purposes.

Using such a detector, we can combine local normal

speed estimates along the fragment to get a full 2D (u, v)

motion estimate for the whole fragment (Drummond and

Cipolla 2000; Weiss 1997), as shown in Fig. 9. We use a

linear system of equations based on comparisons of the in-

dividual 1D speed estimates to the fragment’s overall motion
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Fig. 8 Three patch-based edge

detectors. From left to right, we

have a simple oriented edge

detector for a single frame, a

cylindrical edge-speed detector

for video data, and a spherical

detector capable of detecting

spatial orientation and normal

speed simultaneously

Fig. 9 (Color online)

We can use a cylindrical,

spatio-temporal edge detector

(left), at each point along a

boundary fragment (middle),

aligned to the fragment’s local

orientation. Each detector will

yield a normal speed estimate

(right, red arrows), which can

be combined into a single

motion vector for the fragment

(larger black arrow) using (12)

vector projected onto the local normal vectors:

[

u

v

]

= arg min
∑

i∈F

w(i)
(

nx,iu + ny,iv − si
)2

, (11)

where nx,i and ny,i are the components of the normal at

point i on the fragment F , and si is the corresponding speed

from the spatio-temporal detector. Each point contributes to

the solution with a weight, w(i), corresponding to the un-

derlying edge strength reported by the local detector. Here

again, we use iteratively reweighted least squares to solve

this system:

[ ∑

wn2
x

∑

wnxny
∑

wnynx

∑

wn2
y

]

︸ ︷︷ ︸

H

[

u

v

]

=

[∑

wnxs
∑

wnys

]

. (12)

As with the patch or segment motions, we would like

to have a notion of confidence associated with these frag-

ment motion estimates. For example, we are more sure of

the motion vector computed for a corner fragment, which

constrains the fragment’s motion in two dimensions, than for

a straight fragment, which is unconstrained along the frag-

ment and thus effectively continues to suffer from the aper-

ture problem despite combining multiple estimates via (12).

Thus the confidence is tied to the variation of the local

normals along the fragment (see Fig. 10). By employing

a least squares formulation, our motion estimate for the

fragment is the maximum likelihood solution for (u, v) un-

Fig. 10 Our confidence in the estimate of a fragment’s motion in-

creases the more corner-like that fragment is

der a Gaussian assumption. The matrix H from (12)—

which is constructed from the local normal vectors along

the fragment—defines the covariance of that Gaussian, and

thus captures our confidence in the estimated motion com-

ponents. See Sect. 5.1 for further details, where we used G

from (8) to model patch motion uncertainty in an analogous

setting.

6 A Global Boundary Model

Given segments and fragments from the over-segmentation,

the next step is to compute a set of cues associated with

each fragment. As before, these cues will be used in esti-

mating the likelihood that each fragment is part of an oc-

cluding contour. We will incorporate two general types of

cues: motion-based and appearance-based (Stein and Hebert
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2007). The specific form of these cues will be explained in

Sect. 7.1 below. A similar model and learning approach to

the one described here is presented in Hoiem et al. (2007b),

where boundary detection is formulated without using mo-

tion by instead employing geometric context cues (Hoiem

et al. 2005).

For now, assume we have extracted a set of appearance

and motion cues for each fragment, using the information

found along the fragment and within the segments it sepa-

rates. Our goal, then, is to classify which fragments are oc-

clusion boundaries. While we hope our local appearance and

motion cues will provide strong evidence for this classifica-

tion, it is unreasonable to hope that a purely local solution

will suffice. To facilitate global reasoning and propagation

of local estimates, we define here a probabilistic graphical

model to capture the structure of our problem.

Our objective is to find an interpretation of the scene’s

boundaries that is most probable given the observed appear-

ance and motion cues. The toy example in Fig. 11 depicts the

type of labeling we will use. Each fragment can take three

possible labels. First, the fragment can be labeled “off”, in-

dicated by a dashed line, meaning it is believed not to lie on

an occlusion boundary, i.e. it is a surface marking, lighting

edge, etc. Otherwise it can be labeled “on” (as an occlusion

boundary) with the “foreground”—or closer surface—on a

specified side indicated by onL or onR when appropriate.

(We will let the label on represent either, with the appropri-

ate foreground side implied by context.) In the figure, this is

indicated by a solid line with an arrow, where the left side of

the arrow is the closer side. Where three or four fragments

meet, we have a junction, indicated by a solid dot.

Note that fragments along the borders of the image it-

self are also included in our graph to allow for consistent

reasoning about occlusion and closure throughout the im-

age, i.e. without requiring special cases at the image borders.

There is a special case, however, when a set of segments is

fully enclosed within another segment. In this case, two dis-

connected graphs are formed. Though information will not

flow between the two (in this work we have not explicitly

avoided this situation), inference as described below can be

performed on the two graphs simultaneously. In the extreme

case, a single segment could be enclosed within another, and

its enclosing fragment would thus be considered and classi-

fied completely independently (and therefore entirely based

on local information).

To find the most likely labeling of a scene, we need to

define the probability of a particular choice of labels for the

fragments f given the cues x. Our goal is to maximize this

probability, Pr(f |x), by selecting the best set of consistent

labels. In our model, we will consider fragments labeled

as boundaries and fragments labeled as non-boundaries to

be independent. Furthermore, we will assume (1) that each

complete boundary, B , is independent of the other bound-

aries and (2) that each non-boundary fragment is indepen-

dent of the other fragments. Thus we can approximate the

desired probability as

Pr(f |x)

≈
∏

k

Pr({f ∈ Bk} = on|x)
∏

j

Pr(fj = off|x). (13)

For a particular boundary, which is made up of a set of

directed fragments (where the direction indicates the fore-

ground side of the boundary), we assume that each fragment

along the boundary is conditionally independent of the other

fragments in that boundary, given the preceding fragment.

Thus,

Pr({f ∈ Bk} = on|x)

≈
∏

{i→j}∈Bk

Pr(fj = on|fi = on, x), (14)

where {i → j} ∈ Bk represents the set of pairs of fragments

in boundary Bk such that fi precedes fj when traversing

that boundary according to its directed labeling. Of course,

the “on” labels must also specify the same foreground side

in order to be consistent.

If Bk is an open boundary, i.e. the boundary of an object

which is occluded by another object in the scene (or by the

border of the image), the starting fragment of that boundary

does not have a preceding fragment on which to condition

its probability. So we must consider it separately:

Pr({f ∈ Bk} = on|x)

≈ Pr(f0k
= on|x)

∏

{i→j}∈Bk

Pr(fj = on|fi = on, x), (15)

where f0k
represents the initial fragment of boundary k. For

closed fragments, this term is ignored, as in (14), since the

set of fragments forms a loop where each fragment can be

conditioned on its predecessor.

Now we can compute the probability of a given labeling

of all fragments f using (13), (14), and (15). Direct infer-

ence using this model, which would require explicit identifi-

cation and chaining together of open and closed boundaries

as well as a varying graph structure depending on the current

labeling, would be quite cumbersome. In practice, we can

instead simplify matters by focusing on the labeling of frag-

ments and junctions of those fragments. Thus we can write

the desired probability as a product of fragment potentials

and junction potentials,

Pr(f |x) ∝
∏

i

ψ(fi)
∏

k

φk, (16)

where ψ(fi) represents the potential function for an individ-

ual fragment fi and φk represents the potential function for
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Fig. 11 A toy labeling example

showing the fragments of a

simple scene labeled with one of

three possible labels

(non-occlusion or occlusion

with specified foreground side).

Note that the borders of the

image itself are also considered

fragments to be labeled

Fig. 12 The five types of valid

three-fragment junctions. The

shaded regions are the

foreground regions, with darker

being closer. Similar types exist

for four-fragment junctions

the set of fragments meeting at junction k, {fj }
Nk

j=1, where

Nk ∈ {3,4}. In practice, note that it is more convenient (and

numerically feasible) to take the negative log of this proba-

bility and work in terms of minimizing an energy function,

E(f ) = − log (Pr(f |x))

=
∑

i

log (ψ(fi)) +
∑

k

log (φk). (17)

Defined carefully, these potentials can capture exactly the

same model as in (13), (14), and (15). First, we define the

unary fragment potential, based on its fragment’s label, as

ψ(fi) =

{

1 fi = on

Pr(fi = off|x) fi = off.
(18)

The junction potential φ is defined and evaluated for all

junctions depending on the labelings of their constituent

fragments. A junction of three fragments, each with three

labels, would imply a set of 27 possible label combinations

for that junction. However, only 11 of those are unique un-

der circular permutations. Of those 11, we consider five to

be physically valid and consistent with our model. These are

shown in Fig. 12, with the shaded regions indicating fore-

ground (i.e. the left side of the fragment, when moving in

the direction of the arrow), and the darkest region being the

closest one. These junctions consist of a single continuous

boundary occluding another boundary (i)–(ii), the meeting

of three non-boundary edges (iii), or a single continuous

boundary passing through the junction with an adjacent non-

boundary edge (iv)–(v).

The other six types of three-fragment junctions are shown

in Fig. 13. These junctions are considered “invalid” be-

cause the foreground/ background labels of their constituent

fragments are inconsistent or physically impossible, as in

(vi)–(ix), or because we have chosen to discourage the

Fig. 13 The six types of invalid three-fragment junctions. Similar

types exist for four-fragment junctions

Table 1 Junction potentials corresponding to junction types in Fig. 12

Type Potential (φ)

(i) Pr(f3 = on|f1 = on, x)Pr(f2 = on|x)

(ii) Pr(f2 = on|f3 = on, x)Pr(f1 = on|x)

(iii) 1

(iv) Pr(f2 = on|f3 = on, x)

(v) Pr(f3 = on|f2 = on, x)

abrupt starting or stopping of a boundary, as in (x)–(xi), in

favor of closed boundaries.

Analogous reasoning is used for the four-fragment junc-

tions as well, though we will not explicitly list all possible

labelings here for the sake of brevity.

Now we can define the potentials for each type of junc-

tion implied by a particular labeling. First, we strongly dis-

courage the invalid labelings shown in Fig. 13 by setting the

potentials of such junctions to a very small value (10−4 in

our experiments). The five valid junctions in Fig. 12 have po-

tentials shown in Table 1. The combination of these junction

potentials with the fragment potential defined in (18) results

in the same set of terms in the original model from (13), (14),

and (15); i.e. we consider “off” fragments independently and

effectively walk along the “on” fragments, which make up

boundaries, without double-counting any fragments. In par-

ticular, the definition of certain terms in some potentials as

having a value of one—such that they have no effect on the
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products in (16)—helps make this possible, at the expense

of a somewhat obfuscated model at first glance.

The overall labeling probability Pr(f |x) can now be

computed for any assignment of labels to fragments: for

each junction we find the type that is induced by its frag-

ments’ labels, and we use the corresponding expression of

φ to compute the contribution of that junction. The re-

sulting inference problem (finding the assignment of la-

bels f that maximizes Pr(f |x)) is intractable in its exact

form on our loopy graph. However, an approximation of

the MAP solution can be found by loopy belief propaga-

tion (LBP) (Frey 1998; MacKay 2003; Pearl 1982, 1988;

Weiss 2000; Yedidia et al. 2005), where the messages passed

are based on the potentials defined above for each fragment

or junction. Specifically, we use an implementation of the

sum-product message-passing algorithm suggested in Hes-

kes et al. (2003), and also exponentiate each potential factor

in (16) by 1/T (with T = 0.5 in our experiments) to pro-

vide “soft-max” estimates, according to the mean field ap-

proximation suggested by Yuille (2002). Though LBP lacks

formal convergence guarantees, we experienced no difficul-

ties in that regard, and always observed convergence to a

reasonable minimum-energy solution without restarting or

tweaking. (The results provided in Sect. 8 are not specially

chosen: they are each the result of a single run of LBP.) Nor

was any careful initialization required; we simply initialized

all beliefs to be uniform across the possible labels.

Note that this approach bears some similarity to classical

approaches to line drawing interpretation (Guzman 1968;

Waltz 1975): we have essentially reduced the problem to la-

beling the junctions using a dictionary of five junction types.

A key difference here is that we use soft potentials in a ma-

chine learning framework for our reasoning, instead of rely-

ing on hard constraint propagation as in the more classical

setting.

7 Learned Potentials

Despite the various complex junction cases described in the

previous section, note that all the potentials in our model

are defined in terms of just two probabilities: a three-class

unary probability that a fragment is “on” (and which side

is foreground) or “off”, Pr(fi = {onL,onR,off}|x), and a

pairwise probability that a fragment is “on” given that the

preceding fragment is also “on”, Pr(fj = ons |fi = ons, x),

such that the foreground side, s, is consistent. (Though we

have not listed them here, one can also define the four-

fragment junctions in terms of these same probabilities by

following analogous reasoning.) We will now describe a

classifier used to estimate these probabilities, as functions

of features (x) extracted from labeled training data. For sim-

plicity, we will return to omitting the foreground-side indi-

cator for “on” labels in the following discussion.

We employ Adaboost (Collins et al. 2002) to learn these

classifiers, where the weak learners used by the boosting

process are decision trees (Friedman et al. 2000; Hoiem et al.

2007b; Stein et al. 2007). We limit each tree to no more than

ten nodes and limit the boosting process to no more than

ten trees to prevent over-fitting. Passing the results through

a logistic function and normalizing such that they sum to

one over our classes yields the desired probabilities for each

class. Since boosted decision trees are well-suited to fea-

ture selection, we can provide a variety of potentially over-

complete, or redundant, appearance and motion features, as

described below, and allow the classifier to choose the most

discriminating ones based on the training data. Such an ap-

proach has also been shown to be successful for reasoning

about the 3D structure and layout of single images (Hoiem

et al. 2007a).

7.1 Motion and Appearance Cues

All of the probabilities used to define the potentials in our

factor graph model are conditioned on features or cues, x.

In this section, we will describe the corresponding set of

appearance and motion cues extracted from the vicinity of

the fragments and their associated segments.

For our appearance features, which also include some

“geometric” information, we provide the following to the

unary classifier, Pr(fi = {on,off}|x):

– Average Pb-strength of the pixels along the fragment

(Martin et al. 2004).

– Fragment length.

– Ratio of fragment length to the perimeter of the larger of

the two neighboring segments. (Intuitively, we may want

the classifier to be reluctant to turn “off” a small fragment

which would effectively merge one large segment into an-

other.)

– Difference in area between neighboring segments. (This

captures some of the same intuition as the previous cue.)

– Euclidean distance between the average colors (in L*a*b*

space) of the neighboring segments.

– The χ2-distance between L*a*b* color distributions pro-

vided by kernel density estimates within the neighboring

segments. (This is akin to the patch-based edge detection

techniques discussed earlier, such as Pb strength, but with

color only and with regions of support given by the over-

segmentation instead of a standard circular patch. Tex-

ture/brightness could be added as well.)

Given the fragment and segment motion estimates from

Sect. 5, we can compute a set of motion features suitable

for our classifier. We compare the fragment motion estimate

with each of its neighboring segment motion estimates in

addition to comparing the segment motions to each other.

For each of these comparisons, we compute the following

features to add to the appearance features listed above:
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Fig. 14 (Color online) For the over-segmentation and overlaid human-

drawn boundary in a, we find the segments through which that bound-

ary passes (b). In c, the fragments associated with those segments

(shown in red) are then used to approximate the human-specified

boundary (shown in blue). The error between the two, indicated by

the yellow arrows, has a mean of 2.6 pixels and a median of 0.8 pix-

els across our dataset. Substantial errors (deviations greater than ten

pixels, e.g. where the over-segmentation completely misses a true

boundary) occur in only 4.9% of the boundaries, measured pixel-

wise

– Absolute difference between individual u and v motion

components.

– Simple Euclidean distance between motion vectors.

– Confidences of motion estimates.

– The Mahalanobis-like motion inconsistency score used

in Stein and Hebert (2006a).

Once again, these cues are somewhat redundant, deferring

the selection of the “right” set of features to the boosted clas-

sifier.

For the pairwise classifier, Pr(fj = on|fi = on, x), there

are a few additional pair-specific features we can use. Thus

the feature set for this term includes the unary cues above

for each fragment of the pair, augmented by the following:

– The relative angle between the two fragments (to capture

a notion of continuity).

– The difference between the motions of the two fragments.

– The motion and color differences between the two frag-

ments’ foreground-side segments.

7.2 Training the Classifiers

Given a set of training data, we apply the over-segmentation

and fragment-chaining approaches described in Sect. 4 and

compute each cue defined above. We then train the unary

classifier, Pr(fi = {on,off}|x), directly from the individ-

ual ground truth labels using the extracted set of cues.

For the pairwise classifier, we first extract pairs of frag-

ments in the ground truth for which fj follows fi and both

are labeled “on”. These pairs are our positive examples

while negative examples are collected from those pairs for

which fj is “off” but is connected via the graph to an fi that

is “on”. From these examples, we learn the second classifier,

Pr(fj = {on,off}|fi = on, x). For all our experiments, we

allow ten iterations of boosting with ten-node decision trees.

For training each of these classifiers, we must match the

fragments created by our over-segmentation with ground

truth boundaries drawn by hand. This is accomplished by

first determining through which segments the hand-drawn

boundaries pass. Then, the fragments corresponding to those

segments are used to get the closest approximation to the

ground truth boundary. This process is depicted in Fig. 14.

In Figs. 15 and 16, we plot histograms indicating the fre-

quency with which each of our features was chosen by the

boosted decision tree classifiers learned in the experiments

below. Since features are chosen for use by a decision tree

according to their discriminative ability in classifying avail-

able examples, these histograms provide a notion of which

features are most useful across the dataset for discriminating

the classes present in our problem. Anecdotally, these fea-

ture usage frequencies were found to be quite stable across

multiple runs with varying splits of the data. Note that each

classifier frequently uses motion and appearance features.

In fact, the two most-used features employed by the unary

classifier (Fig. 15) are the Euclidean distance between seg-

ment motion vectors and the difference in color distributions

on either side of the fragment. Furthermore, the classifier

regularly uses different forms of the confidence information

derived from computing segment and fragment motion esti-

mates.

Somewhat surprisingly, the relative angle feature used for

capturing the continuity between a pair of fragments is not

often utilized by the pairwise classifier, despite being a com-

mon Gestalt cue for reasoning about saliency and continua-

tion in perceptual organization, e.g. (Leung and Malik 1998;

Mahamud et al. 2003; Ren et al. 2005) and references

therein. Its limited utility here may be tied to the fact that the

graph implied by our over-segmentation procedure, which

seeks regularly-shaped segments, tends to have plausible rel-

ative angles for almost any pair of fragments meeting at a

given junction. Thus, the relative angle may not be a very

discriminating feature in our construction.

Finally, the addition of features based on fragment mo-

tion, rather than only patch or segment motion as employed

by Stein and Hebert (2006a, 2007), does appear to be help-

ful. Fragment motion cues are used regularly, especially

those estimated for fragment j in the pairwise classifier.
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Fig. 15 Frequency with which

each computed feature is used

by the learned unary fragment

classifier

8 Experiments

We first over-segment each scene’s reference frame and

extract fragments as described. There are approximately

20,000 total fragments available in our dataset for testing

and training. For each fragment and segment, we compute

the set of appearance and motion cues listed in the previous

section. From a training set constructed using half the scenes

in the database, we then learn the two classifiers which de-

fine the potentials used by our model. Using these classifiers

for the other half of the scenes, we can estimate the prob-

ability of labeling each fragment as an occlusion boundary,

first by using the learned unary classifier in isolation and

then within the global inference model. We repeat this pro-

cedure, swapping the test and training sets in order to obtain

results for all scenes in the database.

We would like to verify that both global inference and

motion information result in improved performance overall.

We see in Fig. 17 that this is indeed the case in a plot of pre-

cision versus recall for final fragment labelings of the entire

dataset in aggregate. The parameter varied in creating each

plot is the threshold on the likelihood of each fragment being

“on”. We see that using appearance cues alone results in the

worst performance on the graph.3 In fact, note that includ-

ing motion cues but only reasoning on individual fragments,

without global inference, offers equivalent or superior re-

sults to using global inference with appearance cues alone.

Finally, global inference with combined motion and appear-

ance information consistently yields the highest precision.

Also note that the low precision point at 100% recall (corre-

sponding to the trivial solution of labeling all fragments as

occlusion boundaries) provides some indication of the diffi-

culty of our task and our dataset.

While aggregate statistics captured by precision-recall

plots are useful for understanding performance in general,

they do hide important semantic measures of quality which

can only be understood by looking at individual results. In

3We do not show results using motion cues alone, but as with the sim-

pler classifier used in Stein and Hebert (2007), this yields similar or

worse performance than using appearance alone
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Fig. 16 Frequency with which each computed feature is used by the learned pairwise fragment classifier
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Fig. 17 Precision vs. Recall for

the entire dataset, showing that

using motion and global

inference results in the most

accurate identification of those

edge fragments which are

occlusion/object boundaries

Figs. 18–21, we provide a few such examples out of the

30 in our database. (Additional examples can be found in

Appendix B.) In each, the reference image of the sequence

and the ground truth labeling are provided in the top row. In

the remaining rows we compare the use of appearance only

(left column) to that of appearance and motion combined

(right column). The second row displays fragments overlaid

on the image with brightness and line width proportional to

the confidence that they are occlusion boundaries according

to their independent classification results (i.e. before global

inference). Thus, the brighter red and thicker a fragment is,

the more the system believes it to be an occluding boundary.

The next row displays the same type of result but after per-

forming global inference on the initial classifications. The

final two rows show these global inference results thresh-

olded at equal recall rates for fair comparison. Note how the

motion-plus-appearance approach sustains higher precision

(i.e. fewer false positives) even as the recall is increased.

This indicates that the motion adds significant confidence to

the classifier’s decision.

In Fig. 22, we provide an example of a scene on which

performance is consistently poor using our approach. This

stems largely from two problems. First, the extremely harsh

lighting creates high-contrast edges which result in an over-

segmentation whose fragments do not correspond to the true

occlusion boundaries in the scene. In such cases (which are

rare, see Fig. 14), there is no hope of the subsequent clas-

sifier succeeding, since the true boundaries are not even in

the set of fragments to be classified. Secondly, the lack of

texture (in combination with the lighting) results in several

false positives since it prevents confident motion estimation

which could otherwise be used to disambiguate and cor-

rectly classify lighting-based edges as non-boundaries.

Due to the variety of scenes in our dataset, it is not sur-

prising that there exist cases for which motion does not help.

Some object boundaries simply are easily identified by ba-

sic appearance cues, such as color, and the scenes may lack

enough texture or depth variation to provide the necessary

relative motion cues. However, it is also very rare that us-

ing motion hurts performance, and in those cases where ap-

pearance information simply does not capture the proper-

ties of occlusion boundaries well, motion cues often pro-

vide substantial improvement. This improvement is realized

in reduced false positives since, in many cases, only mo-

tion information may allow the system to recognize and

filter out high-contrast surface markings which confuse an

appearance-only approach.

9 Conclusion and Future Directions

In this work, we presented a mid-level framework capable

of reasoning more globally about the existence of occlu-

sion boundaries. In so doing, we alleviated deficiencies in

earlier purely-local approaches, such as Stein and Hebert

(2006a, 2007), by improving spatial support for feature ex-

traction and motion estimation by using an initial over-

segmentation of the scene, by incorporating boundary mo-

tion as well as motion confidence information, and by intro-

ducing a graphical model with learned classifiers as poten-

tials for propagating local information derived from a com-

bination of appearance and motion cues.

As discussed in the introduction, we have focused mainly

on reasoning at boundaries themselves. The regions those

boundaries enclose could be further integrated into a system

capable of utilizing both the techniques presented here and
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Fig. 18 Example result: The appearance-only classifier’s lack of con-

fidence becomes obvious when we use a higher-recall operating point.

With the addition of motion, very high precision is maintained

existing region-based methods. Moreover, one avenue of re-

search here might be the feedback of our detected bound-

aries into the initial boundary hypothesis procedure. Confi-

dent boundary estimates could be used to merge initial seg-

ments, thereby producing longer fragments and larger re-

gions of support for features (Hoiem et al. 2007b).

We have not performed specific analysis and evaluation

of figure/ground assignment to our boundaries in this work.

While a notion of the foreground side of a boundary was an

important part of label propagation in our model in Sect. 6,

our focus has mainly been on the detection of boundaries.

Fig. 19 Example result: Using motion allows for sustained high pre-

cision, even at higher recall

In our experience, our method generally achieves qualita-

tively consistent foreground assignment along boundaries,

but sometimes the entire boundary’s foreground/background

labeling is reversed. We believe this to be partly an artifact

of impoverished local cues combined with the limited abil-

ity of existing inference techniques to propagate local in-

formation effectively over large distances on dense, loopy

graphs. Further incorporation of ideas from Ren’s work (Ren

2005, 2006), which focuses on the figure-ground assignment

problem given the object boundaries, may prove beneficial

here.
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Fig. 20 Example result: On this more difficult example, the

motion+appearance classifier still performs best

The classifiers needed to compute the potentials for

our factor graph model are currently trained independently

(from each other and from the inference procedure itself). It

could be beneficial—though also quite expensive—to train

them together and within an inference loop. This is akin

to the training of parameters in Discriminative Random

Fields (Kumar and Hebert 2006) and could help avoid the

over-confident fragment classifications and the over-eager

closure of small boundary loops we have sometimes ob-

served in our experiments.

Finally, thus far we have sought to discover the occlu-

sion boundaries present in a single reference frame of a short

video clip. A next step could be the application of our tech-

Fig. 21 Example result: The squirrel in this scene is nearly invisible to

the appearance-based classifier, but its movement makes its boundaries

much more readily detectable when also using motion cues

niques on a per-frame basis (or every nth frame), with addi-

tional temporal reasoning/filtering, in order to utilize more

fully the temporal aspect of video data. One difficulty in

this domain may be the labeling of several (or all) frames

of video for quantitative analysis or training.

Appendix A: Crack Chaining

In this appendix we present in more detail the crack chaining

approach used in extracting potential boundary fragments

from an over-segmentation, as discussed in Sect. 4.

Consider the example segmentation of a simple image

consisting of 4×4 pixels at the left of Fig. 23. There are four

segments, each indicated by a different color, with thicker

lines at their borders which lie along the cracks of the im-

age’s pixels. In the center of the figure, the four-way inter-

sections of the pixels, where four cracks also meet, are la-

beled with circles. At the right, the corresponding “crack

graph” is shown, whose vertexes and edges correspond to

the pixel intersections and the cracks, respectively.
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Fig. 22 A harshly-lit,

low-texture scene (left) causes

difficulties for our approach.

The middle example shows the

over-segmentation failing to

offer the true occlusion

boundary as a hypothesized

fragment for classification. At

the right, we see false positives

resulting from a combination of

harsh lighting and lack of

texture which would provide

good motion estimates

Fig. 23 The cracks between the

pixels in a segmentation form a

graph we can use for chaining

Fig. 24 The possible labels for each type of pixel intersection, based on the binary labelings of their four associated cracks. Some labels are

invalid in our approach, which seeks closed boundaries

Fig. 25 Bits corresponding to

each crack at an intersection

Each crack in this graph can take on a binary label indi-

cating whether or not it corresponds to a segment border in

the original segmentation, again indicated by thicker lines.

Furthermore, each vertex (a)–(i) can take on one of exactly

twelve possible labels, depending on the labeling of its four

cracks. These labels, representing the presence of local junc-

tions, (non-)boundaries, and corners, are shown in Fig. 24.

Note that the four cases corresponding to a single crack

being labeled as a segment border are not possible when

working with the closed borders of an over-segmentation.

(Though not indicated in Fig. 23, we consider the borders of

the image to be segment borders in practice.)

If we associate each crack at a particular vertex with a

bit in that vertex’s four-bit label, as indicated in Fig. 25 and

below each intersection shown in Fig. 24, we can efficiently

chain together intersections of the graph by simple logical

bit checks. For example, we know vertex d in the graph from

Fig. 23 is chained to vertex e by simply checking that the

second bit of d’s label and the fourth bit of e’s label are both

set. Vertex d is not connected to g, however, since neither

d’s third bit nor g’s first bit are set.

Based on this reasoning, we start at those intersections

labeled as junctions (those with three or more bits set) and

chain along the crack graph until reaching another junction.

Note that it is also necessary to consider the special case of

a segment completely enclosed by another, larger segment.

In this case, a single fragment encircles the whole inner seg-

ment, and does not begin or end at a junction.

The cracks linked together in this way form the graph of

“fragments” used in our work. Note that there are no thresh-

olds (e.g. on edge orientation variation, edge strength, etc. )
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Fig. 26 Chair

Fig. 27 Car
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Fig. 28 Coffee stuff



Int J Comput Vis (2009) 82: 325–357 347

Fig. 29 Couch corner
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Fig. 30 Couch objects
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Fig. 31 Hand
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Fig. 32 Post
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Fig. 33 Trash can
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Fig. 34 Tree
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Fig. 35 Car (difficult case)
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Fig. 36 Fence (difficult case)
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required and that the resulting fragments will naturally form

closed graph structures since they are based on an underly-

ing over-segmentation of the image.

Appendix B: Additional Boundary Detection Examples

We include here additional examples of boundary detec-

tion on our dataset using the approach described in this pa-

per. For each example below, we provide the middle (ref-

erence) frame from the video clip, the precision versus re-

call curve, and boundary detections at various recall oper-

ating points (which are indicated on the precision vs. recall

plots by vertical dashed lines). We show thresholded bound-

ary detections after global inference when using appear-

ance information alone (left column) and when appearance

and motion information are combined (right column). We

have chosen operating points for each example to highlight

the performance increase when using motion information

(i.e. when using motion, the number of false positives is gen-

erally lower—and thus the precision is higher—for a given

recall point, as compared to using appearance information

alone). Note that the selected recall point is always the same

between the columns of a given example, to facilitate fair

comparison.

The last two figures (Figs. 35 and 36), show difficult ex-

amples. In these cases, very harsh lighting conditions create

high contrast shadow edges that confuse our system. In ad-

dition, large un-textured regions combined with reflections

and specularities visible on the car make motion estimation

difficult.
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