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Abstract

Aims

To investigate the right ventricular (RV) strain in pectus excavatum (PE) patients using car-

diac magnetic resonance tissue tracking (CMR TT).

Materials and methods

Fifty consecutive pectus excavatum patients, 10 to 32 years of age (mean age 15 ± 4

years), underwent routine cardiac magnetic resonance imaging (CMR) including standard

measures of chest geometry and cardiac size and function. The control group consisted of

20 healthy patients with a mean age of 17 ± 5 years. RV longitudinal and circumferential

strain magnitude was assessed by a dedicated RV tissue tracking software.

Results

Fifty patients with images of sufficient quality were included in the analysis. The mean right

and left ventricular ejection fractions were 55 ± 5% and 59 ± 4%. The RV global longitudinal

strain was -21.88 ± 4.63%. The RV circumferential strain at base, mid-cavity and apex were

-13.66 ± 3.09%, -11.31 ± 2.79%, -20.73 ± 3.45%, respectively. There was no statistically sig-

nificant decrease in right ventricular or left ventricular ejection fraction between patients and

controls (p > 0.05 for each). There was no significant difference in RV global longitudinal

strain between two groups (-21.88 ± 4.63 versus -21.99 ± 3.58; p = 0.93). However, there

was significant decrease in mid-cavity circumferential strain magnitude in pectus patients

compared with controls (-11.31 ± 2.79 versus -16.19 ± 2.86; p < 0.001). PE patients had

a significantly higher basal circumferential strain (-13.66 ± 3.09% versus -9.76 ± 1.79;

p < 0.001) as well as apical circumferential strain (-20.73 ± 3.45% versus -12.07 ± 3.38) than

control group.
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Conclusion

Mid-cavity circumferential strain but not longitudinal strain is reduced in pectus excavatum

patients. Basal circumferential strain as well as apical circumferential strain were increased

as compensatory mechanism for reduced mid-cavity circumferential strain. Further studies

are needed to establish clinical significance of this finding.

Introduction

Pectus excavatum (PE) is the most common congenital deformity of the anterior chest wall

that affects both appearance and function [1]. Pectus excavatum occurs in 1 in 300–400 births

with a male predominance [1, 2]. The degree of abnormal chest wall deformity determines its

functional effect, particularly its cardiopulmonary impairment and physiologic limitations [2].

Patient may be completely asymptomatic or presents with exertional dyspnea, decreased

endurance, tachycardia, and palpitations [2, 3]. The cause of PE remains unknown.

Impairment in the growth of the sternum and biomechanical properties of costal cartilage, are

proposed in the pathogenesis [4]. Many patients with PE have associated alterations in right

ventricular (RV) morphology and function and cardiopulmonary disturbance may contribute

to symptoms in patients with PE [5–7]. Guidelines for the assessment of cardiovascular func-

tion remain undefined.

A non-contrast computerized tomographic (CT) scan is helpful to examine the deformity

of the bony and cartilaginous skeleton, which clearly finds any cardiac compression or dis-

placement. Assessing RV function using echocardiography is limited by the complex RV

geometry, retrosternal position, and complex motion [8], especially in pectus excavatum due

to deformity of the anterior chest wall. In contrast, MRI provides highly reproducible informa-

tion on RV myocardial motion and function and can be used instead of CT scan to reduce

radiation exposure in pectus excavatum. Cardiac magnetic resonance (CMR) imaging has

emerged as validated tool in patients with pectus excavatum [6, 9, 10]. The purpose of our

study is to investigate the RV strain in pectus excavatum patients using cardiac magnetic reso-

nance tissue tracking (CMR TT).

Materials and methods

Patient population

Fifty pectus excavatum patients without known RV pathology, 10 to 32 years of age (mean age

15 ± 4 years), underwent cardiac magnetic resonance imaging (CMR) as part of standard clini-

cal evaluation. The control group consisted of 20 healthy patients with a mean age of 17 ± 5

years. The control group was referred for the following suspected conditions: atypical chest

pain, suspected coronary artery anomaly, cardiac mass by echocardiography (typically promi-

nent moderator band). We excluded not only patients with reduced LVEF, segmental wall

motion abnormalities but also abnormal longitudinal and circumferential strain. Pectus exca-

vatum patients or the control group with known conditions affecting RV function such as con-

genital heart disease, cardiomyopathy, valvular heart disease, sleep apnea, morbid obesity,

known or suspected pulmonary hypertension, were excluded from the study. This study was

approved by the institutional review board (IRB) of Cincinnati Children’ Hospital Medical

Center.
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CMR acquisition

Standard CMR acquisition was performed as reported previously [11]. Briefly, imaging was

performed on a 1.5 Tesla scanner (Ingenia, Philips Healthcare; Best, Netherlands), using a

phased-array coil. A horizontal long-axis image and a short-axis RV stack from the atrioven-

tricular ring to the RV apex were acquired using an SSFP pulse sequence (repetition time of

3.2 ms; echo time of 1.7 ms; flip angle of 60˚; sequential 7 mm slices with no interslice gap).

There were 30 phases per cardiac cycle resulting in a mean temporal resolution of 30–40 ms.

RV longitudinal and circumferential strain magnitude was assessed by a dedicated RV tis-

sue tracking software [12]. The following clinical variables were collected for each patients:

age, sex, body mass index (BMI- kg/m2), body surface area (BSA-m2), and heart rate (bpm).

The cardiac and chest MR variables were: LV and RV end—diastolic volume (EDV-ml), end—

systolic volume (ESV-ml), stroke volume (ml) as well as indexed (BSA) values were calculated,

ejection fraction (EF-%), left ventricular mass index (g/m2), cardiac output (L/min), cardiac

index (L/min/m2), Haller index, correction index, and depression index. The Haller index is a

ratio of the transverse diameter of the chest to the anterior-posterior diameter, measured from

the inner aspect of the sternum to the anterior aspect of the vertebral body at the level of great-

est sternal depression (Fig 1)[13]. Correction index and depression index were evaluated

according to methods previously described [14, 15].

Tissue tracking

The RV myocardial deformation was quantified using a prototype of RV specific CVI42 Tissue

Tracking software (Circle Cardiovascular Imaging, Calgary, Canada). First, an experienced

operator traced the RV endocardial and epicardial borders at the end diastolic (ED) phase in

both short-axis and long-axis cine images. The software then constructed a 3D deformable

Fig 1. Pectus index and CMR tissue tracking. (A) The Haller Index (HI) is a ratio of the transverse diameter

of the chest (line a) to the distance between the posterior aspect of the sternum and the anterior portion of the

vertebra (line b): HI = a/b. The correction index (CI) measures the depression of the sternum relative to the

anterior chest: CI = [(c-b)/c] x 100. (B) Right ventricular longitudinal strain. (C) and (D) Mid-cavity

circumferential strain and peak value was recorded. The yellow colored contours show the tracking of the

ventricle.

https://doi.org/10.1371/journal.pone.0189128.g001
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myocardial model based on the tracing, assuming the myocardium is nearly incompressible

[16]. In each of the subsequent frames the displacements of the myocardial tissues, including

the borders were determined using a gradient-based optical flow method with an incompress-

ible model constraint. The propagated myocardial tissue across the cardiac cycle was verified

by the operator to ensure the accuracy of the propagation. Strain values (along the longitudi-

nal, circumferential, and radial directions) for each tissue point as well as the global strain val-

ues for the short-axis and long-axis views were automatically derived by the software [12]. The

right ventricle was divided into basal, mid-cavity, and apical segments to derive regional defor-

mation parameters.

Strain analysis

The horizontal long axis was used for calculation of longitudinal strain, while the short axis at

the level of greatest sternal depression was used to calculate mid-cavity circumferential strain

of the right ventricle. The apical and basal circumferential strain were calculated from the api-

cal and basal short-axis views respectively. The interventricular septum was not included in

the strain calculation. Endocardial and epicardial contours were drawn in the cardiac phase

with the most distinct myocardium boundaries; RV trabeculations were carefully excluded.

The software automatically propagated contours throughout all phases. Longitudinal and mid-

cavity circumferential strain were computed as shown in Fig 1 [12].

Statistical analysis

Continuous variables are expressed as mean ± standard deviation (SD) for normal distribu-

tions and median + interquartile range for non-normal distributions. Normality was tested

using the Shapiro–Wilk test. For the evaluation of qualitative variables, we used the Chi-Square

test. To test for significant differences between continuous variables in two groups, indepen-

dent sample t-tests were performed for normally distributed variables and Mann-Whitney U

test was performed for variables with non-normal distribution. Spearman’s Rho correlation

test was performed to evaluate the relationships among continuous variables. Statistical analy-

sis was performed using the SPSS 22 software program (SPSS Inc., Chicago, IL, USA). A P
value of< 0.05 was considered statistically significant.

Results

Demographic, and CMR-derived parameters for the whole sample are shown in Table 1 and

S1 File. The mean age of patients was the 15 ± 4 (years). There were 39 men with a mean age of

16 ± 4 years and 11 women with a mean age of 14 ± 4 years (P = 0.12). The mean value of

LVEF and RVEF were 58.97 ± 4.07; 55.06 ± 4.94, respectively (Table 1). The mean Haller

index was 5.71 ± 2.93 with a median index of 4.68 (4.05 to 6.78) (Table 2). There were 46

patients with severe chest wall phenotype, defined as a Haller index over 3.25. The LV global

longitudinal strain and was -21.88 ± 4.63%. The RV circumferential strain at base, mid-cavity

and apex were -13.66 ± 3.09%, -11.31 ± 2.79%, -20.73 ± 3.45%, respectively. Differences were

not statistically significant for age, right ventricular or left ventricular ejection fraction

(p> 0.05 for each). There was no significant difference in RV global longitudinal between

patients and controls (-21.88 ± 4.63% versus -21.99 ± 3.58%; p = 0.93). However, there was sig-

nificant decrease in mid-cavity circumferential strain magnitude in pectus patients compared

with controls (-11.31 ± 2.79 versus -16.19 ± 2.86; p< 0.001) (Table 3). PE patients had a signif-

icantly higher basal circumferential strain (-13.66 ± 3.09% versus -9.76 ± 1.79; p< 0.001) as

well as apical circumferential strain (-20.73 ± 3.45% versus -12.07 ± 3.38) than control group.
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There were no correlations between RVEF and Haller index (Spearman’s = 0.039, p = 0.79),

RV longitudinal strain and Haller index (Spearman’s = -0.029, p = 0.84), RV mid-cavity cir-

cumferential strain and Haller index (Spearman’s = -0.148, P = 0.31), RVEF and correction

index (Spearman’s = 0.013, p = 0.93), RV longitudinal strain and correction index

Table 1. Baseline characteristics of fifty pectus excavatum patients.

Age (years) 15 ± 4

Sex (male) 39 (78%)

Heart rate (bpm) 77 ± 18

BSA (m2) 1.61 ± 0.25

BMI (kg/m2) 18.8 ± 2.8

Left Ventricle

Absolute

EF (%) 59 ± 4

LVEDV (ml) 142 ± 34

LVESV (ml) 59 ± 17

SV (ml) 83 ± 19

CO (L/min) 6.2 ± 1.5

Normalized (BSA)

EDV (ml/m2) 88 ± 13

ESV (ml/m2) 36 ± 7

SV (ml/m2) 52 ± 7

CI (L/min/m2) 3.9 ± 0.8

Mass (gm/m2) 45 ± 10

Right Ventricle

Absolute

EF (%) 55 ± 5

RVEDV (ml) 153 ± 41

RVESV (ml) 70 ± 23

SV (ml) 83 ± 19

CO (L/min) 6.2 ± 1.5

Normalized (BSA)

EDV (ml/m2) 94 ± 16

ESV (ml/m2) 43 ± 10

SV (ml/m2) 52 ± 8

CI (L/min/m2) 3.9 ± 0.8

Continuous variables are expressed as mean ± standard deviation. Categorical variables are presented as n

(%)

BSA: body surface area; EF: ejection fraction; EDV: end-diastolic volume; ESV: end-systolic volume; SV:

stroke volume; CO: cardiac output; CI: cardiac index

https://doi.org/10.1371/journal.pone.0189128.t001

Table 2. Chest index.

Haller index 4.68 (4.05 to 6.78)

Correction index 40.85 (26.47 to 78.90)

Depression index 0.67 ± 0.35

Normally distributed continuous variables are presented as mean ± standard deviation. Non-normally

distributed continuous variables are presented as median (inter-quartile range).

https://doi.org/10.1371/journal.pone.0189128.t002
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(Spearman’s = 0.036, p = 0.81), RV mid-cavity circumferential strain and correction index

(Spearman’s = -0.202, p = 0.16) (Fig 2).

Discussion

CMR TT has emerged as a useful technique for assessing RV myocardial function [12, 17].

This study assessed RV myocardial strain using CMR TT in a cohort of 50 patients with pectus

excavatum. Our study showed no significant difference in RV longitudinal strain between the

patients and normal controls. Patients with pectus excavatum had trend towards lower RVEF

compared to the healthy control group, but it did not reach statistical significance. However,

mid-cavity circumferential strain magnitude is significantly decreased in patient group. This

may be explained by geometric distortion of the RV due to sternal compression in pectus exca-

vatum. Saleh et al studied 30 patients with pectus excavatum with age ranges 14–67 years who

underwent CMR. They found decreased RV ejection fraction (53.9 ± 9.6 versus 60.5 ± 9.5;

p = 0.013), reduced right ventricular short axis dimensions (p< 0.05) both at end diastole and

systole, and increased right ventricular long axis dimensions at end diastole (p< 0.05) com-

pared to controls [10]. Töpper et al performed CMR in 38 patients (mean age 21 ± 8.3; 31

men) before and after surgical correction and found RVEF was decreased before surgery and

improved significantly after successful correction (45.7% vs 48.3%, P = 0.0004) [9]. RVEF is

significantly decreased in study of Saleh et al and Töpper et al but not in our study. This can be

explained by severity of pectus excavatum. In our study, the Haller index was 5.71 ± 2.93 lower

than those of Saleh et al (9.3 ± 5.0) and Töpper et al (9.64 ± 0.75). Furthermore, our study

found that patients with PE had the higher basal and apical circumferential strain which may

be explained as compensatory mechanism for reduced mid-cavity circumferential strain.

Severeal recent studies demonstrated,in conditions leading to RV pressure or volume overload

such as tetralogy of Fallot, pulmonary hypertension, or Systemic RV, the contractile pattern

changes from longitudinal to circumferential shortening [18–20]. This might be the reason

why longituidinal strain was not increased in our study. In addition, the RV with deep longitu-

dinal myocardial layers that are aligned base to apex are likely to affect RV strain [21], which is

also supported by the fact that a significant base-to-apex segmental strain gradient with much

higher apical circumferential strain value in PE.

Recent studies demonstrate that for evaluating ventricle dysfunction, myocardial strain

value can be used as a highly sensitive marker as opposed to the ejection fraction, since a

reduction in the strain often precedes a decline in EF [22, 23]. De Siqueira et al retrospectively

enrolled 116 patients (age 52.2 ± 12 years, 73.6% women) referred to CMR for pulmonary

Table 3. Basic demographics and patients characteristics between two groups.

Normal (n = 20) Pectus patient (n = 50) P

Age (years) 17 ± 5 15 ± 4 0.12

RVEF (%) 57± 4 55 ± 5 0.12

LVEF (%) 58 ± 3 59 ± 4 0.46

RV longitudinal strain (%) -21.99 ± 3.58 -21.88 ± 4.63 0.93

RV circumferential strain (%)

Basal -9.76 ± 1.79 -13.66 ± 3.09 < 0.001

Mid-cavity -16.19 ± 2.86 -11.31 ± 2.79 < 0.001

Apex -12.07 ± 3.38 -20.73 ± 3.45 < 0.001

Continuous variables are expressed as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0189128.t003
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hypertension evaluation who underwent right heart catheterization. The author found the all

strain values (longitudinal strain and circumferential strain) were significantly decreased in

patients with pulmonary hypertension with normal RVEF compared to control group [23].

We did not find correlations between RVEF, RV longitudinal strain and RV circumferential

strain with Haller index and correction index. Saleh et al also found no significant correlation

between the RVEF and pectus severity index (r = -0.2061, p = 0.2746) [10]. The author also

explain the possible reasons that included chest reconfiguration and cardiac left lateral shift

[10]. These factors could be compensatory mechanisms to avoid the impairment in RV systolic

function. Sigalet found the similar result that pectus index has not been shown to have any cor-

relation with stroke volume [24].

Limitations

Limitations of our study include its retrospective nature leading to possible selection bias. We

were unable to report segmental longitudinal strain as well as radial strain due to poor repro-

ducibility which is known as current software limitation. Moreover, the measured strain will

Fig 2. Relationship between pectus severity index and right ventricular ejection fraction, myocardial

strain.

https://doi.org/10.1371/journal.pone.0189128.g002
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be slightly different than the actual strain that would be measured by tracking the same myo-

cardium without through plane motion. There is no easy way to fix this limitation using the

2-d system that we employ for strain measurement. The only true way to correct for this is

using a 3-d cine acquisition to get an isotropic 3-d data set combined with a 3-d strain analysis.

While that has been shown to work in limited research studies, the technique suffers from sig-

nificantly reduced spatial and temporal resolution. This limitation affects equally PE and con-

trol patients, as such it is unlikely that it would affect findings of our study.

Conclusion

Mid-cavity circumferential strain but not longitudinal strain is reduced in pectus excavatum

patients and is more sensitive marked for occult RV dysfunction than RVEF. There was a com-

pensatory increase in basal as well as apical circumferential strain representing RV adaptation

to maintain systolic RV function without simultaneous increase in RV longitudinal strain. Fur-

ther studies are needed to establish clinical significance of this finding.

Supporting information

S1 File. Datasheet for pectus excavatum study.
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