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ABSTRACT

Detecting when a household is occupied by its residents is
fundamental to enable a number of home automation ap-
plications. Current systems for occupancy detection usually
require the installation of dedicated sensors, like passive in-
frared sensors, magnetic reed switches or cameras. In this
paper, we investigate the suitability of digital electricity me-
ters – which are already available in millions of households
worldwide – to be used as occupancy sensors. To this end,
we have collected fine-grained electricity consumption data
along with ground-truth occupancy information for 5 house-
holds during a period of about 8 months. Our results show
that using common classification methods it is possible to
achieve occupancy detection accuracies of more than 80%.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems–
Human Information Processing; H.4 [Information Sys-
tems Applications]: Miscellaneous

General Terms

Design, Experimentation, Measurement, Human Factors

Keywords

Smart Meter, Electricity, Occupancy, Context-Aware

1. INTRODUCTION
Occupancy detection is a main building block of commer-

cial and residential building automation systems. For in-
stance, systems that regulate heating, ventilation and cool-
ing (HVAC) rely on estimated occupancy information to
control buildings’ temperature and air-flow [14, 21]. Sim-
ilarly, many lighting systems rely on the detection of pres-
ence (or absence) of people in doorways or meeting rooms
to switch lights on (or off) [8]. Dickerson et al. showed that
the detection of changes in occupancy patterns can even help
revealing clinical diseases such as depression [7].
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Despite the large number of potential application scenar-
ios the, detection of buildings occupancy is still a cumber-
some, error-prone and expensive process [18]. Occupancy is
typically sensed using dedicated devices such as passive in-
frared (PIR) sensors, magnetic reed switches or cameras [18].
Such sensors need to be purchased, installed, calibrated,
powered and maintained. This poses a number of critical
constraints, especially in domestic environments. First, the
overall costs of the occupancy sensing infrastructure must be
kept low. This often implies that only few, cheap and pos-
sibly imprecise sensors are available. Also, battery-powered
sensors are often used to avoid the need of power cables to
be deployed. The availability and reliability of the sensors
might thus be affected by depleted batteries waiting to be
replaced. Further, in a domestic setting one of the (often
technically unexperienced) residents takes over the role of
the “building administrator” who installs and maintains the
system. Faulty installations and lack of maintenance are
a frequent consequence. Taken together these constraints
might cause occupancy detection systems to become unreli-
able and induce faulty behaviours in the home automation
systems relying on them. This can in turn cause inconve-
nience for the residents and hamper their acceptance of the
systems. At the same time, many sensor devices are already
available in typical households and can be used to perform
occupancy detection in an opportunistic manner. These de-
vices can contribute to improve the overall reliability of the
system or reduce its cost. For instance, smartphones can
be used to detect the presence of one or more of the resi-
dents within the household, as we have also discussed in our
previous work [12].

In this paper, we investigate the possibility of using digi-
tal electricity meters as part of an opportunistic occupancy
sensing infrastructure in domestic settings. To this end, we
have run an extensive experiment to collect electricity con-
sumption data of 5 households over 8 months. Household
residents have recorded ground truth occupancy data us-
ing a custom Android application that we have developed
for this study. For later analysis as well as indirect valida-
tion of our measurements we have also collected data from
PIR sensors and the device-level electricity consumption of
selected electrical appliances. We have analysed this data
set using standard classification techniques to evaluate the
occupancy detection accuracy achievable by using only elec-
tricity meters as occupancy sensors. Our results show that
occupancy classification from electricity consumption data is
feasible. In particular, an average detection accuracy of over
80% can be obtained in most settings. To the best of our



knowledge, this is the first study that provides a quantitative
analysis of the possibility to detect occupancy from electric-
ity consumption data. This is also due to the fact that large
data sets including both electricity consumption data and
ground-truth occupancy information have been missing.

We discuss related work in section 2, the setup of our data
collection and the data cleaning we have performed on the
raw data in section 3 and our results in section 4.

2. RELATED WORK
We see our work at the intersection of two main areas: (1)

sensing deployments to detect occupancy and improve en-
ergy efficiency in residential and commercial buildings; (2)
analysis of electricity consumption data to observe and in-
fluence users’ electricity consumption behaviour.

2.1 Occupancy sensing to increase energy ef-
ficiency

Many authors report about occupancy sensing systems to
save energy [18]. In residential environments, most of these
approaches aim at controlling the HVAC system more effi-
ciently, as heating and cooling account for most of the energy
expenditure in an average household. To optimise heating
or cooling of the building, the authors typically utilise var-
ious sensors to determine the occupancy state of the build-
ing or of individual rooms. For instance, Lu et al. instru-
mented households with passive infrared (PIR) sensors and
reed switches on entrance doors to detect when household
occupants are at home and when not [14]. They use this data
as ground truth information to evaluate the performance of
an occupancy prediction algorithm, which is in turn used
to drive a smart heating control system. The occupancy
state of the household is computed every five minutes us-
ing a Markov model. The model takes as input the hour of
the day and the number of firings of the PIR sensors and
of the reed switches. Similarly, Scott et al. developed Pre-
Heat [21], a system that senses and predicts occupancy to
efficiently control the heating system. In their deployment,
the authors used active RFID tags in three US households
as well as motion sensors in two UK homes to monitor per
room occupancy. While in our deployment we also use PIR
sensors to monitor if people are at home, the focus of our
work is on exploring how the electricity consumption curve
can be used to estimate the occupancy state of a household.

In commercial buildings, detailed knowledge about the
current (and future) state of the building can be used to
optimise HVAC, lighting, and the use of individual appli-
ances. To this end, researchers explored many types of sens-
ing systems to obtain the occupancy state of the building
and the activities of its occupants [8, 18, 22]. Dodier et
al., for instance, equipped two offices with a sensor at the
telephone handset and three PIR sensors each. By feeding
past and current sensor readings into belief networks (i.e.
a class of graphical probability models), the authors esti-
mate the number of persons in the offices as well as their
location. Similarly, Milenkovic et al. equipped three offices
with PIR sensors and plug-in power meters, which measured
the energy consumption of the computer screens [16]. Using
layered hidden Markov models (LHMMs), the authors esti-
mated the number of persons in the office as well as their
current activity (e.g. desk work). Monitoring activities of
occupants at such a fine-grained level requires a large num-
ber of sensors. Our work focuses on residential settings,

however, where deploying sensors is often infeasible for cost
reasons and due to deployment issues. Thus, in our work, we
focus on estimating occupancy state of the household solely
by analysing its electricity consumption.

2.2 Analysis of electricity consumption data
Measuring and analysing the electricity consumption of

households has been addressed by many researchers in the
past for different applications. Through the analysis of coarse-
grained consumption data (e.g. in the order of 1 measure-
ment per 15 or 30 minutes), for instance, it has been shown
that energy providers can identify usage patterns in the elec-
tricity consumption data to predict future electricity con-
sumption [6] or model daily routines to improve a providers’s
supply management [1]. Other researchers have proposed
approaches that can cluster hundreds of households into
groups of consumers according to their load profile [20, 24]
or estimate socio-economic characteristics of a household [3].
Using these techniques, it is possible for an energy provider
to identify the households that are unoccupied during the
day. To those particular households, energy providers could
offer a special tariff or provide them with a system to auto-
matically switch off their heating system when they are not
at home. In [17], Molina et al. suggest that such occupancy
patterns can be detected from the electricity consumption
data. However, the authors made the observation by visu-
ally inspecting the load curves and do not perform a data
analysis based on the real occupancy state of the households.

By analysing the fine-grained electricity consumption of
a household (e.g. in the order of 1 Hz), many researchers
have tackled the problem of inferring which appliances are
running at what time. Zoha et al. [26] and Zeifman et
al. [25] provide two good reviews of related work in “non-
intrusive load monitoring” (NILM). One of the first NILM
approaches has been proposed by George Hart in 1992 [10].
Hart’s method identifies characteristic step changes in the
electricity consumption. By comparing these step changes
monitored in the electricity consumption with a previously
recorded signature database, Hart claims to detect when
appliances are being switched on or off. More recent ap-
proaches, such as the one from Kim et al. [11], pursue un-
supervised disaggregation. These unsupervised approaches
do not require a training phase, but require only an explicit
labelling of those appliances detected in the load curve.

As some devices are (typically) only used when the oc-
cupants are at home, NILM would implicitly provide occu-
pancy detection as required by many energy efficiency appli-
cations. However, if the electricity consumption is measured
at a granularity of at most 1 Hz, only a few appliances (e.g.
the refrigerator, or the washing machine) can be detected
reliably from the data [4]. Increasing the accuracy of de-
tecting individual appliances in the electricity consumption
data requires a more characteristic signature of each appli-
ance, which can be achieved by increasing the measurement
granularity. As Gupta et al. show, this approach can iden-
tify and classify most consumer electronic and fluorescent
lighting devices correctly with a mean accuracy of more than
93% [9]. However, while it requires special hardware to mea-
sure the electricity consumption at multiple kilohertz, our
approach relies only on 1 Hz consumption data, which can
be obtained from an off-the-shelf electricity meter.

To evaluate the performance of a NILM algorithm, re-
searchers typically rely on a publicly available data set. A



data set often used is the Reference Energy Disaggregation
Dataset (REDD), which was collected by Kolter et at. [13].
It contains electricity consumption data measured in 5 homes
in the US along with plug-level consumption measurements
of individual circuits or appliances. More recently, Barker
et al. published the UMASS Smart* Home Data Set [2],
which contains very detailed submeter measurements as the
authors deployed 21 – 26 circuit meters into three homes
each. However, since neither of these two data sets contains
ground truth information about the occupancy patterns of
the inhabitants, we collected our own data set in 5 Swiss
households over the course of 8 months.

In contrast to all approaches described above, our work
estimates the occupancy pattern of a household solely by
analysing its electricity consumption. To this end, we per-
formed an extensive data collection, because there is – to the
best of our knowledge – no data set available that contains
both electricity consumption and ground truth occupancy
information of households.

3. DATA COLLECTION
To estimate the occupancy state of a household based on

its electricity consumption, we performed an extensive data
collection in collaboration with a utility company in Switzer-
land. We collected a multi-modal data set in 5 households
over the course of 8 months. In addition to the electricity
consumption of a household the data set contains sensor in-
formation collected from passive infrared (PIR) sensors and
smart power outlets. All households also recorded ground
truth occupancy data through a tablet computer. This sec-
tion describes the selection of households, our measurement
infrastructure, an overview over the data set, and the steps
that were necessary for data cleaning.

3.1 Selection of households
For the data collection we chose the participating house-

holds among employees of a utility company in Switzerland.
Prospective participants were required to fill in a question-
naire. The questionnaire contained 12 questions targeting
the number, age and occupation of the occupants, type of
property, number of entry doors, typical occupancy, type
of heating, pet ownership as well as the level of affinity for
technology of the respondent. The affinity for technology
was requested through a 7-point Likert scale (1: low, 4:
medium, 7: very high). The purpose of the questionnaire
was to ensure households have a reasonable size (i.e. 1-4
occupants) and participants are well-disposed to technical
equipment. Also, we avoided to include households in which
occupants used more than one entrance, because we wanted
each participant to log occupancy through a tablet computer
that is located next to the main entrance. To each partici-
pant we handed a privacy statement that described in detail
the data gathered and their ability to opt out at any time
during data collection.

Table 1 shows an overview of the households which we ul-
timately selected to participate in the data collection. Three
of the households consist of two occupants, while two of the
households are occupied by four persons. Four out of the
five respondents live in detached houses, only the occupants
of household 2 live in a flat. All respondents except for one
classified themselves as tech-savvy.

3.2 Measurement infrastructure

Table 1: Overview of the participants.
House-

No. of occupants
Type of Affinity for

hold property technology

1 2 adults, 2 children House 7/7
2 2 adults Flat 7/7
3 2 adults House 7/7
4 2 adults, 2 children House 4/7
5 2 adults House 6/7

Household 1

PIR Sensor

Internet

Aggregation Server

Kettle Smart Electricity

Meter

TV Plugwise

Wireless Router
Flukso

SheevaPlug

Household 5

Other devices

Tablet PC

Figure 1: Schematic overview of whole deployment.

Figure 1 shows a schematic view of the components de-
ployed during the data collection. We installed a smart
electricity meter (model E750) from Landis+Gyr1 in each
of the participating households. The meters were connected
behind the electricity meter and not used for billing pur-
poses. The E750 offers an Ethernet interface to access mea-
surements at 1 Hz granularity through the Smart Message
Language (SML) protocol2. SML is a request-response pro-
tocol and allows the client to send a request specifying the
variables to be read. To query the measurements from the
electricity meter through SML, we wrote a C-based program
called Pylon3 and deployed it on a Fluksometer4 into each
household. The Fluksometer is a commercial device with an
Ethernet and a Wi-Fi interface that runs the open source
router software OpenWrt5. Pylon sent the latest measure-
ments to a server once per second using the Flukso’s Wi-Fi
interface and the Internet connection of the households.

We also measured the electricity consumption of selected
appliances (e.g. refrigerator, tumble dryer, router, kettle,
washing machine) using smart power outlets (smart plugs)
from Plugwise6. The smart plugs communicate via Zigbee7

and automatically establish a mesh network among them-
selves. To acquire the smart plugs’ consumption in real time
we utilise the open source library python-plugwise8. This
setup allowed us to query each smart plug at a frequency of
1 Hz. The queries are managed by a python script on a mini
computer (Sheeva Plug9), which communicates the measure-
ments to our server and also buffers the data to avoid data
loss in case the network is unavailable.

In order to gather occupancy data, we deployed Roving

1www.landisgyr.com
2v1.03: www.emsycon.de/downloads/SML 081112 103.pdf
3www.github.com/wkleiminger/pylon
4www.flukso.net
5www.openwrt.org
6www.plugwise.com
7www.zigbee.org
8www.bitbucket.org/hadara/python-plugwise/wiki/Home
9www.globalscaletechnologies.com/t-sheevaplugs.aspx



Table 2: Total number of records collected between
June 2012 and January 2013.
Sensor (# devices) Description # Records

Landis+Gyr E750 (6) Smart Electricity Meters 106,337,104
Plugwise Sting (39) Smart Power Outlets 566,407,440
Roving RN-134 (5) PIR sensors 549,702
Galaxy Tab P7510 (5) Occupancy ground truth 6,366

RN-134 low-power Wi-Fi modules with passive infrared sen-
sors attached in 4 of the participating households. The RN-
134 modules consume very little power when asleep and can
sense while the radio is switched off [19]. When a request
needs to be transmitted, the radio is switched on for a brief
period of time. As soon as the request has been completed,
the module goes back to sleep. This allows each module to
run for approximately 3 months on two AA batteries.

To obtain ground truth data for our occupancy classifica-
tion algorithms, we installed a Samsung Galaxy Tab P7510
tablet computer as an in-home display in each household.
The tablet was configured to display an interface (UI) for
users to record the occupancy state of the residence. For
each occupant there is a toggle button that may be pressed
to change the status from present to absent and vice versa.
The tablet computer was installed near the main entrance
and the occupants were instructed not to move it during
the course of the data collection. In order to increase the
visibility of the application and to remind the participants
to record their occupancy, the tablet’s display was auto-
matically switched on whenever the passive infrared sensor
sensed a movement. The visualisation of the current elec-
tricity consumption, 7-day historical consumption, aggre-
gate consumption and a historical chart with smooth zoom-
ing on the in-home display provided further utility for the
participants.

Figure 1 shows all the data collected in this deployment
was transferred to an aggregation server located at ETH
Zurich via HTTP. The raw measurements were stored in a
database, while the consumption information was also held
in a 3-level cache to facilitate smooth zooming on the tablet.
The centralised collection helped us to quickly identify if one
of the sensors was faulty. Table 2 shows the total number
of measurements gathered from June 2012 to January 2013.
Overall, we collected 106,337,104 values from the 5 smart
meters, 566,407,440 values from the 39 smart plugs, 549,702
PIR sensor readings, and 6,366 occupancy events (i.e. when
an occupant enters or leaves the home).

3.3 Data pre-processing
In this section we will discuss how we prepared the raw

data for analysis and filtered erroneous ground truth data.
The occupancy analysis focuses on a subset of the data col-
lected. Due to the importance – and difficulty – to record
reliable ground truth occupancy data, we instructed house-
holds to particularly pay attention to reliably specify their
occupancy during two phases in summer (July to Septem-
ber) and winter (November to January). During these two
collection phases every participant was instructed to click on
a button bearing his or her name to indicate presence and
absence.

Providing data at 1 Hz, the smart electricity meters pro-
duce 86,400 measurements per day. In order to be able to
directly compare the electricity consumption to the other

sensor data, we converted all other data to 86,400 element
vectors as well. The smart plugs from Plugwise must be read
sequentially [23]. Queries have a round trip time of 80–120
ms for each plug, depending on the network infrastructure.
As there are 6–9 plugs per household it takes about one sec-
ond to obtain the consumption data of each plug. However,
problems that occur for one of the plugs (e.g. a slow reply
or a timeout due to network interference) can lead to short
time periods of 5 – 10 seconds during which no data from
any of the plugs can be obtained. Ultimately, the consump-
tion measurements for each plug are re-sampled to 86,400
measurements a day (i.e. 1 Hz). For each day d, the occu-
pancy states of a household h are captured by Oh,d. Oh,d is a
86, 400×Np matrix containing the occupancy state for each
member p of the household at every second of the day. The
element (i,j) of this matrix is set to 1 if – according to the
data entered using the tablet – the jth resident is at home at
second i. The element is set to 0 otherwise. Following this
notation, we compute the binary occupancy schedule Bh,d,
a 86, 400 × 1 vector by computing the bitwise OR among
the rows of the matrix. The resulting vector contains 1s to
indicate occupancy and 0s to indicate that none of the occu-
pants are present. For the PIR sensors, the matrix contains
a sequence of 1s for the next 30 seconds after a sensor event
has been triggered.

In case of the electricity consumption data from the smart
meters, we distinguish between two types of data loss. First,
if measurements are missing for up to 10 seconds, the cor-
responding positions in the vector are filled with the last
existing measurement (typically only few seconds are lost
each day). Second, in case more than 10 consecutive sec-
onds of data are lost – for example in (rare) cases where the
Flukso crashed or was switched off – the values are set to
-1. For the smart plugs, data loss is dealt with similarly.
In this case, we chose 100 seconds instead of 10 seconds as
a threshold. This is due to the fact that a data loss of 10
seconds is more common for the reasons described above.

From the thus processed data, we prepare our test and
training sets for the occupancy analysis. Even though the
participants noted their occupancy diligently, some mistakes
still occurred (e.g. one or more occupants occasionally for-
got to record their absence or presence). We have therefore
manually removed days where:

1. all occupants have indicated “absence” but a firing of
the PIR sensor indicated movement in the household,

2. a switch operated device (e.g. kettle, TV, oven) has
been operated during the period of “absence”,

3. no occupancy information was collected.

Table 3 shows the data gathered by the participants and
used in the evaluation. The table shows, for each household,
the number of days in both summer and winter phases after
erroneous days have been removed from the data set. This
results in an average of 52 days for the summer period and
38 days for the winter period.

Figure 2 shows a representative day of data collected for
household 2. Figure 2a shows the total electricity consump-
tion of the household, augmented with the binary occupancy
state as indicated by the occupants on the tablet interface.
The electrical load curve shows a small increase in the elec-
tricity consumption when the occupants wake up and pre-
pare breakfast. As the occupants leave the household, the
passive infrared sensor (PIR) near the doorway fires (see



Table 3: Number of days for each household used in
the evaluation after data cleaning.

Number of days

Household Summer Winter

1 39 46
2 83 45
3 57 21
4 38 48
5 43 31
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Figure 2: A typical day in household 2. (a) to-
tal electricity consumption, (b) Appliance-level con-
sumption (c) Movement sensed by PIR sensor.

figure 2c). As the occupants return again, the PIR sen-
sor fires again and the home entertainment is switched on
(see figure 2b). After another short period of absence after
lunchtime, the household becomes occupied again and the
home entertainment system is in operation. From the total
electricity consumption it can be seen that around 6 p.m.
the occupants prepare dinner. Shortly before midnight, the
electricity consumption falls to the night time mean and all
the home entertainment system is switched off.

4. OCCUPANCY CLASSIFICATION
In order to derive occupancy information from the electri-

cal load curve, it is necessary to identify features that may
be indicative of occupants being present in the household.
A clear indicator for occupancy are switch events in the load
curve that require the interaction of an occupant (e.g. tele-
vision, stove or kettle). The electricity consumption induced
by appliances such as fridges, freezers or the standby con-
sumption of electric devices (e.g. the consumption of the
digital video recorder) on the other hand does not give any
indication about the occupancy state of the household. As
introduced in section 2, a number of authors have looked
at non-intrusive load monitoring approaches to detect the
consumption of individual appliances from the electric load
curve. However, such approaches require extensive training
periods and are susceptible to changes in the number of ap-
pliances installed in the household. In the following section,
we therefore identify a set of features of the electrical load
curve that relate to the operation of occupancy-relevant ap-
pliances.

4.1 Features used for classification
Such features can be found by comparing the day-time

electricity consumption during periods of occupancy to times
when the household is unoccupied. Since we are concerned
with classifying occupancy, we consider the intervals from
6 a.m. to 10 p.m. in our analysis and leave the detection
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Figure 3: Relative frequencies of various total power
consumption (sum of all phases) values over the
whole day and divided into presence and absence
respectively.

of sleep patterns for future work. Figure 3 shows the rela-
tive frequency (empirical probability) of the logarithmically
binned total power consumption measurements over sum-
mer and winter periods for household 2. The figure shows
the probability to see a particular measurement during pres-
ence or absence of the occupants. The top graph shows the
total distribution of power consumption measurements dur-
ing daytime. The two graphs below show the distribution
during presence and absence periods, respectively. From fig-
ure 3 we can see that the power consumption is likely to have
a higher mean and standard deviation when the household
is occupied. During periods of absence, the electricity con-
sumption is centered around 100 Watt and may be clearly
distinguished from the overall day-time curve. While the
household is occupied, the probability of higher consump-
tion figures increases. However, there is still a significant
probability to see lower consumption values even when the
household is occupied. This is due to the fact that occupants
may be at home but not using any electrical devices.

Table 4 shows the features selected to represent these ob-
servations. The suffixes _l1 to _l3 denote the three electri-
cal phases. We computed the mean and standard deviation
over 15-minute intervals. Given the sampling frequency of 1
Hz, each feature is thus computed from a 900-element vec-
tor. As the smart electricity meter provides a breakdown of
the electricity consumption for all three individual phases,
we have three features for the mean and standard devia-
tion, each. The boilers in our participating households were
programmed to operate during the night. Therefore, a high
mean consumption is likely to be caused by presence in the
household. A high standard deviation furthermore indicates
that there have been significant changes in the electricity
consumption during the observed interval. Such changes
may have been caused by human involvement (e.g. by op-
erating the stove or the kettle) or by appliances with vary-
ing consumption patterns. As the standard deviation only
measures the distance to the mean of the data we have in-
troduced another measure – the sum of absolute differences
(SAD, features 7–9). The SAD computes the absolute differ-
ence between adjacent power measurements and adds them
up, giving another measure of the variability of the data.
Feature 10 is the prior probability of the household being
occupied during a particular 15-minute interval of the day.
This probability is computed as the average occupancy dur-



Table 4: Features used in the classification – all fea-
tures computed over a 15-minute interval (σ: Stan-
dard deviation, SAD: Sum of absolute differences).

# Feature Description Sensor

1 p_mean_l1 mean of power phase 1 Landis+Gyr E750
2 p_mean_l2 mean of power phase 2 Landis+Gyr E750
3 p_mean_l3 mean of power phase 3 Landis+Gyr E750
4 p_sd_l1 σ of power phase 1 Landis+Gyr E750
5 p_sd_l2 σ of power phase 2 Landis+Gyr E750
6 p_sd_l3 σ of power phase 3 Landis+Gyr E750
7 p_sad_l1 SAD of power phase 1 Landis+Gyr E750
8 p_sad_l2 SAD of power phase 2 Landis+Gyr E750
9 p_sad_l3 SAD of power phase 3 Landis+Gyr E750
10 prior mean 24h occupancy ground truth

Occupancy state (present/absent)

Logarithmically Binned Total Power (W)

y
t-1 t

t+1
x

t-1 t

t+1
yy

x x

bb b b Hidden states

Emissionsb bbb

Figure 4: The HMM classifier uses a probabilistic
model based on the distribution of the power mea-
surements to switch between states.

ing this time interval over the training set.

4.2 Classification algorithms
In the following analysis we discuss the results obtained

from testing three stateless and one stateful classifier on
our winter and summer data sets. The stateless classifiers
are support vector machines (SVM), K-nearest neighbour
(KNN) and thresholding (THR). To evaluate stateful clas-
sification we use a hidden markov model (HMM).

For the KNN classifier we used the ClassificationKNN

classes from the Matlab Statistics Toolbox. To implement
the SVM classifier we used the LIBSVM library by Chang
and Lin [5]. In addition, we introduced a simple classifier
based on thresholding. The THR classifier computes the
mean over the features during all unoccupied intervals. For
each feature it thus computes a threshold above which it la-
bels the interval as occupied. The final classification of an
interval is based on a majority vote of the thresholding ap-
plied to all 10 features. The thresholding classifier implicitly
assumes that a higher mean electricity consumption and a
higher variance and sum of absolute differences between sub-
sequent measurements relate are positively correlated with
occupancy.

In contrast to the KNN, SVM and THR classifiers, the
HMM only uses features 1-3 (see table 4) for its classifica-
tion. A HMM (see figure 4) relates its hidden states (e.g.
occupied, unoccupied) to emission (e.g. the observed elec-
tricity consumption) using emission and transition proba-
bilities. The training of a HMM requires a discrete set of
emissions. Since our features are continuous real values, we
follow the approach shown in the figure 3 and obtain a set
of possible emissions by logarithmically binning the training
data into 20 bins. For this purpose we compute the mean
power total power (sum of all phases). From this and the
known occupancy states we estimate the emission and tran-
sition probabilities.
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Figure 5: Accuracy of the SVM, KNN, THR, HMM
classifiers compared to the baseline Prior.

4.3 Classification performance
In this section we discuss the performance of the classi-

fication algorithms. For all experiments we have chosen a
two-fold cross validation, which randomly splits the data
into two equally sized subsets. These two data sets are then
used in turn for training and testing the classifiers.

In order to analyse the performance of the algorithms we
follow the receiver operation characteristic notation. An in-
stance of correctly assessing the household’s occupancy from
the electrical consumption data to be occupied during an in-
terval is thereby named a true positive (TP ). Likewise, cor-
rectly labelling the data to be unoccupied we will call a true
negative (TN). Then false positive (FP) and false negative
(FN) denote the instances of incorrectly labelling the house-
hold occupied or unoccupied, respectively. The accuracy of
a classifier c is then computed as Ac = TP+TN

TP+TN+FP+FN
.

4.3.1 Classification accuracy

Figures 5a and 5b show the accuracy obtained by the four
classifiers for the summer and winter data sets, respectively.
The same data is provided in table 5. Prior is a maximum
likelihood classifier that always assigns an input data to the
class of the majority of data points in the training set. Since
in our data set the households are occupied more than 50% of
the time, Prior always classifies the households as occupied.
We use the accuracy of the Prior classifier as a baseline for
the other methods. Applied on our data set, the baseline
returns accuracies between 63% (household 2, winter) and
95% (household 4, winter). Thus, for households 1-3, the
classification algorithms return better or equal results with
respect to the baseline. Households 4 and 5 must be treated
differently as they have at least one occupant who stays at
home most of the time.

For both winter and summer data sets and all households
except for household 2, the SVM classifier performs at or
just below the accuracy of Prior. The SVM always labels
the household to be occupied. This means that it correctly
classifies all those states during which the household was ac-
tually occupied, but incorrectly classifies all states in which
the house was unoccupied. This results in an accuracy equal
to the accuracy of Prior, but means the results obtained
from the classifier are not useful in practical settings.

The KNN classifier performs best on household 2 achiev-
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Figure 6: Mean binary occupancy and mean elec-
tricity consumption (household 2, all data).

ing an accuracy of 86% on the summer data and 88% on
the winter data. The performance can be explained by the
strong linear correlation between occupancy and power con-
sumption. Figure 6 shows the mean binary occupancy over
24 hours plotted against the mean electricity consumption
averaged at 15-minute intervals. During our classification
period from 6 a.m. to 10 p.m. the two curves are almost
moving in lockstep. The KNN classifier beats the prior ac-
curacy for households 1-3 in both summer and winter. Only
for households 4 and 5 it comes second to the SVM classifier.

Finally, the thresholding (THR) classifier performs con-
sistently worse than the other classifiers and exceeds the
baseline only for household 2. Even though it does not use
the prior occupancy as an input feature, the HMM classifier
performs best amongst households 1-3, achieving accuracies
over 80% in 5 out of 6 cases.

4.3.2 Limitations of the accuracy

The classification accuracy describes only partially the
performance of a classifier. Especially for data with unbal-
anced classes as witnessed in our example – households 4 and
5 have occupancy figures exceeding 90% – a high accuracy
may be achieved by always predicting the household to be
occupied. In the case of occupancy detection, correctly clas-
sifying both occupied (true positive) and unoccupied (true
negative) states is paramount. For this reason we computed
the Matthews correlation coefficient (MCC) over the results
of our classifiers [15]. A perfect prediction is represented
by an coefficient of +1. On the other hand, a value of −1
indicates that no single instance was classified correctly. A
coefficient of 0 represents a classification, which is no better
than a random guess. The MCC of a classifier c is cal-
culated as: MCCc = TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
.

The MCC provides a balanced measure even if the input
data are heavily skewed towards one class.

Table 6 shows MCCc for the SVM, KNN, THR and HMM
classifiers. The classifier achieving the highest MCC in each
case is highlighted in bold print. The coefficient for the
SVM classifier on households 4 and 5 could not be calculated
since these are never classified as unoccupied and therefore
TN + FN = 0. For both summer and winter, the per-
formance of KNN and HMM reflect the results obtained in
terms of accuracy. The KNN classifier performs best on
household 2 with coefficients of 0.7 and 0.75, respectively.
The HMM classifier performs best on household 1 with co-
efficients of 0.63 (summer) and 0.73 (winter). The THR
classifier generally performs better than the accuracies in
figure 5 indicate. For household 3, it gives the best classifi-
cation during winter with a coefficient of 0.31, outperforming
both KNN (0.26) and HMM (0.19).

Table 5: Accuracy of the classifiers.
SVM KNN THR HMM Prior

Household summer

1 0.74 0.79 0.61 0.83 0.75
2 0.79 0.86 0.79 0.82 0.65
3 0.68 0.75 0.57 0.81 0.71
4 0.90 0.88 0.69 0.86 0.90
5 0.90 0.83 0.59 0.87 0.90

winter

1 0.69 0.82 0.70 0.87 0.73
2 0.82 0.88 0.78 0.85 0.63
3 0.71 0.71 0.59 0.70 0.71
4 0.93 0.89 0.60 0.78 0.93
5 0.82 0.78 0.60 0.78 0.82

Table 6: Matthews correlation coefficients.
SVM KNN THR HMM

Household summer

1 0.22 0.44 0.40 0.63

2 0.57 0.70 0.55 0.67
3 0.12 0.42 0.38 0.60

4 / 0.31 0.37 0.42

5 / 0.02 0.19 0.13
winter

1 0.09 0.57 0.47 0.72

2 0.63 0.75 0.53 0.71
3 -0.02 0.26 0.31 0.19
4 / 0.21 0.17 0.07
5 / 0.24 0.18 0.03

Both accuracy and MCC assess the performance of a clas-
sifier based on the correct classification of individual inter-
vals, independently of each other. Any correct or incorrect
classification of an interval contributes with the same weight
to the metric. The ability to detect occupancy transitions –
i.e. changes in the occupancy state (from occupied to un-
occupied and vice versa) – is however crucial to many sys-
tems. For instance, when a smart heating system detects
that the household has become occupied, it may decide to
start heating immediately. As every transition corresponds
to a switch event in the controller, correctly identifying the
number of transitions is of equal importance to the accuracy
of the classification itself. Figure 7 shows the classification
for the first 200 15-minute intervals of household 2. The
ground truth occupancy data shows only 6 transitions. Due
to their inherent statelessness, the three classifiers (SVM,
KNN and THR) identify a number of additional transitions.
Such transitions must be filtered out before the current oc-
cupancy state is passed on to a controller. The HMM in-
corporates this step by taking into account the transition
probability between occupied and unoccupied states at dif-
ferent consumption levels.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented and evaluated an approach

that leverages electricity meters as occupancy sensors. We
performed our analysis using a data set that we collected
during an 8-month long experiment run in 5 households.
During this period we gathered data from digital electricity
meters, smart plugs and PIR sensors as well as ground-truth
occupancy data. Our results show that occupancy detection
accuracies over 80% are feasible in most scenarios. Our next
steps include the investigation of sensor fusion methods to
incorporate the other sensor data gathered in this deploy-
ment to improve the overall occupancy detection accuracy.
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and F. J. G. Franco. Classification, filtering, and
identification of electrical customer load patterns
through the use of self-organizing maps. IEEE Trans.
on Power Systems, 21(4):1672–1682, 2006.

[25] M. Zeifman and K. Roth. Nonintrusive appliance load
monitoring: Review and outlook. IEEE Trans. on
Consumer Electronics, 57(1):76–84, 2011.

[26] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar.
Non-intrusive load monitoring approaches for
disaggregated energy sensing: A survey. Sensors,
12(12):16838–16866, 2012.


