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Abstract

Since buildings account for some 40% of total energy usage in the world, great

attentions have been paid on energy efficient buildings. To achieve this objective,

occupant sensing is a key factor, which includes knowing the number of occupants,

their locations and their performed activities in buildings. In this dissertation, we

attempt to give solutions to the three corresponding questions of occupant sensing:

How many occupants are there in a zone? Where are they located? What are they

doing?

Occupancy, i.e. the number of occupants, is a coarse information for the con-

trol of energy efficient buildings. We develop novel inhomogeneous Markov chain

models which utilize the incremental information of occupancy for building occu-

pancy modeling under two scenarios of multi-occupant single-zone (MOSZ) and

multi-occupant multi-zone (MOMZ). In this way, we can dramatically simplify the

calculation of model parameters, i.e. transition probability matrices. The pro-

posed models have been evaluated using actual occupancy data. After that, we

explore the more valuable information of real-time occupancy estimation that can

be used for real-time building environment control. Since occupancy models can

provide the information of occupancy pattern, we present a fusion framework of

combining occupancy models with data-driven models for occupancy estimation

using environmental parameters. Real experiments showed the effectiveness of the

proposed approach. For some applications, such as smart scheduling, pre-heating

and pre-cooling, they require the knowledge of occupancy level in future, known

as occupancy prediction. We compare the prediction performance of existing oc-

cupancy models with some popular linear and non-linear data mining approaches.

The experimental results allow us to deduce a guideline on how to choose a proper

method for the prediction of occupancy in buildings under different prediction

horizons.

One of the detailed aspects in occupant sensing is the locations of occupants in

buildings. Outdoor localization can be resolved using GPS (Global Positioning
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System). However, since GPS signals are blocked in indoor environments, the

performance of GPS is greatly degraded. The most widely used technique for in-

door localization is based on WiFi technology. We propose a fusion framework

of WiFi, smartphone sensors and landmarks for indoor localization. Instead of

using the popular WiFi fingerprinting approach which requires a labor intensive

and time consuming site survey of the environment, we apply a weighted pass

loss model for WiFi localization. We formulate the fusion in a linear perspective.

Then, the Kalman filter which is computational light can be applied. Moreover,

we use landmarks such as turns, stairs and elevators, which can be detected using

smartphone sensors to further improve the performance of the proposed system.

Significant improvements were demonstrated in real experiments. In situations

where WiFi signals are not available, or the application is sensitive to power con-

sumption, which makes WiFi based approaches not suitable because of the power

hungry property of WiFi scanning, we present another localization and tracking

system using smartphone sensors with occasional iBeacon corrections. Based on

the detailed analysis of iBeacon technology, we define a calibration range where

the extended Kalman filter is formulated. Real experiments have been conducted

in two different environments. The experimental results demonstrated the effec-

tiveness of the proposed approach. We also tested the localization accuracy with

respect to the number of iBeacons. Another detailed aspect in occupant sensing

is the activity performed by occupants. This activity information can be used to

identify landmarks for indoor localization and, more importantly, to determine the

metabolic rate which is a key parameter in calculating human comfort index. We

propose an orientation independent activity recognition system based coordinate

transformation and principle component analysis using smartphone acceleration

data. The experimental results indicated that the proposed approach significantly

improve the detection accuracy with regard to orientation variations. Moreover,

the results also showed some improvements of our proposed approach on placement

and subject variations.
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Chapter 1

Introduction

1.1 Background and Motivation

Due to global energy crisis and the awareness of sustainable development, a great

deal of attention has been paid on energy efficiency in buildings which account for

some 40% of total energy consumption in the world [2] and one-third of total global

greenhouse emissions [3]. This implies that large potential energy saving can be

achieved in building sectors if more efficient control and management strategies are

implemented. Occupants influence the indoor environment due to the emissions of

heat and CO2. Moreover, since occupants may trigger the use of appliances such

as computers and lighting, they have a great impact on energy consumptions in

buildings. Thus, occupancy information is vital for building control systems such

as HVAC (Heating, Ventilating, and Air Conditioning). For instance, if there are

no or few occupants in a zone, the HAVC systems can be turned off or running in

an energy saving mode. If a large number occupants enter a zone (such as meetings

or classes), we can immediately adjust the power of the HVAC system to create a

comfortable environment. Moreover, if we can predict the occupancy for the zone,

pre-cooling or pre-heating strategies can be applied to provide a comfort indoor

environment and, at the same time, save energy. Therefore, occupant sensing is

vital in achieving energy efficiency in buildings. It can be resolved in three aspects

of occupant number, location and activity. The number of occupants, known as

occupancy, is a coarse information in occupant sensing. We handle this in terms of

1



2 1.1. Background and Motivation

three aspects of occupancy modeling, estimation and prediction. Occupancy mod-

eling can reveal the patterns of occupants, which can be used as inputs of energy

simulation tools, such as EnergyPlus [4], DeST [5] and TRNSYS [6]. With these

tools, we can simulate energy consumption of a building before construction. And,

based on the simulation results, we can size the facilities of the building in advance.

Current building control systems do not take real-time occupancy information into

consideration. This leads to, for example, regularly air-conditioning of unoccupied

areas, which wastes a large amount of energy. Occupancy-driven control can save

up to 15% of the total energy usage in buildings [7], and adaptive lighting control

based on real-time occupancy information is also shown to be effective and can

reduce 35 − 75% of energy usage for lighting in buildings [8]. These applications

require the monitor of occupancy levels and the states of presence and absence

in real-time in a non-intrusive way. Thus, occupancy estimation is necessary and

important for energy efficient buildings. Knowing only the real-time occupancy

information is not adequate to achieve high energy efficiencies in buildings. The

goal of building control systems is to be able to respond optimally on the changes

of indoor requirements. A slow response control system, e.g. HVAC, using current

occupancy measurements generally will lag behind. This makes the prediction of

occupancy vital so as to arrive at an optimal response [9]. If we can accurately pre-

dict future occupancy, known as occupancy prediction, optimal real-time building

climate control strategies, e.g. model predictive control (MPC), can be leveraged to

save energy without compromising occupants’ comfort [10–12]. In addition, smart

preheating or precooling strategies [13–15] and load prediction [16] also require an

accurate occupancy prediction. The prediction accuracy and horizon will deter-

mine the type of application. For real-time MPC, it requires accurate prediction

of occupancy level in short prediction horizons. For other applications such as pre-

heating or precooling and load prediction, accurate long-term (hours) occupancy

prediction is necessary. Therefore, the ability to accurately predict occupancy with

different prediction horizons is also meaningful for building energy efficiency.

Besides the coarse information of occupant number, the more detailed information

of occupant location and activity is also vital for energy efficiency in buildings.

A typical application of location information is adaptive lighting control which

is convenient for users and energy efficiency [8]. Meanwhile, we can also control

appliances based on users’ locations to save energy, known as location based control.

For these applications, real-time meter-level localization accuracy is compulsory,
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which is one of our objectives. The authors in [17] have shown that their location

based control system can save 50% of energy consumed by lighting systems and

around 140Wh per computer for a typical working day. In the meantime, the

location information is useful for emergency evacuation and personalized services

in buildings, which may only require room level localization accuracy [18]. The

performed activity of occupant is another crucial information for building control

systems. Recent intelligent building research attempts to save energy and, at the

same time, maintain a comfort thermal environment [19]. One popular thermal

comfort index, i.e. predicted mean vote (PMV), can be calculated based on user

activity information, such as static, walking and running. We attempt to accurately

identify these daily activities for real-time estimation of thermal comfort index.

Utilizing real-time thermal comfort index, the control systems in building can save

30% of energy and maintain thermal comfort [20].

In a word, with the coarse information of occupant number and detailed infor-

mation of occupant location, we can achieve energy saving in buildings through

occupancy driven control, preheating or precooling, localized control and adap-

tive lighting control without compromising human comfort which can be estimated

using the detailed information of occupant activity.

1.2 Objectives

The objectives of this thesis are to solve the specific problems in occupant sensing

in buildings, and these includes occupancy modeling, estimation and prediction,

occupant indoor localization and occupant activity recognition. For occupancy

modeling, we attempt to simplify models and make them feasible for real-time im-

plementations in two complicated scenarios of multi-occupant single-zone (MOSZ)

and multi-occupant multi-zone (MOMZ). When performing occupancy estimation,

we intend to combine occupancy models with conventional data-driven approaches

using non-intrusive environmental sensors to improve the estimation accuracy. Af-

ter that, we compare the prediction capabilities of occupancy models and data

mining approaches for building occupancy prediction. Occupancy is a coarse infor-

mation for building control systems. More detailed information consists of occupant

location and activity. We try to improve the localization and tracking accuracy of

occupants in indoor environments using WiFi, iBeacons, landmarks and portable
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smart devices, such as smartphones. Finally, we also attempt to eliminate the

effect of orientations variations of smartphones for recognizing occupant’s simple

activities indoors.

1.3 Major Contributions

Our main contributions can be stated as follows:

• Occupancy Modeling, Estimation and Prediction:

For building occupancy modeling, there are three typical scenarios of Single-

Occupant Single-Zone (SOSZ), MOSZ and MOMZ. In the case of SOSZ, it

is easy to model, because only one occupant is involved and no interactions

(other occupants or zones) need to be considered. Moreover, this simple case

has already been well studied in literature. Here, we considered the two

more complicated scenarios of MOSZ and MOMZ. In these two scenarios,

the interactions between occupants and zones make the occupancy dynamics

more difficult to model. And few works have handled these two scenarios,

thus more researches need to be done. Two novel stochastic inhomogeneous

Markov chain models were proposed to model building occupancy under the

two scenarios. In the MOSZ scenario, instead of using the number of occupant

in a zone as the state, we defined the state as the increment of occupancy in

the zone. In the MOMZ scenario, by taking into account interactions among

zones, we proposed another inhomogeneous Markov chain whose state is a

vector where each component represents the increment of occupancy in each

zone. In this way, we can significantly simplify the calculation of transition

probability matrix which is a key parameter in Markov chain models. For

building occupancy estimation, a non-intrusive method based on environmen-

tal parameters is presented. First, data-driven models that include extreme

learning machine (ELM), support vector machine (SVM), artificial neural

network (ANN), k-nearest-neighbors (KNN), Linear Discriminant Analysis

(LDA) and Classification And Regression Tree (CART) were employed to

achieve an initial estimation of building occupancy. Then, we fused the re-

sults of data-driven models with well-developed occupancy models which can
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extract occupancy patterns to improve the estimation accuracy. For build-

ing occupancy prediction, we explored the prediction of occupancy level in

multi-occupant commercial buildings. The prediction methods can be di-

vided into two categories of occupancy models and data mining approaches.

The occupancy models leveraged on the existing multi-occupant models, i.e.

inhomogeneous Markov chain (IMC) and multivariate Gaussian (MG), which

were proposed for occupancy modeling, to predict building occupancy. For

the data mining approaches, the occupancy prediction problem is addressed

in the form of time series prediction, and three popular linear and non-linear

models, i.e. autoregressive integrated moving average (ARIMA), artificial

neural network (ANN) and support vector regression (SVR), were proposed

and evaluated. All the proposed approaches have been evaluated using real

occupancy data in buildings.

• Occupant Indoor Localization:

For indoor localization and tracking, we proposed a sensor fusion framework

that combines WiFi, smartphone sensors and landmarks. Since the whole

system will be running on a smartphone which is resource limited, we for-

mulated the fusion problem in a linear perspective, then, a Kalman filter

algorithm which is computationally light can be applied. Landmarks which

can be detected using smartphone sensors were employed to restart the algo-

rithm and reset the accumulative error of the system. Moreover, instead of

using the labor-intensive and time-consuming WiFi fingerprinting approach,

we applied a weighted pass loss (WPL) approach for WiFi based localiza-

tion, which is efficient and simple for implementation. In situations where

WiFi signals are not available, or the algorithm will be running on a battery

sensitive smartphone, we proposed a smartphone inertial sensor based indoor

localization and tracking system with occasional iBeacon corrections. By ana-

lyzing iBeacon measurements, we defined an efficient calibration range where

an extended Kalman filter is formulated. We evaluated these algorithms in

real environments to show the effectiveness of the propped approaches.

• Occupant Activity Recognition:

For occupant activity recognition, we presented an orientation independent

approach based on coordinate transformation and principal component anal-

ysis (CT-PCA). The activities of interest include static, walking, running,
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going upstairs and going downstairs, which are the most common activities

in our daily life. Our experimental results have showed the effectiveness of

the proposed CT-PCA technique on orientation variation. Moreover, we also

demonstrated impressive improvements on placement and subject variations

using our proposed approach.

1.4 Outline of the Thesis

Chapter 1 starts with the background and motivation of this thesis, followed by the

objectives of this research and the key contributions that we have made. Chapter 2

reviews the related works of Part I that deals with occupancy modeling, estima-

tion and prediction. Chapter 3 presents our proposed occupancy models under two

scenarios of MOSZ and MOMZ. Chapter 4 presents a non-intrusive occupancy es-

timation system using environmental parameters. Chapter 5 compares occupancy

models and data mining approaches in predicting building occupancy under differ-

ent prediction horizons. Chapter 6 presents the reviews of works related to Part

II that deals with occupant indoor localization and activity recognition. Chap-

ter 7 presents an indoor localization scheme based on WiFi, smartphone sensors

and landmarks using the Kalman filter. Chapter 8 demonstrates another indoor

localization approach which utilizes smartphone sensors with occasional iBeacon

corrections. Chapter 9 shows an orientation independent activity recognition sys-

tem by using coordinate transformation and principal component analysis. Finally,

Chapter 10 concludes this thesis, and presents the limitations and some potential

ideas for future works.



Part I

Occupancy Modeling, Estimation

and Prediction

7





Chapter 2

Literature Review of Occupancy

Modeling, Estimation and

Prediction

In Part I of the thesis, we focus on the coarse information of occupant number in

buildings. This will reveal the distributions of occupants which can be used for

building climate control. The methods for occupant number can be divided into

three aspects, i.e. occupancy modeling, estimation, and prediction.

2.1 Occupancy Modeling

Occupancy modeling that reveals occupancy patterns has been performed un-

der scenarios of single-occupant single-zone (SOSZ), multi-occupant single-zone

(MOSZ) and multi-occupant multi-zone (MOMZ) in the literature. To model oc-

cupant’s presence and absence in single person offices, Wang et al. [21] proposed

a non-homogeneous Poisson process with two exponential distributions for occu-

pied and vacant intervals respectively. However, the goodness-of-fit test rejects

the assumption of the exponential distribution for occupied intervals. Page et al.

[22] presented an inhomogeneous Markov chain with two states of presence and

absence to model occupancy state in single person offices. A parameter of mobility

9
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which denotes the changing rate of the two states is defined to calculate the transi-

tion probability matrix of the inhomogeneous Markov chain model. However, the

extension of their model into multi-occupant or multi-zone situations is non-trivial.

Due to the interactions among occupants, multi-occupant modeling can be much

more challenging. Gunathilak et al. [23] presented a generalized event-driven

and group-based framework to model occupants in buildings. They defined users

into different groups based on similar characteristics. Then, the mobility of a

user will be driven by group and personal events. Wang et al. [24] also reported

an event-driven based approach for simulating building occupancy. They divided

one day into the events of walking around, going to office, getting off work and

lunch break. Within each event, a homogeneous Markov chain was formulated

to simulate occupancy dynamics. The parameter of the homogeneous Markov

chain, i.e. transition probability matrix, is determined based on the properties

of each event. These two approaches suffer from the same problems of unclear

definitions of events and unconvincing evaluation using simulation data instead of

actual occupancy data. Richardson et al. [25] presented a Markov chain model

whose state is the number of active occupants for occupancy modeling in residential

buildings. Their model will not be feasible in the case where the number of active

occupants is large.

Erickson et al. [26] presented a multivariate Gaussian model and an agent-based

model for extracting occupancy patterns in buildings. The multivariate Gaussian

model attempts to fit a Gaussian distribution for building occupancy at each time

step. It does not take previous occupancy into consideration. While the agent-

based model tries to model each occupant’s behaviour individually. This approach

does not consider inter-room correlations. To improve the generalization perfor-

mance of their previous work, Erickson et al. [27] constructed an inhomogeneous

Markov chain where the state is a vector in which each component represents the

number of occupants in each zone. In this case, the dimension of transition proba-

bility matrix that is a key parameter of a Markov chain will increase exponentially

with the increase of the number of zones or occupants. Liao et al. [28] proposed

an agent-based model with four modules to simulate building occupancy. Based

on the occupancy property, a damping process, which claims that occupants tend

to stay at their working place for a long time, and an acceleration process, which

claims that occupants tend to leave hallways or restrooms quickly, are presented.
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Since the four modules are intuitively defined and lack of theoretical support, the

performance of the model is limited, especially in the MOMZ scenario. To com-

pensate this, they presented a graphical model in the MOMZ scenario, which is

similar to the multivariate Gaussian model that is mentioned previously. Thus, it

will suffer from the same problem. Yang et al. [29] modeled personalized occu-

pancy profiles for each day of week using four different techniques, i.e. regression

modeling, time-series modeling, pattern recognition modeling and stochastic pro-

cess modeling. Note that, if the occupancy profiles for two days of week have no

significant difference, they will be combined as a single occupancy profile. The

four modeling techniques are applied to calculate the expected presence statues.

The experimental results indicated that the four techniques outperform the fixed

designed profile and the observation-based method.

Some other works deal with some special properties of occupancy dynamics. Stop-

pel and Leite attempted to describe occupants’ long vacancy using probabilistic

models [30]. The results were utilized for energy simulation, and the simulation

results were compared with original energy models. Sun et al. presented a stochas-

tic modeling of overtime occupancy in an office building [31]. They first applied

a binomial distribution to represent the total occupancy in overtime, and then,

utilized an exponential distribution to represent the duration of working overtime.

The generated overtime occupancy schedules can be used as an input of energy

simulations to improve their performance.

In this thesis, we propose two novel inhomogeneous Markov chain models under

two complicated scenarios of MOSZ and MOMZ for modeling occupancy in build-

ings. In the MOSZ scenario, an inhomogeneous Markov chain model where the

state is defined as the increment of occupancy in a zone is presented. Assume that

the maximal number of occupants moving into or out of a zone in a short interval

is one, we can obtain a simple transition probability matrix with a dimension of

3 × 3, regardless of the total number of occupants in a zone. In the MOMZ sce-

nario, by taking interaction among zones into consideration, we presented another

inhomogeneous Markov chain where the state is a vector in which each component

represents the increment of occupancy in each zone. In this manner, a greatly

simplified model that can be practically implemented is able to be obtained.
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2.2 Occupancy Estimation

Occupancy estimation can be achieved using different sensors. Dodier et al. lever-

aged on binary sensors, i.e. passive infrared, to detect occupant’s presence and

absence [32]. However, more important information of the number of occupants

cannot be derived by using their approach. Erickson et al. applied a wireless net-

work of cameras [33], which may have privacy concerns for occupants. Labeodan

et al. employed chair sensors in a conference room situation [34], which cannot

detect occupants who are standing. Zhao et al. inferred building occupancy based

on appliance power consumption data [35]. However, the occupants who are not

using appliances will be missing. Some recent works tend to use wearable sensors,

e.g. RFID [36], WiFi [37] and Bluetooth [38]. These solutions are intrusive for

users and cannot detect visitors who do not take RFID tags or users who do not

turn on WiFi or Bluetooth.

A recent tend is to use environmental sensors for occupancy estimation, which are

non-intrusive, relatively inexpensive and can be applied to all occupants in a zone.

With environmental sensor data, useful features that can capture changes of occu-

pancy can be extracted. Then, data-driven models can be applied to estimate the

occupancy level. Dong et al. applied a wireless sensor network system to measure

environmental parameters, such as CO2, carbon-monoxide, total volatile organic

compounds (TVOC), small particulates (PM2.5), acoustics, illumination, motion,

temperature, and humidity, to estimate the number of occupants in an open-plan

office building [39]. An information gain theory was employed to perform feature

selection. They concluded that the most relevant parameters are CO2 and acoustic.

Yang et al. explored different combinations of sensors, i.e. motion, sound, door,

temperature, humidity, CO2, light, and passive infrared, to detect occupancy in

both single-occupancy and multi-occupancy offices by using six data-driven models

[40]. The contributions of each sensor were evaluated based on information gain

theory. It turned out that CO2, door status and light level are the three most

informative variables. Khan et al. presented an accurate occupancy detection

system based on a wireless sensing system which is able to measure temperature,

light, humidity, PIR and audio level [41]. They also developed a novel hierarchi-

cal analysis framework which combines meeting schedules and computer activity

to increase the estimation accuracy. Real-world experiments demonstrated a sig-

nificant improvement compared to a baseline non-hierarchical approach. Another
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relevant work can be found in [42] where the authors employed light, temperature,

humidity and CO2 measurements to estimate the occupied/unoccupied state of an

office room by using statistical learning models. Experimental results showed that

the light sensor has the largest relative variable importance. They also concluded

that the proper selections of features and models will have an important impact

on the detection accuracy.

In this thesis, we only employ environmental sensors, i.e. temperature, humidity,

CO2 and air pressure, which are widely available in modern HVAC systems [43].

No specific occupancy sensors, e.g. PIR, motion or light sensors, are required in

the environment, and no particular devices, e.g. RFID tags or smartphones, are

required to be worn by occupants. Feature selection has been proved to be effec-

tive in increasing estimation accuracy [39, 40, 42]. In this work, we perform an

ELM-based wrapper method for feature selection. The data-driven models we used

include ELM, SVM, ANN, KNN, LDA and CART. To further enhance the per-

formance of the detection system, we propose a fusion framework which combines

data-driven models with occupancy models for building occupancy estimation.

2.3 Occupancy Prediction

Some advanced works have been done to predict occupants’ presence and absence in

homes or single person offices. Scott et al. predicted the occupied and unoccupied

states in home environments based on the matching of current patterns with the

historical ones [44]. The prediction results are utilized for preheating control of

the houses. In experiments, they can save gas and, at the same time, reduce the

unconformable time with the occupancy prediction. Kleiminger et al. compared

schedule-based and context-aware methods for home occupancy prediction and

applied the prediction results for smart heating control [15]. The investigated

states are the presence of at least one occupant within a home and the absence of

it. The experiments were conducted using actual occupancy schedules of 45 homes.

They achieved a prediction accuracy of over 80% using schedule-based approaches.

Moreover, a trade-off between energy saving using the prediction results and the

risk of comfort loss was investigated. Mahdavi et al. presented a non-probabilistic

occupancy model to predict future presence of occupants and compared with two

probabilistic occupancy models [45]. Real experiments were conducted with the
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data from eight workplaces for 90 days. The experimental results showed that the

predictive performances of the three models are limited, especially the probabilistic

ones. Several earlier models dealing with the modeling of occupants’ presence

and absence also have prediction ability. For example, Page et al. proposed an

inhomogeneous Markov chain to model occupants’ presence and absence in single

person offices [22]. All these approaches only handle occupancy prediction with

two states, i.e. presence and absence, instead of the more valuable information of

occupancy level for applications in commercial buildings.

Some existing multi-occupant models can be applied for predicting building oc-

cupancy level. Richardson et al. extended the two-states inhomogeneous Markov

chain that was presented by the authors in [22] into a multi-states inhomogeneous

Markov chain where the state is the number of occupants [25]. Given the current

occupancy level, one can predict future occupancy based on their proposed inho-

mogeneous Markov chain model. Erickson et al. presented a multivariate Gaussian

model to fit room occupancy at each time step [26], which is similar to the graphi-

cal model used in [28]. The prediction abilities of these two models have not been

studied yet.

Existing works mainly focused on the prediction of occupants’ presence and absence

in homes or single person offices. In this thesis, we shall explore the prediction of

regular occupancy level in multi-occupant commercial buildings deployment sce-

nario. The prediction methods can be divided into two categories of occupancy

models and data mining approaches.



Chapter 3

Occupancy Modeling Using Novel

Inhomogeneous Markov Chain

Approaches

This chapter introduces two novel inhomogeneous Markov chain models for building

occupancy modeling. Specifically, in Section 3.1, we will introduce the basic theory

of Markov chain and the calculation of Markov transition probability matrix. After

that, the modeling processes will be presented in Section 3.2. Finally, in Section 3.3,

we present the data for simulation, variables and criteria for evaluation, followed

by the simulation results.

3.1 Preliminaries

3.1.1 Markov Chain Theory

A Markov chain is established upon the assumption that the future state only

depends on the current state [46]. Suppose X is the state variable, and Ω is the set

of all states of X. Then, a discrete time Markov chain {Xk} can be formulated as

P (Xk+1 = sk+1|X1 = s1, · · · , Xk = sk) = P (Xk+1 = sk+1|Xk = sk) (3.1)

15
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where Xk is the state variable, sk ∈ Ω is the state, and k is the time step. The

most important parameter of a Markov chain is the transition probability which

describes the transition of two states as follows:

P (Xk+1 = sk+1|Xk = sk), sk ∈ Ω. (3.2)

Since a transition from sk at time step k to a state at time step k + 1 must be

happening with probability one, we have

∑

sk+1∈Ω
P (Xk+1 = sk+1|Xk = sk) = 1. (3.3)

This property is very helpful in calculating Markov transition probability matrix.

If the transition probability matrix is fixed, expressed as Ψ(k) = Ψ for all time step

k, the Markov chain is homogeneous. Conversely, a Markov chain is inhomogeneous

when the transition probability matrix, Ψ(k), is time varying.

3.1.2 Calculation of Markov Transition Probability Matrix

We adopt maximum likelihood estimation (MLE) to calculate Markov transition

probability matrix. Let’s define two states, 0 and 1 for a state variable Yk in a

Bernoulli experiment. Assume that the probability of Yk = 1 is p. Then, the

likelihood function of p given the observation, yk, can be expressed as

L(p | yk) = Pr(Yk = yk) =







p, yk = 1

1− p, yk = 0
(3.4)

We use log-likelihood function, lnL(p | yk), which can simplify the calculation by

converting product operation into summation. The MLE can be achieved by max-

imizing the log-likelihood function [47]. Assume that the log-likelihood function is

differentiable and the MLE exists. Then, the following partial differential equation,

named likelihood equation, must be satisfied:

∂lnL(p | yk)
∂p

= 0 (3.5)

The solution of the above equation will be the MLE solution. The likelihood

equation is only a necessary condition for the existence of an MLE solution. An
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additional condition is required to guarantee that the solution is the maximum to

the likelihood equation. This can be tested by utilizing the second derivative of the

log-likelihood function. For the purpose of maximizing, the second derivative of

the log-likelihood function should be less than zero at the maximum point, which

can be shown as

∂2lnL(p | yk)
∂p2

< 0 (3.6)

In an inhomogeneous Markov chain model, the transition from the state sk to the

state sk+1 at one time step can be treated as a Bernoulli experiment happening

with the probability Pr(Xk+1 = sk+1|Xk = sk). Note that the likelihood function

of this conditional probability is only based on the data Xk = sk from different

days at time step k with the assumption of the independence of the data. Let Ω

denote the data set that we collected, M the total number of days where Xk = sk.

Within these days, let W be the total number of days where Xk+1 = sk+1, and p

the probability Pr(Xk+1 = sk+1|Xk = sk). Then, the log-likelihood function can

be expressed as

lnL(p | Ω) = ln
M !

W !(M −W )!
pW (1− p)M−W

= ln
M !

W !(M −W )!
+W lnp+ (M −W )ln(1− p)

(3.7)

The corresponding likelihood equation is

∂lnL(p | Ω)
∂p

=
W

p
− M −W

1− p
= 0 (3.8)

By solving the above equation, the MLE solution can be obtained as pMLE = W/M .

To make sure that the solution is the maximum to the likelihood equation, the

second derivative of the log-likelihood function at point p = pMLE = W/M is

checked, which yields

∂2lnL(p | Ω)
∂p2

= −W
p2

− M −W

(1− p)2
< 0 (3.9)
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and it is negative, as expected. Thus, the solution is the MLE. For each transition

probability, Pr(Xk+1 = sk+1|Xk = sk), we can calculate it separately using an MLE

estimator. The entire transition probability matrix can be obtained in this manner.

3.2 Modeling

Occupancy dynamics have some unique properties. For example, the occupancy

at current time is quite related to the occupancy at previous time. Assume the

occupancy is low at this time instance, there will be a high probability that the

occupancy will still be low at next time instance, which can be regarded as Markov

property. Thus, Markov chain can be an efficient method in modeling occupancy

dynamics. Meanwhile, the occupancy dynamics strongly relate to the time of day.

For instance, the occupancy increases in the morning for arrival and decreases

in the afternoon for departure. Therefore, the inhomogeneous Markov chain is a

good candidate for occupancy modeling. However, traditional methods [22, 25]

which apply the number of occupants as the state of inhomogeneous Markov chain

are not feasible in real implementations with many occupants. Therefore, in the

MOSZ scenario, we define the state of the inhomogeneous Markov chain as the

increment of occupancy in a zone, which can be expressed as N i
k − N i

k−1, where

N i
k is the occupancy level in zone i at time step k. We assume that the maximum

number of occupants moving into or out of a zone is one within a short interval.

This short interval can be determined based on actual occupancy data. Under this

assumption, the case where multiple occupants move into the zone simultaneously

can be transferred to another case where multiple occupants move into the zone

sequentially within a short interval. Due to the slow response of building control

systems, this very short interval (for example several seconds) has minor influence.

Thus, this assumption will has very minor influence on the building control systems.

This indicates the reasonability of this assumption. Figure 3.1 illustrates a simple

example of the proposed approach. Precisely, the occupancy level in a zone is 6

at time step k, then, one occupant has moved out of the zone at time step k + 1.

Therefore, the current state is −1 according to our state definition, and the next

reachable state would be 1, 0 or −1. In this manner, we obtain the transition

probability matrix with a dimension of 3×3 independent of the maximum number

of occupants in the zone. As a comparison, assuming that the maximum number
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Figure 3.1: The occupancy state representation in the MOSZ situation.

of occupants in the zone is 20, then with the approach in [25], the state of the

Markov chain can be 0 to 20, resulting in 21 states. The corresponding transition

probability matrix will be of dimension 21× 21, which is much more complicated.

In the MOMZ situation, by taking interactions among zones into consideration, we

construct another inhomogeneous Markov chain model where the state is defined as

a vector in which each component is the increment of occupancy in each zone. We

make the same assumption that the maximum number of occupants moving into

or out of a zone is one within a short interval. Therefore, the component of a state

(vector) can be 1, −1 or 0. Figure 3.2 shows an example of four zones in the MOMZ

situation. The occupancies of Zone1, Zone2, Zone3 and Zone4 are 8, 4, 3 and 0

respectively at time step k. At time step k+1, one occupant moved out of Zone1,

one occupant moved into zone2, no occupants moved into or out of Zone3, and

one occupant moved into zone4. Thus, the corresponding state is {−1, 1, 0, 1}k+1.

Since the total number of states is 34 = 81 in terms of our state definition, the

final transition probability matrix has the dimension of 34 × 34 independent of the

number of occupants in a zone. In the same MOMZ situation, assuming that the

maximum number of occupants in each zone is 20, if the advanced model in [27],

which defined the state as a vector whose component is the number of occupants in

each zone, is employed, each zone will contain 21 states. Therefore, the dimension

of the transition probability matrix will be 214×214, which is huge and impossible

to solve.
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Figure 3.2: The occupancy state representation in the MOMZ situation.

3.3 Evaluation

To evaluate the performance of our proposed models, simulations with actual oc-

cupancy data have been done under two scenarios of MOSZ and MOMZ. First,

we briefly introduce the data for simulation. Then, we define some variables re-

lated to occupancy properties and two evaluation criteria. Finally, we present the

simulation results and discussions under the two scenarios.

3.3.1 Data

In the MOSZ scenario, the data that was provided by the authors in [28] was

collected by using a wireless camera near the entrance of a zone from January 2010

to April 2010, a span of around four months. The occupancy level is manually

counted from the video. Due to certain technical issues, only 70 days of data

were collected. We compare our results with the agent-based model in [28], which

applied the same data in model verification. In the MOMZ scenario, we have 31

days of data from 57 cubicles with 2 minutes resolution. The data spans from

August 2009 to January 2010. According to the detailed analysis in [48], the data

at a few cubicles (6, 20, 26, 56, 57) is considered abnormal with respect to the

others, which has been discarded first. Then, we uniformly divide the remaining

52 cubicles into 4 zones, namely “Zone1”, “Zone2”, “Zone3” and “Zone4”, for the
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simulations. The four zones are decided based on the proximity, and they are

uniformly distributed.

3.3.2 Variables and Criteria

To evaluate the performance of the proposed model, five variables related to occu-

pancy properties are defined. The definitions of the variables are similar to those

in [28]. Assume, Qoccupied and Qunoccupied are the thresholds of occupied and unoc-

cupied states respectively, and I is the time interval. The five variables are defined

as follows:

• Mean occupancy : The mean occupancy of zone i at time step k is defined as

E(X i
k), where E(·) is the expectation operation.

• Time of first arrival : The time of first arrival is the first time when the zone

becomes occupied. Precisely, for zone i, ifX i
k > Qoccupied andX

i
t 6 Qunoccupied

for all t < k, then, k is the time of first arrival.

• Time of last departure: The time of last departure is the time from which the

zone becomes unoccupied. For zone i, if X i
k > Qoccupied and X i

t 6 Qunoccupied

for all t > k, then, k + 1 is the time of last departure.

• Cumulative occupied duration: The cumulative occupied duration is the total

length of time when the zone is occupied. For zone i, it is the number of the

elements of the set {k|X i
k > Qoccupied, 1 6 k 6 24× 60/I} for each day.

• Number of occupied/unoccupied transitions : The number of occupied/unoc-

cupied transitions is the total number of transitions between “occupied” and

“unoccupied” status of a zone. For zone i, it is the number of elements of

the set {k|X i
k > Qoccupied, X

i
k+1 6 Qunoccupied, 1 6 k 6 24× 60/I}

⋃

{k|X i
k 6

Qunoccupied, X
i
k+1 > Qoccupied, 1 6 k 6 24× 60/I} for each day.

To quantify the performance of our proposed models in terms of the defined vari-

ables, two evaluation criteria are chosen. The first criterion of normalized root

mean square deviation (NRMSD) is defined to compare the difference between

mean occupancy profiles predicted by models and estimated from measurements

which is the ground truth occupancy measured by using occupancy sensors. Given
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two time series, x(k) and y(k), k = 1, 2, ..., K, the NRMSD between x and y is

defined as

NRMSD(x, y) =
‖x− y‖ /

√
K

max(z)−min(z)
, (3.10)

where x = [x(1), x(2), ..., x(K)]T , y = [y(1), y(2), ..., y(K)]T , z = [xT , yT ]T , T is the

vector transpose operation, ‖·‖ is the Euclidean norm and K is the length of the

sequences.

The second criterion is Kullback-Leibler (K-L) divergence which is used to compare

two distributions of the random variables predicted by models and estimated from

measurements [49]. The K-L divergence between two random variables of p and q

represents the difference of them and is defined as

d(p ‖ q) =
∑

k

pk log(
pk
qk
), (3.11)

where pk and qk are two probability mass functions (pmfs).

3.3.3 Simulation Results and Discussions

Since the increment information is applied instead of the exact number of occu-

pants, we can significantly simplify the calculation of Markov transition probabil-

ity matrices. But one problem arises because of using this increment information.

That is, the simulation results may diverge when transferring the increment value

into the final occupancy level. To handle this problem, we employ maximal and

minimal occupancy constraints which can be derived from actual occupancy data.

During simulations, if the current occupancy level after transferring violates these

constraints, we will set the current state to the boundaries. Precisely, suppose,

Omax
k and Omin

k are the maximal and minimal constraints of occupancy at time

step k, the current state is sk, and the current occupancy is ok after transferring

the increment information into occupancy. If ok > Omax
k , we keep the ok at the

current maximum, Omax
k . Similarly, if ok < Omin

k , we keep the ok at the current

minimum, Omin
k .

Since the agent-based model in [28] run the simulation of one thousand weeks, we

performed one thousand simulations, each with a duration of one week, using our
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Figure 3.3: The output of the proposed model (black) for one week, the max-
imal occupancy constraint (dashed red) and the minimal occupancy constraint

(dashed green).
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Figure 3.4: Mean occupancy profiles estimated from measurements (dashed
red), predicted by the agent-based model (dotted blue) and the proposed model

(black) in the MOSZ scenario.

proposed model in the MOSZ scenario. We compared the mean occupancy pro-

files estimated from the measurements, predicted by the agent-based model and our

proposed model by using the criterion of NRMSD. Moreover, the four random vari-

ables of time of first arrival, time of last departure, cumulative occupied duration

and number of occupied/unoccupied transitions, of the proposed model and those

of the agent-based model are evaluated using the criterion of K-L divergence. Note

that, only the data for weekdays is chosen for the two criteria, and the thresholds

are Qunoccupied = Qoccupied = 0.5.

Figure 3.3 shows the output of our proposed model with the maximal and mini-

mal occupancy constraints for one week. Since the model is stochastic, the model

output for each run would be different. The comparison of the mean occupancy

profiles estimated from measurements, predicted by the agent-based model and

the proposed model is illustrated in Figure 3.4. It can be found that the proposed
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Figure 3.5: The pmfs of the four random variables estimated from the mea-
surements (dashed red), predicted by the agent-based model (dotted blue) and
the proposed model (black). Comparison is for weekdays only, and the binsize

is 1/2 hour.

Table 3.1: NRMSD of the mean occupancy and K-L divergence of the four
random variables in the MOSZ scenario.

Criteria Variables
Agent-based

model
Proposed
model

NRMSD Mean occupancy 0.0867 0.0577

K-L
divergence

Time of first arrival 0.2388 0.0484
Time of last departure 0.1900 0.0411
Cumulative occupied duration 0.3261 0.2394
No. of occupied/unoccupied transitions 0.0748 0.0348

model matches the measurements much better than the agent-based model. Figure

3.5(a) and Figure 3.5(b) demonstrate the pmfs of time of first arrival and time of

last departure. Our proposed model performs much better, and it can also cap-

ture certain peaks of the pmfs of the measurements, while the agent-based model

cannot achieve that. The comparison of cumulative occupied duration estimated

from measurements, predicted by the agent-based model and the proposed model,

is shown in Figure 3.5(c). Both models could not capture the peaks of the pmf,

but the trend of the pmf is predicted correctly. Figure 3.5(d) gives the pmf of the

number of occupied/unoccupied transitions. The agent-based model matches very

well, but our proposed model still performs better. Table 3.1 shows the NRMSD
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Figure 3.6: The output of the proposed model of the four zones for one day.
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Figure 3.7: Mean occupancy profiles of the four zones estimated from mea-
surements (red line) and predicted by the proposed model (black line) in the

MOSZ scenario.

Table 3.2: NRMSD of the mean occupancy and K-L divergence of the three
random variables for the four zones in the MOMZ scenario.

Criteria Variables Zone1 Zone2 Zone3 Zone4
NRMSD Mean occupancy 0.0453 0.0336 0.0573 0.0735

K-L
divergence

Time of first arrival 0.1220 0.0932 0.1373 0.1209
Cumulative occupied duration 0.5247 0.1193 0.3515 0.2118
No. of occupied/unoccupied transitions 0.2505 0.0647 0.1086 0.2864

of the mean occupancy and the K-L divergence of the four random variables under

the MOSZ scenario. It can be found that the proposed model performs much bet-

ter than the agent-based model for the variables of mean occupancy, time of first

arrival, time of last departure and number of occupied/unoccupied transitions. In

the meantime, both the proposed model and the agent-based model could not pre-

dict cumulative occupied duration very well, but our proposed model still performs

better. These conclusions tally with the observations of Figure 3.4 and Figure 3.5.

One possible reason for the big fluctuations in cumulative occupied duration could

be due to the limited size of the measurement data. The data generated by the

agent-based model and the proposed model involves 1000 weeks. So the pmfs

predicted by both models are much smoother.
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Figure 3.8: The pmfs of the three random variables estimated from the mea-
surements (dashed red) and predicted by the proposed model (black).

In the MOMZ scenario, even though our proposed approach can dramatically re-

duce the dimension of the transition probability matrix as compared to existing

approaches, the dimension of the transition probability matrix will still increase

exponentially with the increase of the number of zones. The relationship can be

presented as dimension = 3m, where m is the number of zones. According to

the observations of the real occupancy data, we find that, although the possible

number of states can be very large, only a small portion of the states appear in one

time step. This phenomenon is mainly caused by the topology constraints of the

building. For example, assuming that we have four zones with cascaded connection

(shown in Figure 3.2), if one occupant intends to go to Zone3 from Zone1, then

he/she need to go to Zone2 first. Because of this physical constraint, we will only

consider the states that have appeared in the real occupancy data in simulations

for simplification. For the MOMZ scenario, we divided 52 cubicles into 4 zones.
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According to the analysis in [48], workdays have similar occupancy profile. And,

due to the limited data size, we treat all working days as the same instead of sep-

arating them from Monday to Friday in the MOSZ scenario. The analysis in [48]

also provides a possible reason for high occupancy after 7pm. It may be caused by

a security guard walking around the zones. Thus, we only model occupancy from

4am to 7pm. In this case, the random variable of time of last departure cannot be

obtained. Only the remaining three random variables are analyzed.

In order to match the number of days to actual measurement data, we perform

thirty-one simulations, each has a duration of one day, using the proposed model

under the MOMZ scenario. The output of the proposed model for one day of

the four zones is shown in Figure 3.6. Due to the stochastic property of our pro-

posed model, the result would be different for different days. Figure 3.7 shows the

mean occupancy profiles estimated from the measurements and predicted by the

proposed model. Our proposed model matches the measurements very well for the

four zones. Note that the mean occupancy profiles are not as smooth as that in the

MOSZ scenario. This may be because the number of days for the measurements

and simulations is only 31, which is much smaller than the number of days in the

MOSZ scenario. Figure 3.8 illustrates the three random variables of time of first

arrival, cumulative occupied duration and number of occupied/unoccupied transi-

tions estimated from the measurements and predicted by the proposed model. We

conclude that the proposed model captures the properties of actual occupancy data

very well. Table 3.2 shows the quantified results with the two evaluation criteria

for the four zones. The proposed model performs very well for all the variables

under the two criteria in each zone, which is consistent with the observations of

Figure 3.7 and Figure 3.8.

3.4 Summary

In this chapter, we proposed two novel inhomogeneous Markov chain models for

building occupancy modeling under two scenarios of MOSZ and MOMZ. In the

MOSZ scenario, we defined the state of the inhomogeneous Markov chain as the

increment of occupancy in a zone. Under the assumption that the maximal num-

ber of occupants moving into or out of a zone is one within a short interval, the

transition probability matrix will be of dimension 3×3 which is much smaller than
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existing approaches in the literature. We remark that the proposed approach can

be readily extended to the case where the number of occupants moving into or out

of a zone within a short interval can be 2 or 3, with the dimensions of the transi-

tion probability matrices increased to 5× 5 and 7× 7, respectively. In the MOMZ

scenario, by taking the interactions among zones into consideration, we defined the

state the inhomogeneous Markov chain as the vector in which each component is

the increment of occupancy in each zone. In this way, we can dramatically simplify

the calculation of the key parameters, i.e. Markov transition probability matrices,

based on the detailed analysis. We have conducted real simulations to evaluate the

performance of the proposed approaches and compared the simulation results with

the agent-based model under the MOSZ scenario. Simulation results showed that

our proposed model performs very well under the two scenarios and outperforms

the agent-based model under the MOSZ scenario.



Chapter 4

Occupancy Estimation with

Environmental Parameters Using

a Fusion Framework

Occupancy models reveal the patterns of occupants which can be used in real-time

occupancy estimation. In this chapter, we will present a fusion framework which

combines the results of data-driven models with occupancy models for building

occupancy estimation using environmental parameters. In Section 4.1, we first

introduce the six data-driven models. Then, feature engineering which consists

of feature extraction and feature selection is presented. After that, we present a

proper occupancy model for our case. Finally, the fusion of the outputs of data-

driven models and the occupancy model is shown. In Section 4.2, we introduce

data acquisition process. Then, variables and criteria for evaluation are presented,

followed by experimental results and discussions.

4.1 Methodology

4.1.1 Data-driven Models

Extreme Learning Machine: Extreme Learning Machine (ELM) was devel-

oped for single-hidden layer feedforward neural networks (SLFNs), it randomly

29
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chooses the parameters of hidden layer neurons and analytically determines the

weights of output neurons [50]. Given training samples (xk,yk), where xk =

[xk1, xk2, · · · , xkm]T ∈ R
m and yk = [yk1, yk2, · · · , ykn]T ∈ R

n, the activation func-

tion g(·) and the number of hidden nodes L, the output of SLFNs is given by

L
∑

j=1

wjg(αj,xk, βj) = tk (4.1)

where k = 1, ..., N , N is the total number of samples, L is the number of hidden

neurons, αj is the weight of input nodes to the hidden node j, βj is the threshold

of hidden node j, and wj ∈ R
n is the weight of the hidden node j to output nodes.

Assume that the activation function g(·) can approximate these N samples with no

error, which means
∑N

k=1 ‖tk − yk‖ = 0, i.e., there exist wj, αj and βj such that

L
∑

j=1

wjg(αj,xk, βj) = yk (4.2)

We can rewrite the above equation into matrix form as

Hw = Y (4.3)

where

H =









g(α1,x1, β1) · · · g(αL,x1, βL)
... · · · ...

g(α1,xN , β1) · · · g(αL,xN , βL)









N×L

, (4.4)

w =









wT
1
...

wT
L









L×n

and Y =









yT
1
...

yT
L









N×n

(4.5)

As named by Huang et al. [50], H is called hidden layer output matrix; the k-th

column of H is the k-th hidden node output with respect to all the inputs. Accord-

ing to [50], the smallest least-squares solution of equation (4.3) can be expressed
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as

ŵ = H†Y (4.6)

where H† is the MoorePenrose generalized inverse of matrix H. Based on [51],

an orthogonal projection method can be employed to calculate H† in two cases:

when HTH is nonsingular, H† = (HTH)−1HT , or when HHT is nonsingular,

H† = HT (HHT )−1. To avoid the singularity of HTH or HHT , the authors in [51]

suggest to add a positive value to the diagonal of HTH or HHT , which can be

expressed as

ŵ =

(

I

C
+HTH

)−1

HTY or (4.7)

ŵ = HT

(

I

C
+HHT

)−1

Y (4.8)

where I is the identity matrix, and C is the regularization term. In this way, the

solution will be stabler and tend to have better generalization performance [51].

In summary, the implementation of ELM can be divided into three steps:

(1) Randomly assign hidden nodes parameters, i.e. αj and βj where j = 1, 2, . . . , L.

(2) Calculate the hidden layer output matrix H.

(3) Calculate the output weight w.

Support Vector Machine: Support Vector Machine (SVM) was developed under

the principles of structural risk minimization which not only minimizes the training

error, but also reduces the system complexity [52].

Artificial Neural Network: Another widely used data-driven approach is Ar-

tificial Neural Network (ANN). The neurons in ANN are computational models

inspired by natural neurons. The ANN model applies these neurons to process

information.

K-Nearest Neighbors: K-Nearest Neighbors (KNN) algorithm is quite popular

for classification because of its simple structure and easy interpretation.

Linear Discriminant Analysis: Linear Discriminant Analysis (LDA), also known

as Fisher Linear Discriminant [53], is a popular data-driven approach in pattern
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Feature Description
First order difference fd(i) = raw(i)− raw(i− 1)
Second order difference fd2(i) = fd(i)− fd(i− 1)

First order shifted difference fds(i) = raw(i)− raw(i− 2)

Five-minute moving average mavg =
(

∑i
j=i−4 raw(j)

)

/5

Ten-minute shifted difference fds10(i) = raw(i)− raw(i− 10)

Table 4.1: List of features extracted from sensor data

recognition area. It aims at finding a projection hyperplane for features that min-

imizes the variance within each class and maximizes the means of classes after

projection, which means the best separability in the new feature space [54].

Classification And Regression Tree: Classification And Regression Tree (CART)

is established upon the principle of recursively partitioning feature space and fitting

a simple threshold model within each partition [55].

4.1.2 Feature Engineering

The raw environmental sensor data may be noisy and is not likely to give accurate

classification results if used directly. Thus, we need to extract more representative

information, known as features. Among all the extracted features, some of them

may be redundant, which will lead to poorer performance and incur unnecessary

computational time. Therefore, feature selection is necessary. In this work, feature

engineering contains two parts of feature extraction and feature selection.

Feature Extraction: The features extracted from the raw environmental sensor

data are shown in Table 4.1. The first order difference (fd), second order difference

(fd2) and first order shifted difference (fds) are selected to capture the temporal

variations in the data. The moving average (mavg) and ten-minute shifted differ-

ence (fds10) features take into account the time delay in the build-up and decay

of the environmental parameters.

Feature Selection: In general, feature selection can be accomplished by lever-

aging on two approaches, i.e. the filter method and the wrapper method. In the

filter method, the merit of the features can be assessed using criteria, such as In-

formation Gain [40, 56] and Symmetric Uncertainty [57], that are independent of
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classifiers. This makes the feature selection quite fast, but compromises the estima-

tion accuracy. In the wrapper method, classifiers are employed to assess the merit

of features. The feature selection is thus optimized for classifiers. This generally

yields better performance when compared to the filter method. One issue of the

wrapper method is that the computational burden is quite high, because multiple

classifier models are created in the feature selection process. Most previous works

that estimated occupancy using environmental parameters used filter methods. We

instead apply a wrapper method [58]. To address the issue of high computational

time, we perform an ELM-based wrapper method which is quite fast owing to the

extremely fast learning speed of the ELM algorithm [59]. We conduct the feature

selection in two stages. First, we select the best features for each sensing domain,

named individual domain analysis. Secondly, we combine these best features to

form a multi-domain feature set, where we search exhaustively for the final feature

set, named multi-domain analysis.

The objective of the individual domain analysis is to select the best features for

each environmental sensor. This reduces the feature space to a more manageable

number. To begin with, we have six features (that is, including the raw data)

for each of the four environmental parameters. We thus have 24 features. We

attempt to select the three best features from each sensing domain, thus yielding

12 features. To determine the best features, we apply a wrapper-based ranking.

That is, we use the estimation accuracy of a classifier, in our case the ELM, as the

criterion to rank features.

The algorithm of the individual domain analysis is outlined in Figure 4.1. Note

that the algorithm shown applies for a single domain. Let {fi} be the set of features
of an environmental parameter. Let N be the size of the combination of features

and n the total number of features. In our case, n = 6. For each N = 2, 3, ..., n,

all combinations of features are evaluated for their estimation accuracy. In each

iteration, the set of features Sc represents a combination of N features. Sc is taken

as the input and the occupancy O is made the target output of an ELM. Ac is the

accuracy obtained with Sc. We note the combination Sc∗ that yields the highest

accuracy. The rank of each feature is the number of times it appears in the highest

accuracy combination.

The algorithm described above was implemented on the extracted features. The
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Figure 4.1: The ELM-based wrapper algorithm

Domain Best Feature Set
CO2 CO2 fds; CO2 fd; CO2(raw)

Relative Humidity RH fds10; RH fd2; RH mavg
Temperature Temp fds10; Temp(raw); Temp fds
Pressure Press fds; Press mavg; Press fd

Table 4.2: Results of individual domain analysis for the ELM-based wrapper
method

algorithm was implemented in MATLAB R2015a on a 1.80 GHz CPU. The approx-

imate running time for the analysis in MATLAB was 7 minutes and 24 seconds.

The results of the analysis are shown in Table 4.2.

With the feature space reduced to half by the individual domain analysis, the ob-

tained best features are combined into a multi-domain feature set. All possible

combinations of the elements of this set were evaluated for their estimation ac-

curacy with an ELM. The best features were CO2 fd, Temp fds10, Temp(raw)

and Press fds. It is notable that the pressure data, which has not generally been

considered for occupancy estimation, is deemed a relevant feature by the algorithm.

4.1.3 Occupancy Model

To obtain the exact number of occupants in a multi-occupant area is quite difficult,

especially when the occupancy is relatively high. In most situations, for example,

discriminating 10 occupants from 11 occupants in one thermal zone is not very

meaningful. Also, this discrimination would require high cost devices such as cam-

eras. Normally, the information of occupancy range, i.e. zero, low, medium and
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high, will be enough for the control systems in buildings. In this work, we consider

the estimation of these four states which can be defined based on different deploy-

ment scenarios in one thermal zone. We present an an inhomogeneous Markov

chain where the states are the defined four occupancy ranges, which is similar to

the model developed by Richardson et al. [25] where they defined the state as

the number of active occupants. Recent occupancy models developed by Liao et

al. [28] and Chen et al. [60] mainly deal with the simplification of the inhomoge-

neous Markov chain with a huge dimension of transition probability matrix. They

are not suitable for our case. When we consider different deployment scenarios,

proper occupancy models need to be chosen. Due to the slow response of the

building control system, 15 minutes resolution will be adequate [22, 28]. Finally,

an inhomogeneous Markov chain model with 96 transition probability matrices of

dimension 4× 4, where the 4 states are zero, low, medium and high, is constructed

for building occupancy modeling.

4.1.4 Fusion Algorithm

Data-driven models estimate the current occupancy level only based on the real-

time environmental sensor data. They do not take occupancy patterns into consid-

eration. A large number of works have been done for occupancy modeling, which

indicates that occupancy dynamics have some unique properties. These properties

can be utilized for a better estimation of real-time building occupancy. In this

work, we propose a fusion framework which combines the conventional data-driven

approaches with occupancy models to improve the estimation accuracy of build-

ing occupancy. Here, we consider the outputs of data-driven models as individual

observations without taking occupancy dynamics into consideration, and the oc-

cupancy model which can reveal occupancy patterns is utilized to form system

dynamics.

We propose a particle filter for fusing the outputs of data-driven models and the oc-

cupancy model. The particle filter attempts to represent the posterior distribution

by using a set of particles [61]. In our case, the state of i-th particle at time step

k is defined as xik which represents the occupancy of a zone. The implementation

of the particle filter in this work consists of three steps shown as follows:
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Propagation: The occupancy model we presented is a first-order inhomogeneous

Markov chain model. Given i-th particle state at time step k−1, xik−1, the particle

can reach the state, x̂ik, with the transition probability P (x̂ik|xik−1), i = 1, 2, ...,M .

Weight calculation: The observation, ok, can be derived from data-driven models

with current environmental sensor data. Given the occupancy model output, x̂ik,

the i-th particle weight at time step k can be calculated as

ŵi
k = wi

k−1P (ok|x̂ik) (4.9)

where P (ok|x̂ik) = 1√
2πσ2

e−
(ok−x̂i

k
)2

2σ2 . Then, we normalize the weight for each particle

as

wi
k =

ŵi
k

∑M
i=1 ŵ

i
k

(4.10)

Resampling: We draw M new particles from the current particle set, X̂k =
{

x̂1k, x̂
2
k, ..., x̂

M
k

}

, proportional to the weight of each particle and set the weights

of all particles to 1/M . Then, this new particle set, Xk =
{

x1k, x
2
k, ..., x

M
k

}

, is the

desired one to determine the final occupancy of the zone at time step k, yk, which

can be expressed as

yk =
1

M

M
∑

i=1

xik (4.11)

4.2 Experiments

4.2.1 Data Acquisition

In this work, we recorded the CO2, humidity, temperature and pressure levels

in the Process Instrumentation Lab at Nanyang Technological University (NTU),

Singapore. The lab contains an office space with 24 cubicles and 11 open seats.

The room seats 9 PhD students and 11 research staff. About 6 to 10 of them are

regularly present during working hours. Additionally, there are 6 PCs for final

year undergraduate students and 5 PCs open to all students. Since it is a lab

environment with research students and staffs, the occupancy is regular. During
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Sensor Measured parameter Resolution Accuracy

Rotronic CL11
CO2 1 ppm ±5% of the measured value

Temperature 0.05 ◦C ±0.3 ◦K
Relative Humidity 0.1 %RH < 2.5 %RH

Lutron MHB-382SD Pressure 0.1 hPa ±2 hPa

Table 4.3: The resolution and accuracy of the environmental sensors.

working days, the morning arrival will start from 8am and the departure will last

to 11pm. In this work, we set the occupancy range of low (1-5 occupants), medium

(6-10 occupants), and high (more than 10 occupants). The room is conditioned

using both Active Chilled Beam (ACB) and the conventional Variable Air Volume

(VAV) systems, and is mechanically ventilated using Air Handling Unit (AHU)

which delivers a constant supply of fresh air.

The measurements of CO2, relative humidity and temperature were done using

the CL11 sensor from Rotronic. Pressure levels were measured using the MHB-

382SD sensor from Lutron. The sampling time was one minute. The resolution

and accuracy of the sensors are shown in Table 4.3. The sensors are attached on

the wall at a height of 1.1m from the ground. We applied one sensor per envi-

ronmental parameter. To record ground truth occupancy, three Internet Protocol

(IP) cameras were installed. The layout of the zone is shown in Figure 4.2. The

main door (referring to the location of camera 1) opens to an outer office space for

administrative staffs. Another door (referring to the location of camera 2) opens

to a lab area, while the third door remains closed. All the windows are closed. The

size of the zone is 20m long, 9.3m wide and 2.6m high. Note that the locations of

the sensors are randomly chosen. The optimal placement of the sensors is out of

the scope of this work and will be one of our future works.

The data collected from the sensors was transferred to a laptop using a USB cable.

Preprocessing of the data was done in MATLAB. This involved removing missing

values, synchronizing the time stamps of the sensors and synchronizing the sen-

sor data with occupancy values. Since the occupancy dynamics on weekdays and

weekends are different, we only consider occupancy estimation on weekdays in this

work. Note that the occupancy estimation method for weekends is the same. Fi-

nally, we collected 32 days of data in weekdays for performance evaluation. Among

them, we utilize 25 days of data for training and the last 7 days of data for testing.
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Figure 4.2: Layout of the zone

4.2.2 Variables and Criteria

The estimation of building occupancy is treated as a classification problem. Thus,

one basic criterion is classification accuracy which is defined as the correctly es-

timated results against the total number of samples. Another evaluation metric

that we used is Normalized Root Mean Square Error (NRMSE) which indicates

the magnitude of the estimation error [62]. Time of first arrival (TOFA) and time

of last departure (TOLD) which has been defined in Section 3.3.2 are the two most

important parameters for building control systems. They will determine the oper-

ation period of the control systems. Therefore, the estimation accuracy of these

two parameters is vital for an occupancy estimation system. The normalized mean

errors of TOFA and TOLD will be evaluated to demonstrate the performance of

the proposed framework.

4.2.3 Results and Discussions

The overall results can be found in Table 4.4 which presents the classification

accuracy, the NRMSE, the normalized mean errors of TOFA and TOLD for the

six methodologies with and without fusion. The values of the parameters of some

data-driven models, i.e. ELM, SVM, ANN and KNN, are presented in Table 4.5.
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Model Accuracy NRMSE TOFA (%) TOLD (%)

ELM
WO 0.6885 0.2490 7.6340 4.1369
W 0.7418 0.2099 0.8184 1.2351

SVM
WO 0.6592 0.2660 1.0417 7.4405
W 0.7167 0.2125 0.8035 1.6369

ANN
WO 0.6427 0.2692 6.6965 3.2441
W 0.7037 0.2295 1.8899 1.2351

KNN
WO 0.6100 0.2687 14.3452 7.8125
W 0.7074 0.2126 0.8482 1.5774

LDA
WO 0.6964 0.2450 0.8928 2.2322
W 0.7390 0.2133 0.7441 1.0417

CART
WO 0.6250 0.2722 14.4345 7.7381
W 0.7188 0.2176 0.7441 1.4583

Table 4.4: The classification accuracy, the NRMSE, the normalized mean er-
rors of time of first arrival and time of last departure for the six approaches with
and without fusion. Here, W denotes the approach with fusion and WO denotes

the approach without fusion.

ELM SVM ANN KNN
No. of hidden

neurons
Activation
function

C ε
Kernel
function

No. of hidden
neurons

Activation
function

Distance
metric

No. of
neighbors

50 Sigmoid 1.7 0.01 RBF 50 Sigmoid Euclidean 20

Table 4.5: The values of the parameters of some data-driven models, i.e. ELM,
SVM, ANN and KNN.

All these parameters are adjusted based on grid-search with cross validation of

the training data. Specifically, for example, the number of hidden neurons of the

ELM algorithm needs to be tuned. We selected the number of hidden neurons

from 1 to 100. Five-fold cross validation was employed on the training data with

different number of hidden neurons. Then, we chose the optimal number of hidden

neurons based on the mean testing accuracy of the five-fold cross validation. The

same strategy was applied for determining the optimal parameters for the other

data-driven approaches.

After fusion, all the approaches show impressive improvements on the estimation

accuracy and reductions on the NRMSE. Among all the approaches, the ELM with

fusion outperforms the others under the two criteria of the estimation accuracy and

the NRMSE, which demonstrates the effectiveness of applying this algorithm for

building occupancy estimation. For the criteria of the normalized mean errors

of TOFA and TOLD, all the approaches with fusion show great reductions. In

addition, the LDA and CART with fusion have the lowest estimation error on the
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normalized mean error of TOFA, and the LDA with fusion has the lowest estimation

error on the normalized mean error of TOLD.

Figure 4.3 shows the classification results of the 7 testing days for the six method-

ologies with and without fusion. The results after fusion are smoother. Thus, they

are more suitable for building control systems. Meanwhile, the proposed fusion

framework eliminates the errors in midnight which may be caused by the slow

spread of the environmental parameters, i.e. CO2, temperature, humidity, after

becoming unoccupied. Due to these wrong detections at midnight in the method-

ologies of ELM, ANN, KNN and CART without fusion, the normalized mean errors

of TOFA for the four approaches are quite large. After fusion, the four approaches

show significant improvements of the normalized mean errors of TOFA. The SVM

and LDA do not contain this wrong detection at midnight. But our fusion ap-

proach still shows encouraging improvements. One example of error cumulative

distribution functions (CDF) of TOFA for the ELM approach with and without

fusion is shown in Figure 4.4(a). Note that each step refers to 15 minutes. The

large error is caused by the wrong estimation of occupancy range at midnight.

Figure 4.5 presents the confusion matrix of the estimation result of the ELM with

fusion. We can find that the detections of zero and high occupancy are easier

than the detections of low and medium occupancy. The possible reason can be

that, since the environmental parameters are smoothly changing, the low and high

thresholds can be easily identified, but the low and medium ones can be confusing.

Moreover, the confusion matrix also indicates a high detection accuracy of presence

and absence.

Another observation is that the normalized mean error of TOLD is larger than

that of TOFA in most cases after fusion. To explain this phenomenon, we take

the environmental parameter of CO2 as an example. When the zone becomes

first occupied in the morning, the CO2 level will increase to indicate occupancy

change. After that, the zone will become occupied for almost the entire day, thus,

the CO2 level accumulates to a relatively high level in the evening. Then, after

all occupants have left, the CO2 level will take some time to decrease to a low

level which indicates vacancy. That is the main drawback of the environmental

parameter based occupancy estimation method. Nevertheless, according to Figure

4.4(b), the mean error of TOLD has been greatly reduced by our proposed fusion

algorithm, as compared to that without fusion.
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Ground Truth

ELM

(a) ELM without fusion
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Ground Truth

Fusion with ELM

(b) ELM with fusion
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Ground Truth

SVM

(c) SVM without fusion
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Ground Truth

Fusion with SVM

(d) SVM with fusion
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Ground Truth

ANN

(e) ANN without fusion
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Ground Truth

Fusion with ANN

(f) ANN with fusion
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Ground Truth

KNN

(g) KNN without fusion
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Ground Truth

Fusion with KNN

(h) KNN with fusion

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
zero

low

medium

high

Time (hour)

O
c
c
u

p
a

n
c
y
 R

a
n

g
e

 

 

Ground Truth

LDA

(i) LDA without fusion
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Ground Truth

Fusion with LDA

(j) LDA with fusion
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Ground Truth

CART

(k) CART without fusion
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Ground Truth

Fusion with CART

(l) CART with fusion

Figure 4.3: The classification results of the six methodologies with and without
fusion
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(b) TOLD for ELM with and without fusion

Figure 4.4: The CDFs of TOFA and TOLD for the ELM approach with and
without fusion
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Figure 4.5: Confusion matrix of the estimation result of the ELM with fusion

ELM SVM ANN KNN LDA CART
WO W WO W WO W WO W WO W WO W

Accuracy 0.8729 0.9318 0.8586 0.9281 0.8728 0.9345 0.8152 0.9278 0.9033 0.9345 0.8125 0.9304

Table 4.6: The classification accuracy of presence/absence for the six method-
ologies with and without fusion.
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Presence and absence of occupant information is important for applications such

as lighting control. The classification accuracies of presence/absence for the six

methodologies with and without fusion are also tested and shown in Table 4.6.

The fusion algorithm demonstrates an impressive improvement of around 3− 12%

among different approaches. Among all the approaches, ANN and LDA with fusion

perform the best. The average detection accuracy for all the approaches after fusion

is as high as some 93% with only the environmental sensors, rather than any extra

occupancy related sensors, e.g. motion sensor [39, 40], acoustic sensor [39–41],

PIR sensor [40, 41] and light sensor [41, 42]. In summary, the proposed fusion

algorithm is quite effective in improving the performance of the pure data-driven

approaches in the estimation accuracy, the magnitude of the estimation error and

other variables, i.e. the mean errors of TOFA and TOLD.

4.3 Summary

In this chapter, we presented a fusion framework using non-intrusive environmental

sensors for building occupancy estimation. Traditional approaches relies on data-

driven approaches which do not consider occupancy dynamics. Since the occupancy

model can reveal the patterns of occupants, we attempted to fuse the results of

data-driven models treating as observation and the occupancy model treating as

system dynamics using a particle filter. Experiments have been conducted to verify

our proposed scheme in a research lab environment. The experimental results

demonstrated impressive enhancement of the estimation accuracy of occupancy and

significantly reduction of detection errors of the two important random variables,

i.e. time of first arrival and time of last departure.





Chapter 5

Comparing Occupancy Models

and Data Mining Approaches for

Building Occupancy Prediction

This chapter explores the prediction abilities of occupancy models and compares

with some popular linear and nonlinear data mining approaches. In Section 5.1,

we present the problem overview. The prediction methods are introduced in Sec-

tion 5.2. In Section 5.3, we show the data for simulation and the evaluation criteria.

Then, we present the simulation results and discussions in this section.

5.1 Problem Overview

Previous works on occupancy modeling attempt to extract occupancy patterns.

The prediction abilities of occupancy models need to be explored. On the other

hand, since the occupancy data is a typical time series, some time series prediction

models can be applied. The basic idea is to construct a relationship between the

future occupancy and the past ones using a linear or nonlinear mapping. Thus, we

divide the occupancy prediction methods into two categories of occupancy mod-

els and data mining approaches. The two widely used models for multi-occupant

modeling are the inhomogeneous Markov chain (IMC) model and the multivari-

ate Gaussian (MG) model. The investigated data mining models include a linear

model, i.e. ARIMA, and two nonlinear models, i.e. ANN and SVR. In this work,

45
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we shall investigate and compare the effectiveness of these methodologies for occu-

pancy prediction in commercial buildings.

5.2 Methodology

The investigated occupancy models are the IMC model and the MG model. The

introductions of the IMC model and the calculation of its key parameters can be

found in Section 3.1. The explanations of the ANN and SVM methods have been

shown in Section 4.1.1. And the SVR approach was developed as the implementa-

tion of SVM for regression purpose [63]. Thus, in this section, we only present the

introduction of the MG model and the linear data mining approach of ARIMA.

5.2.1 Multivariate Gaussian

The multivariate Gaussian model developed by Erickson et al. [26] attempts to

fit the occupancy at each time step using a Gaussian model. The idea is similar

to the Graphical model proposed by Liao et al. [28]. The MG model contains

two important parameters, i.e. mean and standard deviation, at each time step.

Assume that yik, i ∈ 1, 2, · · · , D, is the occupancy at time step k on day i, and D

is the total number of days, the mean ȳk and standard deviation sk at time step k

can be calculated as

ȳk =
1

D

D
∑

i=1

yik (5.1)

sk =

√

√

√

√

1

D

D
∑

i=1

(yik − ȳk)2 (5.2)

During testing, a value at time step k will be randomly selected from the Gaussian

distribution with mean ȳk and standard deviation sk.
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5.2.2 Autoregressive Integrated Moving Average

The autoregressive integrated moving average model is the most widely used linear

model for time series prediction, e.g. in stock market [64], traffic volume [65],

electricity prices [66], etc. Assume that yk is the occupancy time series at time

step k, an ARIMA(p, d, q) model can be expressed as

(

1−
p
∑

i=1

ϕiL
i

)

(1− L)d yk =

(

1−
q
∑

j=1

ψjL
j

)

(5.3)

where p is the order of autoregressive process, d is the degree of differencing, q is

the order of moving average process, ϕi and ψj are coefficients of autoregressive and

moving average processes respectively, and L is the lag operator. The parameters

p and q can be determined by partial autocorrelation and autocorrelation of the

signal respectively, and the parameter d is the minimal order of differentiation

that makes the signal stationary. The coefficients ϕi and ψj can be specified using

least-squares fit.

5.3 Evaluation

To have a comprehensive analysis of the prediction abilities among the different

models, we define four prediction horizons which are 15mins, 30mins, 1h, and

2h. The prediction horizons of 15mins and 30mins are treated as short-term

prediction of occupancy which can be applied for MPC based real-time building

climate control. And the prediction horizons of 1h and 2h are treated as long-term

prediction of occupancy which can be employed for smart preheating or precooling

strategies. Note that, the length of time step of data is consistent with prediction

horizon. Thus the prediction is always one step ahead under different prediction

horizons. The prediction performances of the different methodologies are compared

in each horizon. Moreover, we will give an analysis on how to choose a proper

and efficient prediction model under different prediction horizons. Note that the

outputs of MG, ARIMA, ANN and SVR are decimal format. Since the occupancy

value must be non-negative integer, so if the occupancy value is less than zero, it

will be manually set to zero, and if the occupancy value is in decimal format, a

rounding operation will be performed.
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5.3.1 Data for Evaluation

Data for evaluation is generously provided by the authors in [28], and it was col-

lected by using video cameras from January 2010 to April 2010, a span of about

four months, in a multi-occupant room which contains 5 graduate students and 3

undergraduate research assistants. In this work, only workdays of occupancy data

is considered. Note that the prediction of weekends’ occupancy data is the same.

Due to certain technical issues, only 60 workdays of occupancy data (14 days for

Monday, 12 for Tuesday, 9 for Wednesday, 12 for Thursday and 13 for Friday) were

derived from 16 weeks of video data. The more detailed description of the data

can be found in [28]. The raw occupancy time series data has a resolution of one

minute. If the prediction horizon is H minutes, the data needs to be transferred

into H minutes time-resolution by using mean and rounding operations. For in-

stance, given a time series, y1, y2, · · · , yH , with length H, the obtained occupancy

value can be expressed as
⌊

1
H

∑H
k=1 yk

⌉

, where ⌊·⌉ is the rounding operation. We

choose first half of the data from each weekday for training (i.e. 7 days for Monday,

6 for Tuesday, 5 for Wednesday, 6 for Thursday and 7 for Friday). Totally, we have

32 days of data for training and the remaining for testing.

5.3.2 Evaluation Criteria

To quantify the performance of the models, we shall apply two widely used evalu-

ation criteria of root mean square error (RMSE) and mean error (ME) under the

rational that RMSE indicates the magnitude of occupancy prediction errors and

ME indicates overestimation or underestimation of occupancy prediction [67]. The

definitions of RMSE and ME are as follows

RMSE =

√

√

√

√

1

N

N
∑

k=1

(yk − ŷk)
2 (5.4)

ME =
1

N

N
∑

i=1

(yk − ŷk) (5.5)

where yk and ŷk are the actual and predicted occupancy at time step k, and N is

the total length of the data.
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Horizon
Baseline Occupancy Models Data Mining Approaches
SDP IMC MG ARIMA ANN SVR

15mins 1.0009 0.8361 1.3007 0.5321 0.5473 0.5323
30mins 0.9815 0.9582 1.2735 0.6825 0.7106 0.6840

1h 0.9619 1.1063 1.2448 0.8954 0.9188 0.8836
2h 0.9018 1.0568 1.1612 1.1251 1.0554 0.9112

Table 5.1: The RMSE of different models under four prediction horizons.

Horizon
Baseline Occupancy Models Data Mining Approaches
SDP IMC MG ARIMA ANN SVR

15mins -0.0851 -0.0857 -0.0733 0.0014 -0.0466 -0.0014
30mins -0.1171 -0.1024 -0.0713 0.0518 -0.0678 -0.0613

1h -0.0690 -0.1428 -0.0807 0.1379 -0.0697 -0.2047
2h -0.0833 -0.1299 -0.0836 0.1214 -0.0814 -0.2000

Table 5.2: The ME of different models under four prediction horizons.

Horizon
ARIMA ANN SVM
p d q order f order C ε

15mins 1 0 0 3 6 3 256 0.0118
30mins 1 0 1 11 5 5 16 0.0118

1h 1 0 1 12 5 12 3.0314 0.068
2h 2 0 2 15 8 18 1.7411 0.0206

Table 5.3: The values of the parameters of the data mining models.

5.3.3 Results and Discussions

Experimental results under two criteria of four prediction horizons are shown in

Tables 5.1 and 5.2 with different methodologies including a simple diversity pro-

file (SDP) method which is widely used [45]. The SDP model adopts the mean

occupancy profile of training data to predict future occupancy. At short term pre-

dictions of 15mins and 30mins, the linear data mining approach that is ARIMA

performs the best. The SVR approach and the SDP approach have superior per-

formances under the prediction horizons of 1h and 2h respectively. The stochastic

occupancy models, i.e. IMG and MG, have the worst performance. This indicates

that the stochastic occupancy models have limited prediction performance in the

commercial building deployment scenario, which is consistent with the conclusion

of predicting occupant’s presence and absence in single workplaces [45]. The per-

formances of MG, ARIMA, ANN and SVR that utilize previous steps of occupancy

to predict future occupancy degrades with the increase of the prediction horizons.
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Horrizon 15mins 30mins 1h 2h
Smoothness rate 0.8104 0.7113 0.6050 0.4734

Table 5.4: The smoothness rate for different prediction horizons

This is because the correlation between each steps becomes weaker with a longer

prediction horizon. But the SDP and MG models seem to be unaffected by the

prediction horizon, which will be analyzed later. The ME of the SDP approach is

stable and small, which indicates the data for training and testing has similar pat-

terns. Since the maximal number of occupants in the zone is 8, the percentages of

biases of all the methodologies are very small and can be neglect. This means that

all the methodologies based on real measurements contain negligible biases, which

is also consistent with the conclusions in [68]. The values of the parameters of the

data mining approaches are listed in Table 4.5. The order represents the number

of previous steps of occupancy that is used as model inputs. Note that these values

were derived by using grid search with cross-validation of the training data. For

example, for the ANN approach at each prediction horizon, we selected the order

from 1 to 20. At each order, we chose the hidden nodes of ANN from 1 to 100.

Five-fold cross validation was employed on each combination of parameters. The

detection accuracy is chosen as a criterion in determining the optimal number of

order and hidden nodes. Note that this process will cost some time (up to several

hours), but it only requires to be done once. The same strategy was applied for

determining the optimal parameters for SVR.

When the prediction horizons are 15mins and 30mins, the ARIMA model outper-

forms the other models. The adjusted ARIMA models are ARIMA(1, 0, 0) and

ARIMA(1, 0, 1) when the prediction horizons are 15mins and 30mins respec-

tively, which suggests the high correlation between the current occupancy and the

previous one step occupancy. Figure 5.1 shows an example of 100 testing samples

under four different prediction horizons. We can find that the shorter the pre-

diction horizon, the smoother the signal. In order to quantify the smoothness of

the signal, we define a smoothness rate. Given a time series y1, y2, · · · , yN , the
smoothness rate, r, can be expressed as

r =

∑N−1
k=1 δ (yk, yk+1)

N − 1
(5.6)
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(a) Time horizon 15mins
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(b) Time horizon 30mins
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Figure 5.1: An example of 100 testing samples under four different time hori-
zons

where δ (yk, yk+1) =







1, yk = yk+1

0, yk 6= yk+1

, and N is the total length of the time se-

ries. The smoothness rate of 1 indicates that the occupancy is equal for all time

steps, and the smoothness rate of 0 indicates that the adjacent steps of occupancy

are different for all time steps. Table 5.4 demonstrates the smoothness rate for

different prediction horizons. It can be found that the smoothness rate decreases

with the increase of prediction horizon. As mentioned before, the prediction ac-

curacy decreases with the increase of prediction horizon, except for the SDP and

MG models. According to the definition of the SDP and MG model, it does not

take into consideration of the occupancy in the previous steps. Therefore, the

adjacent occupancy predicted by these models will have a low probability to be

equal, which makes its prediction performance increase with the decrease of the

smoothness rate, or in other words, the increase of the prediction horizon. When

the prediction horizons are 15mins and 30mins, the smoothness rates are as high

as 0.8104 and 0.7113 respectively, which means that first order linear property is

dominant under these conditions. Thus, the linear ARIMA models using previous
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one step occupancy can achieve a good performance, and the nonlinear model, i.e.

ANN and SVR, cannot be expected to achieve better performance.

When the prediction horizons are 1h and 2h, the smoothness rates decrease to

0.6050 and 0.4734 respectively, which means the linear property of the signal be-

comes weak. Therefore, the nonlinear data mining models, i.e. ANN and SVR,

perform well, especially under prediction horizons of 1h. The SDP method outper-

forms the other methods under prediction horizons of 2h. This may be because it

tends to provide predictions close to the average patterns. Moreover, due to the

limited size of the training samples under the perdition horizon of 2h (12 samples

per day), the nonlinear data mining approaches cannot be well trained, leading to

a limited performance.

5.4 Summary

In this chapter, we compared occupancy models and data mining approaches for

building occupancy prediction. We tested the prediction capabilities of two oc-

cupancy models in the multi-occupant situation, and presented three linear and

nonlinear data mining approaches for predicting building occupancy. The per-

formances of the occupancy models and the data mining approaches have been

compared using actual occupancy data under the four prediction horizons of 15

minutes (15mins), 30 minutes (30mins), 1 hour (1h) and 2 hours (2h). The re-

sults showed that the prediction abilities of the occupancy models are limited and

the data mining approaches are efficient in building occupancy prediction. We also

presented a guideline on how to choose a proper model for predicting occupancy

under different prediction horizons.
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Indoor Localization and Activity

Recognition
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Chapter 6

Literature Review of Indoor

Localization and Activity

Recognition

In Part II of the thesis, we focus on the detailed information of occupant location

and activity in buildings. The real-time locations of occupants can be utilized for

lighting control and the activities of occupants can be used for the estimation of

occupant comfort level which is important for building climate control. Two novel

methods for indoor localization and one novel method for activity recognition are

introduced.

6.1 Indoor Localization

One of the most popular indoor localization techniques is the WiFi fingerprinting

approach, which consists of offline training and online testing. In online testing,

a nearest neighbors algorithm and a probabilistic model are utilized for location

estimation [69, 70]. However, fingerprinting approaches require a labor-intensive

and time-consuming site survey for data collection. Li et al. presented two algo-

rithms, i.e. Environment-Aware Sequence-Based Localization (EASBL) and Itera-

tive Maximum Likelihood Estimation (IMLE), for WiFi based indoor localization

in emergency situations where deployment cost needs to be considered [71, 72].
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Real experiments have been conducted in [18], which indicated a high room iden-

tification accuracy and a significant reduction of deployment cost. However, due

the fluctuations of WiFi signals, the performances of these approaches are limited.

Smartphone embedded sensors can provide an alternative solution, i.e. Pedestrian

Dead Reckoning (PDR), for indoor localization [73]. The PDR approach states

that the current position can be derived from the previous position, the current

walking length and direction. Unfortunately, this approach suffers from the drift

problem with walking distance [74]. To improve the indoor localization perfor-

mance, recent works tend to fuse WiFi and PDR to compensate the drawbacks of

each method.

Evennou et al. [75] first integrated WiFi and PDR for indoor localization and nav-

igation. They applied the WiFi fingerprinting approach with a k-closest neighbors

algorithm. For the PDR approach, the key parameter of walking direction was de-

rived from the integration of gyroscope data, which will drift with walking distance.

They employed a Kalman filter to correct this drift by using WiFi based localiza-

tion trajectories. Finally, a particle filter was leveraged to fuse WiFi and PDR.

Another work can be found in [76]. The authors intended to fuse inertial sensors,

indoor map and WLAN RSS (Received Signal Strength) to localize pedestrians

in indoor environments. In the PDR approach, the walking direction was derived

from gyroscope data. In terms of the estimation of walking length, they presented

a linear fitting of step length with step frequency. To decrease the computational

load of the system, they proposed an obstacle line grouping method for map in-

formation. Wang et al. [77] proposed a similar work which fuse PDR, WLAN

RSS and map information for pedestrian tracking by using a particle filter. Finger-

printing approach was applied for RSS based localization, which is also treated as

a benchmark for performance comparison in experiments. In the PDR approach,

an empirical equation was employed to estimate walking length. And the walking

direction was sampled from a uniform distribution. Waqar et al. [78] presented

a fusion framework which combines motion information from smartphone sensors

and the WiFi fingerprinting by using a Bayes filter. They applied the term of

belief which represents conditional probability distribution over all possible states

in terms of users’ coordinates. In the motion model, the belief was updated based

on the PDR approach. Then, the WiFi fingerprinting method which leverages on

rank based scheme and Spearman’s footrule distance instead of existing nearest

neighbour method was employed to correct the belief. A WiFi-SLAM based on
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Gaussian Process Latent Variable Model is introduced in [79]. It simultaneously

considered the constrains of WiFi RSS measurements and the user’s motion model

obtained from smartphone inertial sensors. An improved version, i.e. Semantic-

SLAM, can be found in [80]. It also utilized the landmarks sensed by smartphone

sensors. Experiments indicated the good performance of their proposed approach

on simultaneous localization and mapping.

Particle filter is widely used in fusing WiFi and the PDR approach. However,

due to the high computational load of the particle filter, it is not suitable for a

resource limited smartphone platform. In this work, we employ the Kalman filter

algorithm which is computationally light by formulating the fusion problem in a

linear perspective. For WiFi based localization, instead of using the fingerprinting

approach which requires a time consuming training process, we apply a weighted

path loss (WPL) [81] approach which has been shown to be efficient and simple for

implementation. Novel approaches are employed in estimating several important

parameters of the PDR approach. To avoid the influence of smartphone tilting in

step detection, a quaternion is applied to obtain consistent vertical acceleration,

and an efficient step detection scheme is presented. Another important issue in the

PDR approach is walking direction estimation. The approaches that leveraged on

magnetometers are easily distorted by metal and electronic facilities, and gyroscope

integration approaches will accumulate errors. To overcome these problems, we

apply a fusion framework using the Kalman filter. Moreover, we leveraged on

landmarks which can be detected using smartphone sensors to reset system errors

and restart the system.

The smartphone inertial sensor based approach is lightweight and requires fewer

resources for indoor localization and tracking. However, without any corrections,

it suffers from the drift problem. WiFi based corrections is shown to be effective.

In situations where WiFi signals are not available, or the application is sensitive

to battery consumption (WiFi scanning is power hungry), other corrections are

required.

The authors in [82] combined PDR with GPS to enhance localization accuracy.

They also constructed a neural network model to estimate the step length. A hel-

met containing the inertial measurement unit and the GPS antenna was used for

real experiments. However, since GPS signals are degraded indoors, this solution

is not feasible for indoor situations. Girard et al. [83] presented an ultrasound
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ranging assisted PDR system. A particle filter was applied for the fusion of the

PDR approach with ultrasound measurements. The portable ultrasound range

sensors measured the distance between the pedestrian and adjacent walls, which

eliminates the invalid particles to enhance the localization accuracy of the PDR

approach. Ruiz et al. [84] proposed to fuse the PDR approach with active RFID

measurements using the Kalman filter. Instead of employing a loose integration

which leverages on the estimated position of a separate RFID system, they applied

the residuals of PDR-predicted reader-to-tag ranges and the ranges derived from

the RFID system. Lee et al. [85] presented an inertial sensor based localization

system with Chirp Spread Spectrum (CSS) radio beacons whose locations are un-

known. They performed a Simultaneous Location and Mapping (SLAM) technique

to localize the pedestrian in indoor environments. Their system was tested using

real experiments and achieved good accuracy with a small number of beacons.

However, these three approaches requires extra devices and cannot be integrated

into a portable smartphone which is widely available. The authors in [86] applied

landmarks in environments, e.g. stairs, escalators, elevators and WiFi signatures,

to calibrate the drift of the PDR approach. An unsupervised learning method was

employed to identify landmarks in environments. Real experiments were conducted

in three different environments with median localization errors of 1.69m. However,

the locations of landmarks need to be manually measured in advance. In this sit-

uation, we present a smartphone inertial sensor based PDR approach for indoor

localization and tracking with occasional iBeacon calibrations. Since the PDR ap-

proach will drift with walking distance, we propose an iBeacon based calibration

algorithm using the extended Kalman filter. By analyzing iBeacon measurements,

an efficient calibration range is defined. In order to obtain the initial position, we

propose a combination of existing WiFi routers and installed iBeacon tags using a

WPL model [81].

6.2 Activity Recognition

Early human activity recognition R&D activities began with wearable devices.

Bao et al. [87] applied five biaxial accelerometers worn on different parts of the

body to recognize 20 daily activities. It was found that a decision tree classifier

achieved the highest recognition accuracy of over 80%. They also concluded that
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the recognition performance will drop slightly with only two accelerometers worn

on thigh and wrist. Preece et al. [88] compared 14 methods to extract features from

wavelet transformation, time and frequency domain of wearable acceleration signals

in different placements. A nearest-neighbor classifier was used and two datasets

were involved in the experiments. They concluded that frequency features are more

efficient in recognizing human dynamic activities. However, wearable devices are

intrusive for users and require additional cost for hardware.

With the development of smartphone technology, a large number of sensors, e.g.

accelerometer, gyroscope, magnetometer, proximity, etc., are embedded. Thus,

smartphone based activity recognition has emerged in the past decade. Kwapisz

et al. [89] employed smartphone acceleration to identify human physical activities

such as walking, jogging, climbing stairs, sitting, and standing. With the phone

placed in pants’ pocket, they achieved an average accuracy of over 90%. Figo et al.

[90] investigated different features for human activity recognition using smartphone

built-in accelerometers. In real-world experiments of recognizing three activities

of walking, running and jumping, they made a conclusion that frequency-domain

features are more robust and perform better. Bayat et al. [91] proposed an average

of probabilities method to fuse five classifiers for human activity recognition. They

also presented a new digital low-pass filter to isolate the gravity component in

raw acceleration. With only a single triaxial acceleration data from smartphones,

they achieved identification accuracy of up to 91.15% on six daily activities for two

phone positions, i.e. in hand and in pants’ pocket. These works did not consider a

real problem of orientation variations of the smartphone.

Some advanced works have taken the orientation effects into consideration. Sun et

al. [92] proposed an activity recognition approach with orientation and position

variations. They treated the acceleration magnitude as the 4th data dimension

together with triaxial acceleration to overcome the effect of orientation variations.

To solve the effect of position variations, they trained a location-specific SVM clas-

sifier for each location. Experimental results showed a significant improvement

compared with state-of-the-art approaches. Tao et al. proposed a Multi-column

Bi-directional Long Short-Term Memory (MBLSTM) approach using two direc-

tional features for human activity recognition with smartphone accelerometer [93].

The two directional features are extracted from vertical component and the norm

of horizontal components of three dimensional (3D) acceleration. The experiments
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showed the effectiveness of these two directional features and their proposed learn-

ing algorithm.

Ustev et al. [94] proposed an activity recognition system independent of device

orientation by transferring sensor data from the device coordinate system into the

earth coordinate system. Experimental results demonstrated the effectiveness of

their proposed scheme. They also tested the recognition accuracy in terms of de-

vice and user dependency and concluded that their impacts are minor compared to

orientation effects. Guo et al. [95] presented smartphone based activity recognition

regardless of device orientation and placement by using coordinate mapping. The

Euler angles were leveraged to obtain the rotation matrix for coordinate mapping.

Moreover, they presented a triaxial motif combination method and a motif-based

activity classification algorithm. The experimental results showed the effective-

ness of their proposed approach in reducing the negative effects of orientation and

placement. All researchers did not realize one serious problem that has arisen af-

ter performing coordinate transformation. After transferring the acceleration into

the fixed earth coordinate system, the directions of performed activities will have

significant influence on the acceleration in horizontal axes, which shall degrade the

performance of activity detection systems. Therefore, we presented an orientation

independent approach based on coordinate transformation and principal compo-

nent analysis (CT-PCA) techniques.



Chapter 7

Indoor Localization Using WiFi,

Smartphone Sensors and

Landmarks

The coarse information of occupant number is important for energy efficiency in

buildings. In addition to that, the detailed information of occupant location is

also very important for many applications related to energy efficient buildings. In

this chapter, to achieve accurate indoor localization, we propose a localization and

tracking system based on the fusion of WiFi, smartphone sensors and landmarks

using the Kalman filter. In Section 7.1, we present a WiFi WPL method for coarse

localization. Then, we introduce the PDR approach based on smartphone inertial

sensors, together with some novel techniques for its key parameters. After that, the

identification of landmarks using smartphone sensors is shown. Finally, we resolve

the sensor fusion problem using the Kalman filter. In Section 7.2, we present the

experimental setups, and show the experimental results and discussions under two

different environments.

61



62 7.1. Methodology

7.1 Methodology

7.1.1 Weighted Path Loss of WiFi

One of the most popular WiFi positioning techniques is the fingerprinting approach

which consists of two phases, i.e. off-line training and on-line testing. In the

off-line training phase, a large amount of data that contains the received signal

strength (RSS) and the corresponding location is collected. Then, machine learning

algorithms are employed to construct the relationship between the RSS and the

location information. In the on-line testing phase, the location information can be

derived based on real-time WiFi RSS value using the model obtained in the training

phase. The WiFi fingerprinting approach requires a tedious manual collection of

data for training and a re-training process when the environment changes.

In order to overcome the drawbacks of the fingerprinting approach in real im-

plementation, we present a WPL algorithm which has already been successfully

applied in RFID based localization system [81, 96]. Assume sit is the RSS of the

router i at time step t, then, based on signal propagation model in [97], we obtain

sit = PL0 + 10α log(dit) (7.1)

where PL0 is the reference path loss coefficient, α is the path loss exponent, and

dit is the distance between the router i and the device at time step t. Based on

Equation (7.1), dit can be expressed as:

dit = 10
sit−PL0

10α (7.2)

Suppose we have N routers, and the distance between the device and routers can

be expressed as a vector {d1t , d2t , · · · , dNt } at time step t. Then the weight of each

router can be calculated as:

wi
t =

1
dit

∑N
i=1

1
dit

(7.3)
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Finally, the location of the device, (x, y), can be expressed as

(x, y) =
N
∑

i=1

wi
t(xi, yi) (7.4)

where (xi, yi) is the location of the i-th router.

Considering that our system will be running on a resource limited smartphone

platform instead of a server, lightweight WPL algorithm is more suitable than the

popular fingerprinting approach which requires manual collection of a huge data

set for training and heavy load machine learning algorithms. Moreover, when the

environment changes, the WPL algorithm only needs to adjust two parameters,

i.e. PL0 and α, in Equation (7.1), while the fingerprinting approach requires re-

collection of the data and a re-training process. Therefore, the WPL algorithm is

more suitable for real-time implementation.

7.1.2 Pedestrian Dead Reckoning

In the PDR approach, the current position is determined by the previous position,

current walking length and walking direction, which can be expressed as

Sk+1 = Sk + Lk

[

sin θk

cos θk

]

(7.5)

where Sk is the 2D coordinate of the pedestrian, Lk is the walking length and θk is

the walking direction at time step k. Some critical issues need to be resolved, such

as step detection, walking length estimation and walking direction estimation.

Initial Position Estimation: The PDR approach only provides relative infor-

mation. Therefore, the accuracy in estimating the initial position will directly

influence the accuracy of the entire localization process of the PDR approach.

Since we do not have any prior information of the initial position, the only location

information comes from the WiFi positioning system at the beginning. Due to

the importance of the initial position estimation, we leverage on the landmarks,

whose positions are known, as new starting points to restart the algorithm when

the pedestrian reaches these landmarks. In addition, landmarks will be helpful

in resetting accumulative errors of the system caused by unknown bias in sensors.
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The detailed definition and identification of landmarks will be introduced in Section

7.1.3.

Step Detection: Since the feet hit the ground during walking, the vertical acceler-

ation signal will contain periodic patterns which can be applied for step detection.

To overcome the tilting effect and obtain consistent vertical acceleration values,

we need to transfer the original acceleration from smartphone coordinate system

(SCS) into a fixed reference, i.e. earth coordinate system (ECS). We leverage on a

quaternion, i.e. a four-element vector, to represent any rotation in a 3D coordinate

system [98]. According to [99], a software sensor, i.e. rotation vector sensor, will

provide real-time quaternions referring to ECS. Based on [98], a rotation matrix,

R, can be calculated using a real-time quaternion. Assume that As and Ae are

the 3D acceleration in SCS and ECS respectively, then we have

Ae = RAs (7.6)

In this way, we can obtain a consistent 3D acceleration in ECS regardless of device

orientation. But the obtained vertical acceleration contains gravity component

that needs to be eliminated. Due to the stability of gravity, we leverage on a low-

pass filter to obtain the gravity first, and then employ the vertical acceleration to

subtract the gravity [99], which can be expressed as

G = αG+ (1− α)Ae (7.7)

L = Ae −G (7.8)

where G is the gravity, α is the parameter of the low-pass filter, and L is the

required linear acceleration. Due to the limited quality of smartphone sensors,

the sensor outputs are very noisy. We perform a smoothing operation to reduce

the noise effect. Assume that, {ak, k = 1, 2, ..., N} is the time series of vertical

acceleration, and N is the total length of the data, the m-th order smoothed

acceleration, âk, can be expressed as

âk =

∑k+m−1
i=k ai
m

(7.9)

Fig. 7.1 shows a simple example of vertical acceleration smoothing where the
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Figure 7.1: An example of acceleration smoothing.

sampling frequency is 20Hz. After smoothing, most of high frequency noise is

wiped off, which will make the step detection process more accurate and robust.

One of the most popular step detection methods is based on peak detection, but

it will be easily affected by noise. In this work, we present a simple and efficient

threshold-based step detection algorithm. The set of valid step events for the

proposed approach is as follows:

{âk > a+, âk+p < a−, 0 < p < pmax} (7.10)

where a+ and a− are the positive and negative thresholds respectively, and pmax

is the upper-bound of one step duration. In this work, we set a+, a− and pmax

as 1.0m/s2, −0.8m/s2 and 12 (corresponding to 12 ∗ 1/20s = 0.6s), respectively.

Fig. 7.2 compares the peak detection with the proposed threshold-based algorithms

using an example of 10 steps. The proposed approach is obviously more robust.

Step Length Estimation: One of the most influential parameters in the PDR ap-

proach is the walking length. It has large variance among different subjects. Even

for the same subject, it varies significantly at different times during walking. The

authors in [100] presented constant walking lengths for different activity modes,

i.e. walking, jogging and running. Another work in [101] estimated walking length

based on the height of a pedestrian. These approaches did not take into consider-

ation the variations of walking length during walking. One sophisticated approach

can be found in [102] where the author constructed a relationship between walking
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Figure 7.2: Step detection based on (a) the peak detection algorithm and (b)
the proposed threshold-based detection algorithm using an example of 10 steps.

length and vertical acceleration, which is given by

L = β(âmax − âmin)
1/4 (7.11)

where âmax and âmin are the maximal and minimal smoothed vertical accelerations

during one step respectively, and β is a parameter that needs to be specified for

different subjects. Note that, since we have transferred the acceleration into ECS,

the tilting of smartphones during walking will have no effect on this walking length

estimation algorithm.

Walking Direction Estimation: One method for estimating pedestrian walk-

ing direction is based on the orientation sensor output which is a combination of

magnetometer and accelerometer readings in smartphones [99]. One of the orien-

tation sensor outputs, i.e. the azimuth reading, is the angle between smartphone

pointing direction and the geographical north. Since this angle is determined by

the magnetometer output which will be affected by electronic devices, we intend to

compensate this effect by fusing the gyroscope output which provides the angular

acceleration without any effect of electronic devices. The Kalman filter is applied

for this fusion.

7.1.3 Identification of Landmarks

Landmarks with known positions have specific sensor patterns which make them

identifiable in environments. The motivation of introducing landmarks is that

the accuracy of the PDR approach highly relies on the estimation accuracy of
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Figure 7.3: Identification of turns

initial location. Landmarks can provide accurate new starting points for the PDR

algorithm when a pedestrian reaches these landmarks [86]. Moreover, they can also

reset the cumulative errors of the system due to the biases of sensors.

The landmarks we investigated in this work include turns, elevators, escalators,

stairs and doors. The sensors involved in the identifications of these landmarks

include accelerometer, magnetometer, gyroscope, barometer and WiFi.

Turns: Due to topology constrains in indoor environments, turns can be identified

using angular or direction related sensors. The most direct way to recognize turns

is to use magnetometer reading. However, it may be affected by electronic devices,

which makes it unstable for the recognition of turns. An alternative way to achieve

that is leveraging on the gyroscope readings which measure angular acceleration

without any interferences. After smoothing the gyroscope outputs, turns can be

easily distinguished. An example is shown in Figure 7.3. In addition, based on

the direction of the pulse in the figure, left or right turns can be separated. In

real situations, many turns can be detected. If the distance of two turns is smaller

than localization accuracy, we may make a wrong decision leading to a bias for the

system. To avoid this, we only consider the turns that are unique in the path as

landmarks.

Elevators: Based on the unique pattern of vertical acceleration, taking elevators

can be easily identified. It contains a hyper-gravity and a hypo-gravity processes,
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Figure 7.4: Ambient air pressure for going upstairs and downstairs

shown as a positive impulse and a negative impulse of vertical acceleration respec-

tively [86]. Moreover, the length between the impulses reflects how many floors the

pedestrian goes up or down, which would be important for multi-floor localization.

Escalators: The acceleration pattern of taking escalators is similar to stationary.

We apply magnetometer data to distinguish them. In stationary condition, the

variance of magnetometer data is small. while, due to the significant influence on

magnetics of the motors in escalators, the variance of magnetometer readings will

be large when taking escalators. We can identify these landmarks by using the

variance of magnetometer readings.

Stairs: Going upstairs or downstairs has similar patterns of acceleration with

normal walking. An effective way to distinguish these two activities is to use the

barometers in smartphones [103]. It is well known that the higher the elevation,

the lower the ambient air pressure. Therefore, there will be a decrease of ambient

air pressure when going upstairs and an increase of that when going downstairs.

Figure 7.4 shows an example of ambient air pressure change for going upstairs and

downstairs.

Doors: The landmarks of doors contain two phases of acceleration, low acceler-

ation for opening the door and periodic patterns of acceleration for walking out.

If only based on this phenomenon, many false positive events will be produced.

Another prominent property of passing through a door is the big change of re-

ceived signal strength of WiFi, as shown in Figure 7.5. Based on this property, the

landmarks of doors can be easily identified.
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Figure 7.5: Receive signal strength of WiFi when passing through a door

7.1.4 Sensor Fusion Using the Kalman Filter

The WiFi WPL approach and the PDR approach have different properties for

localization. In particular, the WiFi WPL approach can provide an exact location.

But the localization results have large variations because of the variations of WiFi

signals. While the PDR approach leveraging on relative location information can

provide a smooth location, but the localization results will slowly drift with working

distance. The combination of these two different approaches will compensate the

weaknesses of each other. Specifically, the WiFi WPL approach will correct the

drift of the PDR approach, while the PDR approach will smooth the variations of

the WiFi WPL approach.

The potential sensor fusion techniques for combining the WiFi WPL approach with

the PDR approach include particle filter [104], hidden Markov model [105], Kalman

filter [106], etc. In real situations, users need to know their locations in real time

for navigation. Therefore, the whole system should be running on smartphones

instead of servers. Because of that, light computation algorithms will be preferred

because of limited resources in smartphones. In terms of problem formulation,

we tackle the problem in a linear perspective, then, the Kalman filter which is

computationally light can be applied instead of the particle filter which is widely

used in the literature.

Assume Xt is the 2D coordinate of a pedestrian and dt = Lt

[

sin θt cos θt

]T

is

the input where Lt is the step length and θt is the walking direction at time step

t. Then, based on the PDR approach, the state transition function of the sensor
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fusion framework can be expressed as:

Xt = FXt−1 +Gdt + v (7.12)

where F, G are identity matrices, and v denotes the Gaussian noise of the motion

model with zero mean and covariance matrixM [107]. The observation function can

be obtained based on the output of the WiFi WPL approach, Zt =
∑N

i=1w
i
t(xi, yi)

where wi
t is the weight of router i at time step t and (xi, yi) refers to the location

of router i. The observation function can be expressed as:

Zt = HXt + p (7.13)

where p denotes the Gaussian noise of the WiFi WPL output with zero mean and

covariance matrixN [108]. Since it is a direct observation problem, H is an identity

matrix.

The Kalman filter [106] is employed for this sensor fusion. The algorithm contains

two processes, i.e. predicting and updating.

Predicting:

Xt|t−1 = FXt−1|t−1 +Gdt (7.14)

Pt|t−1 = FPt−1|t−1F
T +M (7.15)

Updating:

Kt = Pt|t−1H
T (HPt|t−1H

T +N)−1 (7.16)

Xt|t = Xt|t−1 +Kt(Zt −HXt|t−1) (7.17)

Pt|t = (I−KtH)Pt|t−1 (7.18)

7.2 Evaluation

To evaluate the performance of our proposed approach, two experiments have been

conducted in different environments. The comparisons have been made among the

proposed fusion approach, the WiFi WPL approach and the PDR approach with

landmarks.
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(a) The research lab (b) The testbed

Figure 7.6: Layouts

Figure 7.7: User Interface

7.2.1 Experimental Setup

The two experiments were performed in a typical research lab and a designed

testbed in the campus of NTU (Nanyang Technological University, Singapore).

The sizes of the lab and the testbed are 19.0m × 16.3m and 27.5m × 16.4m, re-

spectively. Figure 7.6 shows the layouts of the research lab and the testbed. The

red stars represents the locations of APs (Access Points). The device involved

in the experiments is a Google Nexus 4 smartphone. We developed an Android

application for the experiments. The user interface is shown in Figure 7.7. The

circle shows the position of the user and the number represents the corresponding

coordinate. We define top left corner as coordinate origin, x-axis points to the right

and y-axis points downwards. Note that we only consider hand-hold situation, the

others situations, such as putting in pockets or bags, are our future works. To

obtain the ground truth of the trajectory, we mark the ground with 1m grid and

apply a camera to record the whole walking process, then, we manually measure

the location of each step of the pedestrian.
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7.2.2 Experimental Results and Discussions

The first experiment was conducted in the research lab. Due to the physical con-

straints caused by facilities, many physical turns are involved in the experiment.

Based on the criterion introduced in Section 7.1.3, only one turn shown as ma-

genta circle in Figure 7.8(a) satisfies. The second experiment has been performed

in the designed testbed. Since the testbed is relatively empty, no physical turns

are involved in the experiment. Therefore, no landmarks of turns can be used.

According to the true trajectory in Figure 7.8(b), two landmarks of an elevator

and a door are employed in the experiments.

Figure 7.8 shows the trajectories of the true path, the WiFi WPL model, the

PDR approach with landmarks and our proposed fusion approach for the two

experiment setups. The corresponding cumulative distribution functions (CDFs)

of localization errors for the three approaches are demonstrated in Figure 7.9. In the

first experiment, the mean localization errors of the WiFi WPL approach and the

PDR approach with landmarks are 2.8977m and 1.7547m, respectively, while that

of our proposed fusion model with the Kalman filter is 0.9945m. After sensor fusion

of WiFi, smartphone sensors and landmarks, we reduce the localization errors

by 65.7% and 43.3%, respectively, when comparing to the WiFi WPL approach

and the PDR approach with landmarks. Since only one landmark is employed in

the middle of the path in the first experiment, the localization error is relatively

large before arriving at the landmark. After restarting from the landmark, PDR

provides a high localization accuracy within a short range, and then slowly drifts,

while the proposed algorithm corrects the drift by fusing the WiFi WPL outputs.

Clearly, the proposed sensor fusion approach takes the advantages of the techniques

including PDR, WiFi WPL and landmarks to achieve a high localization accuracy.

In the second experiment, the mean localization errors of the WiFi WPL approach

and the PDR approach with landmarks are 3.5189m and 1.7727m, respectively,

while that of the proposed approach is 0.8492m. After sensor fusion, we reduce

the localization errors by 75.9% and 52.1%, respectively, when comparing to the

WiFi WPL approach and the PDR approach with landmarks. Note that we did

not adjust the parameters of WiFi WPL in the new environment. Therefore,

the localization accuracy of WiFi WPL is slightly poorer than that in the first

experiment. However, the entail fusion system can still achieve a high localization

accuracy, i.e. 0.8492m, when combining with smartphone sensors and landmarks.
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Figure 7.8: The trajectories of the true path, WiFi WPL model, PDR with
landmarks, and the proposed fusion model for the two experiment setups.
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Figure 7.9: Cumulative distribution functions of localization error for the three
approaches.

The tracking starts from an elevator which is a known landmark. Before arriving

at the second landmark which is a door, PDR has relatively small localization

error, but the walking direction has some deviations at the beginning, which may

be caused by the magnetic effect of the motors in the elevator. However, the

proposed fusion algorithm reduces the deviations by the correction of WiFi WPL.

After passing through the door, PDR has high localization accuracy in a short

range, and then slowly drifts. However, our proposed algorithm follows the true

path very well. In summary, the proposed system has smaller variation than the

WiFi WPL approach and lower drift than the PDR approach, and it provides an

average localization accuracy of around 1m.

With the accuracy of 1m, the accurate occupancy distributions in a zone can be
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obtained. Then, localized cooling or heating can be achieved for human comfort

and energy saving. Moreover, with this high precision, automatic location-based

lighting control can be performed to save energy. Another potential application is

emergency response in fire and earthquake situations. Last but not least, with a

localization accuracy of 1m, personalized advertisement can be achieved when the

occupants pass through a particular shop in a mall [109].

7.3 Summary

In this chapter, we proposed a combination of WiFi, smartphone sensors and land-

marks using the Kalman filter for localizing occupants in indoor environments. In-

stead of using the tedious WiFi fingerprinting approach, we presented a weighted

pass loss (WPL) model for WiFi based localization. A pedestrian dead reck-

oning (PDR) approach was leveraged for smartphone sensors based localization.

Some important parameters including step detection, walking direction and walk-

ing length estimation have been specified. We also introduced the landmarks that

can be detected using smartphone sensors to restart the system and reset cumu-

lative errors of the system. Then, we formulated the fusion problem in a linear

perspective. Thus, the Kalman filter which is computational light can be ap-

plied. Experiments have been conducted under two different environments. We

can achieve a mean localization accuracy of around 1m.





Chapter 8

Indoor Localization Using

Smartphone Sensors with iBeacon

Corrections

Since WiFi scanning is power hungry, WiFi based localization approaches will not

be suitable for some applications on smartphones which are sensitive to battery

consumption. Moreover, in some old buildings, WiFi signals may not be available,

or WiFi APs are sparsely deployed leading to limited performances of WiFi based

approaches. Thus, we present another localization and tracking system based on

smartphone sensors with occasional iBeacon corrections. In Section 8.1, we first

evaluate the estimation of one key parameter in the PDR approach. Then, we

analyze iBeacon measurements and define an efficient calibration range where the

extended Kalman filter is formulated. After that, a hybrid initial position estima-

tion based on RSS measurements in environments is presented. In Section 8.2, we

introduce the experimental setups and the experimental results as well as discus-

sions under two different environments.

8.1 Methodology

The PDR approach based on smartphone sensors has been introduced in Sec-

tion 7.1.2. But one important parameter of walking direction has not yet been

well evaluated. Thus we present some details for walking direction estimation in

77
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Section 8.1.1. Then, in Section 8.1.2, we analyze iBeacon measurements and de-

fine an efficient calibration range. After that, in Section 8.1.3, we present the

extended Kalman filter based fusion algorithm for calibration. Finally, a hybrid

initial position estimation based on RSS measurements in environments is shown

in Section 8.1.4.

8.1.1 Walking Direction Estimation in PDR

The most direct way to estimate walking direction is based on magnetometer read-

ings. However, they can be easily distorted by metal and electronic devices in

indoor environments. An alternative way to estimate walking direction is based

on the integration of gyroscope readings, i.e. angular velocities. Due to the sen-

sor noise in smartphone gyroscope, the integration will slowly drift. In this work,

we fuse these two approaches together using the Kalman filter which is compu-

tationally efficient. We assume that users will point their smartphones towards

their walking direction in handheld situation, but the tilting of smartphones will

have no effect because of the coordinate transformation. The corresponding state

transition and observation functions are expressed as

θt = θt−1 +∆tVt + µ (8.1)

Mt = θt + ϕ (8.2)

where θt is the walking direction, Vt is the vertical gyroscope in ECS after coor-

dinate transformation, Mt is the pointing direction derived from magnetometer

outputs, ∆t is the time interval, µ is assumed to follow Gaussian error with zero

mean and variance P , and ϕt is assumed to follow Gaussian error with zero mean

and variance Q.

Several simple tests have been conducted to evaluate the performance of this fu-

sion approach. We fixed the route with three 90 degrees turns. The experiments

were repeated 9 times using a Google Nexus 5 smartphone. Fig. 8.1 shows the

experimental results. Since no prior knowledge of initial heading is available, we

choose the initial magnetometer reading as the initial value for the gyroscope inte-

gration and the fusion approaches. Therefore, at the beginning with low drift of the
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Figure 8.1: The test results of walking direction estimation.

gyroscope integration, the performances of the three approaches are very similar.

After two turns, gyroscope based approach starts to drift, and the fusion algorithm

outperforms the two individual methods in robustness and accuracy. Note that the

exact turning times are different for different runs, so the curves shift forward or

backward randomly. And the turning time of the ground truth path is chosen as

the mean of all the runs.

8.1.2 iBeacon Measurements

According to Equation (7.5), only relative information is leveraged in the PDR

approach. Therefore, errors will accumulate leading to the drift with walking dis-

tance. In this work, we apply a new technology, i.e. iBeacon, which is built upon

Bluetooth Low Power (BLE). Comparing to WiFi, it is much more energy efficient.

Since the localization is performed in a portable smartphone platform, power con-

sumption is a big concern. Scanning BLE devices requires much less power than

scanning WiFi routers [110], which makes iBeacon more suitable for our applica-

tion. Owing to the low power consumption of BLE, a button cell can support an

iBeacon for more than one year [111]. Thus, the iBeacon can be very small and

easy to be deployed. An iBeacon package contains a unique ID, a reference RSS

at one meter distance and the RSS between the iBeacon and a device. Various

approaches, such as fingerprinting, triangulation and weighted pass loss, can be

applied for iBeacon based localization, but the dense deployment of iBeacons is
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required [110, 112]. Therefore, the deployment cost will be high, which is not suit-

able for industrial applications. In this work, we attempt to develop a low cost and

high efficient localization and navigation system. Thus, the sparse deployment of

iBeacons is recommended. Instead of utilizing iBeacons for precise localization, we

employ them to calibrate the PDR approach occasionally with distance measure-

ments. Based on Bluetooth signal propagation, the distance between the device

and the iBeacon can be derived using a path loss model in [81], which can be

expressed as

Ri
k = R0 − 10γ log (dik/d

0) (8.3)

where Ri
t is the RSS of i-th iBeacon, R0 is the reference RSS value at one meter

distance, γ is the path loss exponent, dit is the distance between the device and i-th

iBeacon, and d0 equals to one meter. Then, the distance, dit, can be derived as

dik = 10
R0−Ri

k
10γ (8.4)

To determine the parameters, R0 and γ, we chose 14 reference points (0.1, 0.5, 1,

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 and 6.5 meters) and collected 500 RSS values

at each point. The parameter R0 equals to the mean RSS value at one meter

distance. And the parameter γ can be determined using a least-squares fit. In

our experiment, the final estimated values of R0 and γ are −77.39 and 2.1529,

respectively. Figure 8.2 shows the RSS measurements at the reference points, the

corresponding mean RSS values at each reference point and the curve of the least-

squares model. We can find that the least-squares model fits the data very well.

Another observation is that the differences of RSS values after 3 meters are minor.

Since the RSS measurements of iBeacons are used for calibrating the drift of the

PDR approach, accurate measurements are necessary. Therefore, we define that the

calibration using iBeacon measurements will only be performed when the estimated

distance between a device and an iBeacon is equal to or less than 3 meters.

8.1.3 Fusion Algorithm

The PDR approach is simple and effective, but it will drift with walking distance.

With sparse deployment of iBeacons, we attempt to calibrate the PDR approach



Chapter 8. Indoor Localization Using Smartphone Sensors and iBeacon 81

0 1 2 3 4 5 6 7
−110

−100

−90

−80

−70

−60

−50

−40

Distance (m)

R
S

S
 (

d
B

m
)

 

 

Least Square Fit

Mean RSS

RSS measurments

Figure 8.2: The RSS measurements at 14 reference points, the mean RSS
values at each point and the curve of least-squares fit.

occasionally with iBeacon measurements. Based on the PDR approach, we formu-

late the system dynamics as

Sk+1 = Sk + uk +w (8.5)

where uk = Lk

[

sin θk

cos θk

]

, and w follows normal distribution with zero mean and

variance R. Based on the RSS between a device and an iBeacon, the distance

between them can be derived using Equation (8.4). Then, the observation model

can be formulated as

zk+1 = ‖Sk+1 − Si‖+ v (8.6)

where zk+1 is the estimated distance between the device and the iBeacon, Si is

the location of i-th iBeacon, ‖·‖ is the Euclidean norm, and v follows a normal

distribution with zero mean and variance G. Since the observation function is

nonlinear, traditional Kalman filter cannot be applied. Particle filter is a good

candidate, but due to its high computational load, it is not suitable for a resource

limited smartphone platform. In this work, we leverage on the extended Kalman
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filter which is much more computational efficient than a particle filter. Since the

observation function (Equation (8.6)) is nonlinear, we need to calculate its Jacobian

matrix. Assume that, ‖Sk+1 − Si‖ = f(Sk+1 − Si), Sk+1 =
[

xk+1 yk+1

]

and

Si =
[

xi yi
]

, the Jacobian matrix, F, can computed as

Fk+1 =
∂f

∂S

∣

∣

∣

∣

Sk+1|k

=
[

xk+1|k−xi

f(Sk+1|k−Si)

yk+1|k−yi

f(Sk+1|k−Si)

]

(8.7)

The extended Kalman filter contains two phases shown below: Predicting:

Sk+1|k = Sk + uk (8.8)

Pk+1|k = Pk +R (8.9)

(8.10)

Updating:

Kk+1 = Pk+1|kF
T
k+1(Fk+1Pk+1|kF

T
k+1 +G)−1 (8.11)

Sk+1 = Sk+1|k +Kk+1(zk+1 − f(Sk+1|k − Si)) (8.12)

Pk+1 = (I−Kk+1Fk+1)Pk+1|k (8.13)

where P is the estimate covariance, K is the Kalman gain, and I is the identity

matrix.

In most of the cases, iBeacons are attached on walls. Thus, the iBeacon signals at

the other side of the wall will be expected to be very weak. Once the estimated

distance between the iBeacon and the device is in the calibration range (equal to or

less than 3m), we can ensure that the pedestrian is on the side where the iBeacon

is attached. We can add this simple constraint into the fusion algorithm. If the

output position of the fusion algorithm is at an invalid side of an iBeacon, we can

mirror the position to the valid side. This is similar to the operation that kills the

particles crossing a wall in the particle filter [113].
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8.1.4 Initial Position Estimation

It is not practical to assume that the initial position is known [73, 86]. Various

initial position estimation methods have been proposed. Errington et al. [114] pre-

sented a least-squares solution for initial position estimation using RFID. Their sys-

tem requires extra devices, i.e. RFID receivers and readers. Woodman et al. [115]

presented a WiFi-based initial position estimation for inertial pedestrian tracking.

The WiFi RSS provided a prior knowledge of particle weights in a particle filter

algorithm. This will increase the convergence rate of their map matching approach.

Due to the sparse deployment of existing WiFi infrastructures in indoor environ-

ments, the accuracy of WiFi based approach is limited. In this work, we present

an initial position estimation scheme using existing WiFi routers and iBeacons.

One possible approach is fingerprinting which constructs a fingerprint database,

and then performs localization according to the database. This approach requires

a labor-intensive data collection process. When a new WiFi router or an iBeacon

is added, or some facilities are changed, fingerprinting approach needs to re-collect

the whole data. A more efficient and practical solution is the model-based weighted

pass loss (WPL) algorithm. Since the mechanisms of WiFi and iBeacon are differ-

ent, the RSSs of WiFi and iBeacon are not comparable. To solve this heterogeneous

problem, we transfer the RSSs into distances using Equation (8.4) with different

parameters for WiFi and iBeacon. Then, a WPL algorithm can be employed using

the distances. The details are elaborated as follows: Based on Equation (8.4), the

distance between a device and i-th iBeacon at time step k, dik, can be calculated.

The distance between the device and j-th WiFi routers at time step k, Dj
k, can be

computed using the same equation of iBeacons with different parameters, i.e. R0

and γ. Assume that we have N sensible iBeacons andM sensible WiFi routers, and

the locations of i-th iBeacon, (ai, bi), and j-th WiFi routers, (Aj, Bj) are known.

The weights of i-th iBeacon, wi, and j-th WiFi router, W j, can be expressed as

wi
k =

1
di
k

∑N
i=1

1
di
k

+
∑M

j=1
1

Dj
k

(8.14)

W j
k =

1

Dj
k

∑N
i=1

1
di
k

+
∑M

j=1
1

Dj
k

(8.15)
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Then, the location of the device, (ak, bk) can be calculated as

(ak, bk) =
N
∑

i=1

wi
k(a

i, bi) +
M
∑

j=1

W j
k (A

j, Bj) (8.16)

Considering that our system is running on a resource limited smartphone platform,

the WPL algorithm is simpler and more efficient compared with the fingerprinting

approach. Since existing WiFi infrastructures and installed iBeacons are sparsely

distributed, an approach that is only based onWiFi or iBeacons may not resolve the

localization problem or will have low accuracy. Our proposed scheme leverages on

all resources in the environment including WiFi routers and iBeacons. To solve the

heterogeneous problem of the different facilities, i.e. WiFi routers and iBeacons, we

transfer the RSSs into distances, and then perform a WPL algorithm to determine

the location of the device.

8.2 Evaluation

In this section, we will first introduce the experimental setup. Then, the experi-

mental results and discussions under two different environments will be presented.

8.2.1 Experimental Setup

Real experiments have been conducted to evaluate the performance of the proposed

approach. The device used in the experiments is a Google Nexus 5 smartphone.

And four Estimote iBeacons [111] are employed in the experiments. Moreover, an

Android app has been developed for real-time localization and tracking. The user

interface is shown in Figure 8.3 where the circle represents the location of the user,

and the arrow inside the circle indicates the pointing direction of the smartphone.

The coordinate of the user is shown in the top right corner. Note that we define

the coordinate origin as the top left corner, the x-axis pointing to the right, and

the y-axis pointing downwards. The experiments have been carried out under two

environments, i.e. a research lab and an empty hall in the campus of Nanyang

Technological University. The layouts are shown in Figure 8.4 where the yellow

stars represent the locations of iBeacons. In order to obtain the ground truth
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Figure 8.3: User interface.

(a) A research lab (b) An empty hall

Figure 8.4: The Layouts of the experimental environments.

trajectory of a pedestrian, we use a camera to record the entire walking process

and manually measure each step. In the experiments, we only consider handheld

situation. This position is reasonable because a user should frequently check the

current location on the screen of a smartphone in real-time navigation. Note that,

in this situation, the walking direction of the user will almost be aligned with the

pointing direction of the smartphone.

8.2.2 Experimental Results

The first scenario is a 19.0m× 16.2m research lab (See Figure 8.4(a)). Due to the

limited size of the environment, only one iBeacon is employed. Multiple experi-

ments have been conducted in this scenario, and the average results are shown.

Figure 8.5 shows the walking direction estimation using magnetometer, gyroscope

and the fusion algorithm. Note that we leverage on the mean of direction values

during each step as the final walking direction. In this way, the random noise effect

is reduced. Due to the effects of electronic facilities, e.g. computers, printers and
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Figure 8.5: Walking direction estimation based on magnetometer, gyroscope
and our proposed fusion approach.
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Figure 8.6: The trajectories of the true path, the PDR approach and the
proposed approach.

the metal frameworks of cubicles, the magnetometer values are distorted. More-

over, vibrations during walking will also affect the measurements. The gyroscope

based approach matches very well at the beginning, but it drifts after several turns.

The fusion algorithm matches the ground truth reference direction very well. It is

much more stable comparing to magnetometer based approach and avoids the drift

problem in the gyroscope based approach. We can conclude that the fusion algo-

rithm has the highest estimation accuracy and resolves the problems of individual

sensors.
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Figure 8.7: Localization error with respect to each step.
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Figure 8.8: Cumulative error distributions of the PDR approach and our pro-
posed approach.

Figure 8.6 illustrates the trajectories of the true path, the PDR approach and

the proposed approach. Each step is shown in the figure where the start and

end points are indicated. Based on WiFi measurements of existing routers and

the measurement of the iBeacon, the initial location is estimated using the WPL

approach mentioned in Section 8.1.4. According to the true trajectory, we can infer

that the system will be calibrated twice when the estimated distance between the

pedestrian and the iBeacon is equal or less than 3m.

Figure 8.7 depicts the localization error with respect to each step. Generally, the

localization errors of the PDR based approaches will increase with walking dis-

tance because of the estimation errors of step detection, walking length estimation

and walking direction estimation. However, our proposed approach corrects the

drift using occasional iBeacon measurements, which is shown as two significant

reductions of localization errors in the figure. The cumulative error distribution of

the results is shown in Figure 8.8. The mean localization accuracies of the PDR

approach and the proposed approach are 2.46m and 1.39m, respectively. This

indicates the effectiveness of the proposed algorithm.

Another scenario is a 25.0m×17.0m empty hall environment whose layout is shown
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Figure 8.10: Localization error with respect to each step.

in Figure 8.4(b). The iBeacon in the right-hand side is attached on a tripod, there-

fore, this iBeacon cannot use the constraint mentioned in Section 8.1.3. And the

others are attached on walls, which satisfies the required condition of applying the

constraint. In the experiments, a pedestrian walks around the layout twice, pro-

ducing a shape of two rectangles. Figure 8.9 depicts the trajectories of the true

path, the PDR approach and the proposed approach. Starting and ending points

are shown in the figure. Since no WiFi routers are contained in the environment,

we only apply iBeacon measurements to determine the initial location using the

WPL approach mentioned in Section 8.1.4. It can be found that the proposed



Chapter 8. Indoor Localization Using Smartphone Sensors and iBeacon 89

 

 

True Path

Proposed Approach

(a) The proposed approach
with 1 iBeacon

 

 

True Path

Proposed Approach

(b) The proposed approach
with 2 iBeacons

 

 

True Path

Proposed Approach

(c) The proposed approach
with 3 iBeacons

Figure 8.11: The trajectories of the proposed approach with different number
of iBeacons.
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Figure 8.12: Cumulative error distributions of the PDR approach and our
proposed approach with different number of iBeacons.

approach significantly reduces the drift when walking through iBeacons. The cal-

ibration will be performed when the estimated distance between the user and an

iBeacon is equal or less than 3m. Figure 8.10 illustrates the localization error with

respect to each step. The PDR approach slowly drifts to more than 10m after 200

steps. Owing to the correction of iBeacons, the proposed algorithm achieves a high

localization accuracy. The mean localization accuracies of the PDR approach and

our proposed approach are 5.55m and 1.28m, respectively. This result indicates

that our proposed approach can be utilized for localized cooling or heating, location

based lighting control, emergency evacuations and personalized services.

Next, we evaluate the number of iBeacons with respect to the localization accuracy.

Figure 8.11 shows the trajectories of the proposed approach with different number

of iBeacons, i.e. one to three iBeacons. The trajectories of the PDR approach and

our proposed approach with four iBeacons are depicted in Figure 8.9. Figure 8.12

illustrates the cumulative error distribution of the PDR approach and the proposed

approach with different number of iBeacons. As expected, the accuracy of the



90 8.2. Evaluation

proposed approach degrades with fewer iBeacons. But, even with one iBeacon, the

proposed approach has yielded significant improvement over the PDR approach for

the localization accuracy. When the number of iBeacons is larger than two, only

slight improvements of localization accuracy is observed. Thus, if taking device

(iBeacon) and deployment cost into consideration, the proposed approach with

two iBeacons can achieve a reasonable accuracy in this environment. In conclusion,

the localization error of the proposed approach will decrease with the increase of

the number of iBeacons. And, we can roughly determine an optimal number of

iBeacons when given a required localization accuracy.

8.2.3 Compared with WiFi fingerprinting

WiFi fingerprinting is the most popular technique for indoor localization and track-

ing. Thus, we compare our proposed approach with WiFi fingerprinting based ap-

proaches on three criteria, i.e. localization accuracy, calibration time and power

consumption. The WiFi fingerprinting approach was performed in our first test-

ing scenario (See Figure 8.4(a)). Five WiFi Access Points (APs) were used, and

40 reference points were selected for data collection. At each reference point, we

collected 3000 samples in four different orientations. The APs that we used are

TP-LINE WDR4300.

Localization accuracy: Each algorithm has been run for 5 times and the average

results are shown. With the above experimental setting, the WiFi fingerprinting

approach can achieve a mean localization accuracy of 2.2m. Many researches have

demonstrated the effectiveness of the fusion of WiFi based approaches with smart-

phone inertial sensors [116, 117]. Therefore, we attempted to fuse WiFi fingerprint-

ing approach with PDR using a Particle filter which is the most popular algorithm

in localization and tracking [116, 118]. One thousand particles were used in the

experiment. The final mean localization accuracy of this fusion approach is 1.54m.

For our proposed approach, we only employed one iBeacon device and we achieved

a mean localization accuracy of 1.39m.

Calibration time: In the experiments, we set the sampling frequency of WiFi

scanning and iBeacon scanning to be 1Hz. The WiFi fingerprinting approach

requires a collection of 40×3000 data samples (40 reference points and 3000 samples

for each reference point), which requires approximately 33.3 hours. While our
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proposed approach only needs to calibrate R0 and γ in Equation (8.3) referring

to 12 × 500 data samples (12 reference points and 500 samples for each reference

point), which requires some 1.7 hours. In this regard, our proposed approach

requires much less calibration time.

Power consumption: Since the whole system will be running on a portable

smartphone, power consumption will be crucial. We developed a simple Android

application to test the power consumption of WiFi scanning and iBeacon scanning.

A Google Nexus 5 smartphone with a battery capacity of 2300mAh was used. The

scanning frequency of WiFi and iBeacon is 1Hz. First, we ran the application

without scanning WiFi or iBeacon as the basic battery usage for 1 hour, and then,

we performed WiFi scanning and iBeacon scanning separately for 1 hour. Finally,

the basic battery usage was subtracted for the calculations of the power consump-

tion of WiFi scanning and iBeacon scanning respectively. In the experiment, WiFi

scanning for 1 hour consumes 115mAh, while iBeacon scanning for 1 hour only

consumes 46mAh, which translates to a battery power saving of around 60%.

8.3 Summary

In this chapter, Considering the situations where WiFi signals are not available, or

the application is sensitive to power consumption making WiFi based solutions not

suitable because of the power hungry property of WiFi scanning, we then presented

another indoor localization system using smartphone sensors with occasional iBea-

con corrections. Based on the analysis of iBeacon measurements, we defined an

efficient calibration range where the extended Kalman filter is formulated. We

also proposed a hybrid initial point estimation approach based on existing RSS

measurements in environments. Experiments have been performed under two dif-

ferent environments to evaluate the performance of the proposed approach. The

results showed the effectiveness of the proposed approach. We also tested the in-

fluence of different number of iBeacons, and concluded that our proposed approach

demonstrated a significant improvement of system performance even with just one

iBeacon in the environment. Finally, we compared our proposed approach with

the popular WiFi fingerprinting approach and the fusion of WiFi fingerprinting

with smartphone sensors approach. Our proposed approach can achieve a higher

localization accuracy with less calibration time and power consumption.
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Orientation Independent Activity

Recognition via Coordinate

Transformation and Principal

Component Analysis

The activity performed by the user is another detailed aspect of occupant sens-

ing. We present an orientation independent activity recognition system based on

coordinate transformation and principle component analysis. In Section 9.1, we

analyze the problems in activity recognition and resolve them using coordinate

transformation and principle component analysis methods. Then, we extract rele-

vant features based on the processed data and classify the activities. In Section 9.2,

we describe the data collection process and show the experimental setups. After

that, we present the experimental results and discussion in experiments on aspects

of orientation, displacement and subject variations.

9.1 Methodology

In previous works, most of researchers assumed that the orientation of the device

is fixed. However, it is not usually the case in real life. The basic idea of this

study attempts to combine some other sensor information and signal processing

techniques to eliminate the effect of orientation variation.

93
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9.1.1 Data Preprocessing

The raw acceleration data of a smartphone is a combination of device linear accel-

eration and gravity. Human activity will impact the dynamic part of the acceler-

ation, i.e. the device’s linear acceleration. Therefore, the gravity effect from the

raw acceleration has to be eliminated. Since the gravity effect is relatively stable,

we intend to utilize a digital low pass filter to obtain the gravity component, and

then apply the raw acceleration to subtract the gravity component to obtain the

required linear acceleration. Assume that the three dimensional raw acceleration

is denoted as Ot, and the gravity component is denoted as Gt. Then, the linear

acceleration, Lt, at time step t can be calculated as

Gt = αGt−1 + (1− α)Ot (9.1)

Lt = Ot −Gt (9.2)

where the parameter, α, needs to be specified. Practical values of α lay between

0.8 and 1.

For wearable-device based activity recognition systems, the orientation of the de-

vice is fixed. This condition is not feasible for smartphone based activity recogni-

tion systems. The orientation of smartphones will be different for different users

because of clothing, and will be changing during the whole recognition process

because of slip and rotation. Since the sensor output is along with the device

coordinate system which is shown in Figure 9.1(a), it will change along with the

changing coordinate system, which will dramatically degrade the accuracy of our

activity recognition system. How to obtain a consistent sensor output regardless of

smartphone orientation is a big challenge. One way to achieve that is to transfer

the sensor output from the device coordinate system into a fixed coordinate sys-

tem. A potential fixed coordinate system is the earth coordinate system which is

shown in Figure 9.1(b).

The two most widely used coordinate transformation methods are based on Euler

angle and quaternion. However, Euler angle based approaches will suffer from the

problem of gimbal lock [119]. We employ a quaternion, which is more efficient and

does not have such problem, for the coordinate transformation. It is a four-element

vector that can represent any rotation in a 3D coordinate system [119]. According

to Google API [1], a software sensor, named Rotation Vector Sensor, can provide
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(a) Device coordinate system (b) Earth coordinate system

Figure 9.1: Coordinate systems [1]

real-time four elements of a quaternion. The quaternion, q, can be expressed as

q =
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d
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cos(θ/2)

vx sin(θ/2)

vy sin(θ/2)

vz sin(θ/2)













(9.3)

where vx, vy and vz are unit rotation of three axes, and θ is the angle of rotation.

Based on [119], a rotation matrix, R, can be calculated as follows:

R =









1− 2c2 − 2d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad 1− 2b2 − 2d2 2cd− 2ad

2bd− 2ac 2cd+ 2ad 1− 2b2 − 2c2









(9.4)

Then, the output in the earth coordinate system can be calculated as

Ve = RVd (9.5)

where Ve is the output vector in the earth coordinate system, and Vd is the

acceleration vector in the device coordinate system.

Figure 9.2 shows a comparison of acceleration patterns before and after coordinate

transformation when a subject performs the activity of walking and the device is

put in the backpack with three difference orientations (shown in Figure 9.3). Since
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Figure 9.2: Before and after coordinate transformation. The performed activ-
ity is walking and the placement is the backpack with three different orientations

(shown in Figure 9.3)

the orientation of the device has changed, the acceleration patterns are totally

different for the raw data. However, after performing coordinate transformation,

the patterns of triaxial acceleration are similar for three different orientations.

Note that the subject walks to the same direction in this example, therefore, the

acceleration in x-axis and y-axis are similar for the three different orientations after

coordinate transformation. The reason why we emphasize this will be introduced

in the following paragraph.

Other researchers have applied different approaches to achieve coordinate transfor-

mation [94, 95, 120, 121]. But, to the best of our knowledge, no one realized that

one serious problem will arise after this coordinate transformation. As the earth

coordinate system is fixed, precisely, x-axis which is tangential to the ground points

to the East, y-axis which is tangential to the ground points to the North, and z-axis
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(a) orientation 1 (O1) (b) orientation 2 (O2) (c) orientation 3 (O3)

Figure 9.3: Three different orientations in the backpack

which is perpendicular to the ground points to the sky [1], one subject performs

certain activity in different directions will yield different acceleration patterns af-

ter coordinate transformation. The left portion of Figure 9.4 presents an example.

The performed activity is walking and the walking directions are East, Northeast

and North. We can find that the pattern of acceleration at x-axis and y-axis are

totally different because of different walking directions. To eliminate this direction

effect, we can project the acceleration from x-axis and y-axis into orthogonal bases.

We leverage on a Principal Component Analysis (PCA) technique to achieve this

objective.

Assume that ax =
(

a1x a2x · · · aNx

)T

and ay =
(

a1y a2y · · · aNy

)T

denote ac-

celerations in x-axis and y-axis of an acceleration window and N is the window

size. Combining the data from x-axis and y-axis in an acceleration window, we

obtain matrix, A, as follows

A =















a1x a1y

a2x a2y
...

...

aNx aNy















(9.6)

After that, we can calculate the corresponding covariance matrix, Ω, as

Ω =
1

N
(A− E(A))(A− E(A))T (9.7)
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Figure 9.4: Before and after PCA analysis. The performed activity is walking
and the position is the backpack with three different directions which are East,

Northeast and North.
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where E(·) is the expectation operation for each column of a matrix. Since Ω is a

symmetric matrix, it can be diagonalised as

Ω = QΛQT (9.8)

where Q and Λ are eigenvector and eigenvalue matrices of Ω, respectively. Then,

we rank the eigenvalues in descending order and reconstruct the egienvector matrix

corresponding to their eigenvalues to obtain a new matrix Q̃. The PCA transfor-

mation matrix can be expressed as

P = Q̃T (9.9)

The final PCA transformation result can be calculated as

G = PAT (9.10)

where the first and second row of matrix G are the first and second principal

components.

Once the PCA operation is completed, the direction effect can be eliminated by

using the first and second principal components instead of the accelerations of x-

axis and y-axis in the earth coordinate system. Figure 9.4 shows an example of

the acceleration patterns before and after PCA analysis. After the PCA operation,

the acceleration patterns become consistent for the same activity.

9.1.2 Feature Extraction

The 3D acceleration time series data after preprocessing is divided into windows.

Then, time and frequency domain features are extracted from these data windows.

Table 9.1 indicates the features applied in this work. Many researches have shown

the effectiveness of these features [122–124].

9.1.3 Classification

Classifiers in [93, 125] based on deep neural network have been shown to have

superior performance. But these approaches require a large dataset for training,
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Domain Features

Time

Absolute mean
Variance

Median absolute deviation
Maximum
Minimum

Signal magnitude range
Power

Interquantile range

Frequency

Maximum
Mean

Skewness
Kurtosis
Power

Table 9.1: Selected features

which may not be feasible in real life. Some generic classifiers, i.e. KNN [126], DT

[127], NN [128] and SVM [92], have been shown to be effective for human activity

recognition with a reasonable size of the data.

9.2 Experimental Results and Discussions

9.2.1 Data Description

Three-dimensional acceleration data is collected from an Android application of

a Google NEXUS 4 smartphone. Five subjects are involved in experiments with

five activities of static, walking, running, going upstairs and going downstairs. The

sampling frequency is 20Hz, and the sliding window is 5 seconds with 50% overlap.

Therefore, each segment contains 100 data points for three-dimension. Time and

frequency domain features described in Table 9.1 are extracted for each segment.

9.2.2 Experimental Setup

Smartphone placements can be flexible for different subjects. In this work, we

investigate three most commonly used placements of pants’ pocket, shirt’s pocket

and backpack. Due to the size constraints for pants’ pocket and shirt’s pocket,
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one orientation is chosen for each placement. In the placement of backpack, the

orientation can be much more flexible. Thus, we choose three typical orientations

shown in Figure 9.3 to investigate the orientation effect. To validate our proposed

CT-PCA scheme, we apply leave-one-out cross validation technique. Precisely, we

employ leave one orientation out cross validation in the placement of backpack.

In this way, the data for testing is from an unseen orientation, which can vali-

date the generalization performance of the algorithms. Meanwhile, we compare

our proposed approach with two state-of-the-art methods in [92, 93]. In [92], the

authors applied the magnitude to form augmented features to overcome orienta-

tion variations. And in [93], the authors leveraged on vertical component and the

magnitude of horizontal components of transferred acceleration to eliminate ori-

entation variations. Note that, the authors in [92, 93] did not perform leave one

orientation out experiments. Instead, they mixed the data from all orientations for

training and testing, which guarantees the high detection accuracies in their works.

But this cannot verify the generalization performance of their approaches, because

they did not show the performance of their approaches on the data from unseen

orientations. Moreover, we also investigate the subject effect and placement effect

by using leave one subject out and leave one location out experiments.

9.2.3 Orientation Independent Experiments

In the orientation-independent experiments, we applied the data collected from

three different orientations in the backpack (see Figure 9.3) and employed the cross-

validation technique. In details, we used the data from two orientations for training

and the data from the remaining one unseen orientation for testing. Previously

mentioned four generic classifiers, i.e. KNN, DT, NN, SVM, are employed to

identify different activities. We also compared our proposed CT-PCA scheme with

original, augmented [92] and bi-directional [93] methods.

TABLE 9.2 demonstrates the detection results of the four different methods. Our

proposed CT-PCA method outperforms the other methods for the four generic

classifiers on average results. The approach based on original signals performs the

worst, which did not consider the varying orientation effects. Another approach

using the magnitude to form augmented features [92] has limited improvements,
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Table 9.2: Accuracy comparison for orientation-independent experiments with
original, augmented, bi-directional and proposed methods in the placement of
backpack (%). “O1+O2 → O3” means the use of the data from orientation 1

and 2 for training and the data from orientation 3 for testing.

Orientation Methods KNN DT NN SVM

O1+O2 → O3

Original 71.48 65.09 67.43 71.33
Augmented 74.10 71.61 68.69 74.67
Bi-directional 90.51 89.45 90.61 91.33
Proposed 90.52 91.04 91.74 93.56

O1+O3 → O2

Original 80.14 68.29 78.50 79.11
Augmented 81.38 75.71 79.02 84.00
Bi-directional 90.05 90.43 95.31 94.89
Proposed 91.61 93.75 96.07 94.89

O2+O3 → O1

Original 62.69 43.40 41.09 58.44
Augmented 64.59 43.65 41.27 56.22
Bi-directional 90.98 88.18 95.47 95.56
Proposed 92.40 93.12 96.09 96.22

Average

Original 71.44 58.92 62.34 69.63
Augmented 73.36 63.66 62.99 71.63
Bi-directional 90.67 89.36 93.80 93.93
Proposed 91.51 92.64 94.63 94.89

because the unique properties on the three axes are merged when using the magni-

tude. The bi-directional approach separates the signal into vertical component and

the magnitude of horizontal components [93], which did not take the properties of

the signals on the orthogonal direction of the performed activity. For example,

going upstairs or downstairs will have larger variance of signals on orthogonal di-

rections of the performed activity than normal walking, because two feet always

lay on different stairs during going upstairs or downstairs, which shall cause ad-

ditional movements on the two sides. Note that the authors in [92, 93] did not

perform leave one orientation out experiments to show the generalization ability

of their algorithms. Our proposed method considers all the useful information on

three directions, i.e. vertical direction, the direction of the performed activity on

horizontal plane and its orthogonal direction. Thus, it has a superior performance

over the other methods. Among the four different classification algorithms, the

SVM algorithm with our proposed CT-PCA scheme performs the best, and has an

average accuracy of 94.89%. This indicates the good generalization performance

of our proposed approach on the data from unseen orientations.
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Placement Methods KNN DT NN SVM

P1+P2 → P3
Original 70.84 61.12 69.01 71.56
Proposed 77.72 73.54 77.20 80.89

P1+P3 → P2
Original 61.53 65.10 59.93 65.78
Proposed 66.16 63.82 70.09 74.00

P2+P3 → P1
Original 58.99 60.02 45.21 66.67
Proposed 74.61 71.32 86.09 84.67

Average
Original 63.79 62.08 58.05 68.00
Proposed 72.83 69.56 77.79 79.85

Table 9.3: Accuracy comparison for placement effect experiments (%). WO
denotes the data without CT-PCA, and W denotes the data with CT-PCA.

9.2.4 The Impact of Placement Variations

To evaluate the impact of different placements, we test three common placements,

i.e. pants’ pocket, shirt’s pocket, and backpack. Since we only collect the data

of one orientation from pants’ pocket and shirt’s pocket, we only use the data

from one orientation, i.e. O1 (see Figure 9.3(a)), in the placement of backpack

to maintain consistency of data size in each placement. Leave one placement out

cross validation is employed, which means using the data from one placement as

testing dataset and the data from the remaining placements as training dataset. We

also evaluate the performance of the proposed CT-PCA with regards to placement

variations. Other settings are the same with the previous experiments.

Table 9.3 illustrates the classification accuracy under different conditions. We can

find that the classification accuracy is relatively low, because different placements

will generate different data characteristics. The classification performance with

CT-PCA is only slightly better than that without CT-PCA. One reason is that

CT-PCA cannot deal with the inherent signal difference caused by difference in

placement. Another reason is that the orientation in each placement is similar

which makes the effect of CT-PCA not remarkable. However, due to the slight

difference of orientations in each placement, the classification accuracy with CT-

PCA still has encouraging improvement.
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Subject Methods KNN DT NN SVM

Others → S1
Original 50.45 46.16 65.41 61.11
Proposed 78.78 74.24 87.00 91.48

Others → S2
Original 59.28 53.80 69.88 69.75
Proposed 79.40 60.93 83.36 84.81

Others → S3
Original 73.03 61.12 75.25 76.54
Proposed 89.77 92.52 91.99 92.96

Others → S4
Original 87.24 74.53 94.31 92.59
Proposed 94.55 92.59 97.63 100

Others → S5
Original 68.20 35.30 63.65 68.52
Proposed 87.39 69.70 83.96 82.96

Average
Original 67.64 54.18 73.70 73.70
Proposed 85.78 78.00 88.79 90.44

Table 9.4: Accuracy comparison for subject effect experiments (%). WO de-
notes the data without CT-PCA, and W denotes the data with CT-PCA.

9.2.5 The Impact of Subject Variations

To evaluate the effect of subject variation, we conduct a leave one subject out

cross validation experiment, which means we use the data from any four subjects

for training and the data from the remaining one subject for testing. We also test

the performance of the proposed CT-PCA in terms of subject variations. Other

experimental settings are the same with the previous experiments.

Table 9.4 shows the experiment results under different conditions. Since the be-

haviour of different subjects when performing different activities is quite different,

most of the classification accuracies are not very high in leave one subject out ex-

periments. Leaving S3 or S4 out experiment achieves relatively high classification

accuracy. We can infer that their behaviour should be very similar. Therefore,

in leaving one subject out experiment, the training data will always contain the

data from at least one of them. Another observation is that the average classifica-

tion accuracy with our proposed CT-PCA is higher than that without CT-PCA.

Since the device orientation for different subjects varies slightly because of different

clothing, our proposed CT-PCA can eliminate this orientation variations.
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9.3 Summary

In this chapter, we proposed an orientation independent activity recognition sys-

tem by using coordinate transformation and principle component analysis. We

first presented a coordinate transformation method based on smartphone sensors

to overcome the orientation variation problems in activity recognition. Then, a

problem arose after this transformation, which is neglected by other researches. To

solve this problem, we came up with a principle component analysis approach. In

real experiments, we showed that our proposed approach significantly improves the

detection accuracy in terms of orientation variations. Moreover, we also explored

the performance of our proposed approach with regard to placement and subject

variations and made a conclusion that our proposed approach achieves impressive

effectiveness on placement and subject variations.





Chapter 10

Conclusion, Limitations and

Future Works

10.1 Conclusion

In this thesis, we have considered the problem of occupant sensing that includes

methods for occupant number, location and activity. We addressed the number of

occupants (occupancy) in three aspects of modeling, estimation and prediction. For

occupancy modeling, we presented two novel inhomogeneous Markov chain mod-

els under two scenarios of multi-occupant single-zone (MOSZ) and multi-occupant

multi-zone (MOMZ). In the MOSZ scenario, we defined the state of Markov chain

as the increment of occupancy in a zone. And in the MOMZ scenario, taking the

interactions among occupants into consideration, we defined the state of Markov

chain as a vector in which each component is the increment of occupancy in each

zone. In this way, we can dramatically simplify the calculation of Markov transition

probability matrices. Simulations have been conducted in two different environ-

ments for two scenarios of MOSZ and MOMZ. In the MOSZ scenario, we compared

with a state-of-the-art approach, i.e. the agent-based model presented by [28]. Our

proposed approach is simple to be implemented due to the low dimension of the

Markov transition probability matrix at each time step, i.e. 3 × 3, and signifi-

cantly outperforms the agent-based model. In the MOMZ scenario, our proposed

approach also performed very well for each zone. These results can be used for

the simulation of energy saving with various control strategies. In addition, the

107
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occupancy dynamics revealed by the proposed occupancy models is able to improve

the performance of real-time occupancy estimation.

For occupancy estimation, we proposed a fusion framework using environmental

sensors. Data-driven models that include Extreme Learning Machine (ELM), Sup-

port Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neigh-

bors (KNN), Linear Discriminant Analysis (LDA) and Classification And Regres-

sion Tree (CART) are employed to achieve an initial estimation of building occu-

pancy. To select the best feature set, we performed an ELM-based wrapper method

owing to the extremely fast learning speed of the ELM algorithm. Then, we fused

the results of data-driven models with occupancy models which can extract oc-

cupancy patterns to improve the estimation accuracy. Experiments have been

conducted in an office environment of a university campus. The results showed

impressive improvements of estimation accuracy after using our proposed fusion

framework. Moreover, two important parameters of time of first arrival (TOFA)

and time of last departure (TOLD) have been defined for performance evalua-

tion. The proposed fusion framework significantly decreased the detection errors

of these two parameters. We also tested the detection accuracy of the presence

and absence of the zone with our proposed fusion approach. The improvements

of detection accuracy among different methodologies are in the range of 3 − 12%.

After performing our fusion framework, the detection accuracy is around 93% with

just the environmental sensors. These results are adequate for occupancy driven

control. And the high detection accuracy for presence and absence is useful for

determining the operation time of HVAC systems.

For occupancy prediction, we explored the prediction of regular occupancy level in

commercial buildings using occupancy models and data mining approaches. The

occupancy models included an inhomogeneous Markov chain (IMC) model and a

multivariate Gaussian (MG) model, and the data mining approaches included three

methodologies of Autoregressive Integrated Moving Average (ARIMA), ANN and

Support Vector Regression (SVR). The experiments have been conducted using ac-

tual occupancy data under four prediction horizons which are 15 minutes (15mins),

30 minutes (30mins), 1 hour (1h) and 2 hours (2h). We can found that the pre-

diction capabilities of the occupancy models are very limited as compared to the

data mining approaches. In the prediction horizons of 15mins and 30mins, the
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linear data mining approach of ARIMA performed the best. In the prediction hori-

zons of 1h, the nonlinear data mining approach of SVR outperformed the others.

And in the prediction horizons of 2h, the simple diversity profile has a superior

performance over the others. These conclusions gave a guideline on how to choose

an applicable and efficient occupancy prediction model under different prediction

horizons. Based on the short-term prediction results, one can perform pro-cooling

or pre-heating strategies to construct a comfortable environment and save energy.

Meanwhile, smart planning can be achieved with the long-term prediction results.

For occupant indoor localization, we proposed to fuse WiFi, smartphone sensors

and landmarks using the Kalman filter which is light weight and feasible for a

resource limited smartphone platform. For WiFi based localization that is used

to provide an observation of occupant’s position, we applied a weighted pass loss

(WPL) algorithm which is simple to be implemented, instead of the labor intensive

and time consuming WiFi fingerprinting approach. A pedestrian dead reckoning

(PDR) approach was employed for smartphone sensors based localization. More-

over, we applied landmarks with known positions to restart the system. The land-

marks can be detected based on the specific patterns of smartphone sensors. Real

experiments have been conducted in two different scenarios of a research lab and a

designed testbed. The results indicated that our proposed approach achieved sig-

nificant improvements over the WiFi WPL approach and the PDR approach with

landmarks. The overall localization accuracy is around 1m which is adequate for

the control systems in buildings. Since WiFi scanning is power consuming, WiFi

based approaches running on a battery limited smartphone platform may not be

suitable for applications which require long term localization and tracking. More-

over, some buildings may have sparse deployments of WiFi Access Points (APs),

which may dramatically degrade the performance of WiFi based approaches, and

the installation of new WiFi APs are expensive. We proposed an iBeacon assisted

indoor localization system using built-in smartphone inertial sensors. Based on the

distribution of iBeacon measurements, we have defined a calibration range where

the extended Kalman filter is formulated. Moreover, we have presented a weighted

pass loss model to determine the initial position using RSS measurements in envi-

ronments. To evaluate the performance of the proposed approach, real experiments

have been conducted under two different environments, i.e. a research lab and an

empty hall. With sparse deployment of iBeacons, we can significantly improve the

localization accuracy. We have also evaluated the localization performance of the
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proposed approach with respect to the number of iBeacons, and concluded that the

optimal number of iBeacons can be determined depending on the required localiza-

tion accuracy. For both WiFi enabled and WiFi denied environments, the indoor

localization accuracies of around 1m indicate that localized cooling or heating can

be performed to save energy. Moreover, other applications, such as lighting con-

trol, emergency evacuation and personalized services, can be performed with these

results.

For occupant activity recognition, we presented an activity recognition system re-

gardless of device orientation. A coordinate transformation and principal compo-

nent analysis (CT-PCA) scheme was presented to eliminate the effect of orientation

variations. Experimental results showed the effectiveness of the proposed approach

in handling orientation variations for activity recognition. We also evaluated the

influences of placement and subject variations. Our proposed CT-PCA approach

also showed some promising improvements of classification accuracy in terms of

placement and subject variations. The achieved high activity recognition accuracy

regardless of device orientation makes real-time monitoring occupants’ activity fea-

sible. Then, real-time human comfort index can be estimated with occupants’ ac-

tivity information. Hence, a comfortable environment for occupants can be built

with various control algorithms and strategies.

10.2 Limitations

For occupancy modeling, estimation and prediction, we mainly focus on regular

occupancy. However, sometimes irregular occupancy caused by personal vacations,

particular events and unpredictable emergencies, is also vital for the stability of the

control systems in buildings. Due to the randomness of these irregular situations,

the research of irregular occupancy is challenging, which requires further attention.

For occupancy estimation, the occupancy pattern is utilized to improve the occu-

pancy estimation accuracy. However, in the long run (say years), the venue may

undergo a large change in terms of staff and facilities, thus changing the occupancy

dynamics as well. If we still use the previous occupancy pattern, a good perfor-

mance cannot be expected. One possible way to solve this problem is to use online

learning. When the new data is available, we can online update the parameters of

the occupancy model.
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For indoor localization, we assume that each occupancy will take one smartphone

all the time. This is not always true. Sometimes, the occupant may leave the

smartphone on their desk, or the occupant may have two or more smartphones.

In these cases, additional location estimation methods need to be combined for

a better localization. Vision-based approach can be one possible way, but it can

only be used in public areas without privacy concern. For activity recognition, the

activities discussed in this thesis is limited to occupants’ simple daily activities.

More complicated activities such as working with a computer, meeting and hav-

ing coffee are also meaningful. The detection of these complicated activities may

require more advance sensors, such as wearable sensors or cameras.

10.3 Future Works

With the occupancy models that we developed, we intend to develop occupancy

driven control algorithms to save energy and simulate different deployment scenar-

ios using energy simulation tools such as EnergyPlus, DeST and TRNSYS. After

that, we will implement the control algorithms in real deployment with real-time

estimation of occupancy. Moreover, with the proposed occupancy prediction mod-

els, we can further improve the performance of the control system using occupancy

predictions. The gap of energy consumption between simulation tools and real

deployment will be analyzed and quantified. This can be useful as a guidance for

new constructions which can only be assessed by performing simulations.

In real applications, the buildings mainly contain multiple floors. This is especially

so in land scarce Singapore where most buildings have multiple floors. Multi-floor

localization will therefore be meaningful. The barometer sensors can be a good

candidate in detection of different floors based on the changes of air pressure with

height. Detailed exploration is required. With accurate location information of

occupants, location based control, e.g. lighting control, can be developed. It will

not only be convenient for occupants, but also save energy.

We have already explored the detection of occupant’s simple activity. Based on

this information, real-time estimation of human comfort index can be achieved.

Then, the feedback control of the HVAC system using real-time human comfort

index can maximize energy saving while maintaining a desired environment for
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occupants. Moreover, more complicated activities, e.g. using different appliances,

need to be investigated. The detection of these activities can provide a clear map

of energy consumption which is required to be optimized based on certain control

strategies.
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