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Abstract. We address the problem of detecting occlusion boundaries
from motion sequences, which is important for motion segmentation,
estimating depth order, and related tasks. Previous work by Stein and
Hebert has addressed this problem and obtained good results on a bench-
marked dataset using two-dimensional image cues, motion estimation,
and a global boundary model [1]. In this paper we describe a method
for detecting occlusion boundaries which uses depth cues and local seg-
mentation cues. More specifically, we show that crude scaled estimates
of depth, which we call pseudo-depth, can be extracted from motion se-
quences containing a small number of image frames using standard SVD
factorization methods followed by weak smoothing using a Markov Ran-
dom Field defined over super-pixels. We then train a classifier for oc-
clusion boundaries using pseudo-depth and local static boundary cues
(adding motion cues only gives slightly better results). We evaluate per-
formance on Stein and Hebert’s dataset and obtain results of similar
average quality which are better in the low recall/high precision range.
Note that our cues and methods are different from [1] – in particular
we did not use their sophisticated global boundary model – and so we
conjecture that a unified approach would yield even better results.

Keywords: Occlusion boundary detection, Depth cue, Markov Random
Field.

1 Introduction

Occlusion boundary detection, which detects object boundaries that occludes
background in motion sequences, is important for motion segmentation, depth
order estimation, and related tasks. For example, although there has been much
recent progress in estimating dense motion flow [2,3,4,5] the estimation errors
typically occur at the boundaries. Recently Stein and Hebert [1] developed a
method for occlusion boundary detection using machine learning methods which
combines two-dimensional image cues, motion estimation, and a sophisticated
global boundary model. Their method gave good quality results when evaluated
on a benchmarked database.
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Fig. 1. Overview of our approach. Step 1 computes the dense motion flow. Step 2
estimates the pseudo-depth using SVD and weak smoothness. Step 3 trains a classifier
for detecting occlusion boundaries in terms of the local edge map, the motion-flow, and
the pseudo-depth. Best seen in color.

In this paper we argue that occlusion boundaries often occur at depth dis-
continuities and so depth cues can be used to detect them. We use a motion
estimation algorithm to find the correspondence between different image frames
and hence estimate crude scaled estimates of depth, which we call pseudo-depth.
The discontinuities in pseudo-depth typically occur at occlusion boundaries and
so provide detection cues which can be combined with local image segmentation
cues. We note that the relationship of occlusion boundaries to depth has long
been realized in the binocular stereo community [6,7] and indeed earlier work
has described how it can apply to motion sequences (e.g., [8]). More recently,
some motion estimation algorithms [5] do introduce some depth knowledge in
an implicit form of motion smoothing.

In this paper, see Figure (1), we proceed in the following steps. Step 1: es-
timate the dense motion flow from the input image sequence. We perform this
estimation using a novel algorithm (submitted elsewhere) but other motion flow
algorithms that perform well on the Middlebury dataset [2] would probably be
sufficient. Step 2: estimate pseudo-depth by the Singular-Value-Decomposition
(SVD) technique [9,10] from the motion flow. We call this pseudo-depth since it
is: (a) very noisy, (b) only known up to a scaling factor, and (c) only valid as
depth if there is a single rigid motion in the image. We perform weak smoothing
of the depth using a Markov Random Field (MRF) defined over super-pixels
[11] (extending a method reported in [12]). We observe, see figure (1), that the
pseudo-depth captures the rough depth structure and, in particular, tends to
have discontinuities at occlusion boundaries. Step 3: train a classifier for occlu-
sion boundaries which takes as input the motion flow, the local edge map, and
the pseudo-depth map. In practice, we obtain good results using only the local
edge map and the pseudo-depth map.

The contribution of this paper is to show that we can obtain results compara-
ble to Stein and Hebert’s [1] using only pseudo-depth cues and static edge cues
(i.e. the Berkeley edge detector [13]). We describe the background material in
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section (2) and how we estimate motion flow in section (3). Section (4) describes
how we estimate pseudo-depth which is our main cue for occlusion boundary
detection. Section (5) describes how we train a classifier to detect occlusion
boundaries using pseudo-depth, static edge cues, and motion cues. Section (6)
shows that our classifier achieves state of the art results, based on pseudo-depth
and static edge cues alone, and gives comparisons to the results in [1].

2 Background

There is an enormous computer vision literature on motion estimation that can
mostly be traced back to the classic work of Horn and Schunk [14]. Most of them
uses a measurement term based on the optical flow constraint and smoothness
terms on the velocity field to resolve the ambiguities in local measurement. The
effectiveness and efficiency of algorithms for estimating velocity were improved
by the use of coarse-to-fine multi-scale techniques [3] and by the introduction of
robust smoothness [15] to improve performance at velocity boundaries.

Earlier researchers have discussed how motion and depth cues could be com-
bined to detect surface discontinuities (e.g., [8]) but their technique relies on
pixel-level MRF and line processes. The importance of occlusion boundaries has
been realized in the binocular stereo community [7,6]. In visual motion analy-
sis, many efforts have been made to address the problem of modeling motion
boundaries in motion estimation (see [16,17] and reference therein). Some work
(e.g., [18]) has attempted to estimate motion boundaries using image segmenta-
tion and explicitly modeling regions that appear or disappear due to occlusion,
but they have not been systematically evaluated on benchmark datasets. Stein
and Hebert [1] proposed methods for detecting occlusion boundaries but do not
use explicit depth cues.

There is an extensive literature on methods to estimate depth from sequences
of images [19]. This is a highly active area and there has been recent successful
work on estimating three-dimensional structure from sets of photographs [20],
or dense depth estimation from optical flows [21,22,23]. In this paper, our goal
is only to obtain rough dense depth estimates from motion so we rely on fairly
simple techniques such as the SVD factorization method [9,10] and a scaled
orthographic camera model instead of the more sophisticated techniques and
camera models described in those approaches.

There has also been recent work on estimating depth from single images
[12,24,25], some of which explicitly address occlusion [25]. There seems to be
no direct way to compare our results to theirs. But we adapt techniques used in
these papers, for example performing a pre-segmentation of the image into super-
pixels [11] and then smoothing the depth field by defining a Markov Random
Field (MRF) on superpixels [12].

3 Step 1: Motion Flow Estimation

We compute motion flow between image sequences using our own motion flow
algorithm (submitted elsewhere and to be publicly available). But the rest of
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Fig. 2. Two examples of dense flow estimation (based on Middlebury flow-color cod-
ing, middle panel) and dense pseudo-depth estimation (right panel). Observe that the
pseudo-depth has discontinuities at the boundary of the walking figure (lower panels)
even though the images contain multiple motions. Best seen in color.

this paper does not critically depend on which motion flow algorithm is used.
We obtained similar results using motion code publicly available (e.g., [5]). So we
believe that motion flow results by, for example, other algorithms that perform
well on the Middlebury dataset [2] may yield motion flow that is sufficiently
accurate to be used as input to our approach.

More specifically, we compute dense motion flow for a sequence of three im-
ages {I−m, I0, Im}, where m ≥ 3 indexes the image frame. The middle image I0

is the reference image for which we will evaluate the pseudo-depth and estimate
the occlusion boundaries. The size of m is determined by the following consider-
ations. We require that the images Im, I−m must be sufficiently far apart in time
to enable us to estimate the pseudo-depth reliably but they must be close enough
in time to ensure that we can obtain the motion flow accurately. In practice, our
default setting for the Stein and Hebert database [1] was m = 7 but we reduced
m for short image sequences. We show two typical results of the motion flow in
Figure (2)(middle panels).

We compute the motion flow Vb from I0 to I−m (backwards) and Vf from
I0 to Im (forwards). These motion flows Vb and Vf are used to specify the
correspondence between pixels in the three images. We represent the pixel co-
ordinates in the reference image I0 by x with corresponding pixels coordinates
x − Vb and x + Vf in I−m and Im respectively.

4 Step 2: Dense Pseudo-depth Estimation

We use the motion flow field to estimate dense pseudo-depth by a two-stage pro-
cess. Firstly, we formulate the problem in terms of quadratic minimization which
can be solved by the standard Singular Value Decomposition (SVD) approach,
yielding a noisy estimation of pseudo-depth. Secondly, we obtain a smoothed es-
timate of pseudo-depth by decomposing the image into super-pixels [11], defining
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a Markov Random Field (MRF) on the pseudo-depth for the super-pixels and
imposing a weak smoothness assumption.

Our method depends on three key assumptions that: (i) occlusion (and pseudo-
depth) boundaries can only occur at the boundaries of super-pixels, (ii) the pseudo-
depth within each super-pixel can be modeled as planar, and (iii) the parameters
of the pseudo-depth planes at neighboring super-pixels are weakly smooth (i.e. is
usually very similar but can occasionally change significantly – for example, at oc-
clusionboundaries). Figure 3shows two examples of smoothedpseudo-depthfields.

4.1 Pseudo-depth from Motion

We use corresponding pixels x − Vb, x, and x + Vf , supplied by the motion-
flow algorithm, to estimate pseudo-depth for all pixels in the reference image I0.
We assume that the camera geometry can be modeled as scaled-orthographic
projection [19] (This is a reasonable assumption provided the the camera has
the same direction of gaze in all three images).

We also assume that the motion of the viewed scene can be modeled as if it is
perfectly rigid. This rigidity assumption is correct for many images in the dataset
[1] but is violated for those which contain moving objects such as cats or hu-
mans, for example see Figure (2)(lower panels). Interestingly the pseudo-depth
estimation results are surprisingly insensitive to these violations and, in particu-
lar, discontinuities in the pseudo-depth estimates often occur at the boundaries
of these moving objects.

More formally, we assume that the pixels x = {(xµ, yµ) : μ ∈ L} in the refer-
ence image (where L is the image lattice) correspond to points X = {(xµ, yµ, zµ) :
μ ∈ L} in three-dimensional space, where the {zµ : μ ∈ L} are unknown and
need to be estimated. We assume that the other two images I−m and Im are
generated by these points X using scaled orthographic projection with unknown
camera projection matrices C−m,Cm. Hence the positions of these points X
in images I−m, Im is given by Π(X;C−m) and Π(X;Cm) respectively, where
Π(X;C) = CX is the projection.

Our task is to estimate the projection parameters C−m,Cm and the pseudo-
depths {zµ} so that the projections best agree with the correspondences between
I−m, I0, Im estimated by the motion flow algorithm. It can be formulated as
minimizing a quadratic cost function:

E[{zµ};C{−m,m}] =
∑

µ

|xµ+vf
µ−Π(Xµ;Cm)|2+|xµ−vb

µ−Π(Xµ;C−m)|2. (1)

As is well known, this minimization can be solved algebraically using singular
value decomposition to estimate {z∗µ} and C∗

−m,C∗
m [9,10]. For the scaled or-

thographic approximation there is only a single ambiguity {z∗µ} �→ {λz∗µ} where
λ is an unknown constant (but some estimate of λ can be made using knowledge
of likely values of the camera parameters). We do not attempt to estimate λ
and instead use the method described in [10] which implicitly specifies a default
value for it.
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Fig. 3. Two examples of the estimated pseudo-depth field. Left panels: the reference im-
ages. Middle panels: the pseudo-depth estimated using SVD. Right panels: the pseudo-
depth after weak smoothing. Best seen in color.

4.2 Weak Smoothness to Improve the Pseudo-Depth Estimates

The pseudo-depth estimates provided by SVD are noisy, particularly at places
where the motion flow is noisy. We improve these estimates by weak smooth-
ing using a Markov Random Field (MRF) model which discourages smoothing
across depth discontinuities. This smoothing must be ”weak” in order to avoid
smoothing across the occlusion boundaries.

To define this MRF we first decompose the reference image into super-pixels
using a spectral clustering method [11]. This gives roughly 1000 superpixels for
the reference image (which is usually of size 240 × 320). We assume that each
super-pixel corresponds to a planar surface in pseudo-depth. This assumption
is reasonable since the size of the super-pixels is fairly small (also, by defini-
tion, the intensity properties of super-pixels are fairly uniform so it would be
hard to get more precise estimates of their pseudo-depth). We also assume that
neighboring super-pixels have planar surfaces which have similar orientations
and pseudo-depth except at motion occlusion boundaries. This method is sim-
ilar to one reported in [12] who also used a MRF defined on super-pixels for
depth smoothing.

More precisely, let Xi = {(xir, yir, zir)} be the set of points (indexed by r) in
the ith superpixel (with their pseudo-depths estimated as above). We assume a
parametric planar form for each super-pixel – ai(xir−xi0)+bi(yir−yi0)+zir−ci =
0 – and express the parameters as di = (ai, bi, ci).

Next we define an MRF whose nodes are the super-pixels and whose state vari-
ables are the parameters D = {di} (i.e. a super-pixel i has state di). The MRF
has unary potential terms which relate the state di to the three-dimensional po-
sition estimates Xi and pairwise potential terms which encourage neighboring
super-pixels to have similar values of d, but which are robust to discontinuities
(to prevent smoothing across occlusion boundaries). This gives an MRF specified
by a Gibbs distribution with energy:
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Fig. 4. Left panel: A graphical representation of the Markov random field model for
the depth field and occlusion boundary detector. Circular nodes are random variables,
rectangular nodes are data-dependent functions, and shaded nodes are observed. Right
panel: An illustration of neighboring superpixels and the corresponding random vari-
ables defined on the superpixels and their boundaries.

E(D|X, e) =
∑

i

Eu(di,Xi) +
∑

i,j: j∈N(i)

Ep(di,dj , eij), (2)

where e = {eij} is a static edge cue [13] and eij is the static edge probability
between super-pixels i and j. N(i) is the neighborhood of node i. Figure 4
shows the graphical representation of our model. The unary and pairwise terms
are defined as follows.

The unary term at super-pixel i depends on the 3D position estimates Xi at
the points within the super-pixel. We use an L1 norm to penalize the deviation
of these points from the plane with parameters di (L1 is chosen because of its
good robustness properties) which gives:

Eu(di,Xi) = α
∑

r

||cT
irdi + zir||l1 (3)

where cir = (xir − xi0, yir − yi0,−1)T is a constant vector for each point in the
super-pixel i. The pairwise energy function also uses the L1 norm to penalize
the differences between the parameters di and dj at neighboring pixels, but this
penalty is reduced if there is a strong static edge between the super-pixels. This
gives:

Ep(di,dj , eij) = (1 − βeij)||di − dj ||l1 . (4)

where β is a coefficient modulating the strength of the edge probability eij .

4.3 Inferring Pseudo-depth Using the Weak Smoothness MRF

We now perform inference on the MRF to estimate the best state {d∗
i } =

argmin E(D|X, e) by minimizing the energy. This energy is convex so we can
solve for the minimum by performing coordinate descent using Linear Program-
ming (LP) [26] to compute each descent step. At each step, a superpixels’s depth
variables are updated given its neighbor information and we sequentially update
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p

Fig. 5. Left: An instance of super-pixeled image. Right: Local cues for occlusion bound-
ary detection. Best seen in color.

all the nodes in the field until the changes are below a fixed threshold. A few
iterations, typically about 5, suffice for convergence.

We keep updating the random field for several iterations until the change is
small. More specifically, we solve the following minimization problem using LP
at each node:

di = argmin
di

α
∑

r

||cT
irdi + zir||l1 +

∑

j∈N(i)

(1 − βeij)||di − dj ||l1 (5)

where cir are constants in Eu as in Eqn (3).

5 Step 3: Occlusion Boundary Detection

We now address the final task of occlusion detection. We use the super-pixel
map of the image and attempt to classify whether the boundary between two
super-pixels is, or is not, an occlusion boundary. To achieve this we train a
classifier whose input is the static edge map, the estimated motion flow field, and
the estimated pseudo-depth. The ground truth can be supplied from a labeled
dataset, for example [1].

Three types of local cues are evaluated in our method: 1) the pseudo-depth
estimates; 2) the static boundary/edge map; 3) the averaged motion estimates
within each superpixel. More specifically, for a pixel xp on the superpixel bound-
ary bij , the pseudo-depth cue is a patch wd(p) of the pseudo-depth map cen-
tered at xp, the edge cue is a patch we(p) of the static edge probability map
at the same location (e.g. supplied by Berkeley boundary detection [13] or
[27]). For the motion cue, we compute the relative motion in the following way.
For superpixels i and j, their average velocity vi and vj are computed first.
Then they are projected onto the unit vector connecting the centers of mass of
the two superpixels, denoted by n̂ij . See Figure 5 for an illustration of those
cues.

The output of the classifier is a probability that the pixel xp is on occlusion
boundary. Let b(xp) denote this event. The classifier output can be written
as P (xp|wd(p), we(p), n̂T

ijvi, n̂
T
ijvj). To decide if a superpixel boundary bij is an
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occlusion boundary, we apply the classifier to all the points xp ∈ bij and average
the outputs of the classifier. More specifically, we set

P (bij |D, e, vi,j) =
1

|xbij |
∑

xp∈xbij

P (b(xp)|wd(p), we(p),vi,j) (6)

where xbij is the set of pixel sites on the boundary bij , and vi,j denotes (n̂T
ijvi,

n̂T
ijvj). The classifier can be any binary classifier with probability output. In

our experiments we report results using a Multilayer Perceptron (MLP) with 15
hidden units. But we also experimented with a Support Vector Machine (SVM)
with a Radial Basis Function (RBF) kernel, which gave similar results. We refer
to [28] for details of these techniques.

6 Experiments

6.1 Dataset and Setup

We evaluated our approach on the CMU dataset, which includes 30 image se-
quences of real-world scenes [1]. We use half of the sequences as training data
and the other half as test data (selected randomly). We swap the training and
test sets to obtain test results on all the images. In each case, we treat a third
of the training data as a validation set.

We segment each reference image into approximately 1000 superpixels us-
ing spectral clustering [11]. We align the ground truth occlusion boundaries to
the superpixels using the method described in [1]. This step introduces a small
amount of errors, particularly on objects with detailed structure. We treat this
aligned superpixel labeling as the ground truth in our evaluation (like [1]). We
set the parameters of the pseudo-depth random field using the validation set
and searching over the range [0, 1] with step size 0.1. This yields values α = 1.0
and β = 0.9 which we use in the following evaluation. We use a Multilayer Per-
ceptron with 15 hidden nodes (we also tested an SVM with RBF kernel – both
give similar performance), trained using all the positive examples and 1/3 of the
negative examples selected randomly.

6.2 Experimental Results

The experimental results are summarized in Figure 6, which shows the precision-
recall curves of our occlusion boundary detector with different settings and the
state of the art. The precision (Pr) and recall (Rc) are computed in terms of
the superpixel boundary segments. We also show the error rates with threshold
0.5, and F measure computed at 50% recall rate in Table 1. The F measure
is defined by the harmonic mean of the precision and recall rate, i.e., F =
2/(1/Pr + 1/Rc).

The left column in Figure 6 shows the detection results with the static edge cue
and pseudo-depth cue. Observe that the pseudo-depth cue by itself is extremely
useful at low recall values hence validating our use of it. The pseudo-depth is also
complimentary to the static edge cue: it has high precision at low recall region
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Fig. 6. Left panel: The precision-recall curve of our method with pseudo-depth and
edge cues separately and in combination. Right panel: The precision-recall curve of our
models including the motion cues. Observe that the motion cue does not contribute
much if the other cues are used by comparing two plots. Best seen in color.

Table 1. A summary of average error rates and F measures for occlusion detection
using different combinations of cues. Depth(raw) is the direct pseudo-depth output of
SVD. Depth(L1) is the weakly smoothed pseudo-depth estimate. Adding motion cue
to ”Edge+Depth” does not provide significantly different results.

Edge only Depth(L1) Edge+Motion Edge+Depth(raw) Edge+Depth(L1)

Error Rate 8.29 8.30 8.27 8.20 7.98

F-Score 44.93 39.78 44.73 46.01 46.89

while the static edge cue works better in the higher recall region. Combining both
achieves the best performance. The smoothed pseudo-depth information provides
better performance than the raw pseudo-depth map (provided by SVD), which
demonstrates the benefits of weakly smoothing the pseudo-depth. The right col-
umn in the plot examines the improvements in performance due to the motion
cues. We notice that adding the motion cue achieves only slightly better results by
comparing two plots in Figure 6, and performance is similar to the model without
the motion cue, as shown by the precision-recall curve. This might be caused by
the relatively simple motion cue we use. We note that direct comparisons with the
methods of Stein and Hebert’s performance [1] is not completely precise because
we used a different procedure for estimating super-pixels, but visual inspection
suggests that their super-pixels are very similar to ours.

We can compare our results to those of Stein and Hebert’s shown in Figure 7.
Observe that our method gives generally comparable results to their ”state-
of-the-art” and outperforms them in the high precision regime. Moreover, their
performance is significantly helped by their sophisticated global boundary model,
which we do not use. Figure 8 illustrates the differences between our methods
and the difference between the cues that are used.

Figure 9 shows a few examples of dense pseudo-depth fields and occlusion
boundary detection results. We can see that our approach handles both static
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Fig. 7. Left panel: we compare our results with the best result reported by the global
boundary model in [1]. Right panel: the precision-recall curve from [1] for comparison.
Observe that our performance is better in the high precision regime and that their
results rely heavily on their global boundary model which we do not use. Best seen in
color.

Fig. 8. Left panel: We contrast the cues used in our paper with those reported in
[1]. We rely on pseudo-depth, static edges, and motion (but motion adds little). Stein
and Hebert use static edges, motion cues, and a global boundary process. We classify
individual pixels while they classify super-pixel boundaries directly. Right panel: This
illustrates the surface consistency cues used in the global boundary process in [1] which,
presumably, would improve our results.

scenes (row 1-4) and dynamic scenes (row 5-7) well. In the static scenes, the
pseudo-depth estimation provides a sharp 3D boundary, which makes occlusion
boundary detection much easier than using image cues only. The ”pseudo-depth”
in image sequences containing moving objects is also very informative for the
occlusion detection task because it helps indicate depth boundaries even though
the pseudo-depth values within the moving objects are highly inaccurate.

Note that the evaluation of occlusion boundaries are performed only at super-
pixel boundaries [1] so there may be some errors introduced. But visual inspec-
tion shows that almost all the occlusion boundaries do occur at super-pixel
boundaries.

Finally, note that our pseudo-depth smoothing method is successful at filling
in small regions (super-pixels) where the motion estimation is noisy and hence
the depth estimated by SVD is also noisy. But this smoothing cannot compensate
for serious errors in the motion flow estimation. It will obviously not compensate
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Fig. 9. Example of occlusion boundary detection results on the CMU dataset. First
column: the reference frame with the ground truth boundaries overlaid. Second column:
the estimated pseudo-depth field. Third column: the confidence map of the detected
occlusion boundaries. Fourth column: Precision-Recall curves for the corresponding
individual image sequences. Best seen in color.
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for pseudo-depth estimation errors caused by moving objects, which may require
some type of segmentation and separate depth estimation within each segmented
region. We investigated whether the presence of moving objects could be detected
from the eigenvalues of the SVD, as described in [29], but this was not successful–
for almost all image sequences we typically only found two significant eigenvalues
independent of whether the sequences contained moving objects. More research
is needed here.

Our algorithm runs in approximately 10 seconds with all parts of the code,
except the motion estimation, implemented in Matlab. So it should be straight-
forward to speed this up to real time performance. Stein and Hebert do not
report computation time [1].

7 Conclusion and Discussion

This paper shows that crude estimation of depth, which we call pseudo-depth,
provides useful cues for estimating occlusion boundaries particularly in com-
bination with static edge cues. We show that pseudo-depth can be estimated
efficiently from motion sequences and that the discontinuities in pseudo-depth
occur at occlusion boundaries. We train a classifier for occlusion boundary de-
tection with input from pseudo-depth, edge cues, and motion cues. We show that
pseudo-depth and edge cues give good results comparable with the state of the
art [1] when evaluated on benchmarked datasets. But that enhancing the cue set
to include the motion separately does not give significant improvements. We note
that the methods we use do not exploit global surface consistency constraints
which are used extensively in [1] as global boundary models. Hence we conjec-
ture that even better results can be obtained if these surface cues are combined
with pseudo-depth and edge cues.

Acknowledgments. We acknowledge the support from the NSF 0736015. We
appreciate conversations with Shuang Wu and George Papandreou.
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