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Abstract

The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking 

WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy 

outcomes and other health effects with long term exposure to low levels of drinking water 

disinfection byproducts (DBPs) in the European Union. The present study focused on the 

relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. 

Eleven drinking water samples were collected from 5 European countries. Each sampling location 
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corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were 

identified; the range in the number of DBPs and their levels reflected the diverse collection sites, 

different disinfection processes, and the different characteristics of the source waters. For each 

sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs 

identified and the levels of DBP chemical classes. Although there was a clear difference in the 

genotoxic responses among the drinking waters, these data did not correlate as well with the 

chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the 

HIWATE samples may be due to unresolved associations of combinations of identified DBPs, 

unknown emerging DBPs that were not identified, or other toxic water contaminants. This study 

represents the first to integrate quantitative in vitro toxicological data with analytical chemistry 

and human epidemiologic outcomes for drinking water DBPs.
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INTRODUCTION

The introduction of water disinfection greatly reduced the incidence of waterborne 

infectious diseases [1]. Although chlorine is the most common disinfectant, alternatives 

include ozone, chloramines, chlorine dioxide, and UV radiation [2–4]. An unintended 

consequence of disinfection is the formation of drinking water disinfection byproducts 

(DBPs) from the reaction between organic and inorganic materials in the water and 

disinfectants. Chemical classes of DBPs include halomethanes, haloacetic acids (HAAs) and 

nitrogen-containing DBPs (N-DBPs); to date, more than 600 DBPs have been identified in 

drinking water [5, 6]. The spectrum of DBP generation depends on the source water, pH, 

temperature, disinfection type and processes [5, 7–9]. Less than 20 DBPs are currently 

regulated in the United States and in other countries [6, 10].

Previous epidemiological studies reported associations between DBPs in chlorinated water 

and increased cancer risk [11–15] as well as DBPs and adverse pregnancy outcomes 

including spontaneous abortion, low birth weight (LBW), small-for-gestational-age (SGA), 

still birth, and preterm delivery [16–19]. HAAs were teratogenic in mice embryos [20]; 

mixtures of trihalomethanes (THMs) and HAAs were teratogenic in rats [21].

In 2006, the European Union (EU) established the project HIWATE (Health Impacts of 

long-term exposure to disinfection byproducts in drinking WATEr) to investigate potential 

human health risks associated with long-term exposure to DBPs [22]. Pregnancy cohorts (N 

~23,000) were included from France, Lithuania, Spain, Italy, and the United Kingdom 

(Table 1). These locations encompassed a variety of disinfectants and treatments including 

chlorine, ozone, chlorine dioxide, and desalination with reverse osmosis. Metrics for adverse 

pregnancy outcomes were LBW, SGA, preterm delivery, fetal growth restriction (FGR), and 

parameters derived from ultrasound medical diagnosis.
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This project represents the first systematic analysis combining DBP analytical chemistry and 

in vitro mammalian cell toxicology with adverse pregnancy outcomes. Our objectives were 

to (i) obtain disinfected drinking water from HIWATE cities, extract and concentrate the 

organic fraction and chemically analyze for DBPs, (ii) determine the relative chronic 

cytotoxicity and acute genotoxicity in mammalian cells for each HIWATE sample, and (iii) 

analyze for correlations between the toxicity data and the occurrence and concentrations of 

DBPs.

EXPERIMENTAL SECTION

Chemicals and Reagents

General reagents were purchased from Sigma-Aldrich Co. (St. Louis, MO) and Fisher 

Scientific Co. (Itasca, IL). Media and fetal bovine serum (FBS) were purchased from Fisher 

Scientific Co. (Itasca, IL). Chemical standards were purchased from Sigma-Aldrich, 

ChemService (West Chester, PA), Orchid Cellmark (Westminster, BC, Canada), and TCI 

America (Waltham, MA) at the highest level of purity.

Sample Preparation

Drinking water samples (20 L) were collected from 11 different distribution systems from 7 

cities within 5 European countries, where an epidemiologic study of reproductive outcomes 

was being conducted. Samples were collected from March–June 2010 using 2L Teflon 

bottles (headspace-free) and were commercially shipped in coolers with icepacks to the U.S. 

Environmental Protection Agency (U.S. EPA) laboratory in Athens, GA. Water samples 

were extracted immediately upon arrival using XAD resins [23]. The final extract (2 mL in 

ethyl acetate) was equally divided for GC/MS analysis and genotoxicity/cytotoxicity 

analysis. For toxicity analyses the solvent ethyl acetate was evaporated with a stream of dry 

N2 and exchanged to dimethylsulfoxide (DMSO) resulting in a 105× concentration. These 

samples were stored in glass Supelco 1-mL Micro Reaction Vessels (No. 27036) at −20°C.

Broad-Screen GC/MS Analyses

Half of the extract was derivatized with diazomethane [24] to identify halo-acids (through 

their corresponding methyl esters) while the other half was analyzed directly for other 

DBPs. Comprehensive gas chromatography/mass spectrometer (GC/MS) analyses were 

performed on a high-resolution magnetic sector mass spectrometer (Autospec, Waters, Inc.) 

in electron ionization mode, equipped with an Agilent model 6890 gas chromatograph and 

operated at an accelerating voltage of 8 kV and source temperature of 200°C, in both low-

resolution (1000) and high-resolution (10,000) modes. Injections of 1 µL of the extracts 

were introduced via a split/splitless injector (in splitless mode) onto a GC column (ZB-5, 30-

m × 0.25-mm ID, 0.25-µm film thickness, Phenomenex (Torrance, CA). The GC 

temperature program consisted of an initial temperature of 35°C (4 min) followed by an 

increase at 9°C/min to 285°C (held for 30 min). Transfer lines were held at 280°C and the 

injection port at 250°C. To prevent decomposition of THMs, separate analyses were made 

with an injection port temperature of 180°C [25]. For analysis of data by the Massworks 

expert system [26], extracts were analyzed in the continuum mode at 1000 resolution.
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Mass spectra of unknown compounds in the drinking water extracts were subjected to 

library database searching (National Institute of Standards and Technology and Wiley 

databases). For DBPs not present in either database, high-resolution-MS and Massworks 

software (Cerno Bioscience, Norwalk, CT) were used to provide empirical formulas for 

molecular ions and fragments. Mass spectra were also interpreted extensively to provide 

tentative structural identifications. When possible, pure standards were obtained to confirm 

identifications through a match of GC retention times and mass spectra.

GC×GCTOFMS Measurements

GC×GC-time-of-flight (TOF)-MS measurements were conducted using a Leco Pegasus 4D 

GC×GC-TOF mass spectrometer (Leco Corp., St. Joseph, Michigan). 1 µL of the extracts 

was introduced via a split/splitless injector (in splitless mode). A DB-VRX (45 m, 0.25 mm 

i.d., 1.4 um film thickness, Agilent, Santa Clara CA) served as the primary column and a 

Stabilwax® (1.5 m, 0.25 mm i.d., 0.25 um film thickness, Restek, Bellefonte, PA) as the 

secondary column. The primary GC oven program consisted of an initial temperature of 

45°C (3 min), an increase at 10°C/min to 145°C (3 min), an increase at 5°C/min to 240°C, 

and final hold of 20 min. The secondary GC oven was 13°C above the primary GC oven. 

The modulator offset was 20°C above to the primary GC oven. The modulation period was 7 

s with 1.5 s hot pulse. The transfer line and source temperature were maintained at 248°C 

and 200°C, respectively. The MS data were acquired from m/z 35 to 500 at rate of 150 

spectra/s in electron ionization mode.

Quantitative Chemical Analyses

THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform), 

haloacetonitriles (dichloroacetonitrile, bromochloroacetonitrile, dibromoacetonitrile, and 

trichloroacetonitrile), haloketones (1,1-dichloro- and 1,1,1-trichloropropanone), 

trichloroacetaldehyde (chloral hydrate), and trichloronitromethane (chloropicrin) were 

extracted using a modified form of U.S. EPA Method 551.1 [27]. HAAs (chloro-, bromo-, 

dichloro-, trichloro-, bromochloro-, dibromo-, bromodichloro-, dibromochloro-, and 

tribromoacetic acid) were analyzed using a modified form of U.S. EPA Method 552.3 [28]. 

The limit of detection for each DBP was 1 µg/L, with the exception of chloroacetic acid 

(detection limit was 2 µg/L).

Chinese Hamster Ovary Cells

Chinese hamster ovary (CHO) cell line AS52, clone 11-4-8 was used for the biological 

assays [29–31]. CHO cells were maintained on glass culture plates in Ham’s F12 medium 

containing 5% fetal bovine serum (FBS), 1% antibiotics (100 U/mL sodium penicillin G, 

100 µg/mL streptomycin sulfate, 0.25 µg/mL amphotericin B in 0.85% saline), and 1% 

glutamine at 37°C in a humidified atmosphere of 5% CO2.

CHO Cell Chronic Cytotoxicity Assay

This assay measures the reduction in cell density on flat-bottom 96-well microplates as a 

function of the concentration of the test sample over a period of approximately 72 h (~3 cell 

cycles) [32, 33]. Microliters of the sample in DMSO were diluted with F12 +FBS medium 
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to analyze a range of concentration factors. This assay was calibrated; the detailed procedure 

was published [32, 33] and is presented in the Supporting Information (SI). For each 

HIWATE sample concentration factor, 4 replicate wells were analyzed. The experiments 

were repeated 2–3 times. A concentration-response curve was generated for each sample. A 

regression analysis was conducted with each curve. The LC50 (%C½) values were calculated 

from the regression analysis and represents the sample concentration factor that induced a 

50% reduction in cell density as compared to the concurrent negative controls.

CHO Cell Single Cell Gel Electrophoresis (SCGE) Assay

Single cell gel electrophoresis (SCGE, or Comet) assay quantitatively measures genomic 

DNA damage in individual nuclei induced by a test agent [34–36]. We employed microplate 

methodology [35]; the detailed procedure is presented in the SI. The SCGE metric for 

genomic DNA damage induced by the HIWATE samples was the %Tail DNA value which 

is the amount of DNA that migrated from the nucleus into the microgel [37]. Within each 

concentration factor range with >70% cell viability, a concentration-response curve was 

generated and regression analysis was used to fit the curve. The concentration factor 

inducing a 50%Tail DNA value was calculated from each concentration-response curve.

Statistical Analyses

For the cytotoxicity assay, a one-way analysis of variance (ANOVA) test was conducted to 

determine if the HIWATE sample induced a statistically significant level of cell death at a 

specific concentration factor. If a significant F value (P ≤ 0.05) was obtained, a Holm-Sidak 

multiple comparison versus the control group analysis was performed to identify the lowest 

cytotoxic concentration factor. The power of the test statistic (1−β) was maintained as ≥ 0.8 

at α = 0.05.

For the SCGE assay, the %Tail DNA values are not normally distributed which limits the 

use of parametric statistics [38]. The mean %Tail DNA value for each microgel was 

calculated and these values were averaged among all of the microgels for each HIWATE 

sample concentration factor. Averaged mean values express a normal distribution according 

to the central limit theorem [38]. A one-way ANOVA test was conducted on these averaged 

%Tail DNA values [39]. If a significant F value of P ≤ 0.05 was obtained, a Holm-Sidak 

multiple comparison versus the control group analysis was conducted with the power ≥ 0.8 

at α = 0.05.

The mammalian cell cytotoxicity and genotoxicity analyses were compared with the 

following analytical chemical metrics: (i) the numbers of DBPs identified in each HIWATE 

sample, (ii) the chromatographic peak area for the entire sample, (iii) peak areas for specific 

classes of DBPs, (iv) the total concentration of 21 selected DBPs and, (v) concentrations of 

specific DBP classes within the group of 21 DBPs. A Pearson’s Product Moment correlation 

test was conducted.
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RESULTS AND DISCUSSION

Chemical Analyses

Over 90 DBPs were identified in the samples, including several haloacids (including 3- and 

4-carbon acids and di-acids), halophenols, haloamides, halonitromethanes, haloketones, 

haloaldehydes, and haloalkenes (Table S1, SI). Approximately 300 chromatographic peaks 

were observed in the original GC/MS chromatograms (Figure S1, SI;including DBPs and 

other compounds present in the raw waters prior to disinfection). With GC×GC-TOF-MS 

analyses, these peaks were resolved into >1000 peaks (Figure S2, SI). Several DBPs 

identified were not in mass spectral library databases and these identifications were made 

through the methods outlined previously utilizing Massworks software. Several new DBPs 

were presumptively identified, including cis- and trans-2,3-dibromo-3-chloropropenoic acid, 

3,3-dibromo-2-chloropropenoic acid, and several halophenols and haloalkenes. Twenty-one 

target DBPs, including 4 U.S-regulated THMs, 9 HAAs, 4 haloacetonitriles (HANs), 2 

haloketones (HKs), trichloroacetaldehyde (chloral hydrate), and trichloronitromethane 

(chloropicrin) were quantified (Table 2).

Substantial differences were observed in the DBPs from the different locations. As expected, 

drinking waters from coastal Spain (Barcelona and Valencia) had relatively high DBP levels 

with many brominated (and some iodinated) species due to higher levels of total organic 

carbon (TOC), bromide and iodide in their source waters (surface water), as well as the use 

of chlorine as a disinfectant. Drinking waters from coastal Spain averaged 90 and 33 µg/L 

for THM4 and HAA9, respectively (Table 2). In contrast, drinking water from Modena, Italy 

had fewer DBPs at much lower levels; these were primarily chlorine-containing species. The 

source water for Modena is a low-TOC groundwater that is treated with low chlorine 

dioxide doses (0.1 mg/L), which forms fewer DBPs as compared to other disinfectants [3, 

40–42]. None of the 21 target DBPs were detected in the drinking water from Modena, but a 

few were detected in the broad screen analyses due to lower detection limits. Drinking water 

from other locations (samples 4, 6, 8–11, Table 1) expressed intermediate DBP levels with a 

mix of chloro-bromo species probably due to lower levels of bromide and TOC in their 

source waters as compared to waters from costal Spain (Table S1, SI and Table 2).

Of the N-DBPs [43], haloacetonitriles and haloamides were prevalent in drinking waters 

from coastal cities in Spain (samples 1–3, 7), which involved treatment with chlorine, alone 

or in combination with ozone or chlorine dioxide. Previous research demonstrated that 

ozonation increased the formation of halonitromethanes when used prior to chlorination or 

chloramination [44–46]. While chloramination increases the formation of some N-DBPs [5], 

none of the cities in this study employed chloramines.

CHO Cell Chronic Cytotoxicity

CHO cell chronic cytotoxicity analyses of each HIWATE sample are summarized in Table 

3. The concentration factor is the fold concentration of the isolated organic material as 

compared to the original water. The lowest concentration factor of each sample which 

induced a statistically significant reduction in cell density as compared to its concurrent 

negative control was determined by an ANOVA test statistic. The data from replicated 

Jeong et al. Page 6

Environ Sci Technol. Author manuscript; available in PMC 2016 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments were averaged and plotted (Figure 1A, Figures S3–S13, SI); regression analyses 

were used to calculate the LC50 (%C½) value for each sample. Based on the LC50 values, 

the descending rank order of chronic cytotoxicity was, sample 3 > sample 1 > sample 2 ≈ 

sample 4 > sample 7 > sample 10 > sample 9 > sample 8 ≈ sample 11 > sample 6 > sample 

5. Samples from Barcelona, Spain were ranked as the 3 most cytotoxic. We calculated the 

cytotoxicity index value (LC50
−1 ×1000) for each HIWATE sample (Figure 1B, Table S2, 

SI).

CHO Cell Acute Genotoxicity

CHO cell acute genotoxicity analyses of each HIWATE sample are summarized in Table 4. 

The lowest genotoxic concentration factor was that which induced a statistically significant 

amount of genomic DNA damage as compared to the concurrent negative control. Figure 2A 

(Figures S14–S24, SI) illustrates the concentration-response curves for the HIWATE 

samples. Based on 50% Tail DNA values, the descending rank order of genotoxicity was, 

sample 10 > sample 4 > sample 7 > sample 1 ≈ sample 2 > sample 3 > sample 9 > sample 

11 > sample 6 > sample 8 >> sample 5. We calculated the genotoxic index value as 50% 

Tail DNA−1 ×104 for each sample (Figure 2B; Table S2, SI).

Correlation of Toxicology, Chemistry and Epidemiology

To investigate correlations between DBP occurrence and DBP classes with mammalian cell 

toxicity, we applied a Pearson’s Product Moment statistical test [38]. The cytotoxic potency 

index values statistically significantly correlated with the number of identified DBPs (r = 

0.78; P ≤ 0.005, Table 5) and the level of 21 target DBPs (r = 0.77; P ≤ 0.006, Table 2). The 

genotoxic potency index values were not correlated with either of these metrics or with any 

DBP chemical class (Table 2 and Table 5). Interestingly, the cytotoxicity and genotoxicity 

indices indicated a good correlation (r = 0.74; P ≤ 0.009). The cytotoxic potency index 

showed a good correlation with the U.S-regulated DBPs (r = 0.78; P ≤ 0.006) and 

unregulated DBPs (r = 0.60; P ≤ 0.05; Table 2).

Cytotoxicity was significantly correlated with the relative concentrations of the following 

DBP classes: THMs (r = 0.74; P ≤ 0.01), haloacids (r = 0.75; P ≤ 0.008), other monoacids (r 

= 0.68; P ≤ 0.021), halodiacids (r = 0.80; P ≤ 0.003), haloamides (r = 0.68; P ≤ 0.021), 

haloaromatics (r = 0.64; P ≤ 0.035), brominated (r = 0.68; P ≤ 0.022), chlorinated (r = 0.78; 

P ≤ 0.005), and iodinated (r = 0.82; P ≤ 0.002) DBPs (Table 6). There were no statistically 

significant correlations with genotoxicity and the above DBP classes, although there were 

associations or trends in relationships between genotoxicity and the relative concentrations 

of haloacids (r = 0.54; P ≤ 0.088), haloaromatics (r = 0.52; P ≤ 0.103), chlorinated (r = 0.56; 

P ≤ 0.073) and iodinated (r = 0.53; P ≤ 0.093) DBPs (Table 6). It should be noted that some 

highly polar components might have been missed by GC/MS and this may explain, in part, 

the reduced correlation seen with the genotoxicity data and analytical chemistry of the water 

samples. Recently several papers have been published on novel methods to detect polar 

iodinated/brominated DBPs [47–49].

Epidemiology results on water DBPs and birth outcomes from Lithuania, Spain and France 

were recently published [50–52] and the present analysis included water samples from the 
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geographic areas covered in those studies. An expanded discussion of the associations 

among the epidemiology studies and this work is presented in the Supporting Information 

(Table S3 SI). It should be noted, however, that the drinking water samples for the 

epidemiologic analyses and the current analytical chemical and toxicological evaluations 

were not collected at the same time. Existing epidemiological studies on birth outcomes 

including those in the HIWATE project, have evaluated a limited number of DBPs (usually 

only THMs) through environmental analyses of drinking water or, in the case of the French 

study [52] through an evaluation of biomarkers of haloacetic acid metabolites in urine. The 

analyses of water toxicity presented in this paper were limited in number due to their 

complexity, but they provide an overall evaluation of differences of toxicity in different 

geographic areas. It is the first time that this evaluation was done to specifically correspond 

with areas examined in epidemiological studies. Expanding the chemical and toxicological 

characterization of water samples may enhance the resolving power of epidemiological 

investigations and the evaluation of dose-response relationships. In addition, the relationship 

between the analytical chemistry, quantitative in vitro toxicology, and the epidemiology may 

provide additional mechanistic evidence on potential health effects of water DBPs.

This paper focused on the relationship of the occurrence and concentration of DBPs with 

mammalian cell toxicity. The range of the number of DBPs identified and their levels reflect 

the diverse collection sites, different disinfection processes, and the different characteristics 

of the source waters. CHO cytotoxicity was well correlated with the numbers of DBPs 

identified and the levels of DBP chemical classes. Although there was a clear difference in 

genotoxic responses, these data did not correlate well with chemical analyses of the 

HIWATE samples. Thus, the agents responsible for the genomic DNA damage observed in 

the HIWATE samples may be due to unresolved associations of combinations of identified 

DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants.

We are continuing to compare the epidemiology with the in vitro toxicity and analytical 

chemistry analyses. Future study will investigate the possible association between chronic 

cytotoxicity, acute genotoxicity, multivariate comparisons of identified DBPs and 

epidemiology across the entire HIWATE program. We plan to compare other in vitro and 

molecular toxicity metrics and rates of adverse pregnancy measurements. Finally, we 

propose to determine the contribution of source water, and disinfection chemistry to the 

observed toxicity and epidemiology results and develop solutions to protect the public health 

and the environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

(A) Log-linear plot of the concentration-response curves of 11 HIWATE samples illustrating 

CHO cell chronic (72-h) cytotoxicity. (B) The distributions of the CHO cell cytotoxic index 

values for each HIWATE sample.
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Figure 2. 

(A) Log-linear plot of the concentration-response curves of 11 HIWATE samples illustrating 

CHO cell acute (4-h) genotoxicity. (B) The distributions of the CHO cell genotoxic index 

values for each HIWATE sample.
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Table 1

HIWATE water sampling locations and applied disinfection methods

Sample
Number

Sampling Location (Site) Disinfection Method

HIWATE 1 Barcelona, Spain (Badalona) Cl2-Cl2

HIWATE 2 Barcelona, Spain (Hospitalet del Llobregat) Blend of Cl2-Cl2, Cl2-O3-Cl2, Desal-RO-ClO2

HIWATE 3 Barcelona, Spain (Sabadell) Blend of (ClO2/Cl2)-Cl2, Cl2-Cl2

HIWATE 4 Kaunas, Lithuania (Petruniusai) Cl2

HIWATE 5 Modena, Italy ClO2

HIWATE 6 Kaunas, Lithuania (Viciunai) Cl2

HIWATE 7 Valencia, Spain Cl2-Cl2

HIWATE 8 Rennes, France O3-Cl2

HIWATE 9 Asturias, Spain Cl2

HIWATE 10 Bradford, U.K. (Shipley) Cl2

HIWATE 11 Bradford, U.K. (Airedale) Cl2

Cl2 = chlorination, O3 = ozonation, ClO2 = chlorine dioxide, Desal-RO = desalination with reverse osmosis.
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Table 5

Description of each HIWATE sample, DBPs identified and gross correlation with the rank order of CHO cell 

cytotoxicity and genotoxicity

Sample
Number

Number of
Identified DBPs

Rank order of
Number of

Identified DBPs

Rank order of
Cytotoxic

Potency Index a

Rank order of
Genotoxic

Potency Index b

HIWATE 1 86 1 2 4

HIWATE 2 76 5 3 5

HIWATE 3 85 2 1 6

HIWATE 4 41 7 3 2

HIWATE 5 13 11 11 11

HIWATE 6 18 10 10 9

HIWATE 7 83 3 5 3

HIWATE 8 77 4 8 10

HIWATE 9 45 6 7 7

HIWATE 10 41 7 6 1

HIWATE 11 40 9 8 8

Correlation with the rank order of CHO cell cytotoxicity: r = 0.78 (P ≤ 0.005). Correlation with the rank order of CHO cell genotoxicity: r = 0.52 

(P = 0.105). Rank order where 1 is the highest response and 11 is the lowest response.

a
The CHO cell cytotoxic potency index value is in arbitrary units and the value corresponds to (LC50

−1 ×103) for each HIWATE sample.

b
The CHO cell genotoxic potency index value is the reciprocal HIWATE sample concentration factor that was calculated to induce a 50% SCGE 

tail DNA value ×104 and is presented in arbitrary units.
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Table 6

Pearson Product Moment correlation analyses of the relative concentrations of each DBP group versus CHO 

cell chronic cytotoxicity or acute genotoxicity

Relative Concentration

of DBP Class a
Cytotoxic Potency

Index Value b

(LC50
−1 ×103)

Genotoxic Potency

Index Value c

(50% tail DNA−1 ×104)

THMs r = 0.74
P ≤ 0.010

r = 0.45
P = 0.164

Haloacids r = 0.75
P ≤ 0.008

r = 0.54
P = 0.088

Other monoacids r = 0.68
P ≤ 0.021

r = 0.42
P = 0.201

Halodiacids r = 0.80
P ≤ 0.003

r = 0.40
P = 0.221

Haloamides r = 0.68
P ≤ 0.021

r = 0.45
P = 0.170

Haloaromatics r = 0.64
P ≤ 0.035

r = 0.52
P = 0.103

Brominated DBPs r = 0.68
P ≤ 0.022

r = 0.46
P = 0.154

Chlorinated DBPs r = 0.78
P ≤ 0.005

r = 0.56
P = 0.073

Iodinated DBPs r = 0.82
P ≤ 0.002

r = 0.53
P = 0.093

a
Relative concentration is defined as the integrated area for each chromatographic peak summed for each DBP chemical class.

b
The CHO cell cytotoxic potency index value corresponds to (LC50

−1 ×103) for each HIWATE sample.

c
The CHO cell genotoxic potency index value is the reciprocal HIWATE sample concentration factor that was calculated to induce a 50% SCGE 

tail DNA value ×104.
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