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Abstract

In stereo algorithms with more than two cameras, the im-

provement of accuracy is often reported since they are ro-

bust against noise. However, another important aspect of

the polynocular stereo, that is the ability of occlusion de-

tection, has been paid less attention. We intensively an-

alyzed the occlusion in the camera matrix stereo (SEA)

and developed a simple but effective method to detect the

presence of occlusion and to eliminate its effect in the cor-

respondence search. By considering several statistics on

the occlusion and the accuracy in the SEA, we derived

a few base masks which represent occlusion patterns and

are effective for the detection of occlusion. Several experi-

ments using typical indoor scenes showed quite good per-

formance to obtain dense and accurate depth maps even at

the occluding boundaries of objects.

1 Introduction

Occlusion is one of the most difficult problems in stereo vi-

sion [3, 9, 13]. Especially in binocular case, when a target

point can not be seen at one of the cameras, the triangu-

lation is impossible. On the other hand, if more than two

cameras are used, the target points that are visible from

only one camera decrease as the number of cameras in-

creases. Also the false targets can be reduced by using

redundant information obtained by the third or successive

cameras. The improvement of accuracy by using trinocular

stereo has been reported in several papers [1, 8, 10, 14, 16].

The accuracy around occluding boundaries, however, is

not simply improved, since the target points invisible from

at least one camera may increase than the binocular case.

The reason for this is that most algorithms previously pro-

posed are not able to discriminate occlusion from noise.

To cope with this problem, we intensively analyzed the oc-

clusion in the camera matrix stereo SEA (Stereo by Eye

Array) proposed by ourselves, and developed a method to

discriminate the presence of occlusion from the presence of

noise. By considering several useful statistics, we derived

a few masks to represent occlusion patterns which are ef-

fective for the detection of occlusion. The experiments of

SEA with 3 × 3 camera matrix and 5 × 5 camera matrix

showed quite good performance to obtain a dense and ac-

curate depth map even around occluding boundaries.

2 Detection of Occlusion

2.1 Occlusion in Stereo

The false matches in stereopsis are mainly caused by the

following two reasons.

(a) The evaluation of the correct disparity becomes worse

because of the presence of noise.

(b) The evaluation of the correct disparity becomes worse

because the correct corresponding points are invisible at

one or more cameras.

In binocular stereo, the discrimination between the

above two cases is basically impossible without global in-

formation. If more than two cameras are used in stereopsis,

the cases of (a) and (b) may be separable by using local

spatial relation of the evaluation values. This is mainly

because the occurrence of (b) is heavily dependent on the

location of cameras, but the occurrence of (a) is almost in-

dependent. If the presence of occlusion is detected, the

correct triangulation can be made by simply omitting the

cameras to which the target point is invisible.

Then the problem is how to represent the spatial depen-

dence of occlusion and how to utilize it in the correspon-

dence search. Before describing this, we show the frame-

work of SEA, the camera matrix stereo[11, 12].

2.2 SEA: Stereo by Eye Array

Coordinate System

Figure 1 illustrates the coordinate system of the camera

matrix. The origin of the scene coordinates is located at
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Figure 1: Geometry of SEA

the lens center of the center camera. Other cameras are

located at a grid on the X-Y plane at an equal interval of

b. The image captured by each camera in M × N matrix

is labeled as Im,n (m = −M−1
2 , · · · , 0, · · · , M−1

2 ; n =

−N−1
2 , · · · , 0, · · · , N−1

2 ).
The optical axes of all cameras are set to be parallel with

each other. The image coordinates x-y of each camera are

set to be parallel to the X-Y axes of the scene coordinates.

All cameras have a same focal length f .

For simplification of description, we assume below that

the size of the camera matrix is 3 × 3, i.e. nine cameras

are used. In this configuration, SEA uses eight stereo pairs

constructed between the center image and each of the eight

peripheral images. Target point P (x, y, z) is observed on

the center image I0,0 at image point

I0,0(f · X/Z, f · Y/Z). (1)

When there is no occlusion, P is also observed on each

peripheral image Ik,l at image point

Ik,l(f · (X − kb)/Z, f · (Y − lb)/Z). (2)

Or we can denote them as I0,0(x, y), and Ik,l(x−kd, y−
ld), where x, y, and d are defined as x = f · X/Z, y =
f · Y/Z, d = f · b/Z, respectively. d is called disparity.

Basic Algorithm

At first, the dissimilarity values ek,l(x, y, d) between

I0,0(x, y) and Ik,l(x − kd, y − ld) are computed for each

stereo pair, assuming that the disparity is d. The dissim-

ilarity between two points is evaluated as the summation

of RGB distances within a small window whose center is

located at each of the two points. For each d, ek,l(x, y, d)
are summed up to make e(x, y, d) as the penalty of the dis-

parity d.

e(x, y, d) =
∑

k,l

ek,l(x, y, d) (3)

The correct disparity d̂ at I0,0(x, y) is estimated by choos-

ing a value d which satisfies the following equation:

d̂ = argmin
d

e(x, y, d) (4)

By using a number of image pairs similarly to the

multiple-baseline stereo [10, 17, 18], we can greatly re-

duce the false targets caused by false corresponding points

which unexpectedly indicate good similarity. This realizes

a dense disparity map with high spatial resolution.

Occlusion Detectable Algorithm

In SEA, simple extension to the basic algorithm realizes a

quite effective algorithm to cope with occlusion. We de-

fine “occlusion masks”, which are typical occlusion pat-

terns occurring in real scenes. In the following explana-

tion, the eight masks shown in Figure 2 are assumed as the

occlusion masks.

Each mask Mt(k, l)(t = 1, 2, · · ·,8) represents a pat-

tern of occlusion depending on the orientation of occluding

boundary. The gray cell or white cell on Mt(k, l) indicates

whether occlusion occurs or not between the image pair

I0,0 and Ik,l; gray cell (the value is 0) indicates that occlu-

sion occurs and white cell (the value is 1) indicates not. By

omitting the images Ik,l whose values in Mt(k, l) are 0,

the effect of occlusion can be eliminated. For this purpose,

we redefine the penalty e(x, y, d) in equation 3 by incor-

porating the assumption on occlusion. First, we define the

value et(x, y, d) as the penalty of the disparity d with the

assumption on occlusion type t. The essential property of

this penalty is that it does not count for the ek,l of the oc-

cluded image Ik,l.

et(x, y, d) =
wt

nt

∑

Mt(k,l)=1

ek,l(x, y, d) (5)

where nt indicates the number of 1s in mask Mt(k, l). wt

is a constant to give a certain bias to the selection process

that the non-occluding case is preferred if occlusion does

not occur. It is set to 1 when t = 0 and set to a constant

slightly greater than 1 when t 6= 0.

The e(x, y, d) is redefined by selecting the minimum of

the et(x, y, d),

e(x, y, d) = min
t=0,1,···,8

et(x, y, d). (6)

Estimating d̂ by using equation 4, the type t selected for

the estimated disparity in equation 6 indicates the presence

of occlusion and the direction of occluding boundary.

2.3 Criteria for the Determination of Occlu-

sion Masks

By detecting occlusions, it becomes possible to estimate

the correct disparities around the occluding boundaries.

This enables us to acquire the disparity maps with sharp

object boundaries. However, there still remains problems

concerning mask selection: what kinds of and how many

occlusion masks are required?
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Figure 4: Three scenes used in the experiments

In the followings, we investigate the optimal occlusion

mask sets for the camera matrix stereo. In determining a

set of occlusion masks, we have to consider several factors:

1. The number of occlusion masks should be small. In the

stereo matching algorithm in SEA, the computational

time is proportional to the number of masks.

2. The occlusion masks must be close to actual occlusion

patterns. In other words, actual occlusion patterns have

to be substituted by the occlusion masks.

3. The closeness between an occlusion mask and an actual

occlusion pattern should be considered in the context of

stereo matching. There is remarkable performance dif-

ference in the following two cases: (a) Regarding oc-

cluded viewing positions as visible in the penalty es-

timation by equation 6; (b) Regarding visible viewing

positions as occluded in the penalty estimation by equa-

tion 6. The accuracy deterioration caused by (a) is much

worse than that by (b). Hereafter, we call (a) as ItoV
(regarding Invisible target as Visible), (b) as VtoI (re-

garding Visible target as Invisible).

4. To make use of the advantage of polynocular stereo, i.e.

robustness against noise, it is better to use as many im-

ages as possible. However, if we simply increase the

cells labeled visible in occlusion masks, the possibility

of ItoV may increase. There exists trade-off between the

robustness against noise and the applicability to actual

occlusion patterns.

To determine a set of mask satisfying the above crite-

ria we examined several statistics: concerning the second

and the third criterion, the occlusion patterns in real scenes

are observed; the accuracy degradation caused by ItoV or

VtoI is measured concerning the third criterion; the accu-

racy degradation caused by reducing the number of cam-

eras is measured concerning the forth criterion.

3 Occlusion Patterns in SEA

To clarify the characteristics of the occlusion patterns in

actual scenes, let us consider the geometry of SEA. The

visibility of a target point in the SEA is determined by the

geometrical relation among that point, the viewing position

(i.e. the lens center of the camera) and the boundary of the

occluding object. This relation is illustrated in Figure 3(a).

If the point is visible from a camera, the viewing position

must be visible from the point. In the other words, if point

P is visible from point Q, Q must be lit by a point light

source located at P.



Since the lens center of each camera is located on a grid

point on plane H, it is enough to consider the projection of

the object boundary onto the plane H. Figure 3(b) shows

this relationship. If the lens center of a camera is inside the

shadow cast by the occluding object, the point P is invisible

from the camera. Therefore, the occlusion patterns in SEA

can be derived from the projected boundaries of objects in

real scenes by coarse sampling 1.

The actual patterns and their probability of occurrence

are shown in Figure 5. They are measured by using the two

indoor scenes shown in Figure 42. In this measure, the pat-

terns which are different only by rotation are merged into

a single pattern. We can see that some occlusion patterns

have quite high probabilities compared to other patterns

with the same number of occluded viewing positions.

The occluded viewing positions cause large dissimilar-

ity values in the matching process. As mentioned before,

a large dissimilarity value may also be caused by noise. In

the case of noise, however, we can assume that their oc-

currence is random and the patterns with a same number of

viewing positions with large dissimilarity should have sim-

ilar probabilities. Then it will be reasonable to decide that

such a pattern shown in the left side of Figure 5 is caused

by occlusion, not by noise.

4 Conditions for Accuracy Degrada-

tion

4.1 Visible/Invisible Confusion

The effect of misjudgement on the visibility of view points

in disparity estimation is measured. The SEA algorithm

is applied only to the target points with occlusion. For

this statistics, three scenes as shown in Figure 4 are used.

The true depth map manually created for each scene is also

used.

Each figure in Table 1 shows the ratio of target points for

which SEA can estimate correct disparities under correct

visibility judgement but fails under one of the following

two cases.

1. Regarding an occluded viewing position as visible (ItoV
for a cell in the correct occluding pattern).

2. Regarding a visible viewing position as occluded (VtoI
for a cell in the correct occluding pattern).

1In complicated situations, more than one object may occlude a tar-

get point. So generally, the ‘logical-OR’ of multiple boundaries must be

considered as a projected boundary
2Since we manually created true disparity maps for three scenes as

shown in Figure 12, actual occlusion patterns can be automatically de-

tected from them. We collected every occlusion pattern around every oc-

cluding boundary.

Table 1: Accuracy degradation by visible/invisible confu-

sion

Each figure shows the accuracy degradation caused by VtoI or

ItoV in disparity estimation in 3 × 3 or 5 × 5 stereo.

Scene1 Scene2 Scene3

VtoI/ItoV VtoI/ItoV VtoI/ItoV

3 × 3 3.5/32 6.4/45 8.2/41 (%)

5 × 5 0.74/11 1.4/15 1.4/16 (%)

We can observe that the effect by ItoV is much serious

than that by VtoI. It should be avoided in the actual stereo

matching. Therefore, at most one ItoV is allowed in the

successive experiments. On the other hand, the accuracy

degradation caused by VtoI is small enough to be neglected

when the VtoI cells are few. We can also observe that the

ratio of degradation by ItoV and VtoI is roughly 10:1.

4.2 Number of Views

The statistics in the previous section show that ItoV should

be kept as small as possible. However, an occlusion mask

with small number of cells labeled visible makes the stereo

matching less robust in the sense of noise tolerance.

To investigate this trade-off, we examined the relation

between the matching accuracy and the number of cam-

eras. For this purpose, only the target points which are

visible at all the cameras are processed to avoid the effect

of occlusion.

The number of cameras and their arrangements are

binocular, collinear trinocular[9], orthogonal trinocular[8],

pentanocular arranged in “+”, pentanocular arranged in

“×”, 3×3 camera matrix, and 5×5 camera matrix. The re-

sult is shown in Table 2. The improvement of accuracy by

increasing the number of cameras almost saturates around

five cameras. This implies that when there is five cells la-

beled visible in an occlusion mask, it has no merit to try to

increase the number of visible cells under the risk of ItoV
confusion.

5 Occlusion Mask

5.1 Base Mask Pattern

The base mask pattern means the mask pattern with nor-

malized orientation and size. Actual occlusion masks can

be generated by rotating and resampling a base mask pat-

tern. The following two criteria will be reasonable to de-

termine the base mask patterns.



13.05%

35.87% 22.95% 13.95% 8.27% 0.0% 0.0%

�✂✁☎✄✝✆☎✄✝✞

�✂✁☎✄✝✆☎✄✠✟

31.61% 19.38% 26.19% 0.0% 0.0% 0.0%

0.04%3.19%

7.17%

Figure 5: Probabilities of occlusion patterns.

Table 2: Relation between the number of cameras and the

matching accuracy

cameras 2 3 3 5 5 9 25

— L + x 3 × 3 5 × 5

Scene1 67 72 84 87 88 88 96 (%)

Scene2 59 64 74 79 80 83 84 (%)

Scene3 65 75 74 82 81 84 85 (%)

Mask1 Mask2 Mask3 Mask4

Figure 6: Base mask patterns

• According to the claim in Section 3, mask patterns

should fit the occluding boundaries projected onto lens

center plane. Therefore, the spatial frequency is usually

low for occlusion patterns to be considered in actual in-

door scenes.

• The invisible cells can replace the visible cells as far as

a mask has a certain number of visible cells. More than

five visible cells are almost redundant for the false tar-

get reduction. Too many visible cell may increase the

danger of ItoV confusion.

Considering the above criteria, we composed four base

mask patterns as shown in Figure 6. These patterns have

spatial frequency (1, 0), (1, 1), (3/2, 0), and (3/2, 1) in

vertical and horizontal directions. While the base masks

1 and 3 seems to be similar to the base pattern of DCT or

WH-Transform, their size is odd and the center of the mask

is always labeled visible.
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Figure 7: Base masks for 3 × 3 camera matrix
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Figure 8: Base masks for 5 × 5 camera matrix

5.2 Actual Mask Set

The base mask patterns projected onto 3 × 3 mesh are

shown in Figure 7. Only the base mask1 has more than

five cells labeled visible. However, if we assume that

the disparity estimation using four visible cells is accurate

enough, the base mask1 may be substituted by the base

mask2. That is because all cells labeled invisible in base

mask1 are included in base mask2, base mask1 is substi-

tuted by base mask2 with two VtoI allowing small increase

of error. The effectiveness of the rest two masks is doubt-

ful, since base mask3 has only three cells labeled visible,

and base mask4 has only two. The effectiveness will be

examined in the experiments in Section 6.

All of the rotational variations of a base mask are used

in the set of occlusion masks when the base mask is incor-

porated in the SEA algorithm.

The base mask patterns projected onto 5 × 5 mesh are

shown in Figure 8. Base masks through 1 to 3 have more

than five cells labeled visible. So, base mask1 may be sub-

stituted by base mask2 with small degradation of matching.

Base mask4, however, does not have enough cells labeled

visible as in the 3 × 3 case. There are 16 rotational vari-

ations for each of the base masks 1, 2, and 4, and eight

variations for base mask3.
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5.3 Coverage of Base Mask

The coverage of the base mask set for the actual occlusion

patterns should be examined. For this purpose, we com-

pared the base masks and the occlusion patterns gathered

in the indoor scenes shown in Figure 4.

The method of comparison is as follows:

• For each size of camera matrix, base masks and actual

occlusion patterns are compared.

• The distance between a mask and an occlusion pattern is

counted by the number of ItoV and VtoI cells.

• The number of ItoV is allowed for at most one cell, since

the degradation by ItoV is serious.

• The percentage of occlusion patterns within a certain

distance from at least one of the base masks is measured.

The result for 3 × 3 camera matrix is shown in Fig-

ure 9. As shown in the figure, the base masks can cover the

majority of the occlusion patterns in real scenes. If base

masks 1–3 are used, the occlusion patterns within the dis-

tance (ItoV,VtoI) = (0, 3) from the base mask set occupy

about 90% out of all, and the patterns within the distance

(1, 2) occupy 97%.

By adding base mask4, the rate increases by a few per-

cent. However, the effectiveness of base mask4 should be

carefully examined, since the number of cells labeled vis-

ible is not large enough both in 3 × 3 and 5 × 5 camera

matrices. The answer to this question will be given by the

experiments in Section 6.

6 Experiments

The performance in disparity estimation of the occlusion

detectable algorithm in Section 2.2 is measured to verify

the effectiveness of the mask set obtained in the previous

section. The percentage is measured that the obtained dis-

parity is within one pixel of the true disparity manually

given. The results are summarized in Table 3. For all cases

with occlusion masks, we can observe the performance im-

provement compared to the case without occlusion masks.

Since scene3 is the most complex scene, in which leaves of

potted plants are occluding other leaves with similar colors,

the performance is lower than the others.

The obtained depth maps for the two scenes are shown

in Figure 10 and Figure 11, and the true depth maps manu-

ally created are shown in Figure 12 for comparison. Im-

provements in the depth estimation by using occlusion

masks can be observed anywhere. Sharp depth discontinu-

ities are obtained at occluding boundaries around the desk

lamp and the face mask in scene1, and around the contour

of the doll in scene2. Of course, the improvements are dif-

ferent among the results obtained by using different sets of

occlusion masks. For example, at the arm of the desk lamp

in scene1, the result by base mask2 is better than that by

base mask1. This tendency can also be seen in the perfor-

mance rate in Table 3.

Generally speaking, the use of the occlusion masks de-

rived from base mask2 without any additional masks brings

us the best or the near best performance. The reason can be

conjectured that the ratio of cells labeled visible or invisi-

ble in base mask2 is well balanced. As a result, they are ro-

bust against noise as well as they cover wide variety of oc-

clusion patterns. On the contrary, occlusion masks derived

from base mask3 and base mask4 are effective only in such

a case as scene3 where quite complicated occlusion occurs.

As we can see in Table 3, the performance improvement

for scene1 and scene2 is small and even degradation is ob-

served. The reason is clear. Since their cells labeled visible

are not enough for noise elimination, the false targets have

increased. Then not only the performance around occlud-

ing boundaries but also the performance at the part without

occlusion is affected.

7 Conclusion

In this paper, a method for detecting and eliminating oc-

clusion in polynocular stereo was presented. Base masks

for the camera matrix stereo are designed as they can sub-

stitute the actual occlusion patterns in real scenes. For this

purpose, several statistics are examined to clarify the crite-

ria for determining the occlusion masks. By applying the

occlusion masks to disparity estimation in SEA, drastic im-

provements were observed around occluding boundaries.

The experiments showed that the occlusion masks derived

from base mask2 always brings us the best or the near best

performance for the typical indoor scenes.



Table 3: Score by using automatic occlusion detection

Each value shows the rate of correct disparity obtained for each combination of a mask set and scene. The three values are express the

rates for “whole image / targets without occlusion / targets with occlusion”. For comparison, the performance is measured in the ideal

case where the actual occlusion patterns are directly given as the occlusion masks. It is given at the row labeled “Actual”.

Scene1(3x3) Scene2(3x3) Scene3(3x3) Scene1(5x5) Scene2(5x5) Scene3(5x5)

No Mask 92.7/98.3/44.8 88.7/95.3/28.1 72.9/94.3/36.1 92.2/99.6/61.6 90.1/98.0/53.6 71.3/95.6/42.3

Mask1 95.2/98.4/67.8 93.2/95.3/73.6 76.3/94.7/44.8 95.1/99.5/77.1 95.2/97.9/82.6 73.9/95.8/47.9

Mask2 95.7/98.4/72.7 93.9/95.2/82.0 78.5/94.6/51.0 96.1/99.5/81.9 96.6/97.8/90.8 74.9/95.8/50.0

Mask2, 3 95.7/98.3/72.7 93.9/95.2/82.0 80.5/94.3/56.8 96.2/99.6/82.0 96.6/97.8/90.8 76.1/95.3/53.3

Mask1–3 95.7/98.3/73.3 93.9/95.2/82.1 80.8/94.4/57.3 96.1/99.5/81.9 96.6/97.8/91.1 76.4/95.5/53.7

Mask1–4 95.7/98.3/73.3 93.8/95.1/82.2 83.6/94.3/65.1 96.1/99.5/82.0 96.5/97.7/90.8 82.5/95.3/67.4

Actual 96.6/98.3/82.3 94.1/95.4/81.3 84.0/94.3/66.5 98.2/99.6/92.3 97.2/98.0/93.3 84.3/95.6/70.9

(a) True depth map for scene1

(c) True depth map for scene2

Figure 12: True depth maps for scene1 and scene2
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