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Abstract
Saving energy in residential and commercial buildings is of 

great interest due to diminishing resources. Heating ventilation 
and air conditioning systems, and electric lighting are responsible 
for a significant share of energy usage, which makes it desirable 
to optimise their operations while maintaining user comfort. Such 
optimisation requires accurate occupancy estimations. In contrast 
to current, often invasive or unreliable methods we present an ap-
proach for accurate occupancy estimation using a wireless sensor 
network (WSN) that only collects non-sensitive data and a novel, 
hierarchical analysis method. We integrate potentially uncertain 
contextual information to produce occupancy estimates at different 
levels of granularity and provide confidence measures for effective 
building management. We evaluate our framework in real-world 
deployments and demonstrate its effectiveness and accuracy for oc-
cupancy monitoring in both low- and high-traffic area scenarios. 
Furthermore, we show how the system is used for analysing histor-
ical data and identify effective room misuse and thus a potential for 
energy saving.

Keywords
Occupancy estimation; Hierarchical modeling; Environmental

sensing; Energy.

1 Introduction

Sustainability, and more specifically thoughtful use of energy, has
become a major global concern due to diminishing natural re-
sources and growing demands inflicted by changing lifestyles [12].

In the next 30 years alone it is predicted that the world-wide con-
sumption of energy will increase by over 56% [9] and alternative
means of generating electrical energy are not yet as efficient as the
more established ways of power generation. As a consequence,
shortages are predicted within the next few decades [24]. This
leaves actively saving energy as the only realistic option for more
sustainable consumption.

In particular, the operation of commercial and residential build-
ings requires substantial amounts of energy. This is mainly related
to energy-hungry heating, ventilation and air conditioning (HVAC)
operations [26], as well as to such mundane requirements as ap-
propriate lighting. Strategies for effective energy management in
such environments are related to understanding consumption and,
based on this, developing procedures for saving energy. Accurate
information about occupancy, both in temporal as well as spatial
context, is key for smart control strategies that reduce energy con-
sumption by adjusting HVAC appliances and lighting appropriately
without disrespecting basic comfort levels. Automatically deriving
occupancy information at a fine-grained level of both temporal and
spatial detail remains a surprisingly challenging endeavour. Exist-
ing, straightforward approaches utilise behaviour prediction tech-
niques [8] based on video surveillance or activity monitoring using
wearable sensing [3]. As such these approaches depend on exist-
ing, often complex, infrastructures being in place. More critically,
camera-based approaches, e.g., employing vision based attention
systems [31], are almost always out of question for work-spaces
due to ethical concerns [17].

Occupancy monitoring requires varying levels of detail depend-
ing on the application case. Whereas, for example, automatic light-
ing control is typically based on binary decisions on whether peo-
ple — any number — are in a room or not, HVAC control requires
more detailed information — how many occupants? — as such
numbers indirectly drive the settings of HVAC systems when aim-
ing for comfortable room climate. Apart from such situated control
applications, long-term optimisation of energy consumption in, for
example, office buildings is typically based on detailed and accu-
rate room usage information with the aim of allocating resources
appropriately to reduce the overall energy footprint.

In this paper we present a novel approach for accurate occu-
pancy monitoring that is based on a wireless sensor network mea-
suring temperature, light, humidity, Passive Infrared (PIR) read-
ings, and audio levels. Our main contributions are as follow: i)
A wireless sensing infrastructure that is straightforward to deploy –
consisting solely of a single sensing device, which is no larger than
a portable mouse – cost-effective, and only collects non-sensitive
environmental information; ii) The sensing infrastructure is then
combined with a novel hierarchical analysis framework that utilizes



statistical classifiers in general and can integrate potentially uncer-
tain contextual information (meeting schedules, computer usage).
This framework is used to produce highly accurate occupancy esti-
mates at different levels of granularity – from binary occupied/not-
occupied decisions to accurate counts of the number of occupants in
a room or an area of a building to cater for a variety of applications.
All automatically derived estimates are accompanied with confi-
dence measures based on level-specific posterior probabilities pro-
duced by the recognition framework. This confidence information
is forwarded to subsequent classification levels, which is key for
accurate and fine-grained occupancy estimation under uncertainty;
iii) The occupancy and confidence information is then presented in
a hierarchical fashion to support facilities managers in making de-
cisions regarding energy consumption and/or resource allocation.

In real-world deployments we demonstrate the efficacy and ac-
curacy of our occupancy monitoring framework. In two case stud-
ies we evaluate occupancy estimations for both a High Traffic Area
(HTA) and Low Traffic Area (LTA) in an office building over a pe-
riod of ten days each. Our framework is able to estimate occupancy
with a very high level of precision, ranging from almost perfect bi-
nary classification of general occupancy to more than 75% accuracy
on the most fine grained level of estimating the actual number of
occupants. We also identify significant potential for optimising the
booking schedule for a meeting room by linking meeting timetable
information to predicted true occupancy with the purpose of focus-
ing energy consumption properly and thus reducing the uneccessary
energy consumption of seldom-used rooms.

2 Related Work

The problem of occupancy inference in the context of commer-
cial buildings has received significant interest in recent years due
to constant efforts to lower energy consumption [9]. Generally, oc-
cupancy inference can refer to detection – i.e., discovering whether
one or more persons are in a room – or estimation – i.e., unveiling
how many people are in a room. Traditionally, occupancy detec-
tion was carried out using camera-based methods [29], which are
usually expensive regarding setup, equipment, and operation. Ad-
ditionally, privacy concerns are associated with cameras recording
individuals at all times [17]. As a consequence, networks of PIR
sensors have been proposed as alternatives. In combination with
probabilistic analysis methods such approaches have been trialled
to improve building services [7]. Occupancy detection was then
also used for energy management where similar setups led to en-
ergy savings for HVAC operation of at least 10% [1, 10].

Indicators for the number of people being in a room – occupancy
estimation – can, in principle, be inferred from various types of in-
formation such as meeting schedules and network activity in ad-
dition to that collected by a sensor network. However, commonly
available sources of data contain substantial levels of uncertainty
that may negatively influence occupancy models. For example, a
scheduled meeting may not necessarily take place or a person may
forget to logout from their computer. Similarly, sensors deployed in
opportunistic manners may also produce noisy measurements and
could thus result in further inaccuracy – e.g. PIR sensors may fail
to identify a person in a room if they remain still.

With this in mind recent work has focused on the analysis of
multi-modal sensor data – including video footage. For example,
the Sensor-Utility Network (SUN) method was developed to incor-
porate various, yet unreliable, sensor data and produced occupancy
estimates on a building-wide level [23]. The CO2 and PIR sensor
data along with sound and people counts at entrances obtained from
the recorded video footage was combined with historical usage data
from the building. Whilst providing reasonable occupancy esti-
mates, the approach becomes less accurate over time, which lim-

its its practical applicability. Furthermore, the active use of video
cameras severely limits its adoption due to privacy violations.

Pursuing a radically differing approach, Liao and Barooah [22]
developed an agent-based framework to simulate the behaviour of
a room’s occupants. They extract reduced-order graphical models
from Monte-Carlo simulations of their agent-based model, which
was then validated with sensor data for one room and one occu-
pant. Simulations were used to illustrate the effectiveness of the
proposed method. However, due to the lack of formal occupancy
measurements and especially by focusing on small office spaces
where the nominal occupancy value was only one, the practical-
ity of the approach beyond such rather simple application cases re-
mains questionable.

In the context of energy saving, previous work has also focused
on simplifying building infrastructures so that all sensors are able
to communicate with each other using a common language. The
Building Operating System Services (BOSS) [5] facilitates the de-
velopment of building applications as data can be simply collated.
Three applications were demonstrated to work with BOSS, includ-
ing one that allowed the management of airflow and ventilation for
HVAC control by using occupancy data. However, this application
used data from a Google calendar feed for determining occupancy,
which relies heavily on the users to keep the data updated and as
such is a weak indicator of occupancy.

Of course, it is possible to estimate occupancy using methods
other than networked sensors. For example, Crowd++ uses the mi-
crophone in smartphones to estimate the occupancy of any room
[38]. While such a system is appealing due to its non-dependence
on the building’s infrastructure, it requires all residents to carry a
specially-configured smartphone at all times which may not be re-
alistic in a number of organisations. Smartphones can also be used
for occupancy prediction to support HVAC systems [18], but while
very accurate, such implementations are only feasible in a home
environment where only a few people live. Wearable devices have
also been used to estimate occupancy and have proven to be very
accurate (e.g., [3, 33]), but the privacy of individuals is typically
compromised using this approach [35]. Finally, Cyber-Physical
Systems have been used to control room-specific HVAC systems
with promising results and at a low cost [34], but such an approach
has limited applications due to detecting rather than estimating oc-
cupancy.

3 System Overview

The purpose of an automatic occupancy estimation framework
such as the one proposed in this paper is to support decision makers
(e.g., building and facility managers) to optimise the use of rooms
and meeting spaces in large, commercial office buildings. Their
goal is to save resources while at the same time maintaining the
comfort for occupants and users of a building. Due to the inher-
ent uncertainty and the dynamics of office routines combined with
the delays in operating, for example, HVAC systems this optimisa-
tion often results in a balancing act where administrators need to
make decisions without having complete and reliable information.
Different granularity levels of occupancy data are necessary for dif-
ferent applications – e.g., binary occupancy detection for lighting,
categorical occupancy estimation for HVAC systems, or exact head-
counts for room allocation optimisation. Our occupancy estimation
framework takes these constraints into account and provides results
of automatic occupancy analysis combined with confidence infor-
mation, which serves as a basis for effective and well informed hu-
man decision making. Due to ethical concerns our framework is
solely based on sensing facilities that only collect non-sensitive in-
formation thereby explicitly avoiding privacy-violating means such
as cameras or microphones.
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Figure 1: Hierarchical classification strategy for occupancy data, starting with the environmental sensors on the left and resulting in the hierarchical occupancy
estimates on the right.

The core conceptual idea for our occupancy estimation frame-
work is to break down the analysis in a hierarchical way and present
the estimation results at different levels of granularity combined
with confidence levels for the estimates at every level of the hierar-
chy. This concept is a response to the uncertainty and sometimes
even unreliability of the analysed data, which may prevent accu-
rate head counts for a room. In such cases a human operator could
still make reasonable decisions if they had access to less detailed
but more reliable information that would indicate whether a room
is over- or under-crowded.

Our technical approach reflects this concept through introducing
a hierarchical analysis framework. We consider occupancy estima-
tion at three different levels of granularity: i) binary detection; ii)
categorical occupancy estimation; and iii) counting the exact num-
ber of occupants. For this purpose we employ a hierarchy of statis-
tical classifiers and use their associated posterior probabilities for
representing confidence levels for decision making at subsequent
levels. In an exemplary use case, the output of our framework may
specify that a particular room is being used to capacity, but analysis
level iii) states that ten people are in the room when the capacity is
only 8. However, the confidence value for analysis level iii) may be
low, which would tell an operator to not solely rely on that informa-
tion. As a consequence, analysis level ii) may be a better indication
for the room’s actual usage.

The primary source of information for our analysis framework
is environmental data, i.e. light, humidity, audio level, PIR etc.,
which are captured using a miniature sensing platform. In addition
to this physical information, we integrate external data sources into
our analysis, including computer activity and meeting schedules.
Whilst the latter is by itself notoriously unreliable, its combination
with the environmental sensor data provides additional cues making
occupancy estimation reliable.

Figure 1 gives an overview of the overall concept for our frame-
work, consisting of i) capturing both environmental and contextual
data; ii) data pre-processing and sensor fusion; iii) uni-level occu-
pancy classification and confidence estimation; and iv) integration
into our hierarchical analysis model; which we will discuss in detail
in the subsequent sections.

3.1 Environmental Sensing

3.1.1 Sensing Platform

As the primary source of information for our occupancy estima-
tion framework we analyse environmental parameters of the areas
monitored: i) motion – through a PIR sensor; ii) acoustic noise –
through a microphone that records audio level information only; iii)
temperature; iv) light; and v) humidity. We employ bespoke, inex-
pensive (approx. $8 – $16) wireless sensing platforms that integrate
aforementioned sensors in a compact device (102× 51× 33mm),
and are durable, reliable and very easy to deploy without any prior
calibration requirements (see Table 1 for an overview of the main
technical features, and [16]). Depending on the size and the topol-
ogy of the monitored area we deploy one or more of these plat-
forms. Multiple devices communicate via an ad-hoc mesh network
for communicating to a central hub. The reliable lifetime of each
sensor is approximately four months before the (two AA) batteries
need replacing.

These environmental sensors monitor the area they are de-
ployed in by collecting only non-sensitive information which delib-
erately makes it impossible to infer identities of occupants through
analysing the measurements. All integrated sensors record at very
low sampling rates (6 – 24Hz). Furthermore, due to recording only
acoustic noise levels (at 24Hz) it is ensured through the hardware



design that no conversations can be overheard. As such, this ap-
proach holds an advantage over methods that implement a digital
camera for data collection (e.g., [23,36]) with respect to user accep-
tance for implementation in commercial or residential buildings.

3.1.2 Processing sensor data

Environmental sensing data is typically very noisy and thus,
cannot be directly used in its raw form but requires pre-processing
and feature extraction.

Pre-processing Sensor data may contain missing data points,
e.g., due to packet losses during transmission or errors. In order to
address this issue, we perform linear interpolation to remove any
gaps in our measurements. For multi-modal integration of all our
data sources, which are sampled at varying rates (see Table 1), and
for effective sensor fusion we re-sample all recordings in 1 second
steps, which effectively leads to a uniformly sampled, multi-modal
data stream. We use a target sampling rate of 1 Hz, a frequency that
has been validated with a view on bandwidth preservation, and ap-
propriate information content while at the same time preventing the
identification of occupants or any inference regarding the acoustic
details including what has been said by whom.

After interpolation and re-sampling, we then use a standard slid-
ing window approach of 5 minutes length with a 50% overlap that
produces equally sized and distributed analysis windows. Here the
concrete choice of the parameters of the sliding window procedure
is based on the assumption that the number of people in a monitored
room remains static during this temporal window, which is reason-
able for the addressed scenario occupancy estimation for meeting
rooms and offices.

Feature extraction Once the analysis frames are established,
we compute various statistical features implicitly quantifying data
distribution for each sensor modality. Mean and standard deviation
are the standard statistical features used in such a context, capturing
the central tendency and variation from the expected value of the
data distribution, respectively. We compute (µ,σ) pairs for every
sliding window frame per sensing modality (see Table 1).

Prior to computing the (µ,σ) pairs for audio and PIR packets,
we compute three additional features for quantifying change. This
includes the sum of sample points (S(a(r)) – Equation 1), the sum
of absolute sequential differences (Ds(a(r)) – Equation 2) – and
the sum of squares of sequential differences (Sd(a(r)) – Equation
3). These values are computed for each of the sensor packet sig-
nals – a(r) where r ∈ 1,2, ...,R – containing audio and PIR values
(R = 24Hz in our experiments (see Table 1)). All of these features
provide important information related to a change in signal values
e.g., it is the change in PIR values that we are primarily interested
in.

S(a(r)) =
R

∑
r=1

a(r) (1)

Ds(a(r)) =
R−1

∑
r=1

abs(a(r+1)−a(r)) (2)

Sd(a(r)) =
R−1

∑
r=1

(a(r+1)−a(r))2 (3)

We also compute the sum of spectral coefficients x(t)2 for each
sliding window normalized by the length of the window (of length
T = 300 (5 minutes) in our case) highlighting associated signal en-
ergy (E(x(t)) in Equation 4). Similarly, we also measure signal
entropy, I(x(t)) (Equation 5) to quantify the expected value of the
information contained in a given sliding window for each sensing

Sensor Freq. (Hz) Sensitivity
Motion (PIR) 24 3m/135deg

Sound 24 -45 to -39dB
Temperature 6 5 to 50C

Light 6 3 to 70 k.lux
Humidity 6 ±4% RH

Table 1: Environmental sensors used in our setup (right) and their main
technical specifications (left).

input. Both features provide a measure of unpredictability of in-
put signals important for highlighting differences between no occu-
pancy and occupancy.

E(x(t)) =
1

T

T

∑
t=1

x(t)2 (4)

I(x(t)) =
T

∑
t=1

x(t) · log(|x(t)|) (5)

Finally, in addition to the above, we compute ECDF (Em-
pirical Cumulative Distribution Function) coefficients and include
them into our feature representation (Equation 6). ECDF features
preserve crucial information about the distribution of data within
a frame (introduced in [11, 27], and now widely used in wear-
able and ubiquitous computing applications of accelerometry, e.g.,
[4, 15, 19, 20, 28]). We use a d = 10 coefficient ECDF feature rep-
resentation:

Fe(x(t)) = {x ∈ R : ∃i, pi ≤ P(x)} (6)

where,

{pi} ∈ R
d
[0,1], pi ≤ pi+1 (7)

Feature Combination After computing all of the aforemen-
tioned features for all of the sensing modalities, we concatenate
them into a combined feature vector, which then represents a given
input signal x(t) ∈❘D. To do this, we first compute 9 sub-feature
sets SFs per sensor modality where s ∈ {1,2, ...,9} representing sets
for temperature, light, humidity, and Equations 1 to 3 each com-
puted for audio and PIR:

SFs = {µ,σ,Fe,E, I }s (8)

All of these sub-features are concatenated, such that:

SFc = {SF1,SF2, ...,SF9} (9)

Finally, we can define the feature vector as:

~f (x(t)) = (SFc,D(SFc))
T (10)

Note that this feature vector also contains the mean first order
derivative, D(SFc), of the concatenated sub-features i.e., SFc be-
tween consecutive frames, which captures the temporal aspects of
occupancy. Overall we compute D = 127-dimensional feature vec-
tors per analysis frame as extracted by the sliding window proce-
dure (9 sensor modalities × 14 features) + 1 first order derivative).
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Figure 2: Overview of our hierarchical analysis framework (a) for occupancy estimation leading to a decision support system (b) for effective building
management. See text for explanation.

3.2 Contextual Information

Whilst environmental sensors provide useful information for oc-
cupancy estimation, limiting the analysis to physical measurements
can lead to ambiguous and potentially unreliable inferences. Ex-
amples of which are erroneous measurements due to environmen-
tal influences, e.g., skewed temperature readings on very sunny or
overcast days, respectively, or simply incorrect with regard to actual
room usage, e.g., short room visits of cleaning or security personnel
would erroneously lead to occupancy detection although the room
is not actually being used.

In order to disambiguate such inferences and to increase the
general reliability of our occupancy estimation, we incorporate a
second type of information into the analysis. Through opportunis-
tically gathering contextual information from external data sources
we enhance our observations, which shall lead to more accurate and
more detailed occupancy analysis.

There are various forms of contextual data that could be used
in combination with physical sensors such as location information,
weather data, electricity consumption, meeting schedules, equip-
ment usage, PC activity data, etc. In our experiments, we make use
of meeting schedules, and PC activity information by appending
this information to the feature vector (see Equation 10) as described
in Section 4. Note that our framework is not restricted to specific
contextual information as our sensor fusion technique ensures that
all external information is effectively sampled at the same rate as
the environmental sensors using the aforementioned pre-processing
pipeline including re-sampling and interpolation.

3.3 Hierarchical Occupancy Estimation

We employ standard statistical classification procedures to clas-
sify occupancy at various levels of the hierarchical representation
that is also capable of providing level-based confidences. These are
used for providing decision confidence to the facilities manager as
well as improving the occupancy estimates at subsequent levels.

After initial classification at every level, we extract the re-
lated posterior probabilities for each occupancy density prediction

and use them as additional feature sets ah(h ∈ {2, . . . ,H},H =
#{levels}) for the subsequent levels (each with a decreasing level
of abstraction – i.e., from level 2, down to the true number of occu-
pants):

ah = {ah
z ;z ∈ O}, (11)

where O = {0, . . . ,Ch−1 −1}, Ch = #{classes in layer h},

ah
z = ph−1(N = z|~f h−1,θh−1), (12)

and ph(N = z) is the probability that N takes the class z in level h

with feature vector ~f h and parameters θh.
A block diagram for the hierarchical classification strategy is

shown in Figure 2.
Such hierarchical classification strategy makes the hierarchy of

occupancy representation more exact through enrichment of the
feature space per level. Such that if, at the topmost level, the pos-
terior probability of occupancy is high, then the proposed approach



implicitly rejects the majority of anomalous outcomes such as zero
or low occupancy values by using the posterior probabilities in the
penultimate level.

3.4 Decision Support System

Decision making for optimising resource consumption is a non-
trivial process in settings with slow technical reaction time while at
the same time rather dynamic and hard to predict usage scenarios.
For example, heating regulation systems have substantial power-
up phases and even more substantial lagging times of the affected
room temperature after powering down, which represents a substan-
tial optimisation challenge with regards to occupants comfort and
economic resource usage. Effective building management thus re-
quires extensive expertise and insight into what is typically a very
complex situation. A technical system outputting various levels of
occupancy estimations can hardly replace human decision making
due to complex scenarios and concessions that will have to be made
from time to time, but such a system ought to support this decision
making process, which is the main objective of our work.

We aim to provide effective support for facilities managers and
our approach is to not only report general, i.e., binary occupancy
states but also estimates of actual occupancy with as much detail as
our system can confidently provide. Consequently, the outputs of
our framework are not only occupancy estimations at the three con-
textual levels of our hierarchical analysis but also confidence val-
ues per level. The combination of these two result categories form
the input to decision support systems that enables human operators
to effectively manage the facilities for which energy consumption
shall be optimised. An example of the decision support output is
shown in Figure 2-(b). The confidence levels are achieved by us-
ing the posterior probabilities of the statistical classifier used, for
a given class label by using the per class probability values. Con-
sequently, the posterior probability associated with the predicted
class label is divided between three levels of certainty (i.e., low,
medium and high as shown in Figure 2) where green represents a
highly trusted outcome and red represents a less trusted outcome.
A human operator would then make a decision based on the level
of confidence presented by the system.

4 Experiments

In this section, we report the experimental protocols followed
by a comprehensive evaluation using both the accuracy of the oc-
cupancy estimation approach and the overall efficacy of the frame-
work for practical applications.

4.1 Experimental Protocol

We deployed our sensing and analysis framework in a large
commercial building that contained offices, meeting rooms, and the
usual infrastructure such as bathrooms, stairs, hallways etc. With
a view on the most common settings in such buildings we focus
our evaluation on two scenarios: i) high-traffic area (HTA); and ii)
low-traffic area(LTA).

In both scenarios we deployed the wireless sensing system as
described in Section 3.1. We recorded data for 14 days in the LTA,
and for 10 days in the HTA. Both studies were run during normal
office days where the rooms were typically used from 8am to 6pm.
The LTA consisted of a small meeting room that was moderately
used throughout the day. Building residents typically reserved the
room in advance using an online booking system. The room hosted
one table with 12 chairs and a networked PC. The HTA consisted
of a large open space that was in constant use over the course of
the day. 20 residents typically worked in the area, which included

22 personal desks and two large tables. Unlike the LTA, residents
mainly used personal laptops that were not always connected to the
mains power.

The two scenarios presented assessed the feasibility of employ-
ing the framework in different contexts. The deployment of the
system at a building-wide level could be modelled after the HTA
setup, but for the purposes of our evaluation such a large-scale im-
plementation was impractical. We compared the accuracy of our
proposed hierarchical occupancy estimation approach with a stan-
dard non-hierarchical approach resembling the current state of the
art. We evaluated the hierarchical and non-hierarchical approaches
using two established statistical classifiers – kNN and SVM – to
demonstrate its broad applicability.

4.1.1 Data Collection

Environmental Sensors: Two sensors were placed at opposite
ends of the HTA to cover the area of approximately 92 square me-
ters. One sensor was placed in the LTA to cover the area of approx-
imately 45 square meters. The sensors were fastened to the walls
using double sided tape at 1.5 meters high.

Contextual Sensors: For the LTA scenario we integrated two
additional contextual data sources: meeting schedule and PC usage
information (both anonymised to preserve the privacy of the occu-
pants). Binary indicators of whether meetings where scheduled or
not were recorded at 15 minute intervals, which represents our as-
sumption of a minimum meeting duration, and binary indicators of
PC activity were recorded at hourly intervals. Both values are lin-
early interpolated to the frequency specified by the window length
in the previous section and then appended to the feature vector of

Equation 10, resulting in augmented representations ~f ′ ∈❘D′
with

D′ = 129.
a) Meeting Schedules: We obtained historical timetabling

records for the LTA in which the sensing system was deployed.
The schedules detailed the times when the room had been officially
booked. However, this schedule information is not necessarily re-
liable as cancelled meetings or early finishes typically do not lead
to schedule updates and thus would represent faulty information.
Furthermore, this source of information does not unveil anything
about potential under-crowding or over-crowding of a room. While
the former would result in waste of resources, the latter would lead
to discomfort for the occupants – both cases an optimisation would
try to avoid.

b) PC Usage: The LTA contained a single, networked PC, which
is used for presentations. PC activity data was used as second type
of contextual information, consisting of the number of minutes in
each hour that the computer was active for. Active in this context,
means that the machine was processing CPU cycles or had done so
no more than five minutes before. Simply, if the machine entered
sleep mode (after five minutes of inactivity) then it was classed as
inactive. Note that it is possible for a computer to be classified as
active when in fact it is not being used by a person – e.g. a pro-
gram is left running or an active script in the browser prevents the
computer from sleeping. Additionally, it is possible for a meeting
to take place without the computer being used, e.g., a one-to-one
supervision meeting.

This activity data was also collected in a privacy preserving way:
only non-sensitive power-related activity was measured and no in-
formation about usernames or other identifiable information (such
as application use or internet activity) was collected.

Ground Truth Annotation:

a) High Traffic Area data: We captured environmental sensing data
in the HTA over 10 days and used it to validate the performance of
these sensors for determining occupancy. The ground truth occu-



pancy measurements were obtained using footage from a still cam-
era in a corner of the room where all occupants could be captured.
The camera was programmed to take one picture every five minutes.
The researchers then annotated the images by counting the number
of people in each photo. The data was further represented in a hi-
erarchical fashion: i) at the top most level there is a binary repre-
sentation of occupancy, i.e., O1 ∈ {0,1}; ii) the second level cate-
gorises occupancy according to ’no-occupancy’, ’low’, ’medium’,
and ’high’ occupancies, i.e., O2 ∈ {0, low,med,high} (determined
using the maximum number of observed occupants); and iii) at the
bottom level, occupancy values represent the actual number of peo-
ple in the observed space, i.e., O3 ∈ {0,1,2, ...,n}.

b) Low Traffic Area occupancy: Ground truth occupancy mea-
surements for LTA were obtained by observing for occupants every
15 minutes during the working hours (8am - 6pm) over the two
weeks recording period. Due to confidentiality concerns raised by
the building’s management team, this process was done manually
rather than using a camera. A member of the research team noted
down the number of occupants after each visit to the room. Similar
to the office space study, ground truth annotation was represented
in a hierarchical, three-level manner (O1,O2, and O3).

We note that the ground truth collection exercise can be simpli-
fied by temporarily installing a camera to monitor the workspace
and the images produced can then be crowdsourced for headcounts
after automatically blurring the faces, similar to [21].

4.1.2 Classification Mechanism

We ran two separate experiments using two standard classifica-
tion procedures to infer occupancy at the three levels of hierarchical
representation, which also serves as our baseline. Specifically we
validated the effectiveness of k-Nearest Neighbour (k-NN; we used
k = 3) and Support Vector Machine classifiers (SVM; we used an
RBF kernel and selected the optimized slack and kernel parame-
ter using a standard grid search procedure [32]). All of the exper-
iments were conducted using a standard 10-fold cross-validation
procedure.

We then ran two further experiments using the hierarchical ap-
proach that takes posterior probabilities for each level progressively
into account by appending them to the feature vectors for classifica-
tion. For k-NN (with k= 3), Equations 11 and 12 can be represented
as:

Ŷ h = argmin
y=1,..,Ch

Ch

∑
c=1

P̂(c| f )C(y|c) (13)

where Ŷ h is the predicted classification at level h ∈ {1,2, ...,H}

and Ch represents the number of classes. P̂(c| f ) represents the pos-
terior probability of class c for observation f ∈ Fv and C(y|c) is
the cost of classifying the given observation as y when its true class
is c (Figure 2 shows a general representation of the classification
mechanism).

For SVM experiments, posterior probabilities are estimated us-
ing a pair-wise classification method (detailed in [37]) and com-
bined into a single distribution over all of the occupancy labels sep-
arately per level. Optimization of the slack and the kernel param-
eter is performed per level of the hierarchical representation using
the grid search procedure of [32].

Comparisons are then made to the baseline results in different
settings (highlighting various conditions) that are detailed in the
next subsection.

4.2 Experimental Settings and Results

We conducted our experiments in three settings to highlight two
main aspects of our framework: i) the impact of using the hierar-
chical approach and ii) the influence of using the contextual infor-
mation. Our overall aim is to provide accurate occupancy estimates
down to level 3 – i.e., head counts – with associated levels of confi-
dence.

In the first two settings, we performed hierarchical occupancy
estimation in the HTA and LTA respectively using the wireless en-
vironmental sensors that measured various modalities to highlight
the impact of the hierarchical framework using solely the sensors.
In Setting 3, we incorporated the contextual information in the LTA
as described before. In addition to highlighting the impact of the hi-
erarchical framework with the added contextual data, we also eval-
uated: i) how uncertain this information is; and ii) how much this
additional information actually benefits the estimations.

4.2.1 Setting 1: Occupancy estimation in a High
Traffic Area using only environmental sensors

Confidence values from the top-level were appended to the fea-
ture vector (Equation 10) for classification at the penultimate level.
Mean accuracies per level with standard deviations are shown in
Table 2-S1. Using our hierarchical classification method, we saw
a significant improvement over the baseline classification strategy
(independent samples t-test). This resulted in improvements only
seen at level-2 onwards (and not level-1). With increased level of
classification accuracy, we could more accurately estimate the ac-
tual count of people occupying the monitored area.

4.2.2 Setting 2: Occupancy estimation in a Low Traf-
fic Area using only environmental sensors

Comparative results for mean occupancy estimation accuracies
in a LTA setting using both of the non-hierarchical and hierarchical
models for both of the classification mechanisms are shown in Table
2-S2. Again by using our hierarchical framework we observed a
significant improvement over the baseline approach at both levels 2
and 3.

4.2.3 Setting 3: Occupancy estimation in a Low Traf-
fic Area using environmental sensors and con-
textual information

We used the original feature vector of Equation 10 and appended
the contextual features to it as described earlier (System Overview).
For all further levels of our hierarchical model we similarly use
confidences from the lower levels and augment the feature vectors
accordingly. For the bottom level classification we then arrive at

feature vectors ~f ′′ ∈❘D′′
with D′′ = 135 (127 (original features) +

2 (contextual features) + 2 (level-1 confidences representing binary
decisions) + 4 (level-2 confidences representing 0, low,medium,
high occupancy categorisations). We used the same hierarchical
ground truth annotation for evaluation.

Mean classification accuracies with associated standard devia-
tions for hierarchical occupancy estimates using PC activity infor-
mation as an additional feature are shown in Table 2-S3(a). We
observed a significant improvement when using the hierarchical ap-
proach that implicitly dealt with associated uncertainty in noisy –
sensor and context – data. Similarly, mean classification accuracies
with associated standard deviations for hierarchical occupancy es-
timates using meeting scheduling information are shown in Table
2-S3(b). Similar improvement figures can be observed in favour
of the hierarchical approach compared with the baseline. When
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Figure 3: Confusion matrices for the baseline approach (left) and the hierarchical framework (right) for level-3 occupancy estimation.

S1 - HTA S2 - LTA S3a - LTA S3b - LTA S3c - LTA
No context No context PC activity Scheduling PC + Scheduling

Normal Hierarchical Normal Hierarchical Normal Hierarchical Normal Hierarchical Normal Hierarchical

k
-N

N L1 94.6 (1.1) 94.6 (1.1) 92.4 (2.1) 92.4 (2.1) 94.1 (1.8) 94.1 (1.8) 94.0 (1.9) 94.0 (1.9) 94.7 (1.9) 94.7 (1.9)
L2 81.6 (2.0) 84.7 (1.9) 87.3 (3.0) 91.6 (2.4) 89.6 (2.5) 93.3 (2.3) 89.1 (2.7) 93.2 (2.1) 90.4 (2.4) 94.0 (2.1)
L3 68.9 (2.4) 74.5 (2.1) 69.2 (4.4) 74.9 (4.4) 72.4 (4.3) 78.0 (4.2) 70.7 (4.0) 76.0 (3.9) 72.5 (4.2) 77.7 (4.2)

S
V

M

L1 93.3 (1.1) 93.3 (1.1) 91.7 (2.3) 91.7 (2.3) 94.9 (2.1) 94.9 (2.1) 94.0 (1.9) 94.0 (1.9) 95.5 (1.7) 95.5 (1.7)
L2 78.9 (2.0) 82.0 (1.9) 84.0 (3.1) 89.1 (2.7) 90.5 (2.3) 91.6 (2.2) 89.0 (2.5) 90.1 (2.5) 91.3 (2.4) 92.3 (2.2)
L3 66.3 (2.3) 71.3 (2.3) 64.6 (3.9) 71.3 (4.3) 70.4 (3.9) 75.2 (3.5) 71.4 (4.1) 74.0 (4.2) 73.8 (4.1) 76.8 (3.8)

Table 2: Mean hierarchical classification accuracies for all settings. Setting 1 (S1) represents a comparison made between the two methodologies in a High
Traffic Area (HTA) using environmental sensors. Setting 2 (S2) shows the comparative results using only environmental sensors without context in a Low
Traffic Area (LTA). Settings 3 (S3) represents comparative results using contextual data i.e., PC activity data (a), meeting schedules (b) and both (c). All of the
results shown were significant (p<.005) per setting intra level.

all contextual information sources were incorporated into the fea-
ture vector we achieved further significant improvements over the
standard approach, as well as over the configurations using a single
contextual source (Table 2-S3(c)). Confusion matrices at the bot-
tom level of occupancy representation (head-counts) – highlighting
major improvement using the hierarchical approach as compared
with the baseline – are shown in Figure 3.

In addition to highlighting performance improvement using our
hierarchical approach, we also explored the influence of using con-
textual information in addition to the environmental sensors. The
combination of all data sources again resulted in significant im-
provements of the occupancy estimation accuracy – for both the
baseline and our hierarchical approach (Table 2-S2,S3(c)). The ta-
ble shows consistent improvement of both the models in favour of
using contextual information (in this case PC activity and meeting
schedules). These results are interesting as with the addition of
contextual information, occupancy estimation at every level of the
hierarchical representation improves even though our contextual in-
formation does not explicitly represent head-counts in the case of
level-3 occupancy estimates.

4.2.4 Meeting schedule uncertainty

Meeting schedules are potentially the biggest contextual indi-
cators for general room occupancy. However, scheduled meetings
may not take place (i.e., schedules are not altered for last minute
cancellations) and similarly, people may be present in the room at
a time when no meeting is scheduled. During the 14 days of data
recording in our LTA we found the correctness of scheduled meet-
ings to be 87.08% with respect to recorded occupancy. Accord-
ing to our experiments still this imperfect accuracy of the meeting
schedule improves the overall accuracy of the occupancy estimation
(Table 2-S3(b,c))

However, it remains to be explored up to which degree of erro-
neousness an uncertain meeting schedule can positively contribute
to accurate occupancy estimation for a meeting room. In order to
evaluate the influence of the uncertainty that is inherent to meet-
ing schedules we systematically explored this effect by artificially
and randomly falsifying meeting schedules e.g., randomly adding
meetings in schedule when no actual meetings took place. This
effectively translates into introducing noise into the meeting sched-
ule. Figure 4 shows the accuracy of occupancy estimation at level
1 (binary occupancy) in dependency on the amount of noise added
to the meeting schedule, starting with 0% up to 50% noise – i.e.
by falsifying up to 5 out of the 10 days worth of meeting schedule
data. It can be seen that the use of meeting schedules yields a ben-
efit as long as this contextual data is correct for at least half of the
contained meetings.

4.2.5 Historical evaluation

With our estimation system it is possible to analyse ongoing
room occupancies as demonstrated above. Whilst this evaluation
allows for a systematic analysis of the effectiveness of the pro-
posed analysis framework, it misses out an important practical use
case. For sustainable optimisation of the way a particular building
is used, facility management would rather look into the analysis of
long term monitoring data instead of focusing on short temporal
contexts. A straightforward extension of our deployment study is,
however, challenging as it is not acceptable – not even for system
development and validation purposes – to obtain detailed ground
truth using the intrusive procedure as described before over longer
periods of time, which leaves us with the challenge of unreliable
annotation for long-term monitoring data.

Given the results of our systematic evaluation we are able to
effectively overcome this dilemma. Aiming for an estimation of
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Figure 4: Binary occupancy estimation accuracy with regards to the amount
of scheduling noise. It can be seen that, meeting schedules are beneficial
to occupancy estimation as long as the scheduling information is correct at
least half the time.

the degree of misuse of the meeting room we collected sensor and
contextual data for a period of one month, i.e., we deployed the
system “as is” and left it in the room untouched over the whole pe-
riod of deployment. The resulting historical data is then analysed
as described in the previous section and we use the room’s meet-
ing schedule as ground truth annotation. For the sake of clarity of
presentation we only focus on high-level occupancy estimates here.
We then use the results of the systematic validation study to effec-
tively recalibrate the results, i.e., we explicitly weigh the prediction
results using the results of the 10 days study:

i) w1 = correlation between scheduled meetings and occupancy
– M̂ = 87.08% (as established previously);

ii) w2 = occupancy estimation accuracy – Ô = 92.30% (Table
2-S1).

We also use the classifier accuracy for the one month deployment
with regards to the room’s meeting schedule w3 = 96%. Taking
the correction factors into account, the effective correction factor
results in:

Ĉm = w1 ×w2 ×w3 = 0.87×0.92×0.96 = 0.77 (14)

(assuming equal influence of errors w1, w2 and w3).
Using the trained classifier, we predict binary occupancy for

the one month deployment and find correlation with regards to the
scheduling information. We found that approx. 30.22% of the time,
a meeting was scheduled but people were not present and 10.56% of
the time people were present when there was no meeting scheduled
(both corrected using Equation 14).

4.2.6 On Accurate Head-Counting

In principle, the methodology discussed in this paper is trained
using a certain number of people (in the case of the meeting room
it was 14). However, in the context of a decision support system,
it would be useful to consider an open-ended occupancy classifi-
cation problem where the maximum number of occupants is not
strictly pre-defined. Effectively this corresponds to an accurate
head-counting problem with no limitations, which is very challeng-
ing when using non-intrusive sensing capabilities as it is dictated
by the targeted application scenario. We approach this problem
through the exploration of hierarchical posterior probabilities (as

Figure 5: True occupancy (top) and per-level decision confidences (top-
centre, bottom-centre, bottom) showing inter-level inconsistency when
number of people is 13 (highlighted).

indicated in the previous section) again, this time however, looking
at the inter-level inconsistencies.

In an exemplary evaluation scenario, we train our system for a
target maximum occupancy of 10 people. This upper limit could,
for example, come from the room specification. However, during
evaluation it is presented with scenarios where up to 14 persons oc-
cupied the room, which corresponds to overcrowding and thus mis-
use of the room. Accordingly, Figure 5 shows the inter-level incon-
sistencies where the topmost bar shows the number of occupants in
the meeting room, and per level confidence measures are shown in
the three bars at the bottom where colours represent the confidence
levels: red for low confidence; yellow for medium confidence; and
green for high confidence. For 13 occupants in the room, level-
1 provides high confidence in an occupant’s presence and level-2
provides medium confidence about high occupancy presence. How-
ever, level-3 confidence measure is red indicating uncertainty about
the number of people.

Having access to such a representation, a building manager can
now reliably make sensible decisions related to resource allocation
based on per-level confidences and inter-level anomalies.

5 Conclusions

We have presented a new approach for accurate occupancy mon-
itoring based on a wireless sensing system, which measures the
non-sensitive values of temperature, light, humidity, PIR and au-
dio levels that is convenient to deploy and cost-effective. We de-
veloped a novel hierarchical analysis framework that combines en-
vironmental sensing with potentially uncertain contextual informa-
tion (e.g., meeting schedules, computer activity) and demonstrated
in real-world deployments that the proposed approach can monitor
occupancy accurately up to head-count level, thereby performing
significantly better than a baseline, non-hierarchical approach.

When monitoring room use over a longer period of time, we
found that the studied meeting room was not always utilised appro-
priately – with people not being present at the time of a scheduled
meeting nearly a third of the time resulting in potential wasted en-
ergy in other rooms. The system was designed to support human de-
cision makers in optimising the use of the building’s facilities with
a view on sustainable use of resources whilst at the same time main-
taining occupants’ comfort. Our framework produces detailed yet
easy to comprehend analysis results including confidences, which
supports effective decision making.

The hierarchical occupancy estimation algorithm itself can also
be incorporated into existing infrastructures to improve their accu-



racy for example, by replacing the Google calendar feed in BOSS
[5] or the one used in Redwood’s Room Tracker [30]. This would
yield better results due to the improved occupancy estimation quan-
tified in this paper. We can also use the proposed framework with
other existing hardware such as the Nest thermostat [25] that mea-
sures similar modalities.

Alternative methods such as the hierarchical rule induction [14]
(originally proposed for automated sports video annotation [6]) can
also be deployed in this context that is able to specify the number
of levels of hierarchical occupancy in a temporal fashion. Anomaly
detection methodologies such as [2, 13] can also be explored to
highlight anomalous number of occupants for a given location.
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D. Roggen, and T. Plötz. Automatic Correction of Annotation Bound-
aries in Activity Datasets by Class Separation Maximization. In Ad-

junct Proc. UbiComp – HASCA workshop, 2013.

[16] R. Kirkham, S. Mellor, D. Green, J.-S. Lin, K. Ladha, C. Ladha,
D. Jackson, P. Olivier, P. Wright, and T. Plötz. The break-time barome-
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