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Abstract. We develop a scale-invariant version of Matheron’s “dead leaves model” for the statistics of natural
images. The model takes occlusions into account and resembles the image formation process by randomly adding
independent elementary shapes, such as disks, in layers. We compare the empirical statistics of two large databases
of natural images with the statistics of the occlusion model, and find an excellent qualitative, and good quantitative
agreement. At this point, this is the only image model which comes close to duplicating the simplest, elementary
statistics of natural images—such as, the scale invariance property of marginal distributions of filter responses, the
full co-occurrence statistics of two pixels, and the joint statistics of pairs of Haar wavelet responses.

Keywords: natural images, stochastic image model, non-Gaussian statistics, scaling, dead leaves model, occlu-
sions, clutter

1. Introduction

Recently, there has been a great deal of interest in the
statistics of natural images and many investigations
of these from both the computational and biologi-
cal vision perspectives. From the computational side,
this has been motivated by many applications includ-
ing: (i) the need for more effective image compres-
sion, e.g., Buccigrossi and Simoncelli (1999), (ii) the
search for better deblurring and denoising algorithms,
e.g., Freeman and Pasztor (1999), and (iii) the need to
estimate the rates of false positives and false negatives
in target or face recognition algorithms, e.g., Sullivan
et al. (1999).

There are two discoveries which have motivated the
search for good models of image statistics. The first
is that image statistics are extremely non-Gaussian.
For example, a large class of image enhancement

algorithms is based on the paradigm of decomposing
an observed imageI into an enhanced imageJ and
a noise componentn and it is standard to assumen
is Gaussian noise. These algorithms perform poorly
because the ‘noise’ component which one wants to re-
move is often really caused by the clutter1 of small
objects or markings, partially resolved by the camera
and not important to the understanding of the scene,
and the statistics of such clutter are not Gaussian at
all. The non-Gaussian nature of image statistics is ap-
parent if one computes histograms of virtually any fil-
ter on virtually any database of images: the histogram
will, essentially always, have kurtosis greater than 3
(the kurtosis of Gaussian distributions).

The second reason for the interest in image statis-
tics derives from the empirical observation that image
statisticsscale. This means that any local statistic cal-
culated onn×n images and on block averaged 2n×2n
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images should be the same, or that the probability of
seeing an imageI (x, y) is the same as that of seeing
I (σ x, σ y). Although not exact, this result has been
approximately confirmed on all large image databases
that we have heard about. The reason this is exciting
is that it implies that local image models describing
small-scale structures will work as global image mod-
els describing the large-scale structures in images. This
creates a surprising stability for image statistics and
creates a link between the denoising and object recog-
nition problems. In the first case, one wants to eliminate
small irrelevant structures, in the second one wants to
reject large background objects other than the sought-
for object. Since local clutter and generic backgrounds
have the same statistics, the same sort of statistical tools
can be used. In fact, in automated target recognition
(ATR), the term clutter is used to describe the mass of
irrelevant foreground and background objects, for ex-
ample rocks and trees, which occur at all sizes (more
smaller ones than larger ones) in natural images, and
which significantly degrade the power of object recog-
nition algorithms. The key issue in ATR is whether you
have to identify and model every one of the objects in
the foreground/background before finding the object
of interest, or whether there are common statistics in
natural images which enable you to separate the target
from the rest of the scene without explicitly describing
the clutter in detail.

For all the applications mentioned above, we need
new non-Gaussian stochastic models for natural im-
ages. We may broadly characterize stochastic models
of images into two classes:

– “Descriptive” models. In these models the only ran-
dom variables are the image pixel values (or the val-
ues of filters applied to the image). Typical models
of this type are Gibbs models:

Pr(I ) = 1

Z
e−

∑
pixelsP E(I |N(P))

whereN(P) is a suitable pixel neighborhood ofP,
E is a local “energy” function andZ is the normal-
izing constant. While these models have been able
to describe a wide range of simple textures, see e.g.,
Heeger and Bergen (1995) and Zhu et al. (1998) they
lack the concept of structured objects, and usually
fail to be scale-invariant or to reproduce the correct
long-range dependencies.

– “Generative” models. These modelsinclude hidden
variables for the underlying causes of structures in
real world imagery. An image is here a composite

of objects or imagelets with extra random variables
such as the location, scale and grey level of par-
ticular objects or imagelets. The generative models
most common in the literature are (1) models based
on templates of specific objects, such as faces, e.g.,
Hallinan et al. (1999), tanks, machined parts etc.,
often with extra variables such as non-linear distor-
tions, lighting variables and location of key points
on the template, or (2) models which approximate
images by a linear superposition of transparent basis
images, as in ICA, e.g., Olshausen and Field (1996),
PCA and wavelet expansions.

The classical template-based models are useful to
model the object of interest in target recognition al-
gorithms, but are much too detailed for the large mass
of irrelevant objects in the rest of the scene. Stochastic
models based on linear expansions, on the other hand,
represent a good first approximation of natural images
but fail to capture or realistically model some basic
properties of natural images; for example, T-junctions,
the presence of regions with almost no contrast vari-
ation (in the case of infinitely divisible models with
scale invariance, see Mumford and Gidas, 2000), and
extended contours or regions broken into pieces due to
occlusions.

This paper studies a hybrid class of generative image
models which shares some attributes of both classical
template-based models and wavelet expansion mod-
els. The basic idea behind these so called “dead leaves
models” is to assume that the image is formed from
a set of template-based elementary objects, whose lo-
cations and possibly scale are a sample from a Pois-
son process, and which partially occlude one another,
being laid down in layers. These models were first in-
troduced by Matheron (1968) and Serra (1982) for the
morphological analysis of materials, and has only re-
cently been applied to natural image statistics—see,
for example, Ruderman (1997) on the origins of power
spectrum scaling, and Alvarez et al. (1999) for the anal-
ysis and representation of geometric features in natural
images.

An important issue is whether such models are only
useful as toy models whose statistics can be studied or
whether they can be fit to real images with a reasonable
amount of computation. For some applications, it may
not be necessary to use very complex generator models.
In fact, Grenander and Srivastava (2000) have recently
showed that a simple generator model made up of the
profiles of the same object can already capture the
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variability of different types of scenes better than any
of the existing clutter models, and that the parameters
of the model (which in this case are two) can be di-
rectly estimated from the derivative histograms of real
images. For applications that require a more accurate
description of the complexity of cluttered scenes, there
will of course be a larger number of random variables
and parameters that have to be estimated.

In a recent paper (Zhu and Guo, 2000), Zhu and Guo
have attacked this problem and shown that, at least
in some cases, a generative model can be fit to tex-
tured scenes with multiple moderately large textons by
using sophisticated Monte Carlo techniques. The ad-
vances in Monte Carlo methods, including the CON-
DENSATION algorithm (Isard and Blake, 1998), Data
Driven MCMC (Zhu et al., 1999) and adaptive texton
segmentation models (Malik et al., 1999), have made
the computation of complex hidden variables and com-
plex scene structure seem much more accessible than
before. For these reasons, we do think that probability
models that are physics-based and include structured
primitives are practical.

The goal of this paper is, however, not to develop
tools for any of the applications listed above. Our aim
is to study whether a simple version of the dead leaves
model can reproduce the empirical statistics of natural
images better than any of the other classes which have
been studied, e.g. Gaussian models, the “scale mixture
of Gaussians model” of Wainwright and Simoncelli
(2000), the infinitely divisible models by Mumford and
Gidas, and Markov Random Fields. Ultimately, we be-
lieve that different variations of dead leaves models
(possibly with more realistic shapes and dependen-
cies between objects) will be useful for many applica-
tions. More specifically, we will study four basic image
statistics and statistical properties to see whether sim-
ple dead leaves models duplicate the empirical facts
drawn from very large databases of natural images.
The first is the scaling behavior of images, described
above. The second, also mentioned above, is the high
kurtosis of filter statistics derived from images, e.g.
derivatives (the difference of adjacent pixel values).
The third is the highly irregular shape of joint his-
tograms of wavelet coefficients, esp. Haar wavelets.
The fourth is the complex behavior of the full two-
pixel co-occurrence statistics which, as we will see
below, seem to be best modeled as mixtures. This
is the most direct confirmation of the accuracy of
random-collage models where this mixture property is
fundamental.

We wish to explain our emphasis on Haar wavelet
filters in this study. Because of the simplicity of Haar
filters, any structure in the statistics can be directly
related to pixel values (see for example Huang et al.,
2000) for an analysis of the local image structure in
range images. It also seems that Haar filters show the
non-Gaussian structure in local image patches clearer
than smooth filters.

There appear to be two types of non-Gaussian be-
havior found in the statistics of filter responses. The
first is the high kurtosis of the distribution of such filters
(Field, 1987). Independently, Grenander and Srivastava
(2000) and Wainwright and Simoncelli (2000) propose
that this is the result of the filter response being a
product of an independent “contrast factor” and a “ge-
ometry factor” reflecting the geometry of a contrast-
normalized image. The kurtosis of such products is the
product of the kurtosis of the factors, hence is 9 if the
factors were Gaussian.

The second type of non-Gaussian behavior concerns
the joint histogramp(x)dx of k filters Rk, k≤ 2, and
considers the equi-probable contoursp = cnst. If these
are not ellipsoids, the filters are not jointly Gaussian,
not even a “scale mixture of Gaussians”, i.e. a prod-
uct of a scalar contrast factor and a Gaussian dis-
tributed vector Wainwright and Simoncelli (2000).2

It seems that Haar filters produce more non-elliptical
contours than smooth filters: compare (Zetzsche et al.,
1993; Simoncelli, 1999, esp. Fig. 5) with (Huang and
Mumford, 1999, Fig. 8)—hence, we use them as a
stronger test for our model. The fact that a dead-leaves
model withcircular leavesand smoothing reproduces
these irregular equi-probability contours shows that the
contours are not simply an artifact of the interaction of
Haar filters with horizontal and vertical edges in natural
images.

The paper is organized as follows. In Section 2, we
will introduce and analyze an approximately scale-
invariant dead leaves model, discussing the need for
large and small cut-offs in the sizes of the templates
and their scaling behavior. In Section 3, we com-
pare smoothed dead-leaves images with two large
databases of natural images. We look first in de-
tail at the derivative statistic and the scaling be-
havior. A considerable variation in this statistic is
encountered in different classes of natural scenes
and these will be compared to different versions of
the dead leaves model. After this we consider the
joint histogram of pairs of Haar wavelet responses.
Finally, we look at the two-pixel co-occurrence
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statistics and the effects of smoothing in the
model.

2. Dead Leaves Model with Approximate
Scale Invariance

2.1. Basic Set-up. A 2.1D Sketch of the World

Our model is based on the notion that the world can be
broken down into approximately independent discrete
objects of different sizes. When viewed, the 3D world
creates a collage of objects that occlude each other (see
Fig. 1):

Imagine a simplified 3D picture, where the viewed
surfaces of objects are modeled as rigid planar tem-
plates parallel to the image plane; and each template is
at a random position(x, y, z), wherez is the distance to
the plane. Mathematically, we write the solid world as⋃

i

(Ti ⊕ si ), (1)

where si are points from a uniform Poisson process
5 = {(xi , yi , zi )} in R3 (orR2× [0, zmax]) of intensity
λ; andTi are closed sets inR2× {0}, centered at0 and
of random sizesri .

Each templateTi is furthermore painted with some
albedoai . In Section 2.5, we assume a uniform albedo
ai , and disk-like templates; but in principle,ai can be
a function ofTi , and the template can be of any shape,

Figure 1. (a) Computer-simulated sample from a dead leaves model; see Section 2.5 for details. The image is here a collage of discrete objects
which partially occlude one another. Compare with (b) a computer-simulated sample from the standard Gaussian model, where there are no
clear objects and borders. Both images here are approximately scale invariant.

e.g. a face or a tree (fixed shape), or a polygon with
random sides and angles (random shape function).

We assume that the random variablesr1, r2, . . . and
a1,a2, . . . are independent samples fromf (r ) and
p(a), respectively. The variablesri andai can be re-
garded as markings of5, but we can also (according
to the marking theorem, Kingman, 1993) consider the
set of points

5∗ = {(xi , yi , zi , ri ,ai )} (2)

as a Poisson process in the product spaceR2 ×
[0, zmax] × [rmin, rmax] × [amin,amax] with measure

dµ∗ = λ f (r )p(a) dx dy dz dr da. (3)

Equations (1)–(3) define the 3D world of objects—
the physical world. The next issue is how to map the
3D world to 2D images. In a model with transparent
objects (see for example the random wavelet expansion
in Mumford and Gidas (2000) an imageJ(x, y) is given
by an arithmetic sum:

J(x, y) =
∑

i

ai , (4)

wherei is such that(x − xi , y− yi ) ∈ Ti .
In our model, however, objects areopaque. We

define the imageI (x, y) by (orthographic) projec-
tions with occlusions, and letzmax→∞ for complete
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coverage.3 This gives

I (x, y) = ai (x,y)(x − xi , y− yi ), (5)

where

i (x, y) = arg min
i
{zi | (x − xi , y− yi ) ∈ Ti }. (6)

is the index of theclosestobject in a certain (x, y)-
direction.

2.1.1. Remarks on Density Parameter and Sampling.
A Perfect Simulation of the Dead Leaves Model.

1. In the images (Eq. (5)) withzmax→∞, the density
parameterλ does not affect the amount of “clut-
ter” or other statistics in the image samples—as
they do in a transparent world (Eq. (4)) wherezmax

has to be finite: The images are created by a pro-
cess which looks at allz ≥ 0, and there is no ex-
plicit z-dependency in the model. Thus, rather than
sampling in 3D (from the Poisson process5), we
can place random templates in an ordered sequence
front to back (the order corresponding to the rela-
tive distance to the viewer) until the background is
completely covered. The latter construction is used
in Section 2.5 for the numerical simulation of dead
leaves images.

2. Furthermore, it can be shown (Kendall and Th¨onnes,
1998) thata front-to-back simulation until complete
coverageis equivalent to the conventional back-to-
front simulation4 of the dead leaves model until sta-
tionarity. In other words, the construction delivers
exact samples from the equilibrium distributionof
a Markov chain{I (k)(x, y)} where

I k(x, y) =
{

I (k−1)(x, y) if (x, y) /∈ Tk

ak if (x, y) ∈ Tk
(7)

for k = 1, 2, . . . , and random templatesTk with
grey levelsak.

2.2. Condition for Scale Invariance:
Cubic Law of Sizes

As mentioned before, one of the most striking prop-
erties of natural images is an invariance to scale. This
puts a strong constraint on realistic stochastic models
for natural images.

In Ruderman (1997) scaling is related to a power-
law size distribution of statistically independent re-
gions, but the discussion is limited to scaling of the

second-order statistics, and dead-leaves models with
disks. In this section, we use a different formalism—
the full probability measure of a Poisson process—to
show that higher-order scaling, which has been ob-
served empirically in the filter responses of natural
images (Ruderman, 1994; Zhu and Mumford, 1997),
places further restrictions on the images. The objects
can also be of general shape.

The argument is that images are fully scale-invariant,
i.e.

Pr{I (x, y)} = Pr{I (σ x, σ y)}, (8)

if the Poisson process5∗ (Eq. (2)) is invariant under
“2D scaling”

x→ σ x, y→ σ y, r → σ r. (9)

Note that the Poisson process5∗ inR2× [0, zmax]×
[rmin, rmax] × [amin,amax] is uniquely determined by
the measuredµ∗ (Eq. (3)). Now, scaling according to
Eq. (9) leads to a Poisson process

5∗σ = {(xi , yi , zi , ri ,ai )} (10)

inR2× [0, zmax]× [rmin/σ, rmax/σ ]× [amin,amax] with
measure

dµ∗σ = λσ 3 f (σ r )p(a) dx dy dz dr da. (11)

Assume, for the time being, that we can ignore the
short- and long-distance cut-offs in object sizes. The
model above then scales if and only if

dµ∗ = dµ∗σ . (12)

Furthermore, if Eq. (12) is true, then the imagesI (x, y)
and I (σ x, σ y)—which are projections of samples
from 5∗ and5∗σ (see Eq. (5)), respectively—are sta-
tistically equivalent.

Equation (12) leads to a constraint on the sizesr of
the objects:

f (r ) = σ 3 f (σ r )⇒ f (r ) ∝ r−3, (13)

We refer to this as the “cubic law of sizes”.

2.3. The Need for Cut-Offs in Sizes

It has previously been shown (Mumford and Gidas,
2000) that transparent models (the “random wavelet
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expansion”) can be fully scale invariant. A possible
problem with a model with occlusions is that we need
size cut-offsrmin andrmax to obtain non-trivial images.
It can be shown that (assume cubic law of sizes): As
rmin → 0, the images are totally covered by micro-
scopic objects. For eachr0, the proportion of area cov-
ered by objects of size< r0 goes to 1. On the other
hand, asrmax→ ∞, the probability of an image con-
taining only one object tends to 1 (see Appendix A
for proof). Almost all image samples will then have
uniform intensities.

The finite bounds introduce characteristic length
scales in the system; thus, preventing full scaling. Be-
low, we investigate the second-order statistics and scal-
ing of an occlusion model with finite cut-offs.

2.4. Predictions for Dead Leaves Model
with Finite Cut-offs

We assume disk-like templates with random radii from
a 1/r 3 distribution wherermin ≤ r ≤ rmax.

As before, we consider the continuous case—where
I (x, y) is a function inR2 of continuous variablesx
andy. (The effects of discretization and smoothing are
studied empirically in Section 3.)

2.4.1. Two-Point Co-occurrence Function.Because
the images are both translationally and rotationally in-
variant, the two-point statistics depend only on thedis-
tancebetween the points.

Let

K (a, b, x) = Pr{I (x1)=a, I (x2)

= b | ‖ x1− x2‖ = x}, (14)

be the co-occurrence function or the joint probability
density function (joint pdf) for two points in a random
imageI ; a andb are grey levels, andx is the distance
between the points.

In our occlusion model, each object has auniform
intensity, and different objects are statistically indepen-
dent. This gives

K (a, b, x) = [1− Psame(x)] · f (a) · f (b)

+ Psame(x) · f (b) · δ(a− b), (15)

wherePsame(x) is the probability that two points a dis-
tancex apart belong to the same object,δ represents the
Dirac delta function, andf is the probability density

function for the intensities of the objects. The first term
in Eq. (15) represents points ondifferent objects, and
the second term represents points on thesame object.
This “mixture nature” is fundamental for the model.

In Appendix B, we show that

Psame(x) = B(x)

2 log
( rmax

rmin

)− B(x)
, (16)

where B(x) is defined by Eq. (39), and a numerical
estimate is given by Eq. (41).

From K (a, b, x), we can deriveall statistics of
second order; for example, the difference stati-
stics (Section 2.4.2) and the covariance statistics
(Section 2.4.3) of two points.

2.4.2. Difference Statistics. The random variable is
here the differenceD between two points a fixed dis-
tancex apart. From Eq. (15), we have that the proba-
bility density function ofD is

fD(z) = [1− Psame(x)] ·
∫ ∞
−∞

f (a) · f (a+ z) da

+ Psame(x) · δ(z).

Figure 2(a) shows a numerical example forf (a) =
λ
2 exp(−λ|a|) (λ = √2, rmin = 1/8, rmax = 2048,
x = 1). For the “double-exponential” form (which is a
first approximation of log-contrast for natural data, see
Section 3.1) we get

fD(z) = [1− Psame(x)] · λ
2

4
e−λ|z| ·

(
|z| + 1

λ

)
+ Psame· δ(z). (17)

The peak atD = 0 corresponds to regions with no con-
trast variation (“same object”), and the tails correspond
to edges in the images (“different objects”). As we shall
see in Section 3.2.2 (Fig. 5(b)), the peak gets shorter
and the straight tails becomeconcavewhen images are
filtered—but the mixture nature of two distributions
(one concentrated at 0, and one with heavy tails) will
still remain.

2.4.3. Covariance Statistics.We write the covariance
function schematically as

C(x) = 〈(I (0)I (x)〉 (18)
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Figure 2. Predictions for a continuous dead leaves model with cubic law of sizes and cut-offsrmin = 1/8 andrmax = 2048. a: Difference
statistics. The figure shows the predicted log (probability) distribution ofD for a model with intensities according to a “double-exponential”
distribution;D is the grey-level difference for points a distance1 = 1 apart. The distribution has a sharp peak atD = 0, and long straight tails.
b: Covariance statistics. Thesolid lineshows the predicted covariance functionC(x); The overlappingdotted linerepresents a power-law fit
C(x) ≈ −0.33+ 0.91 · x−0.14.

where 0 is an arbitrary origin,x is a location in the
image, and the brackets imply an average over angles,
a shift over positions, and an ensemble average over
different imagesI (x) (with mean zero). From the co-
occurrence function in Eq. (14), we get

C(x) = C0Psame(x), (19)

where C0 = 〈I (0)〉2 is the variance, andPsame(x)
is given by Eq. (16). This covariance function is ap-
proximately a power-law for models with power-law
sized objects (see e.g. Ruderman (1997) for disks, and
Alvarez et al. (1999) for more general shapes).

Below we use the numerical expression in Eq. (41) to
get an estimate of howC(x) depends on the parameters
(i.e. the cut-offs) in a model with cubic law of sizes.

Figure 2(b) shows a numerical example forrmin =
1/8 andrmax= 2048. Thesolid linerepresents the pre-
dicted covariance function (Eq. (19)), and thedashed
line) a least-square-error fit (in the region 4< x < 128)
of this function to

C(x) = A+ B · x−η (20)

The two lines are almost completely overlapping; The
best fit occurs forη = 0.14.

We repeat the power-law fit for different values of
rmin andrmax, and find that the power-law approxima-
tion (Eq. (20)) is good for small values ofrmin and large
values ofrmax (e.g.rmin .1 andrmax&1024). Figure 3
shows how the numberη depends on the ratiormax/rmin.

The reason why the figure is interesting is that it
gives us an estimate of the deviation from scaling in
our model due to the finite cut-offs. Note thatfull scale
invariance defined by Eq. (8), implies a power spectrum
of the form 1/ f 2, and a covariance function withlog-
behavior—but scaling (with renormalization)

Pr{I (x)} = Pr{σ ν I (σx)}, (21)

leads to a power spectrum 1/ f 2−η, whereη = 2 · ν,
and a covariance functionC(x) with the power-law
form in Eq. (20). The numberη is often known as the
“anomalous dimension”.

2.5. Numerical Simulation of Dead Leaves Images

So far we have assumed that imagesI (x, y) are func-
tions of continuous variablesx andy. In reality, natural
images are given by measurements from a finite array
of sensors that average the incident light in some neigh-
borhood. We need to take these things into account in
the occlusion model: In Section 3 we analyze a database
of 1000 discretized dead leaves imagesI [i, j ] (i and
j are the row and column indices, respectively) with
subpixel resolution and subpixel objects.

Each image has 256× 256 pixels, a subpixel reso-
lution of 1/s pixels (length scale), wheres = 16, and
disks as templates. The radiir of the disks are dis-
tributed according to 1/r 3, wherer is betweenrmin =
1/8 pixels andrmax= 8 · 256= 2048 pixels.
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Figure 3. Relation between the numberη (“eta”) and the cut-offsrmin andrmax in the dead leaves model with disks and cubic law of sizes.
For each curve,rmax is fixed andrmin is varied. The data points are shown in a plot withη versus log2(rmax/rmin). The 4 curves are roughly
overlapping, which indicates that the numberη is a function of theratio rmax/rmin. Legend:4 rmax = 1024;◦ rmax = 2048;∗ rmax = 4096;
♦ rmax= 8192.

The exact construction is as follows: First, we make
an image which iss times larger than the final image;
for s = 16, this means 4096× 4096 pixels. Assume
that the “viewing screen” is defined by|x| ≤ 2048
and |y| ≤ 2048. In each iteration, we pick a ran-
dom position for (the center of) a disk, in anextend-
ed screen, defined by|x| ≤ 2048+ 16 · rmax and |y|
≤ 2048+ 16 · rmax—this is to avoid edge effects. The
disk is then assigned a radiusr from a 1/r 3 size distri-
bution with 16·rmin ≤ r ≤ 16 · rmax, and a random grey
levela according to the empirical marginal distribution
of log-contrast for natural images. We use the ‘front-to-
back’ construction in Section 2.1.1 to make sure that the
generated images are samples from a stationary prob-
ability distribution: First, we place theclosestobject
on the “screen”, and then we successively add objects
which are farther away until the background is filled.

Finally, we scale down the generated images by av-
eraging pixels in disjoint 16× 16 blocks—but other
ways of smoothing, such as convolution with a Gaus-
sian filter and subsampling, are also possible.

Figure 1(a) shows an example of a computer-
simulated dead leaves image.

3. Statistics of Natural Versus Synthetic Images

Below we compare the empirical statistics of the sim-
ulated dead leaves images (see Section 2.5 for details)
with natural images from the following two databases:

1. Database by van Hateren(van Hateren and van der
Schaaf, 1998). Contains about 4000 1024× 1536
calibrated B/W images of mixed urban and rural
scenes in Holland.

2. Database from British Aerospace(courtesy of Andy
Wright). Consists of 214 calibrated RGB images,
with 512× 768 pixels, of mixed urban and rural
scenes in Bristol, England. Each of these images
has been segmented by hand into pixels represent-
ing 11 different categories of scenes (see Table 1
and Fig. 4) The segmented database makes possible
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Table 1. Different categories and their frequencies.

Category Frequency Description

1 10.87 Sky, cloud, mist

2 37.62 Tress, grass, bush, soil, etc.

3 0.20 Road surface marking

4 36.98 Road surface

5 6.59 Road border

6 3.91 Building

7 2.27 Bounding object

8 0.11 Road sign

9 0.28 Telegraph pole

10 0.53 Shadow

11 0.64 Car

the examination of the statistics for each category
separately, as well as for the whole ensemble.

Both databases for natural images use calibrated im-
age data, i.e. the images measure light in the world
up to an unknown multiplicative constant in each im-
age. To obtain results which are independent of the
gain setting, we will work with thelog-contrastof the

Figure 4. Two sample images from the British Aerospace database and their segmentations into pixels belonging to different categories of
scenes (as defined in Table 1).

images—defined by

I [i, j ] = log(φ[i, j ])− 〈log(φ[i, j ])〉, (22)

whereφ[i, j ] are the calibrated grey-level values and
the average〈·〉 is taken over each image separately—
and use statistics which do not contain the (now addi-
tive) constant.

Furthermore, we will always graph thelogarithm
of probability, rather than probability itself, since the
log-scale better shows the nature of the tails in the
distributions.

3.1. Single-Pixel Statistics

The distribution of log-contrast for natural data has a
highly non-Gaussian shape with heavy, almost straight
tails (see Huang and Mumford, 1999). The single-pixel
statistic is however not very informative, as we can
strongly modify the histogram of an image without af-
fecting much of its perception. It is also trivial to get
a good fit with the dead leaves model—as we always
can choose the gray levels of the templates according
to the empirical distribution of log-contrast in natural
data.



44 Lee, Mumford and Huang

3.2. Derivative Statistics and Scaling

In this section, we study the difference of adjacent pixel
values, and how well histograms of this difference or
derivative statistic scale. More precisely: For each log-
contrast imageI , we define a scaled-down imageI (N)

by computing the average of pixel values in disjoint
N × N blocks. The statistic we investigate is the hori-
zontal derivative, which for scaleN, is given by

D = I (N)[i, j + 1]− I (N)[i, j ]. (23)

If natural images are fully scale invariant,D(N) should
have the same distribution for different values ofN.
When we measure departure from scale invariance, we
look atboththe change of the shape of the histograms
after rescaling and the change in the standard deviation
of D.

3.2.1. Generic Natural Scenes.First, we note that
for large databases of natural image, the derivative
statisticD is a surprisingly stable statistic—consistent
across different datasets. We also get an excellent fit of
the probability density function ofD to a generalized
Laplace distribution5

f (x) ∝ e−|x/s|
α

, (24)

wheres andα are parameters related to the variance
and kurtosis. Figure 5(a) (bottom) shows three curves

Figure 5. Derivative statistics and scaling. a: Natural images. The difference statisticD between adjacent pixels is amazingly stable, both
across different databases and different scales. The bottom three curves, which are overlapping, correspond to the log-histograms ofD for van
Hateren’s database (solid), the British Aerospace database (dashed), and a fit to a generalized Laplace distribution with parameterα = 0.68
(dotted). The top four curves (which have been shifted vertically for visibility) correspond to the log-probability ofD(N) for scalesN = 1 (solid),
2 (dashed), 4 (dash-dotted), and 8 (dotted). b: Synthetic images. The distribution ofD for the model (solid, bottom part) can be approximated
with a generalized Laplace distribution with parameterα = 0.68 (dashed, bottom part). After a contrast normalization, the log-histograms of
D(N) at scalesN = 1, 2, 4, and 8 lie almost on top of each other (see the top four curves which have been shifted for visibility).

which are almost the same. These corresponds to: (1)
the log-histogram ofD, at scale 2, for van Hateren’s
database, (2) the corresponding log-histogram for the
unsegmented British Aerospace database, and (3) a fit
to a generalized Laplace distribution withα = 0.68.

The second observation is that the histograms ofD
for generic images scale almost fully: Fig. 5(a) (top)
shows four very similar curves. These correspond to the
log-probability distribution ofD(N), for N = 1, 2, 4, 8
in van Hateren’s database (the curves have been shifted
vertically for visibility). Except at the first scale (solid
line), the histograms lie almost completely on top of
each other.

3.2.2. Dead Leaves Model for Generic Scenes.We
now compare the marginal distribution ofD for natural
data, with results from the occlusion model (Fig. 5(b).
We are able to reproduce themain featuresseen in nat-
ural data: (1)the singularity at0,6 which corresponds
to large regions with no contrast variation, and (2) the
heavy tails, which correspond to edges in the images.

The tails are slightly less concave than for natural
data; but as before, we get an excellent fit to a gen-
eralized Laplace distribution (see the two overlapping
curves in Fig. 5(b), bottom): In this case, a Laplace
distribution withα = 0.78 (α = 0.68 for natural data).

Figure 5(b), top part, shows that the synthetic im-
ages are close to scale invariant. Theshapeof the
log-histograms ofD remains the same after scaling,
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but the standard deviation of the derivative decreases
somewhat withN (a factor ofN0.1)—this is because
of the anomalous dimensionη in the system (see
Section 2.4.3). In the figure we have made a contrast
renormalization (by dividing out the change in the stan-
dard deviation)—the histograms ofD for 4 different
scales then lie almost completely on top of each other.

3.2.3. Different Types of Natural Scenes.The seg-
mentation of the British Aerospace database makes it
possible to study different types of natural scenes.

To simplify our statements, we merge categories (see
Table 1 for definitions and frequencies) that have simi-
lar statistics, and get four larger groupings: “sky” (cat-
egory 1), ”vegetation” (categories 2, 7), “road” (cate-
gory 4), and “man-made” (categories 6, 8, 9, 11).

Figure 6 shows the histograms of the derivativeD(N)

for these new categories, after a contrast renormaliza-
tion. For the categories “vegetation”, “man-made”, and

Figure 6. Derivative statistics and scaling for different types of natural scenes after a contrast renormalization. a: Vegetation. b: Man-made.
c: Sky. d: Roads. The plots show the log (probability) ofD(N) for scalesN = 2 (solid), 4 (dashed), 8 (dash-dotted), and 16 (dotted).

“sky”, the shapesof the histograms at different scales
are about the same (except at the first scale)—this is
consistent with the assumption thatI scales according
to Eq. (21). For the sky category, theshapeseems to
depend onN.

To study the scaling properties more in detail, we
plot the logarithm of the standard deviation against the
logarithm ofN, and perform a linear regression. This
is equivalent to fitting a power spectrum of the form
C/ f (2−η): The slope gives us an estimate of half of the
“anomalous dimension”η, or if Eq. (21) is valid, the
scaling exponentν.

From Fig. 6 and the linear regression, we conclude
that, although natural images as a single ensemble are
very nearly scale invariant with a derivative histogram
described by a concave-shaped generalized Laplace
distribution (see Section 3.2.1), major differences ex-
ist between different categories, or different parts of
images:
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1. For the vegetation category, the log-histograms of
D have relatively straight tails. In terms of power
spectrum fall-off, we get C/ f 1.8—which is similar
to Ruderman’s and Bialek’s results (Ruderman and
Bialek, 1994).

2. For the man-made category, the log-histograms of
D have heavy “shoulders” with a convex shape. The
power spectrum scales like C/ f 2.3.

3. For the sky category (including clouds), the den-
sity of the distribution forD is mainly concentrated
around 0. The power spectrum scales like C/ f 1.0,
i.e. the category is intermediate between white noise
and the standard category withη ≈ 0.

4. For the road category, the log(histograms) are
slightly concave. The power spectrum scales
roughly like C/ f 1.4.

Figure 7. Different versions of the dead leaves model, and their derivative statistics and scaling (no renormalization). a: “Vegetation-like”—
Computer-simulated sample with relatively high clutter and elliptic primitives. b: “Man-made-like”—Computer-simulated sample with low
clutter and square primitives. c: Log-histogram ofD(N) for “vegetation-like” and scalesN = 2 (solid), 4 (dashed), 8 (dash-dotted), and 16
(dotted). d: Corresponding log-histograms for “man-made-like.”

3.2.4. Different Versions of the Dead Leaves Model.
There are many ways one can vary the dead leaves
model so that it fits different types of natural scenes.
One can use different kinds of templates, and one can
vary the size cut-offsrmin andrmaxto fit the level of clut-
ter and the anomalous dimension in the images. Here
we show two different versions of the occlusion model
that will be compared to the categories “vegetation”
and “man-made” in the previous section:

Forvegetation-like, we generate 500 relatively clut-
tered images with 256× 256 pixels (see Fig. 7(a)).
We use elliptic primitives of random orientation. The
lengthL of the major axis is distributed according to
1/L3, where 2≤ L ≤ 1024 pixels, and the ratio be-
tween the lengths of the minor and major axes is a
uniform deviate between 1/8 and 1/2. We color the
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ellipses according to a “double-exponential” distribu-
tion with mean 0 and variance 1, but add some Gaussian
noise for smoothing.

For man-made-like, we generate 500 cleaner-
looking images with square primitives (see Fig. 7(b))
The lengths of the side of the square is distributed ac-
cording to 1/s3, where 2≤ s ≤ 2048 pixels. We color
the squares according to a uniform intensity distribu-
tion with mean 0 and variance 1. As before, we add
some Gaussian noise for smoothing.

Figures 7(c) and (d) summarize the results. The
two plots show the log(probability) of the derivative
D(N) at scalesN = 2, 4, 8, and 16—for “vegetation-
like” and “man-made-like”, respectively. Compare the
plots to Fig. 6(a) and (b) for the vegetation and man-
made categories. Furthermore, linear regression gives
the scaling exponent−0.09 for the occlusion model
with high clutter and elliptic primitives, and the ex-
ponent 0.13 for the model with low clutter and square
primitives; Compare this to the “vegetation” and “man-
made” categories where the exponents are−0.11 and
0.15, respectively.

3.3. Joint Statistics of Haar Wavelet Responses

In this section, we look at the distribution of 2× 2
blocks of pixels. Ifai, j = I [i0 + i, j0 + j ], where
0 ≤ i, j ≤ 1, is such a block, then we look at the
distribution of(a00,a01,a10,a11) ∈ R4. The mean is a
relatively un-informative statistic, hence we look at the
projection toR3 given by the 3 Haar wavelet responses:

cH = 1

2
(a00+ a01− a10− a11)

cV = 1

2
(a00− a01+ a10− a11) (25)

cD = 1

2
(a00− a01− a10+ a11)

which we call the horizontal, vertical and diagonal fil-
ters, respectively. These Haar wavelets show clearly,
though only partially, the very specific nature of local
statistics (or textons) in natural images.

We use the same definitions as in (Buccigrossi and
Simoncelli, 1999), to describe the relative positions of
wavelet coefficients: We call the coefficients at adjacent
spatial locations in the same subbandbrothers (left,
right, upper, or lower—depending on their relative po-
sitions; note that the basis functions are disjoint), and
we call the coefficients at the same position, but differ-
ent orientations,cousins.

Figure 8 shows the joint wavelet statistics for natu-
ral images. We have plotted the contour levels for the
joint histograms of some different coefficient pairs (at
scaleN = 2). A common feature for all the histograms
is that a cross-section through the origin has a peak
at the center and long tails—the shape is very similar
to the derivative density function in Section 3.2. More
complicated structures also show up in the polyhedra-
like contour-level curves: The corners and edges (in
the level curves), which are sometimes rounded and
sometimes cuspidal, reflect typical local features in
the images. For example, in the plot for the horizon-
tal (cH1)—left brother (cH2) pair (Fig. 8(c)), the edges
along the diagonalcH1 = cH2 indicate the frequent oc-
currence of extended horizontal edges in natural scenes.
In the plot for the horizontal (cH)—diagonal (cD)
pair (Fig. 8(b)), the cusp atcH = cD corresponds
to the T-junctiona01 = a11 anda00 6= a10; the cusp at
cH = −cD corresponds to the T-junctiona00 = a10

anda01 6= a11.
In Fig. 9, we have plotted the contour-level curves

of the corresponding joint histograms for the synthetic
images. We see that the plots are very similar to those
in Fig. 8: The corners and edges all appear in the right
places, and the shape of the curves are also almost
the same as those in Fig. 8.This is a strong indica-
tion that the occlusion model captures much of the lo-
cal image structure in natural data.Compare this to
the Gaussian model, for example, which totally fails
here—all contours in the wavelet domain are ellip-
tic for these images. The random wavelet expansions
(Eq. (4)) can reproducesomeof the polyhedra-like
contours for images withlow levels of clutter (i.e.
few objects), but the edges become more rounded,
and the contours more elliptic for higher levels of
clutter.

In Fig. 9, we also see some smaller differences
between natural and computer-simulated images—for
example, in thecH − cV plot (Fig. 9(a)) and thecH1-
cH2 plot (Fig. 9(c)). In natural scenes, there’s a strong
bias in the horizontal and vertical direction, because of
tree trunks, the horizon, buildings etc. The computer-
simulated images, on the other hand, have disk-like
primitives only, and are also rotationally invariant. This
leads to more rounded shapes in Fig. 9(a) and (c).

3.4. Long-Range Covariances

So far we have only looked at small-scale statistics, i.e.
statistics for single pixels or nearest-neighbor pixels.
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Figure 8. Joint statistics in the wavelet domain for natural images. The contour plots show the log(probability) distributions for different
waveletcoefficient pairs at scale 1. a: Horizontal(cH) and vertical(cV) components. b: Horizontal(cH) and diagonal(cD) components. c:
Horizontal component (cH1) and its left brother (cH2). d: Vertical component (cV1) and its left brother (cV2).

Here we extend our comparison of natural and simu-
lated images to long-range statistics.

The simplest long-range statistic is probably the
correlation between two pixels in, for example, the
horizontal direction. We can calculate the covariance
function (Eq. (18)) or, alternatively, the variance of the
difference of two pixel values, i.e.

V(x) = 〈|I (x)− I (0)|2〉, (26)

where〈·〉 denotes an average over all images. The latter
formulation is a good choice when images are offset by
an unknown constant. The two functions are otherwise

equivalent as

V(x)+ 2C(x) = constant. (27)

In Huang and Mumford (1999), Huang shows that
the “difference function” for natural images (in a fixed
direction) is best modeled by

V(x) = a1+ a2 · x−η + a3 · x, (28)

wherex is the separation distance between two pix-
els, anda1, a2, a3 are constants. The power-law term
dominates the short-range behavior, while the linear
term dominates at large pixel-distances. The linear term
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Figure 9. Joint statistics in the wavelet domain for synthetic images. Compare the contour plots with those in Fig. 8 for natural images: The
similarities indicate that the dead leaves model captures much of the local image structure of natural data.

indicates that, while the scale-invariance property holds
almost exactly locally (i.e. for filters with small sup-
ports), there are systematic deviations from scale in-
variance on a large scale. This may be due to the pres-
ence of sky in the images.

In the synthetic images, the linear term is absent.
The difference function for the simulated images is
best modeled by a power-law

V(x) = b1+ b2 · x−η (29)

for both short and large pixel-distances (see Section
2.4); In the Fourier domain, this corresponds to a power
spectrum of the form 1/k2−η.

Figure 10 maybe shows this clearer. Here we have a
log-log plot (base 2) of the derivative ofV(x) for nat-
ural images (solid line) and computer-simulated dead
leaves images (dashed line). A power-law behavior ac-
cording to Eq. (29), would lead to a straight line with
slope(1+ η).

The fit between natural images (solid line) and
synthetic images (dashed line) is good in the re-
gion where both curves are relatively straight, i.e. for
2< log2 x< 5, or distances between 2 and 32 pixels.
The slopes here are−1.19 (η = 0.19) for natural
data, and−1.16 (η = 0.16) for synthetic images (cf.
η = 0.14 for the continuous model in Fig. 2(b)). For
natural images, however, the curve turns and becomes
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Figure 10. Convariances. The figure shows a log-log plot (base 2) of the derivative of the difference functionV(x) for natural images (solid
line) and synthetic images (dashed line).

almost horizontal for large distances (about 1/10 of the
image size); this indicates a linear term in the difference
function.

3.5. Two-Pixel Co-occurrence Statistics

In this section, we compare the complex behavior of the
full co-occurrence statistics in the occlusion model and
natural data—previously, we have been comparing the
auto-correlation or variance of the difference of two
pixel values, and the full histogram of differences in
adjacent pixel values. Below, we also test the basic
assumption in the occlusion model that natural images
can be segmented into two parts: “same object” and
“different objects”.

In the calculations, we have symmetrized the data so
that Pr{I (0) = a} = Pr{I (0) = −a}. This is to take
away the bias towards high intensity values, caused by
the sky in natural images.

3.5.1. Bivariate Fit for Computer-Simulated Images.
A Modified Occlusion Model. As mentioned before,
the continuous occlusion model (Eq. (15)) gives good
predictions for high-resolution images, but dead leaves

images with subpixel resolution by means really give
the best fit to natural data (derivative statistics, scaling,
joint statistics of Haar wavelet coefficients, etc.). Thus,
one needs to examine how much the formula for the co-
occurrence functionK (a, b, x) is changed by subpixel
averaging.

As an ansatz for the co-occurrence function of two
pixels in dead leaves imageswith smoothing, we write
(cf. Eq. (15))

K̃ (a, b, x) = Pr{I (0) = a, I (x) = b}
= [1− λ(x)] · q(a) · q(b)
+ 2λ(x) · hx(a+ b) · gx(b− a). (30)

As before, we assume that different objects are statis-
tically independent. The first term in Eq. (30) corre-
sponds to pixels ondifferentobjects, and is equivalent
to the product in Eq. (15) of the pdf:s of single-pixel
intensities. In the second term—which represents pix-
els on thesameobject—we replace the previous delta
function with a new probability density functiongx

that is highly concentrated around 0. We also intro-
duce a new probability density functionhx which is
similar to the functionfx for single-pixel intensities.
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(The subindexx in hx and fx indicates that the func-
tions may depend on the distancex between the pixels.)

For convenience, we make a variable substitution

ux = I (x)+ I (0)
(31)

vx = I (x)− I (0)

The joint pdf of the new variables is given by

Q(u, v, x) = 1

2
[1− λ(x)] · q

(
u+ v

2

)
· q
(

u− v
2

)
+ λ(x) · hx(u) · gx(v). (32)

We now fit the empirical joint pdfQsynth(u, v, x)
of computer-simulated images to the expression in
Eq. (32); As a best-fit criterium we minimize the

Figure 11. Functions that give the best bivariate fit of computer-simulated images (to Eq. (32)) at different distancesx. a: Therings represent
theλ-values from a bivariate fit atx = 1, 2, 4, 8, 16, 32, 64, 128, and thesolid linerepresentsPsame(x) for a continuous model with uniformly
colored objects. b–d: The 3 plots show the 1D functionsq, gx andhx from the bivariate fit in (a). The functions depend very little onx; hx and
q are also almost the same. Legend:◦ x = 1;× x = 2;+ x = 4; ? x = 8;¤ x = 16;♦ x = 32;5 x = 64;4 x = 128.

Kullback-Leibler distance. For fixedx, the bivariate
fit gives us a value forλ(x), and expressions for the 1D
functionshx, gx andq.

In Fig. 11(a), we see howλ(x) varies with the dis-
tancex between the pixels. We compareλ-values for
x = 1, 2, 4, 8, 16, 32, 64, 128 from the bivariate fit
(rings) to the analytically calculatedPsame(x) in the
continuous model (solid line). The figure shows that
λ(x) > Psame(x) for fixedx; that is the probability that
two points belong to thesameobject is larger for the
smoothed dead leaves images than for the continuous
images. This is also what we expect of a model where
small regions of intensity variations are considered to
be parts/textures of larger objects, rather than separate
objects.
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Figure 12. Co-occurrence functionQsynth(u, v, x) and best bivariate fit (to Eq. (32)) for numerically simulated dead leaves images.Left: The
plots show the contour levels(−9,−7,−5,−3,−1) for the logarithm of the joint pdf of the sumu and differencev for pixels a distancex = 2, 16
and 128 pixels apart (horizontal direction).Right: The plots show the corresponding contour levels for the best fit to Eq. (32).

The 1D functionsq, gx andhx that we have used
for the bivariate fit atx = 1, 2, 4, 8, 16, 32, 64, 128
are plotted in Fig. 11(b)–(d). Note that the functions
depend very little onx; hx andq are also almost the
same.

Figure 12 shows the results of a bivariate fit forx = 2
(top), x = 16 (center), and x = 128 (bottom). In

the left column, we have the contour levels ofQsynth

(u, v, x); The right column shows the best fit of the data
to Eq. (32). The agreement between the data and the
fit is very good, which shows that we can use Eq. (30)
or Eq. (32) to accurately describe the two-pixel statis-
tics of dead leaves images with subpixel resolution by
means.
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Figure 13. The plots show the contour levels(−9,−7,−5,−3,−1) for the logarithm of the joint pdf of the sumu and differencev for pixels a
distancex = 2, 16 and 128 pixels.Left: Qnat(u, v, x) for natural images.Center: The best fit ofQnat(u, v, x) to Eq. (32).Right: Qsynth(u, v, x)
that correspond to similarλ-values.

3.5.2. Bivariate Fit for Natural Images. Finally, we
test how well the modified mixture model fits natural
data in van Hateren’s database. Figure 13 (left and cen-
ter columns) hows three examples of a bivariate fit to
Eq. (32): The distances between the pixels arex = 2
(top), x = 16 (bottom), and x = 128 (bottom). Al-
though the model is simple, the fit is good—that is,
we are able to write the full two-pixel co-occurrence
statistic of natural images as a mixture (“same” and
“different” objects).This is a direct confirmation of the
accuracy of the dead leaves model.

In the current version of the dead leaves model,
different objects areindependent. This seems to be a
reasonable first approximation. The “objects” defined
by such a model, however, become very complex and
large, because of the dependencies between different
parts of natural scenes. In Fig. 14, we plot the 1D func-
tionshx, gx andq that we get from a best fit to Eq. (32)
at separation distancesx = 1, 2, 4, 8, 16, 32, 64, 128.
As before, the functionshx andq are almost the same,
and depend little onx. However, the functiongx, which
is related to thedifference in intensityof pixels on the
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Figure 14. Functions that give the best bivariate fit of natural images (to Eq. (32)) at different distancesx. a: Thestarsrepresent theλ-values
from a bivariate fit of natural images atx = 1, 2, 4, 8, 16, 32, 64, 128; These are compared to theλ-values for synthetic images(rings). b–d:
The 3 plots show the 1D functionsq, gx andhx for the bivariate fit of natural images. Note that the functiongx , which is related to the intensity
difference of pixel values on the same object, becomes wider for larger values ofx. This indicates that the “objects” from the bivariate fit have
parts, and parts of parts (see text). Legend:◦ x = 1;× x = 2;+ x = 4; ∗ x = 8;¤ x = 16;♦ x = 32;5 x = 64;4 x = 128.

same“object”, depends strongly onx: The function is
relatively concentrated around 0 for smallx, but be-
comes wider for larger values ofx. The dependency of
gx onx indicates that the “objects” haveparts, andparts
of parts. Assume, for example, that a whole region of a
forest is classified asone“object”. Because the forest
divides into trees, and trees, for example, have leaves,
we would expectgx to become successively narrower
for smaller values of the pixel distancex. This is also
what we found for the bivariate fit of natural images, but
not for the bivariate fit of the synthetic images which
lack this “object tree structure”.

Furthermore, we note that the contour plots for both
natural (Fig. 13, left) and synthetic images (Fig. 12,
left) become more rectangular for increasing values

of x—as the probability of the pixels being on differ-
ent “objects” increases. Forfixed x, λ(x) for natural
data is considerably larger thanPsame(x) for computer-
simulated images (see Fig. 14(a); also compare to
Fig. 10(a) where, for fixedx, the varianceV(x) of
the difference of two pixel values is much larger for
synthetic than for natural data). Again, this is an in-
dication that a more realistic variant of the occlu-
sion model should include objects with parts. How-
ever, if we compare contour plots ofQsynth(u, v, x)
andQnat(u, v, x) that correspond tosimilarλ-values—
compare the left and right columns in Fig. 13—we get
an excellent fit between the dead leaves model and
natural data, for a range of different pixel separation
distances.
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3.6. Comparison to Natural Data:
Summary of Results

– Single-Pixel Statistics.A quantitative fit is here pos-
sible. We can color the templates of a dead leaves
model according to the observed contrast distribu-
tion of natural data.

– Derivative Statistics. The smoothed dead leaves
images are able to simulate the generalized Laplace
distribution, observed in natural data, with a sin-
gularity at 0 and long concave tails. (Both Gaus-
sian models and scale-invariant additive models fail
here.)

– Scaling. The derivative statistic of generic images is
almost fully scale invariant. The dead leaves images
scale after a contrast renormalization.

– Joint Statistics of Haar Wavelet Responses.The
contour plots of joint wavelet responses are highly
non-ellipsoidal and clearly show the non-Gaussian
nature of contrast-normalized images. The model
with disks gives a good qualitative fit to natural data,
but the detailed structures of the contour plots are
different due to the simplifications in the model.

– Covariance Statistics.For natural images, a power-
law dominates the short-range behavior of the co-
variance function, while a linear term dominates the
long-range covariances. For the dead leaves model
with cubic law of sizes, we have an approximate
power-law for all distances.

– Two-Pixel Co-Occurrence Statistics.For natural
images, the bivariate statistics of two pixels ap-
proximately fit a parametric form suggested by a
dead leaves model with smoothing. The expression
implies a mixture nature—“same” vs “different”
objects—where the intensities of pixels on differ-
ent objects are independent, and the sum and differ-
ence of intensities are independent for pixels on the
same object.

4. Discussion

We have investigated whether a simple version of Math-
eron’s dead leaves model can simulate the statistics of
natural images better than Gaussian models and addi-
tive stochastic models. In most of the analysis, we as-
sume statistically independent disk-like templates with
no contrast variation, and with sizes distributed ac-
cording to a cubic power law. The building stones of
our model are (1) the concept of structured objects (2)
approximate scale invariance, and (3) occlusions.

We have compared the statistics of simulated dead
leaves images with the empirical statistics of two large
databases of natural images. The study includes, for ex-
ample, the scaling of pixel difference histograms, the
full co-occurrence statistics of two pixels, and the joint
statistics of pairs of Haar wavelet responses (see Sec-
tion 3.6 for a summary of the results). In all these cases,
we found an excellent qualitative agreement, and good
quantitative similarity, between the occlusion model
and natural data. At this point, this is the only model
which comes close to duplicating the elementary statis-
tics of natural images. The results indicate that this fam-
ily of models (with structured objects and occlusions) is
relevant to natural images—and perhaps also necessary
for an understanding of the underlying structures of im-
ages. We believe that continued work in this direction—
such as a quantitative fit of the dead leaves model to
real images; see for example the methods in Zhu and
Guo (2000) and Grenander and Srivastava (2000)—
will benefit many computer vision application; in par-
ticular, clutter removal and object/background seg-
mentation in a natural scene environment of high
variability.

We have furthermore found evidence that the cur-
rent version of the dead leaves model can be further
improved by (1) using suitable primitives, (2) adding
textures to the primitives, and (3) taking the hierarchi-
cal structure of objects into account. For a more real-
istic variant of the occlusion model, we may also need
to generate objects in groups or near the surface of a
parent, as in a random branching process.

Appendix

As before, we consider a dead leaves model with disk-
like template and a 1/r 3 size distribution, where the
disk radiusrmin ≤ r ≤ rmax. The results in Appendix
A and B are specific to this choice. (By using the for-
malism of mathematical morphology (Serra, 1982), it
is however possible to derive similar expressions for
more general shapes.)

A. Derivation of Psame(x) for Dead Leaves Model
with Finite Cut-offs in Sizes

Below we follow the calculations in (Ruderman, 1997)
of the probability Psame(x) that two given points a
distancex apart belong to the same object.
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Ruderman has previously shown that at stationarity

Psame(x) = p2(x)

p1(x)+ p2(x)
, (33)

wherep2(x) is the probability that the front-most ob-
ject, which is not occluded by any other objects, con-
tains both points in the pair, andp1(x) is the probability
that the object contains exactly one of the two points.
Furthermore, he has derived an expression for the con-
ditional probability

g(x, r )=Pr{x2∈ A | x1∈ A; ||x1− x2|| = x}, (34)

for a circleA with radiusr . In the dimensionless quan-
tity ξ = x/r , the function has the form

g̃(0≤ ξ ≤ 2) = 2

π

arccos

(
ξ

2

)
− ξ

2

√
1−

(
ξ

2

)2
 .

(35)

(g̃(ξ) = 0, for ξ > 2).
In our model, the radii of the disks are distributed

according to 1/r 3 wherermin ≤ r ≤ rmax.7 We then
have

p1(x) = 2
∫ rmax

rmin

[1− g(x, r )] p(r ) dr

(36)

p2(x) =
∫ rmax

rmin

g(x, r )p(r ) dr,

where

p(r ) dr ≈ dr

r ln
( rmax

rmin

) (37)

is the probability that a given point in the image belongs
to an object with a radius in the interval [r, r + dr ].

By inserting the above equations into Eq. (33), we get

Psame(x) = B(x)

2 ln
( rmax

rmin

)− B(x)
, (38)

where

B(x) =
∫ rmax

x

rmin
x

g̃

(
1

u

)
du

u
. (39)

andg̃(ξ) is given by Eq. (35).

To simplify the integral above, we approximate the
functiong̃(ξ) in Eq. (35) with a third-order polynomial
g̃poly(ξ). The best fit gives (0≤ ξ ≤ 2)

g̃(ξ) ≈ g̃poly(ξ) = a3ξ
3+ a2ξ

2+ a1ξ + a0 (40)

with coefficientsa0 = 1.0,a1 = −0.61,a2 = −0.051,
anda3 = 0.052.

Inserting Eq. (40) into Eq. (39) leads to a numerical
estimate ofB(x), and thus a numerical expression for
Psamein Eq. (38). For 2rmin ≤ x < 2rmax,8

B(x) ≈ a3

3
(8− u3)+ a2

2
(4− u2)

+a1(2− u)+ a0 ln

(
2

u

)
, (41)

whereu = x
rmax

.

B. Can we let rmax→∞?

In the occlusion model, there is the notion that the larger
rmax is, the more likely the image is to be covered by a
single object. Below, we show that if we allow infinite-
sized objects, the probability of this happening is ex-
actly one.

For simplicity, we assume that the image screen is
circular with radiusa. As before, we place disks in
R2 × [rmin, rmax] according to a Poisson process with
rate function

λ(x, y, r ) = c

r 3
, (42)

wherec is a constant andr is the disk radius. A trans-
formation to polar coordinates(ρ, α) gives

λ∗(ρ, α, r ) = cρ

r 3
(43)

—that is, the points(ρ, r ) form a Poisson process on the
product space(0,∞)× (rmin, rmax) with rate function

λ∗∗(ρ, r ) = 2πcρ

r 3
. (44)

Now consider the front-most object in the image.
The object either covers thewhole image—in which
case, the image has a uniform intensity—or the object
overlaps part of the screen. Below, we calculate the
probability that an image has a constant grey level.
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Figure 15. Three examples of objects (shaded area) that “overlap” the image screen (dashed circle). Top: left and right: The object “overlaps”
but doesnot “cover” the screen.Bottom: The objectboth“overlaps” and “covers” the screen.

This is given by

P[ I = constant]= µcover

µoverlap
, (45)

whereµcover is the measure of the set of “covering” ob-
jects in the Poisson process, andµoverlapis the measure
of the set of “overlapping” objects.

The definitions for “overlap” and “cover” are
straightforward: An objectoverlapsthe screen if

ρ < a+ r, (46)

and an objectscoversthe screen if

r ≥ ρ + a. (47)

Figure 15 shows three examples of objects that “over-
lap” the screen. In the top two figures, the objects “over-
lap” but donot“cover” the screen. In the bottom figure,
the objectboth“overlaps” and “covers” the screen.

The quantitiesµcover andµoverlap can be calculated
by integration. Equations (44) and (47) give

µoverlap= 2πc
∫ rmax

r=rmin

(∫ a+r

ρ=0
ρ dρ

)
dr

r3

= πc
∫ rmax

rmin

(a+ r )2

r 3
dr

= πc

[
log

(
rmax

rmin

)
+ 2a

rmin

(
1− rmin

rmax

)

+ a2

2r 2
min

(
1−

(
rmin

rmax

)2
)]
.

Similarly, Eqs. (44) and (46) give

µcover= 2πc
∫ r−a

max

ρ=0

(∫ rmax

r=ρ+a

dr

r 3

)
ρ dp
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= πc
∫ r−a

max

0

(
1

(ρ + a)2
− 1

rmax2

)
ρ dp

= πc

[
log

(
rmax

a

)
+ 2a

rmax
− 3

2
− a2

2r 2
max

]
.

(48)

Thus,

P(I = constant) = µcover

µoverlap
→ 1 asrmax→∞

(49)

for rmin finite. Without an upper cutoff on the object
sizes, a single object will cover the whole screen.
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Notes

1. This was pointed out to the senior author by A. Rosenfeld in the
80’s.

2. In Wainwright and Simoncelli’s analysis, a set of 11 filters sup-
ported at 4 adjacent positions is considered. For these a single
contrast factor is used, hence the ellipsoidal contours. However,
for patches at a distance of 4 or more pixels, they use different
contrast factors, hence the scale mixture of Gaussians model pro-
duces non-elliptical equi-probability contours for such wavelet
coefficient patches (Fig. 4, op. cit.).

3. The probability that a point (x, y) in the image is covered by
an object is equal to 1− e−αλzmax, whereα = E(‖T‖) denotes
the expected area of the random templates; Hence, the complete
coverage forzmax→∞.

4. The original name “dead leaves” comes from a picture of leaves
falling down on the ground, and an observer viewing them from
above.

5. This distribution has previously been suggested for wavelet fil-
ter responses; e.g. for application to the entire set of wavelet
coefficients (Mallat, 1989) or individual subbands (Simoncelli
and Adelson, 1996), and in applications to denoising problems
(Moulin and Liu, 1999).

6. Note that scale invariant transparent models (random wavelet
expansions) fail to capture the singularity at 0 (Mumford and
Gidas, 2000), which seems to be always present in natural data
for any zero mean filter response (how pronounced the peak is
depends on the amount of texture of “objects” in the images).
This is an important clue thatocclusionsplay a significant role in
images, and that dead leaves models are closer to the truth than
models where images are written as sums of “objects”.

7. Ruderman’s model allows infinite-sized objects, and is only well
behaved for power-law size distributions 1/r α with α > 3. These
distributions, however, do not lead to higher-order scaling.

8. Forx > 2rmax, B = 0. Forx < 2rmin,

B(x) ≈ a3

3
(s3 − u3)+ a2

2
(s2 − u2)+ a1(s− u)

+a0 ln

(
rmax

rmin

)
, (50)

wheres= x
rmin

andu = x
rmax

.
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