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Abstract. The classical occupancy problem is extended to the case where 
two types of balls are thrown. In particular, the probability that no urn 
contains both types of balls is studied. This is a birthday problem in two 
groups of boys and girls to consider the coincidence of a boy's and a girl's 
birthday. Let N~ and N2 denote the numbers of balls of each type thrown one 
by one when the first collision between the two types occurs in one ofm urns. 
Then NIN2/m is asymptotically exponentially distributed as m tends to 
infinity. 

This problem is related to the security evaluation of authentication 
procedures in electronic message communication. 

Key words and phrases: Urn models, collisions, birthday problem, 2×2 
occupancy distribution, Stirling numbers of the second kind, compound 
binomial distribution, exponential distribution, Rayleigh distribution, 
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1. Introduction 

Suppose that balls are thrown at random and independently into one of 
m urns with the same probabil i ty l /m .  Further,  suppose that there are two 
types of  balls to be thrown, say, nt white balls and n2 red balls. As the result 
there are four types of urns with and without white and red balls. The numbers 
of urns of these types are represented by a 2x2  contingency table, Table 1. 

On the other hand, each ball enters an urn with or without balls of the 
different color. In the former case "collision between two different colors" 
occurs. Corresponding to Table 1, the numbers of balls of four types are 
denoted as shown in Table 2. 

The purpose of  this report  is to first study, in Sections 2 and 3, the joint  
and marginal distributions of these numbers. Of  utmost  concern is the 
number  S of  urns with balls of both colors, and the probabil i ty that S=0.  This 
is the probabil i ty that Y~ = Y2=0, namely there is no "collision" of balls of 
different colors within a single urn. If balls are thrown one by one, the 
numbers  Nl and N2 of white and red balls, respectively, at the first occurrence 
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Table 1. Numbers of urns of four types. 

contains red balls 
total u r n s  

yes no 

contains 
white yes S R~ 7"1 - S + R~ 

balls 
no R2 R 3 = m - R 2 -  T2 m -  TI 

total T~, = S + R2 m - T2 m 

1 <_ T,<< min(ni,  rn ) , i=  1,2.  

Table 2. Numbers of balls of four types. 

balls 

collides 
wi th  yes 
white 

n o  

red total 

collides with red 

yes no 

Y, \ Y~ n~ - Yt 

n 2  - Y2 

/12 m 

white 
total 

r/ i  

m 

n l  + n 2  

E a c h  entry corresponds to that in Table I. 

of collision are "waiting time" for the collision. And the probability that S=  0, 
which depends on m, nl and n2, is the probability that Nl>nl or N2>n2. In 
Section 4, after the evaluation of this probability, it is shown that NIN:/m is 
asymptotically exponentially distributed. 

Suppose that there are two groups, say, n~ boys and n2 girls. Assume that 
their birthdays are independent and uniformly distributed on 365 days. The 
event S>0  means that there is at least one birthday which a boy and a girl have 
in common. The classical birthday problem, Feller (1968) and Johnson and 
Kotz (1977), relates to collision within the same color, and is known because 
of the high probability of a common birthday. Our "birthday problem in two 
groups" has also high probabilities of (3.4) or (3.5) with m=365, as shown in 
Table 3. 

This modified birthday problem stemmed from cryptography. To 
authenticate a message to be sent through an electronic communication 
network, the sender compresses the sequence of fragments of the message into 
a short message, called a digest, using a hash function. The digest is encrypted 
and sent with the original message as a signature. An opponent, knowing the 
original and the digest tries to tamper with the original by changing some 
parts of the fragments at random keeping the signature unchanged, Davies 
and Price (1980) and Mueller-Schloer (1983). The urns are possible hashed 
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Table 3(a). Birthday problem in two groups of rtl boys and n2 girls. 
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Probability of coincidence of boys' and girls' birthdays 

nigh2 5 10 15 20 25 30 35 40 45 50 55 

5 0.066 
10 0.128 0.240 
15 0.186 0.337 0.460 
20 0.240 0.422 0.561 
25 0.290 0.496 0.642 
30 0.337 0.561 0.709 
35 0.381 0.617 0.763 
40 0.422 0.666 0.807 
45 0.460 0.709 0.843 
50 0.496 0.746 0.872 
55 0.530 0.779 0.896 

0.666 
0.746 0.820 
0.807 0.872 0.915 
0.853 0.909 0.944 0.965 
0.888 0.935 0.963 0.978 0.987 
0.915 0.954 0.975 0.987 0.993 0.996 
0.935 0.967 0.983 0.992 0.996 0.998 0.999 
0.951 0.977 0.989 0.995 0.998 0.999 0.999 1.000 

nl = n2 10 I 1 12 13 14 15 16 17 18 19 20 

Probability 0.240 0.282 0.326 0.371 0.416 0.460 0.504 0.547 0.589 0.628 0.666 

Table 3(b). Classical birthday problem. 

Probability of coincidence of birthdays in groups of n persons 

n 10 20 21 22 23 24 25 30 40 50 60 

Probability 0.117 0.411 0.444 0.476 0.507 0.538 0.569 0.706 0.891 0.970 0.994 

fragments of texts, and the balls are randomly modified and hashed texts. The 
two types represent forward and backward compression starting from the 
ends to meet in the middle. The modeling is discussed in an accompanying 
note, Nishimura and Sibuya (1987). 

Occupancy problems have been extensively studied. See, for example, 
Johnson and Kotz (1977), Kolchin et al. (1978) and Fang (1985), among 
others. However, the generalization of the above-mentioned direction has not 
been thoroughly studied. Popova (1968) obtained limit distributions of the 
joint distribution of Ri, R2 and R3 in the more general case of nonuniform 
throw-in probabilities. 

The Stirling numbers of the second kind which are denoted by In/ ,  
1 <m<_n, are defined by the polynomial identity 

X n = ~ I n l x  (m) w h e r e  x Ir') = x ( x  - 1 ) . . . ( x  - m + 1)  . 
.,=~ tmj , 

They are also expressed by using the forward difference operator zl as 



80 K A Z U O  N I S H I M U R A  A N D  M A S A A K I  S I B U Y A  

( l . l )  {fin} = zlmO"/m!, 

and satisfy the recurrence relation 

(1.2) {mn} = m / n m  1} + {mn - 11} , 

0} one by example, (1950), (1958), being convention. See, for Jordan Riordan 

Johnson and Kotz (1977) and Knuth (1967-1981). The notation of the Stirling 
numbers differs in the literature. Here the notation of Knuth, which 
emphasizes the similarity to binomial coefficients, is followed. Univariate 
discrete distributions including the Stirling numbers of the first and the 
second kinds have been surveyed by Sibuya (1986). 

2. Joint distributions of the numbers of urns and balls 

In Table 1 the marginal distributions of T~, T2 and S+ -Rl + R2 = Tl + / ' 2 -  S 
follow the classical occupancy distributions; 

(2.1) m ~, , l_<t_<min(m, ni), i =  1 ,2;  

(2.2) P r [ S +  R~ + R2= u]= { nl + n21 ml"l 
l , l  m n '+n "  ' 

l<u-<min(m, nl+n2). 

Under the condition that the marginals m, T~ and T2, and therefore m-/ '1  and 
m-Tz are given, the entries of the 2x2 table follow the hypergeometric 
distributions. For example, 

(2.3) Pr[S = sl Tl = tl, T2 = t2] 
m - l l  m m - -  t2 m 

= (t~)(t2 s)J(t2) = (~ ) ( t l  S)/(tl)' 
max (0, tl + t2 - rn) < s _< min (tt, t2). 

There are several models leading conditionally to a 2 x 2 table, with different 
joint distributions, and the above-mentioned is just another type of model. 

Combining (2.1) and (2.3) and assigning ti=ri+s, i=1, 2, the joint 
distribution of (S, Ra, R2), which can be called a "2×2 occupancy distribu- 
tion", is obtained as follows: 
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(2.4) Pr[(S, Ri, R2) = (s, rl, r2); m, nl, n2] 
1 { nl }{ n2 } m[(r______2+_s),_(r2+s ), 

- m "'÷"2 r l + s  r 2 + s  s ! r l ! r 2 ! ( m - r i - r 2 - s ) ! '  
0___s,r~,r2; r ~ + r 2 + s _ < m ;  l___r~+s_<n~; 1 < r 2 + s _ < n 2 .  

Suppose n~ balls randomly occupy t~ urns, and first separately consider 
the cases i= 1 and i=2. Under this condition, select s urns at random from the 
occupied ti ones. It is shown that these s urns contain Y,- balls with the 
probability 

(2.5) Pr[ Y,- = Yil Ti = ti = ri + s; hi,  s] 

= (~:){yi} { n i ~ y i } / ( ~ ) { t n : ] .  

In Tables I and 2 the events Yi=yi,  i= 1, 2, occur for a set of s urns common to 
both sets of t~ and t2 urns. Multiplying (2.4) and (2.5) with i= 1 and i=2, we 
obtain the following joint probability function of the five free random 
variables in Tables I and 2: 

(2.6) Pr[(S, Rl, R2, Y1, Y2) = (s, rl, rz, yl, y2); m, nl, n2] 
m! s! 

_ 1 (y : ) (~: ){yl]  {nl rl Y~} {Ys} {n2-  y2} (m  & - r 2 - s ) ,  
m n'+n~ r 2  - -  " 

For confirmation (2.6) is obtained by another method. Under the 
condition 7"1--t~, Y2 follows the binomial distribution Bn(n2, t l / m ) .  Since T~ 
follows (2.1), the joint probability function of T~ and Y2 is 

(2.7) Pr[(T1, Y2) = (tl, y2); m, hi, n2] 

_ l {n21[n l lm{ t~ ) t lY~ (m_ t l )~2 -y~  " 
m n~+n: \y21(  tl ) 

Under the condition (Tl, Y2)=(h, y2), S and R2 are independent and follow 
(2.1) with modified parameters: 

(2.8) Pr[(S, R2) = (s, r2)l(Tl, Y2) = (tl, y2); m, nl, n2] 
t~ s) In2  (m - tl) t~) 

r2 (m - tl) "2-y2 " 

The distribution of Y~ given T~=rl+s=t~ is (2.5). Multiplying (2.8), (2.7)and 
(2.5) with i= 1, we again obtain (2.6). 

The joint  probability function (2.6) can be rewritten using the difference 
operator expression (1.1) of the Stirling numbers of the second kind. Further 
its probability generating function is written as follows: 
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(2.9) g(a, pl,/92, r]l, 1/2; m, nL, n2) 

= EPr[(S, R~, g2, Y~, Y2) 

= (s, r,, r2, y,,  yz); m,  nl, nz] a~p['p~rfi'~ ~ 

: [m-"'-"~(1 + p~A~ + pZAz + ¢7AuAw) m 

• (urn + v)"'(Wrl2 + 

The extended exponential  generating function of the family of joint  
probability functions (2.6) is defined by 

~b(a, pl, pz, t/l, t/z; 1)1, 1"2; m) 

= ~ ~(mvs)"' (mv~) "~Zz~ZZ plp2,/,tlz ~ rl r 2 J i  y2 

nn=l n2=l n l !  / ' /2!  s rl . ' 

• Pr[(S, R1, R2, Yl, Y2) = (s, rl, r2, yl, y2)] , 

Johnson  and Kotz (1977, p.63). Since the exponential  generating funct ion of 
{ n } , n = m , m + l , . . . i s  

I.iz  ,,m 
, . .  , ~ m m! m = 1,2,. 

it is shown that  

(2.10) Oh(a, pl,/92, ?/1, ?]2; YI, I)2; m) 
= {1 + p~(e ~ ' -  1)+  p2(e v : -  1)+  a(e ~'~'- l)(e " " ' -  1)} m . 

This expression can be also obtained by (2.9). 

3. Marginal distributions 

Various marginal probability functions and probability generating 
functions can be obtained f rom (2.6) or (2.9). Typical functions obtained are 
summarized in Table 4, and others can be obtained f rom those in the table. 
Some have been previously shown in Section 2. 

The corresponding extended generating functions are obtained f rom 
(2.10) by replacing some of a, pl, p2, v/l and ~/2 with one. For  example, the 
extended generating function corresponding to (2.4) is 

(3.1) cb(tr, pl, p2; Vl, v2; m) 
= {1 + pl(e v' - 1) + p2(e ~2 - 1) + a(e ~' - 1)(e v~ - 1)} m . 

Popova  (1968) obtained a more general expression for the probabilities of 
(R1, R2, R3) in Table 1, for the case of non-uniform throw-in probabilities. She 
showed that  the r andom vector (S, m - R l ,  n 2 - R 2 )  is asymptotically 
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independent and Poisson if O<Cl <_n~ /m _<c2< OO, i= I, 2, and that the random 
vector is asymptotically normal if O<Cl<ni/m_<c2<oo, i= 1, 2. 

The factorial moments are obtained from the probability generating 
function. For example, 

1 
g(tr) - m.,+.= [{(1 + zl~)(l + Az) + (6 - 1),d~,cl.}mvn'zn=]v=~O 

_ m,,+,= £ t l  (a -l...........71)z mlt)[ vzv(m + v)"' V~(m + z)"=]v=z=0 , 

where 17 denotes backward difference. Therefore, the factorial moments of S 
a r e  

(3.2) l mtl) 171mn, 171m m . E[S (')] _ m.,+., 

Another example: 

g ( ~ = )  - - -  
1 m "'+"~ [E t ( q2 -  1)tn~/)( 1 + E-zlEwav)"w t 

• ( m  + w + ),,2-, ,,~] 
Z V Jw:v:z=0 

1 [~ (172 --  1) / n~Z)(m + w + z) "2-t 
m n'+n'- ~ _  

{}1 + 

where E denotes the shift operator: A = E - 1  and 17 = I - E  -~. Therefore, 

n~ t) m(k) {j) k n,] 
(3.3) Etra'/q = T [ , Z  {}}Z--E-. k avV ]v=O 

n ,  "1 I 
- m , ~ { } } - - ~ V S m  '' , 

which is obtained more easily from E[ Y(2°lTl=td. 
Of particular interest is the probability of the event S--0, which is 

equivalent to YI =0 or I12=0: 

(3.4) 
l 

~v~ +n2 = h+tz=V 
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Table 4. Probability functions and their generating functions in occupancy with two types of  bails. 

Probability functions 

p(s ,  rl, r2, y l ,  y2) = m ...... y l  r~ \y21I  S l t r2 i ( m  - r-~---r2 - s)! 

p ( s ,  rl, t2, y l )  - m . . . . .  y l  rl ( t 2 J ~ s l ( m - r l - t 2 ) !  

( n l ) [ Y l ] l n l  - .  l } ( n 2 ] l y 2 1  m(' , ' (m-t , )n ' --r ' -s ,  
p ( s .  tl, y i .  y2) - m . . . . .  yl  ( s  J (  tt ~ ~Y2l ( s ) 

p ( s ,  tl, t2) m . . . . .  t, ~ s f t t 2  } ( m - t l - t 2 + s ) !  

nt + s ] ( n 2 ] { ~ } m ( , , + S , ( m _ r  ' - s ) " :  ":s, 
p ( s ,  rl, y2, - m . . . . .  { r i + s } ( r l s  ]~,y2l 

_ { -vl}{ n2 }(rZs+S ) re, s! p( t t ,  r2, y , )  m . . . . .  ( n , ] ~ l y ,  ] n, _ _  _ 
~yl} s { s J t~ - ' s  rz + s (m - -  I t  r e ) .  ~ 

p ( t l ,  r2, y2) m ..... tl y2 r2 (m - tl - r2)! t/': 

( n l )  l n l  - Y t l C n z ] z l Y l l l Y ~ l m ' ~ , + S ' ( m _ r ,  s),: ~':s, 
p ( r t , y l , y 2 )  - m ...... - yt  ( rl J \ y 2 } ~ ( s J l s J  

p ( r l ,  rz) m . . . . .  • { ri + s (rn - ri r2 - s)! 

p ( t l ,  t,~) m . . . . .  tt t2 

- m ,  , 

p(r t ,  y i )  m . . . . .  y l  r~ t2 ( m  - rl - t2)! t/~ 

p o t .  y2) - m . . . . .  In ' l  i "Z]m'" ' (m - tl)": ~:t,': ( tl J ~,y2/ 
p(_v t ,y2 ,  m . . . . .  ( ~ : ) ( 7 : ) ~ { Y s ' } { ~ } { n ' r - - ~ Y ~ }  m ' r ' ' s ' ( m - r l - s ) n : ' ~ ' ' - s '  

p ( s )  m . . . . .  ', ' ; [ , t~J~s] l ,  t 2 ) \ s ]  ( m -  t l -  t 2 + s ) !  

p ( y l )  m ....... ~v~! " (t~; 

Joint  and marginal  probabil i ty functions of  the r andom variables S, R~, R2, Y~ and Y2 in Tables 1 and 
2, and their generating functions. The first pgf  is defined by (2.9). 

(3.5) Pr[Y2 = 0 ; m ,  n l ,  n2] = Er ' [ (1  - T l l m )  n~] 

1 - m . , ~ { t ] l } m ' t ) ( 1 - t )  n2 

1 
_ m n' ~ {72} m(n(l _ t ) , , .  

To check the equality of the last two expressions and (3.4), develop (m-t)  "2 or 
(m-t)"' using the definition of the Stirling numbers. 
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Table 4. (continued). 
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Corresponding pgf's e x p r e s s e d  by  difference operators  

1 
g(n, pj, p2, rh, r/2) = 7 [ ( 1  + pJ,Jv + p2,3~ + aA~A,~)m(thU + v)n'(r/2w + z)"'] . . . . . . . .  0 

g(a,  pl,  r2, ql) - m ..... [(I + p l A v + ( l  +aAu)r2z lz )"(qlu+ Q " z  ~] . . . . . .  0 

g(a,  rl, ql, tl2) - m ..... [(E~ + flay + rlazluAw)m(r/lu + v)"'(q2w + z) n:] . . . . . . . .  0 

_ m nl n~ 
g(a ,  rl, r 2 )  m . . . . .  [(1 + "ClZlv + "t'2ZJz if" r lZ20"Avz]z )  V Z ]v=z:-O 

g(o', pl, r/2) - rn ..... [(E, +p iAv  + aAvzJ,)"v"(r/2w + z) "2] . . . . . .  0 

- rtA~A~) (qlu + v) z ] . . . . . .  0 g(r~, p2, r/l) m ..... [(1 + r~z]~ + p2zt: + . . . . .  

g(r l ,  p2, r/2) m ..... [(1 + rlE~zIv + p2A~)"v~'(rl2w + z)"] . . . . . .  0 

g(pl ,  ql, r/2) = m ..... [(E~ + plzJ~ + zluz1~,)"(rllU + v)"'(rl2W + z)":] . . . . . . . .  0 

- -  m n~ n: 
g(pl,  p 2 )  m . . . . .  [(1 + p l z J ~  + p2z]z + zJvAz) v z ]v=z=o 

g(zl ,  r2) m"' [(1 + rlzl~)"v"']~=o [(1 + r2zL) z ]~=0 

g(Ph  rll) - m ..... [(E~ + pld~ + AuA~)m(rllU + v)n'z n~] ...... o 

g(r l ,  q2) - m ..... [(E~ + riE~zL)~v"'(q2w + z)":] . . . . . .  o 

g(r/l, q2) - m ..... [(1 + dv + A~ + A~A~)"(qlu + v)"'(vl2w + z)"'] . . . . . . .  o 

g(a)  m ..... [(I + A~ + Az + aA~A~)"v"'z"']~=,=o 

g(r,) = ~-z [(1 + r~a~)mv"']:o 

g(qO - m ..... [(Ev + E.zL)'(tllU + v)n'z n'] . . . . .  o 

A denotes the forward difference operator,  and E the  shi f t  operator:  ,J = E -  1. 

It is intuitively true that nl-t-n2 being fixed Pr[S>0] will be maximized 
when n~ and n2 are equal. The following proposition confirms this. The proof 
is given in Appendix. 

PROPOSITION 3.1. The probab i l i t y  Pr[S=0; m, hi, n2] of(3.4) or (3.5) 
with m and n l + n2 f i x e d  decreases when I n l-n21 decreases. 
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4. Bounds of Pr[S=O] and the asymptotic distribution of the waiting 
time 

4.1 Lower bounds 
Since h(t):= (1 - t~ m) "~ in (3.5) is a convex function of t, a simple and good 

lower bound is 

(4.1) Er'[h(Tl)] >_ h(E[T~]) 

= (1 - l /m)  .... =: Ll(m, n~, nz) . 

Further, since h(t) is bounded by the tangential parabola, a stronger version of 
(4.1) is 

(4.2) h(E[Td) + + h"(E[T~]) Var[T~] 

[ n 2 ( n 2 - 1 ) (  1 ) " '  
= Ll(m, nl, n2) • 1 + 2"m 1 - 

• {1-(1 m-1 1)"'+m((1 ml 1)"'-(1-1)"'11] 
=: L0(m, n,, n2) . 

This is a complicated but excellent bound and max(L0(m, nl, n2), L0(m, n2, n l ) )  
further improves the bound. 

If nln2 is larger, 

(4.3) exp( - nln2/m) 

is also a better bound than Lt, but (4.3) exceeds Pr[S=0] for smaller values of 
n~n:. The expression (4.3) is a lower bound if n~n: is larger than m. It was only 
possible to check the range numerically. A modification of (4.3) 

{ ( nxn2 1 + - -  

(4.4) exp m 4m 

is smaller than (4.3), but is shown numerically to be a lower bound in wider 
range m > 2  and n~ +n2>2. 

4.2 Upper bounds 
It is difficult to obtain a good and simple upper bound. It is known that 

the number of collisions is asymptotically Poisson, and this fact suggests a 
way. 

PROPOSITION 4.1. 2 The Poisson distribution with mean 2=nl  / 2(m-n1 + l) 
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is stochastically larger than the distribution of the number of  collisions 
C=nl-T1, 

nl } m(n'-c) 
P r [ C = c ] =  n l - c  m"' ' 

(cf (2.1)). 

The proof is given in Appendix. 
Using this proposition, take the expectation ofh(T])=h(n]-  C)___exp(- n2. 

(h i -C) /m)  and replace C with the Poisson variable to get 

(4.5) exp m 

This expression is asymmetrical in (n], n2), and the minimum of U~(m, n~, nz) 
and Uffm, hE, nl) c a n  be chosen. Notice that h(t)< 1 and evaluate 

E[h(n~ - C)] < h(n,)Pr[C = 0] + Pr[C > 0] ,  

replacing C in the last or both probabilities with the Poisson variable. Then, a 
simpler bound is 

(4.6) m"' 1 -  + l - e  =: U2(m, nl, n2) 

<_ ( 1 -  r~)"2e-a + l - e  -a 

Rough upper bounds are also obtained by using the Chebyshev-type 
inequality on the distributions of S or Y/. 

4.3 Asymptotic distribution of waiting time 
Suppose that white and red balls are thrown one by one according to 

some rule of choice fixed in advance. Let nli and nEj be the numbers of white 
and red balls thrown up to thej-th step. The sequence {(nv, nEj)}7=l, nlj+nEj=j, 
represents the rule of choice. We assume that after some finite steps nzjnEj>O. 
Let J denote the step number where the first collision between the two colors 
occurs, that is, J is the waiting time of collision, and put (NI, NE)=(n~s, n2j). 
The event J>j is equivalent to the event S=0 at (nlj, n2j). 

THEOREM 4.1. Let {(nlj, n2j)}j%l be a rule of choice of white and red balls, 
and let (NI, N2)=(nu, n2s) be the numbers of white and red balls when the first 
collision of two colors occurs. For any positive M>0, as m--,~ 
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Pr[NlN2 /m  < w] --" 1 -  e -w , f o r  O < w < M .  

PROOF. Since n~jn2j is strictly increasing in j if nlin2j>O, the event 
N1 N2/m > w is equivalent to the event S= 0 for all (nlj, n2j) such that  nljn2j < mw.  
Now, for a given w put ¢o(j)=ntjn2j/w, for which 

Aco(j)/co(j) = 1/nli or l /n2 j .  

L e t j = j ( m )  increase to infinity as m ~  such that  

og(j) _< m < co(j + 1).  

Then, provided that  nv, n z j ~  ( j ~ ) ,  

I ntjnzj w Aco ( j ) / o ( j )  ~ 0 (m ~ ~ )  . < 
m 

Otherwise assume, for example,  nzj<_c, 0 < c < ~ ,  then there exists finite k such 
that nz~=c, and Aog(j)/og(j)= 1/nls f o r j > k .  Thus, for any {(nlj, n2j)}j~l such 
that nun2j>0 except for a smaller j ,  

nvnzj /m ~ w , m --, ~ , 

i f j  is increased as ment ioned above. 

The probability 

Pr[N1Nz/m > w] = Pr [S  = 0; m, nlj, n2j], 

where j  satisfies w(j)<_m<og(j+ 1), is bounded by Ll(m,  nti, nzj) and min(U1(m, 
nv, nzj), Ul(m, nzj, n~j)). Since (4.5) is rewritten as 

{nine(1 "-' ))1 
U i ( m , m ,  n 2 ) = e x p  - m 2 ( m - n l + l )  l + ~ + . . .  , 

lim Ll(m,  nu, n2j) = lim min(Uffm, nu, n2j) , Ul(m, n2j, no)) 

= lim exp( - nljn2j/m) = exp( - w) . 
m ~ e ~  

In the case where white and red balls are th rown alternately, the 
distribution of N~ / ~ or N2 / x / m  is asymptotically the Rayleigh distribution 
with the probability density 
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2 w e x p ( - w  2), 0 < w < o o .  

Refer to Hirano (1986) for the Rayleigh distribution. 
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Appendix 

Proposition 3.1 is straightforward from Lemma A. 1. 

LEMMA A.1. 
kind 

The convolution of the Stifling numbers of the second 

Sin, {ran2 , t t }  - t } '  m = 2,3,... , 

with n~+n==n fixed, decreases when In~-n2l decreases. That is, 

/f In-2kl  < In-2jl ,  provided that the right-hand side is positive. 

PROOF. It is sufficient to prove (A. 1) for the casej=k-  1 <k<n-k<n-k+ 1 

=n-j. Apply the recurrence formula (1.2)to {k} of the left-hand side and 

{nmk+ 1} of the right-hand side. Then (A.1)is equivalent to 

Now, it is shown from (1.2) that the Stifling numbers of the second kind 
are TP2 (Totally Positive 2), namely, 

{n:2}{~}<{mnll}{n2}m - m2 , if n,<n2 and m l < m 2 ,  

and the strict inequality holds unless the right-hand side is zero. Therefore, if 
t<m-t,  
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t n - k  < ( m _ t ) { k -  l } { m _ t } + t { k m - -  lt}{n t k } ,  

and (A.2) is proved. 

For proving Proposition 4.1, another lemma is needed. 

LEMMA A.2. For any positive integer n> 3, 

~m+,,{ ° }// ~ } m 0 , 2  ~ 2  
n - m - 1  n - m  ' 

is a strictly decreasing sequence. 

PROOF. Proceed induction on n. If n=3, the sequence is 3, 2/3. To 
advance the induction step from n to n+ 1, compute 

,m+,,{"+l}~ { }{ } - (m + 2) n +  1 n +  1 
- n - m + l  n - m - 1  

~ }{ }] =(n-m~[(m+ 1~{" / -(m+2~{ " " 
n - m  n - m + l  n - m - I  

[ { ° } {  ° } + ( n - m + l )  r a n _  m n - m -  I 

n - m + l  n - m - 2  

n - m  n - m -  1 + ( m + 2 )  n - m +  1 n - m -  1 
2 

n n 

+ [ ( m +  1)[n_ m _  1 } - ( m +  2) {n n__ m} {n _ m - 211" 

All the terms are positive and Lemma A.2 is proved. 

To prove Proposition 4.1, put 

n - x m n ' 

and define the Poisson distribution function 

g(x) := e -a 2X/x! 

with 
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2 >_f(1)/f(O) = n(n - l ) / 2 ( m  - n + 1) . 

Due  to L e m m a  A.2, 

( x + l ~ x + l ) ~ =  
x + l  

m - n + x + l  n - x - I  n - x  

is decreas ing in x, and 

(x+ 1) g ( x +  1) _2>f(1)  
g(x)  - f (O)  

> ( x +  1) f ( x +  1) 
f ( x )  

Since g(x ) / f ( x )  is increasing,  g(x) is s tochast ical ly  larger  t han  f i x )  and the 

p r o o f  is comple te .  
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