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Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentra-
tions, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized 
regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. 
Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment 
facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual 
health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital efflu-
ents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The 
levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to 
be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in 
wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through 
the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired 
from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics 
and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and 
natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of 
antimicrobial resistance.
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Introduction

One of the major milestones of the last century was the 
advent of antimicrobial pharmaceuticals, which are currently 
widely applied in human and veterinary medicine to prevent 
and manage infections, and in animal husbandry as growth 
promoters (Cycoń et al. 2019). Antibiotics are a class of 
active pharmaceutical compounds that are widely consumed 
around the world to inhibit bacterial proliferation through 

cell destruction or growth inhibition (Kümmerer 2009). 
Data from scientific literature, national and regional sur-
veillance systems from numerous countries over time indi-
cates a steadily increasing antibiotic use worldwide (30%), 
primarily due to rising demand in low and middle-income 
countries (Gelband et al. 2015). This unprecedented increase 
in antibiotic use continues to raise concern about their poten-
tially harmful effects on the environment. (Bengtsson et al. 
2018). However, despite their potential environmental and 
health effects, the use of these agents has revolutionized 
health care by improving hygiene and considerably chang-
ing the outcome of bacterial infections, which has in turn, 
significantly increased the average expected lifespan (Car-
valho and Santos 2016; Chowdhury et al. 2017). Their con-
sumption varies from region to region and from country to 
country (Göbel et al. 2005). Studies have shown that many 
of these antimicrobials are not completely metabolized dur-
ing therapeutic use and an estimated 30–90% end up being 
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excreted as active substances into sewage water, resulting in 
the presence of multiple classes of antibiotics being widely 
detected in various urban wastewater treatment plants and 
the receiving environment around the world (Chen et al. 
2006; Li 2014). Their consumption patterns influence the 
extent of their environmental contamination where an 
increase in consumption, especially during the cold season 
when the frequency of infections is higher, elevates their 
occurrence in environmental systems (Wang et al. 2020), 
which correlates with the emergence of multiresistant bacte-
ria and their rapid expansion (Levy 2002). Due to their wide-
spread application, antimicrobials have been and continue 
to be discharged into the environment via wastewater of 
human origin from different sources, including households 
(domestic), hospitals (clinical), veterinary and animal hus-
bandry, and pharmaceutical factories (industrial) (Kemper 
2008). Following their discharge into water systems, sev-
eral antimicrobials and their by-products are detected in the 
environment at concentrations that range from ng  L−1 to µg 
 L−1 (Seifrtova et al. 2009). They reach the aquatic environ-
ment mainly through the flow of wastewater treatment plant 
effluent into surface water or into groundwater (Carvalho 
and Santos 2016). They are considered emergent micropo-
llutants with the potential to create selective pressure for 
the development of microbial resistance in the environment 
(Kümmerer 2009; Kumar et al. 2019). The permissible limits 
of the widely used substances of priority concern which may 
pose potential risks in aqueous media, excluding antibiotics, 
were set out by the EU Directive 2013/39/EU within the 
European Union to maintain environmental quality standards 
and ecological integrity (Ricci et al. 2016). Upon examin-
ing various ecotoxicological reports, the multiple threats 
posed by antibiotics as environmental contaminants were, 
however, recognized and the EU, alongside other countries, 
introduced a regulatory framework to monitor emerging 
substances of concern in the aquatic environment (Wang 
et al. 2020). For instance, in its decision of 2015 (EU Deci-
sion, 2015/495 of March 20, 2015), the EU Commission 
established a watch list of three antibiotics belonging to the 
macrolide class, namely clarithromycin, azithromycin, and 
erythromycin as contaminants of priority concern due to 
their potential risk to the aquatic environment, and there-
after added amoxicillin and ciprofloxacin to the watch list 
in 2018 (EU Decision, 2018/840 of June 5, 2018) (Felis 
et al. 2020). The occurrence of antimicrobial compounds 
in the environment varies among the different antimicrobial 
classes depending on their frequency of usage, and a major 
concern about their presence in the environment relates to 
the emergence of antibiotic resistance genes (ARGs) and 
the evolution of antibiotic resistant bacteria (ARB), which 
endanger pharmaceuticals’ ability to control microbial 
pathogens (Kumar et al. 2019). Continuous antimicrobials 
exposure has seen more antibiotics become less effective 

due to the growing resistance observed among the primary 
and opportunistic pathogens, resulting in higher medical and 
economic costs and increased mortality (Zhen et al. 2019). 
Antimicrobials are frequently administered in health care 
facilities. However, hospital effluents are not the primary 
source of resistant bacteria in the environment since they 
contribute less than 2% of the total volume of wastewater 
and, therefore, other sources require monitoring (Carraro 
et al. 2016). Human excreta-containing habitats such as 
wastewater treatment plants (WWTPs) and compost toilets, 
together with animal farms and aquaculture, are thought to 
be reservoirs for the emergence and propagation of resist-
ant bacteria (Korzeniewska and Harnisz 2018; Zhou et al. 
2018; Karkman et al. 2019). Hospital effluents eventually 
enter into WWTPs, which are characterized by the abun-
dance of organic and inorganic nutrients and the proxim-
ity of cells, enhancing individual cell-to-cell interactions. 
The presence of antimicrobial residues and other suitable 
conditions such as temperature and pH make WWTPs ideal 
for ARB development and may promote the proliferation of 
ARB and the eventual spread of antibiotic resistance genes 
(ARGs) (Berendonk et al. 2015; Krzeminski et al. 2019). 
Furthermore, the antibiotic resistance patterns described in 
clinical settings appear to correlate with those observed in 
WWTPs (Pärnänen et al. 2019).

Vast studies have reported the widespread presence of 
antibiotics, especially in WWTPs over time. However, many 
of these studies do not compare the situation in a wide geo-
graphical region, and those conducted within particular 
countries explore a few compounds found in a small num-
ber of WWTPs within that country (Rodriguez-Mozaz et al. 
2020). Therefore, there is a significant gap for implementing 
mitigation measures. In addition, the data reported in dif-
ferent studies from country to country are not sufficiently 
comparable due to a lack of standardized methodologies. 
Thus, it is a challenge to develop environmental protection 
guidelines that can be applied universally. To allow for the 
evaluation of vast trends in antibiotic occurrence, it would 
be important to conduct monitoring studies in a wide region 
that covers many WWTPs and a variety of compounds using 
standardized protocols. Monitoring antibiotic contamination 
is important, more so given its link to antibiotic resistance 
(AR), which is a global public health concern (Hendrik-
sen et al. 2019). Combating antibiotic resistance requires 
being addressed in a context that integrates environmental 
and human health concerns, with a focus on antibiotic envi-
ronmental contamination that provides a broader perspec-
tive with diverse empirical data on the correlation between 
antibiotics in the environment and the evolution of antibi-
otic resistant bacteria, which requires further investigation. 
The One Health initiative’s perspective, championed by the 
World Health Organization (WHO), envisions human health 
issues including AR in the context of humans, animals, and 
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the environment (WHO 2020). Similarly, the United Nations 
Sustainable Development Goals (UNSDGs), are aimed at 
promoting sustainable improvement in the health of millions 
of people by conquering contamination of surface water, 
groundwater, and wastewater treatment plants (WWTP) 
(Zhou et al. 2020). Understanding how ARB and ARGs 
spread from WWTPs and their role in resistance dissemina-
tion is critical for developing mitigation measures to limit 
the spread of AR in the environment. Other reviews have 
covered the major chemical groups of antibiotics commonly 
detected in wastewater systems in greater detail (Pazda et al. 
2019; Felis et al. 2020; Uluseker et al. 2021), hence this 
paper discusses them briefly. The paper gives an insight into 
the role of antibiotics in promoting the evolution and devel-
opment of resistance in antimicrobial contaminated environ-
ments. Some major bacterial resistance mechanisms to the 
key antibiotic groups (with associated ARGs) where antibi-
otics, bacteria and ARGs, occur in the same wastewater envi-
ronment are elucidated, a perspective which appears to have 
been overlooked in other reviews (Blair et al. 2015; Pazda 
et al. 2019; Felis et al. 2020). It also gives an account of 
some case studies that have demonstrated a possible correla-
tion between environmental antimicrobial contamination and 
antibiotic resistance. The promising antibiotic alternative 
approaches that have demonstrated prospects in combating 
the current state of antibiotic resistance, which complement 
the technologies applied in the removal of antibiotics and 
ARGs from wastewater treatment plants, are briefly outlined.

Antibiotics classes frequently detected 
in aqueous environments

Pharmaceuticals are widely used in livestock production and 
in agriculture, in addition to human use (Koch et al. 2021). 
Each year, approximately 24.6 million pounds of antibiot-
ics are used in livestock farming (Van et al. 2020). This has 
become a global practice because low-dose antibiotics were 
found to boost animal and bird growth by adding them to 
animal feeds (Kumar et al. 2018). Their extensive use in 
animal production forms the main source of environmental 
antibiotics (Kinney and Heuvel 2020). Numerous studies 
have reported the presence of pharmaceutical compounds or 
their metabolites in the geosphere and biosphere (Bartrons 
and Penuelas 2017; Riaz et al. 2018), with pharmaceuti-
cal contaminants being reported in polar regions, the most 
pristine environment on earth (González-Alonso et al. 2017). 
Some case studies of compounds documented in the Euro-
pean WWTPs and hospital effluents as well as those from 
a few other regions are cited for the purpose of this discus-
sion. The recent data on variation in the consumption rate 
of antibacterial agents within the European Union/European 
Economic Area in both the hospital and community sectors 

in a two year period is presented in Table 1. This gives an 
insight into the frequency of antimicrobial usage based on 
the commonly prescribed chemical classes.

It has been observed that the concentrations of antibi-
otic classes vary based on the antimicrobial compound and 
environmental matrix and the load tends to decrease from 
wastewater generated by human activity to the surface and 
groundwater (Carvalho and Santos 2016). The pattern and 
consumption rate, excretion, and the efficacy of elimination 
by wastewater treatment processes, together with weather 
conditions, especially rainwater, usually influence the con-
centrations of the antibiotics detected in wastewater treat-
ment plant influents and effluents (Osorio et al. 2012). 
Certain antimicrobial agents, especially macrolides, sulfona-
mides, quinolones, and trimethoprim, persist in the aqueous 
environment and are among the most frequently detected 
substances in the environmental matrices due to their stabil-
ity and because they are frequently prescribed in veterinary 
and human medicine (Wang and Wang 2016; Korzeniewska 
and Harnisz 2020). Considering their occurrence as demon-
strated in various studies, the WWTP effluents containing 
high concentrations of these antibiotics are discharged into 
surface water, especially rivers, which subsequently become 
the main outlets of such antimicrobials into the rest of the 
natural aqueous environment. Some of the antimicrobial 
classes detected in the aqueous environments are described 
briefly.

β‑Lactams

This group consists of a class of broad-spectrum antimicro-
bial compounds, which are the most frequently administered 
antimicrobials in all European countries similar to the rest 

Table 1  Average consumption of antibacterials for systemic use in 
the community and hospital sector in the European Union/ Euro-
pean Economic Area, in 2019 and 2020 (expressed as DDD per 1000 
inhabitants per day (ECDC 2020)

Other groups are amphenicols, aminoglycosides and combination of 
antibacterials

Antimicrobial compound Community 
sector

Hospital sector

2019 2020 2019 2020

Tetracyclines 2.1 1.6 0.09 0.05
β-Lactams (penicillins) 8 6.5 0.65 0.48
Other β-lactam antibacterials 2 1.7 0.4 0.43
Sulfonamides and trimethoprim 0.6 0.5 0.07 0.07
Macrolides, lincosamides and 

streptogramins
2.8 2.4 0.16 0.17

Quinolones 1.3 1.2 0.17 0.16
Other antibacterials 1.1 1 0.17 0.16
Other groups 0.1 0.1 0.06 0.05
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of the world (Korzeniewska and Harnisz 2020). β-Lactams 
are structurally characterized by a β-lactam ring which is 
highly susceptible to hydrolysis by a variety of reagents, 
both biotic (enzymatic and biological degradation) and abi-
otic (chemical degradation) processes. The β-lactam ring is 
easily destroyed by extremes in pH, light, heat, solvents like 
water and methanol (Deshpande et al. 2004). The variation 
of β-lactams occurrence in the environment during the year 
depends on therapeutic usage and consumption patterns. 
They rarely persist in the environment due to their unsta-
ble property in spite of being widely consumed. However, 
the β-lactams, penicillin G and V were mostly found in raw 
wastewater samples, whereas amoxicillin, a synthetic deriva-
tive of penicillin, and cefuroxime, a second-generation ceph-
alosporin, are much more stable and are frequently found in 
hospital effluents as well as raw wastewater (Michael et al. 
2013; Harrabi et al. 2018).

Aminoglycosides

The usage of aminoglycosides in clinical practice is often 
restricted due to their adverse effects and toxic potential, 
which makes their contamination of the aqueous environ-
ment mostly associated with their application in veterinary 
medicine. Despite their low consumption, aminoglycosides 
have been detected in raw and treated wastewater, which was 
attributed to effluents from hospitals and wastewater from 
factories producing these pharmaceuticals (Tahrani et al. 
2016). Several aminoglycosides were detected in wastewa-
ter treatment plant influents and effluents in various ranges, 
including kanamycin B, sisomicin, gentamicin, and neo-
mycin (Tahrani et al. 2016). In Poland, the occurrence of 
aminoglycosides neomycin, streptomycin, and dihydrostrep-
tomycin investigated in water samples drawn from supply 
systems in different animal farms yielded only neomycin 
(Gbylik-Sikorska et al. 2015).

Quinolonesand fluoroquinolones

The quinolone class of chemically synthesized antibiotics 
was among the latest to be introduced in clinical practice. 
They are frequently used and their consumption in human 
medicine is estimated to account for 7% of the total anti-
microbial consumption (Szymańska et al. 2019). Fluoro-
quinolones are mobile in the aquatic environment due to 
their hydrophilic property, which explains their presence in 
both groundwater and drinking water samples (Hanna et al. 
2018; Reis et al. 2019). It is this ability to rapidly spread 
in the environment that necessitated the inclusion of cipro-
floxacin in the watch list of the EU commission, Decision of 
2018. Their occurrence in different aqueous environmental 
matrices has been reported, with the maximum concentra-
tions typically occurring in hospital effluents and WWTP 

influents. Ciprofloxacin and ofloxacin appear to be the domi-
nant ones detected in wastewater with high detection fre-
quency and high concentration (Lindberg et al. 2007). Sev-
eral other quinolones and fluoroquinolones, which include 
pipemidic acid, nalidixic acid, moxifloxacin, and gatifloxa-
cin, have been detected in WWTPs (Zhang and Li 2011) (1). 
European WWTP influents and effluents have reported qui-
nolones in various concentrations (Santos et al. 2013). Cip-
rofloxacin, for example, has been found in hospital effluent 
from Spain, Sweden, Portugal, and Italy at concentrations of 
tens of µg  L−1 (Lindberg et al. 2004; Gracia-Lor et al. 2012; 
Verlicchi et al. 2012; Gros et al. 2013; Santos et al. 2013), 
which presents hospital effluents as important input sources 
of quinolones into wastewater.

Sulfonamidesand diaminopyrimidine

Sulfamethoxazole is the representative drug among the sul-
fonamides and is currently the most frequently used drug in 
this class, making the compound one of the most common 
substances found in the environment (Hanna et al. 2018; 
Loos et al. 2018). Studies have shown that sulfonamides 
are partially excreted unchanged, primarily through urine 
(Prescott 2013). Their occurrence in different aqueous envi-
ronmental matrices in various regions over the last decades 
has been documented. The concentration of sulfonamides 
in WWTP influents and effluents was found to range from 
tens to hundreds of ng  L−1, and this is attributed to their 
consumption in the community sector (Golovko et al. 2014; 
Papageorgiou et al. 2016). Sulfamethoxazole, the most com-
mon sulfonamide, has been found in WWTP influents and 
effluents in Germany, Portugal and Kenya (Santos et al. 
2013; Rossmann et al. 2014; Ngumba et al. 2016). Very 
high concentrations of sulfonamides (20 ×  103 ng  ml−1) have 
been detected in pig farm wastewater, and the detection of 
sulfamethazine, for example, has been suggested to serve 
as a marker for livestock source contamination in Vietnam 
(Managaki et al. 2007). Trimethoprim is the representative 
diaminopyrimidine that is used in combination with sulfona-
mides to increase the bactericidal effect achieved through 
synergy. A combination of trimethoprim and the sulfona-
mide, sulfamethoxazole (Co-trimoxazole), has widespread 
use in both human and veterinary medicine. Trimethoprim 
has been determined in WWTPs and hospital effluents in the 
UK, Croatia, Greece, Italy, and Sweden (Kasprzyk-Hordern 
et al. 2009; Verlicchi et al. 2012; Santos et al. 2013; Kosma 
et al. 2014; Mendoza et al. 2015).

Tetracyclines

Tetracyclines comprise both natural antibiotics such as 
tetracycline, chlortetracycline, oxytetracycline, and semi-
synthetic drugs such as doxycycline and demeclocycline. 
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Tetracycline is a broad-spectrum antibiotic that has been 
widely used to prevent infections in humans and animals, 
and as a growth promoter in animal feeding at sub-therapeu-
tic dose levels (Sabino et al. 2019). Tetracycline is widely 
distributed in animal farms, and in the gut of migratory 
birds, and has potential side effects on human health (Cao 
et al. 2020). Although they are less frequently used in human 
medicine, they have been identified in samples of wastewa-
ter, surface water, and drinking water (Azanu et al. 2018b; 
Hanna et al. 2018). Humans and animals excrete over 70% of 
tetracycline antibiotics in an active form to the environment 
and, owing to their highly hydrophobic property and low 
volatility, tetracyclines are very stable in the aquatic envi-
ronment and are commonly detected in WWTPs (Daghrir 
and Drogui 2013). They form stable complexes with cations 
which makes them more likely to bind to suspended matter 
or sewage sludge during wastewater treatment (Collado et al. 
2014). Tetracycline is the most common substance detected 
in WWTPs (Opriş et al. 2013; Vergeynst et al. 2015). Five 
tetracycline antibiotics, including doxycycline, tetracycline, 
oxytetracycline, and chlortetracycline were found in hospital 
samples and WWTPs influent and effluent in Sweden, Hong 
Kong, Norway, and Germany (Yang et al. 2005; Lindberg 
et al. 2006; Minh et al. 2009; Watkinson et al. 2009; Ross-
mann et al. 2014).

Macrolides

Macrolide antibiotics are a critical class of compounds 
due to their significant consumption in hospitals and they 
enter into wastewater as unchanged parent compounds upon 
excretion via bile and feces after being hardly metabolized 
in the body and the continuous application in veterinary and 
human medicine has contributed to the presence of these 
antibiotics in aqueous matrices due to their stability (Nna-
dozie et al. 2017). These compounds are prevalent in the nat-
ural environment, especially WWTPs, where the quantities 
of the macrolides, tylosin, roxithromycin, azithromycin, and 
clarithromycin have been determined in raw sewage and the 
treated effluent (Yang and Carlson 2004; Göbel et al. 2005; 
Petrovic et al. 2006; Spongberg and Witter 2008; Lin et al. 
2009; Watkinson et al. 2009). Some macrolides, particularly 
clarithromycin and azithromycin are among the most com-
monly detected antimicrobials (Verlicchi et al. 2012; Loos 
et al. 2018). Wastewater effluents form key input sources 
of macrolides into rivers as evidenced by their presence in 
rivers in Spain and France (Valcarcel et al. 2011; Moreno-
González et al. 2014). Although erythromycin is the parent 
antibiotic, a high concentration of its metabolite dehydrated 
erythromycin-H2O has been found in both raw sewage and 
treated wastewater effluent (Kasprzyk-Hordern et al. 2009; 
Minh et al. 2009). The parent antibiotic, erythromycin was 
found in both the influent and effluent (Ternes et al. 2007). 

Table 2 shows residues of the various representative sub-
stances of the antibiotic classes that have been detected at 
various concentrations in raw wastewater (including hospital 
effluents) and treated wastewater.

Dissemination routes of antimicrobial 
pharmaceuticals and ARGs 
in the environment

Antibiotic overuse, inappropriate prescription, and extensive 
use of antibiotics in agriculture are linked to the widespread 
occurrence of antibiotics in the environment (Chowdhury 
et al. 2017). These and other anthropogenic activities that 
result in the discharge of wastewater containing antibiotics 
and/or their metabolites into environmental matrices have 
been attributed to the increasing antimicrobial resistance due 
to the rapid evolution of bacteria facilitated by the acquisi-
tion of resistance from the reservoir of ARGs, which has 
a direct impact on the control of microbial pathogens in 
humans and animals (Kemper 2008; Zhang et al. 2009a). 
Aquatic environments, especially WWTPs, serve as sinks 
for massive loads of pharmaceutical compounds, including 
personal care products and antibiotics, and provide optimal 
conditions where antibiotic resistant bacteria develop and 
proliferate and ARGs spread (Kim et al. 2007). Dissemina-
tion of antibiotics and ARGs occurs in habitats that provide 
ideal environments for their spread and circulation between 
humans, animals, and the external environment. Figure 1 
depicts several habitats that are ideal for recombination 
events and subsequent genetic exchange where the future 
evolution of resistance among microbes in the environment 
occurs. Human and animal microflora consisting of diverse 
bacterial species form the primary habitat in which antibi-
otics assigned for prevention or therapy exert their actions. 
Animal and human digestive systems provide suitable resi-
dence for bacteria along with sub-lethal doses of antibiot-
ics, which might be potential niches for the propagation of 
antibiotic resistance (Chopra and Roberts 2001). Environ-
ments where susceptible individuals are often overcrowded 
with possible exposure to bacterial genetic exchange, such 
as hospitals, nursing/retirement homes (which serve as long-
term care facilities), and animal farms, constitute the second-
ary habitat. Antibiotics and other antimicrobial residues in 
wastewater that originate from secondary residences find 
their way into WWTPs where they mingle with bacteria. The 
wastewater treatment facilities, which constitute the tertiary 
habitat, provide suitable conditions for mixing and genetic 
exchange (Berendonk et al. 2015). Soil or sediments and sur-
face or groundwater environments provide the final habitat 
in which bacteria originating from previous habitats continu-
ously mix and interact with the broader microbial communi-
ties in the environment. The interconnection among these 
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Table 2  Occurrence of antimicrobial compounds in raw wastewater (hospital effluents and WWTP influent) and treated wastewater in ng/L, 
partly adapted from (Felis et al. 2020)

nd not detected, LOQ limit of quantification 

Class/compound Raw wastewater Treated wastewater

β-Lactams 
Penicillin G

18–6196 (Loos et al. 2013, 2018; Ruff et al. 2015), 13800 
(Watkinson et al. 2009)

47–1205 (Loos et al. 2013, 2018; Ruff et al. 2015), 2000 
(Watkinson et al. 2009)

Penicillin V nd-160 (Gros et al. 2013; Michael et al. 2013)
Amoxicillin 33800 (Azanu et al. 2018b), 2.0–57, hospital effluent (Azanu 

et al. 2018b; Thai et al. 2018)
nd-116400 (Gros et al. 2013; Azanu et al. 2018b)

Cefotaxime 1100 (Watkinson et al. 2009) < 15 (Watkinson et al. 2009)
Cefuroxime 49–24380 (Ribeiro et al. 2018), 246, hospital effluent (Thai 

et al. 2018)
7860 pharma factory (Thai et al. 2018)

Aminoglycosides 
Kanamycin B

500–7500 (Tahrani et al. 2016) 700–5400 (Tahrani et al. 2016)

Sisomicin 2300–6700 (Tahrani et al. 2016) 1000–3900 (Tahrani et al. 2016)
Gentamicin 500–1600 (Tahrani et al. 2016), 400–7600 (Löffler and 

Ternes 2003)
200–600 (Tahrani et al. 2016)

Neomycin 1800–16400 (Tahrani et al. 2016) 400–11200 (Tahrani et al. 2016)
Amikacin 2300 (Tahrani et al. 2016) 1000 (Tahrani et al. 2016)
Streptomycin 2700 (Tahrani et al. 2016) 1200 (Tahrani et al. 2016)
Fluoroquinolones 
Ciprofloxacin

3700 (Verlicchi et al. 2012), 34500 (Matongo et al. 2015), 
3600–101000, hospital effluent (Lindberg et al. 2004) 
1400–26000, hospital effluent (Verlicchi et al. 2012)

1100 (Verlicchi et al. 2012)

Levofloxacin 4–836 (Rossmann et al. 2014)
Ofloxacin 11.1–1330 (Birošová et al. 2014; Dong et al. 2016), 23–510 

hospital effluent (Verlicchi et al. 2012)
0.3–527 (Golovko et al. 2014; Dong et al. 2016)

Norfloxacin <LOQ-5411 (Dong et al. 2016; Östman et al. 2017), 
450–2200, hospital effluent (Verlicchi et al. 2012)

0.2–628 (He and Blaney 2015; Dong et al. 2016)

Sulfonamides 
Sulfamethoxazole

6500, 8700, 13000, 2000, 54800 (Lindberg et al. 2004; Ver-
licchi et al. 2012; Santos et al. 2013; Ngumba et al. 2016)

3340 (Ngumba et al. 2016)

Sulfapyrydyne 60–230 (Göbel et al. 2005) 0.4–230 (Göbel et al. 2005)
Sulfamethazine 4010 (Li and Zhang 2011)
Trimethoprim 1500–6000 (Verlicchi et al. 2012; Kosma et al. 2014), 

4250–72900 (Ngumba et al. 2016), 100–4300 (Göbel et al. 
2005; Watkinson et al. 2009; Li and Zhang 2011), < 3000, 
hospital effluent (Santos et al. 2013)

60–3000 70, 65–800 (Göbel et al. 2005; Li and Zhang 2011; 
Loos et al. 2018)

Tetracyclines 
Tetracycline

58–1960 (Azanu et al. 2018b; Lorenzo et al. 2018), 
13–1598, hospital effluent (Azanu et al. 2018b; Lorenzo 
et al. 2018; Wang et al. 2018a)

1400–146000 (Opriş et al. 2013; Vergeynst et al. 2015)

Doxycycline 1.8–264 (Azanu et al. 2018b; Hanna et al. 2018), 24–120, 
hospital effluent (Azanu et al. 2018b) 75–1487, hospital 
effluent (Azanu et al. 2018b; Wang et al. 2018a)

2210 (Lindberg et al. 2006), 1420(Minh et al. 2009), 
14–49(Azanu et al. 2018b)

Oxytetracycline 350 (Watkinson et al. 2009), 43–233 (Azanu et al. 2018a), 
24–120 hospital effluent (Azanu et al. 2018b)

250 (Watkinson et al. 2009), 2.4–24(Azanu et al. 2018a)

Chlortetracycline 270 (Yang et al. 2005)
Macrolides 
Erythromycin

830 (Ternes et al. 2007), 1100 (Matongo et al. 2015), 9–294 
(Tylová et al. 2013)

620 (Ternes et al. 2007), 160 (Matongo et al. 2015), 886 
(Gracia-Lor et al. 2012; Tylová et al. 2013)

Tylosin 1150 (Yang and Carlson 2004), 55–180 (Watkinson et al. 
2007)

3400 (Watkinson et al. 2009)

Roxithromycin 810 (Göbel et al. 2005) 540 (Göbel et al. 2005)
Azithromycin 450 (Petrovic et al. 2006), 1083 (Lara-Martín et al. 2014) 400 (Göbel et al. 2005), 0–380 (Al Aukidy et al. 2012; Lara-

Martín et al. 2014)
Clarithromycin 1433 (Lin et al. 2009), 122 (Watkinson et al. 2009; Lara-

Martín et al. 2014)
996 (Spongberg and Witter 2008),
8–460 (Al Aukidy et al. 2012; Gracia-Lor et al. 2012; Lara-

Martín et al. 2014)
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habitats creates a niche that breeds resistant bacteria and 
ARGS, which circulate in the ecosystem and may eventually 
be re-introduced into human and animal environments. The 
strategies employed by humans to regulate the introduction 
of active antimicrobial agents and bacteria into these sites, 
such as pre-treatment of hospital effluents and enhancing 
antibiotic stewardship programs, minimize the possibility 
of the microbes evolving antibiotic resistance.

Antibiotics biodegradation mechanisms 
and pathways

The numerous processes involved in the removal of con-
taminants in WWTPs have been documented. For example, 
sorption onto biological sludge in biological wastewater 
treatment systems plays a significant role in antibiotics’ 
removal from the aqueous phase. However, antibiotics such 

as sulfonamides (e.g., sulfamethoxazole-SMX and sulfadi-
azine-SDZ) and trimethoprim (TMP), are removed through 
biodegradation pathway (Oberoi et al. 2019). Biodegradation 
is the breakdown of complex organic compounds such as 
antibiotics either through biotransformation, resulting in the 
formation of different metabolic intermediates (i.e., transi-
tory intermediates and/or end products) (Ricken et al. 2013; 
Reis et al. 2018) or through complete mineralization to  H2O 
and  CO2 by microbial cultures (Bouju et al. 2012; Alvarino 
et al. 2016; Ricken et al. 2017). Different intermediate com-
pounds may be formed either by hydroxylation, acetylation 
of the amino group in the case of sulfamethoxazole (Larcher 
and Yargeau 2011; Zhang et al. 2016; Reis et al. 2018), 
or breakdown of the parent antibiotic compound (Ricken 
et al. 2013; Alvarino et al. 2016; Jia et al. 2017; Nguyen 
et al. 2018). For tetracycline molecules, there is loss of the 
N-methyl group by demethylation of the dimethyl amino 
group at the C4 position without breakdown of the parent 

Fig. 1  Antibiotics and bacteria from the human population, veteri-
nary medicine, and food-producing animals taking antibiotics enter 
various habitats such as soil and surface water via excreta, through 
effluents, and biosolids from wastewater treatment plants. Antibiotics, 

ARGs, and resident environmental bacteria mix in the various com-
partments, spurring the emergence and spread of ARB and ARGs in 
the bacterial community, and they can eventually end up in animal 
hosts, including humans
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compound (Leng et al. 2016). Microorganisms are able to 
degrade pharmaceutical antimicrobials and utilize them as 
a sole carbon and energy source and/or via co-metabolism 
(Larcher and Yargeau 2011; Nguyen et al. 2018; Wang and 
Wang 2018). The biotransformation mechanisms of two 
classes of antibiotics, namely sulfonamides (SMX) and tetra-
cycline (TET), through biotransformation and mineralization 
by microorganisms under different redox conditions, inter-
mediates, pathways, catabolic enzymes and genes involved 
are briefly presented.

Sulfonamides

Sulfamethoxazole (SMX), which is among the most fre-
quently detected sulfonamides in the environment, is poorly 
adsorbed on biological sludge during wastewater treatment. 
However, biotransformation and mineralization have been 
observed with both pure and mixed cultures in different 
redox (aerobic, anoxic, and anaerobic) conditions (Mohatt 
et al. 2011; Bouju et al. 2012; Kassotaki et al. 2016; Jia et al. 
2017; Wang and Wang 2018). Pure bacterial strains such as 

Microbacterium sp. strain BR1(Ricken et al. 2013, 2015), 
Achromobacter denitrificans PR1(Reis et al. 2014), Pseu-
domonas psychrophila HA-4 (Jiang et al. 2014), and Aci-
netobacter sp. (Wang and Wang 2018), have demonstrated 
the ability to degrade SMX as a sole carbon and energy 
source under aerobic conditions. In aerobic process involv-
ing pure and mixed cultures, sulfamethoxazole is biotrans-
formed to 3-amino-5-methyl-isoxazole (3A5M) (Fig. 2a(i)) 
(Ricken et al. 2013; Reis et al. 2014; Deng et al. 2016; Mao 
et al. 2018). The intermediate 3A5M is formed due to the 
release of 4-iminoquinone and sulfur dioxide from the parent 
compound (SMX). This ipso-hydroxylation reaction is cata-
lyzed by monooxygenase encoded by the sadA gene, allow-
ing separation of the sulfonamide functional group from the 
parent compound and rendering the intermediates less harm-
ful to the environment (Majewsky et al. 2014; Ricken et al. 
2017). In Microbacterium sp. strain BR1, a flavin depend-
ent monooxygenase encoded by the sadA gene and a flavin 
reductase encoded by the sadC gene are in charge of the 
initial breakdown of sulfonamide molecules, resulting in the 
release of 4-aminophenol and its subsequent transformation 

Fig. 2  Biodegradation products and pathways of a sulfamethoxazole biodegradation encoded by sad genes, and b  tetracycline biodegradation 
encoded by tetX gene
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into 1,2,4-trihydroxybenzene by monooxygenase encoded 
by the sadB gene and flavin reductase encoded by the sadC 
gene prior to mineralization as shown in Fig. 2a(ii) (Ricken 
et al. 2013, 2017). These reports demonstrate that Microbac-
terium sp. strain BR1 is capable of utilizing sulfonamides for 
growth and has the capacity to mineralize SMX.

Tetracyclines

Tetracyclines (tetracycline, oxytetracycline, and chlortracy-
cine) are broad spectrum antibiotics commonly used in live-
stock production. They are poorly biodegradable due to their 
complex chemical structures; However, numerous studies 
have explored chemical processes (i.e., photochemical and 
electrochemical technologies) for their degradation (Bautitz 
and Nogueira 2007). It has been shown that tetracyclines 
may be transformed to C11a-hydroxy-tetracyclines cata-
lyzed by a flavin monooxygenase encoded by tetX genes in 
microbes (Fig. 2b) (Markley and Wencewicz 2018). A bacte-
rial strain, Stenotrophomonas maltophilia DT1, capable of 
degrading TET, has been isolated from TET contaminated 
sites (Leng et al. 2016). Based on the molecular mechanism 
of TET biotransformation by S. maltophilia strain, the nodu-
lation protein efflux pump transported TET outside cells, and 
hypoxanthine-guanine phosphoribosyl-transferase facilitated 
the activation of the ribosomal protection proteins. In the 
end, TET biotransformation was catalyzed by the enzymes 
superoxide dismutase and peroxiredoxin (Leng et al. 2017).

Antibiotics promote the evolution 
and transmission of resistance

Significant genetic variation is associated with mecha-
nisms of genetic exchange occurring frequently among 
microbial populations and communities spurred by habitats 
that provide suitable biological interconnection, generate 

variation, and offer chances for specific selection, leading 
to the genetic evolution of resistant bacteria (Baquero et al. 
2008). Mutation is a key event that can form the basis for 
the selection of resistance in the mix of bacteria and anti-
microbial compounds in the various habitats. Mutations 
drive antibiotic resistance by occurring spontaneously in 
the bacterial genome, and the mutants propagate the resist-
ance to the subsequent progeny through vertical evolution 
and natural selection created by antibiotic pressure (Baquero 
et al. 2008).

Figure 3 illustrates the role of antibiotics in the selection 
and proliferation of resistant bacteria driven by mutation.

Since DNA replication is not perfect, cell division may 
result in random changes to the DNA sequences of descend-
ent cells. The biological effects of the resultant mutations 
on the cells that carry them can range from insignificant to 
disastrous. Some mutations, for example, alter the cellular 
proteins that are frequently targeted in antibiotic treatment. 
A random mutation that alters a cellular protein required for 
a specific antibiotic to enter the cells of its target bacterial 
species blocks the antibiotic entry into the mutant cell and 
interferes with protein synthesis. Unlike in the absence of 
antibiotics in which an antibiotic resistance mutation does 
not provide a selective advantage to a cell, in the presence of 
antibiotics, the mutant reproduces normally. In the presence 
of the antibiotics, wild-type drug-sensitive cells would either 
fail to reproduce or die (Genereux and Bergstrom 2005). 
Typically, antibiotics designed to kill bacteria end up select-
ing for bacteria that do not respond to the antibiotics.

Antibiotic resistance can also be driven by horizontal 
evolution through gene exchange mechanisms occurring in 
intra and inter-species (Touchon et al. 2017). Conditions 
within the environment, especially the WWTPs provide 
cell proximity, which favors horizontal evolution (or lat-
eral gene transfer). Horizontal gene transfer (HGT) follows 
either or a combination of the three routes (conjugation, 
transformation, and transduction) where genetic material 

Fig. 3  Resistance evolution 
driven by the presence of anti-
biotics. a Mutant bacteria occur 
frequently in large population 
sizes. The frequency of mutants 
is low in the absence of antibi-
otics since resistance typically 
imposes a fitness cost. b Resist-
ant bacteria divide faster than 
sensitive bacteria in an environ-
ment created by the presence of 
antibiotics. c Resistant bacteria 
finally dominate the popula-
tion, and the antibiotic becomes 
ineffective
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is obtained from antibiotic resistant bacteria in each case, 
and the recipients become resistant. Conjugation involves 
direct contact transfer of mobile plasmids between the donor 
cell and the recipient cell. During transformation, bacteria 
pick up free fragments of DNA from the environment and 
integrate them into their genome. Transduction refers to the 
transfer of DNA from one bacterium to another mediated 
by bacteriophages (Von Wintersdorff et al. 2016) (Fig. 4). 
Lateral transfer of genetic material occurs frequently among 
bacterial populations aided by resistance plasmids (R-plas-
mids), which contain antibiotic resistance genes and have 
been linked to global antibiotic resistance spread in the vast 
majority of Gram-negative bacteria (Berglund 2015).

Genetic elements (plasmids, transposons, integrons 
and gene cassettes) that carry genes have high mobility 
and are easily transferable between strains and, in some 
cases, taxonomic classes (Von Wintersdorff et al. 2016). 
Transposons are perfect vehicles for transmitting antibiotic 

resistance genes within and between microbial populations 
because of their unique ability to jump from one genetic 
locus into another where they integrate into a bacterial 
chromosome and/or plasmids, regardless of their phylog-
eny (Mazel 2006). Integrons are genetic elements which 
aid the accumulation of antimicrobial resistance genes. 
Class I integrons (Fig. 5) consist of an integrase gene, 
a recombination site and a promoter at the 5′ conserved 
sequence, and a truncated qacE (qacE∆) and sul1 gene 
at the 3′ conserved sequence. Between the 5′ and 3′ con-
served sequences, gene cassettes can be found. The inte-
grase has the ability to capture and integrate antimicro-
bial resistance genes into the gene cassettes. The promoter 
of the integron contributes to the expression of genes 
located in the gene cassettes. The aacE∆ and sul1 genes 
are responsible for resistance to quaternary ammonium 
compounds and sulfonamides, respectively (Labbate et al. 
2009).

Fig. 4  Mechanisms of horizon-
tal gene transfer where bacterial 
DNA can be transferred from 
one bacterium to another. A 
Conjugation involves direct con-
tact transfer of mobile plasmids 
between the donor cell and the 
recipient cell. B Transduction 
refers to the transfer of DNA 
from one bacterium to another 
mediated by bacteriophages. 
C In transformation bacteria 
pick up free fragments of DNA 
from the environment and inte-
grate them into their genome

Fig. 5  Structure of In238 is shown as an example for a typical class 
1 integron that consists of two conserved genes at the 3′  end, quar-
ternary ammonium compound resistance gene qacE∆1 and sulphon-
amide resistance gene sul1. The gene intI1 encodes a site-specific 
integrase which is capable of excising and integrating gene cassettes 

at the site-specific integration site att1. In238 contains two gene cas-
settes designated as GC1 carrying an amino acid modifying enzyme 
(aac (6′)-lb) and GC2 carrying beta-lactamase (blaVIM-4). The pro-
moter PC induces the expression of the gene cassettes
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ARGs may be subject to HGT in the WWTP and thereby 
contribute to the spread of ARGs and multi-resistant micro-
organisms (Du et al. 2015). It has been observed that differ-
ent genes encoding specific antibiotics are frequently found 
in the same position on chromosomes or mobile genetic ele-
ments, resulting in multiple resistance (Xu et al. 2017). This 
makes mobile genetic elements such as plasmids, transpo-
sons, and integrons crucial in the emergence and spread of 
ARGs (Zhu et al. 2013). The multi-gene cassettes carried in 
integrons can encode different ARGs under a mutual pro-
moter and aid in ARG co-selection; thus, selection pressure 
applied by one antibiotic may select for resistance associated 
with multiple ARGs found in the integron’s gene cassettes 
(Di Cesare et al. 2016). Methicillin-resistant Staphylococ-
cus aureus (MRSA), for example, acquires a gene cassette 
that transfers multiple ARGs simultaneously (Sharma et al. 
2016).

Resistance mechanisms and occurrence 
of ARGs in wastewater

Despite the presence of diverse antimicrobial pharmaceuti-
cals in the aquatic environment that could possibly inhibit 
the growth of bacteria, many studies have demonstrated the 
presence of both antibiotic- resistant bacteria and antibiotic 
resistance genes in the same environments. The compounds 
target different sites of the bacterial cell and exert their 
action either with a bactericidal or bacteriostatic effect. In 
order to counteract the effect of antimicrobials and survive 
environmental stress, bacteria have evolved various defense 
mechanisms. The most common resistance mechanisms 
are: (1) alteration or modification of the antibiotic target 
site leading to reduction of drug affinity to the binding sites 
like the modified penicillin binding proteins (PBPs), (2) 
decreased drug accumulation due to decreased permeabil-
ity or to expression of active efflux pumps which transport 

specific or multiple antibiotics out of the cell (Munita and 
Arias 2016), (3) use of acquired or endogenously produced 
enzymes to inactivate the antibiotics, and (4) acquisition of 
alternative metabolic pathways to substitute those inhibited 
by the drug (Kumar et al. 2019) (Fig. 6).

The human gut resistomes are dominated by particular 
ARG types with high prevalence. Genes conferring resist-
ance toward tetracycline, aminoglycoside, beta-lactam, 
macrolide-lincosamide-streptogramin (MLS), and van-
comycin are more abundant compared to resistance gene 
types such as bacitracin, chloramphenicol, fosmidomycin, 
and polymyxin, while six tetracycline resistance genes 
(tet32, tetM, tetO, tetQ, tetW, and tet resistance protein) 
are quite common, indicating widespread occurrence in 
the human gut (Qiu et al. 2020). In a study by Yan et al. 
investigating the distribution of antibiotic resistance 
genes in monkey gut microbiota, 9 types of resistance 
genes were found in human gut microbes, with 11 types of 
resistance genes occurring in both humans and cynomol-
gus monkeys. Among them, the bacteria-harboring resist-
ance genes to bacitracin, tetracycline, and macrolide-lin-
cosamide-streptogramin accounted for a high proportion 
in both humans and cynomolgus monkeys (Yan et  al. 
2022). Although glycopeptide, aminoglycoside, beta-
lactam, sulfonamide, and macrolide-lincosamide-strep-
togramin resistance genes occur frequently in humans 
and cynomolgus monkeys’ gut, tetracycline resistance 
gene, tet(37), has been found to be the most widespread 
and dominant ARG in metagenomic resistome profiles of 
humans and cynomolgus monkeys (Yan et al. 2022). In 
chicken gut, genes coding for resistance to tetracycline, 
macrolide-lincosamide-streptogramin B (MLS) antibiot-
ics, and aminoglycosides were found to be more prevalent 
(Juricova et al. 2021). Data from various sources indi-
cated that many of these ARGs, which are associated with 
the resistance mechanisms (e.g., target protection, target 
modification, drug modification, reduced permeability or 

Fig. 6  The mechanisms of 
antibiotic resistance in bacteria. 
Acquired enzymes inactivate 
the drugs, active efflux pumps 
transport specific or multiple 
antibiotics out of the cell, 
alternative metabolic pathways 
substitute those inhibited by the 
drug, modification of antibiotic 
target site leads to reduction of 
drug affinity to the binding sites 
and decreased drug accumula-
tion due to decreased perme-
ability
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efflux) were found in environmental samples, suggest-
ing that their origin may be traced to humans and animal 
sources. The data encompasses both examples of genes 
detected in cultured bacterial isolates or total DNA iso-
lated from aqueous environment. Both culture-based and 
molecular-based techniques are commonly used to study 
antibiotic resistance in environmental matrices. Although 
culture-dependent methods have limitations when han-
dling environmental bacteria (as culturable fraction is 
only 1% of the total), they are important for understand-
ing isolate phenotypic characteristics and resistance pro-
files. Total DNA is isolated from the samples (e.g., influ-
ent, effluent, or activated sludge) and specific nucleotide 
sequences coding ARGs are detected using polymerase 
chain reaction (PCR) and/or quantitative polymerase 
chain reaction (qPCR) techniques to identify specific 
DNA targets in unculturable microorganisms or those that 
multiply slowly but significantly contribute to resistance 
(Pazda et al. 2019). Therefore the ARGs presented in this 
review have been identified in aqueous environments by 
one or a combination of the following techniques, cul-
ture-dependent, culture-independent, high-throughput 
sequencing, DNA microarray or Shotgun metagenomic 
sequencing.

Resistance to β‑lactams

β-Lactams include penicillin derivatives (penams), ceph-
alosporins (cephems), carbapenems, and monobactams 
that interfere with the synthesis of the bacterial cell wall. 
β-Lactams inhibit the penicillin binding proteins (PBPs), 
which catalyze the transpeptidation process during pep-
tidoglycan synthesis and thus prevent the cross-linking 
that forms a cell wall structure that is closely knit. The 
common mechanisms of β-lactam resistance are altera-
tion of target sites (mutations in PBPs) and direct deac-
tivation by β-lactamases (Tang et al. 2014). Enzymatic 
inactivation is the key resistance mechanism involving the 
expression of β-lactamase enzymes encoded by bla genes 
either on a plasmid or chromosomal DNA, β-lactamases 
cleave the β-lactam ring and inactivate or degrade the 
antibiotic (Deshpande et al. 2004). bla genes commonly 
transferred via mobile genetic elements often coexist 
with other resistance genes, which are co-transmitted 
in the environment, increasing the chances of multidrug 
resistance (Tennstedt et al. 2003; Schluter et al. 2007). 
Many different types of β-lactamases confer resistance 
to the most clinically important β-lactams where a single 
amino acid change may affect the substrate specificity 
of the enzyme. β-lactamases can be categorized (1) into 
classes A–D based on Ambler molecular classification or 

(2) according to the Bush-Jacoby (functional) grouping 
(Ambler 1980; Bush and Jacoby 2010).

Extended spectrum β‑lactamases

Extended spectrum β-lactamases (ESBLs) form a group 
of enzymes that confer significant resistance to penicil-
lins, aminopenicillins, oxyimino-cephalosporins (such 
as ceftazidime, cefotaxime, ceftriaxone, cefepime), and 
monobactam (aztreonam) and their activity is inhibited by 
β-lactamase inhibitors such as clavulanic acid (Coque et al. 
2008). ESBL types are diverse, but three types are the most 
common. The ESBL type TEM β-lactamases are mostly 
found in Gram-negative bacteria, especially in Escherichia 
coli and Klebsiella pneumoniae. These are enzyme deriva-
tives of non-ESBL TEM-1 and TEM-2, in which TEM-1 
was first reported in 1965 from an E. coli isolate from a 
patient in Athens, Greece, and since then, about 140 TEM 
types have been described (Bradford 2001). TEM vari-
ants have been recovered in influent, activated sludge, and 
effluent of a WWTP (Korzeniewska and Harnisz 2013; 
Biswal et al. 2014; Neudorf et al. 2017). SHV-1 type is a 
non-ESBL β-lactamase that shares structural similarity and 
sequence similarity of 68% with TEM-1 and mostly occurs 
in K. pneumoniae. Although more than 60 SHV variants 
have been identified, SHV-5 and SHV-12 are the most com-
mon variants (Jacoby and Munoz-Price 2005). The blaSHV 
gene has been detected in activated sludge and the effluent 
of WWTPs (Szczepanowski et al. 2009; Marti et al. 2013). 
The genes coding for CTX-M β-lactamase enzymes are fre-
quently plasmid acquired and show 40% sequence similarity 
with the genes coding for TEM or SHV β-lactamases. The 
CTX-M group includes more than 80 variants mostly found 
in the strains of Enterobacterales and confers significantly 
higher resistance against cefotaxime compared with other 
oxyimino-cephalosporin substrates such as ceftazidime, cef-
triaxone, or cefepime (Partridge 2015). blaCTX−M variants 
have similarly been identified in influent, activated sludge, 
and the effluent of WWTPs (Szczepanowski et al. 2009; 
Korzeniewska and Harnisz 2013; Biswal et al. 2014). The 
OXA-type enzymes, which belong to the molecular class D, 
differ entirely from TEM and SHV enzymes. Certain OXA 
variants belong to the family of ESBLs according to their 
substrate profile. The blaOXA genes show 20% sequence simi-
larity with the other genes coding for ESBLs, and such genes 
have been recovered in the activated sludge and the effluent 
of WWTPs (Szczepanowski et al. 2009; Yang et al. 2013).

AmpC cephalosporinases

Besides ESBL enzymes, which are the most common forms 
of acquired resistance to broad-spectrum cephalosporins, 
class C β-lactamases, referred to as AmpC-type enzymes, 
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can confer high-level resistance to those antimicrobial 
agents as well. The most common plasmid-encoded AmpC 
enzymes are CMY-, DHA- and ACC-type β-lactamases, with 
CMY-type enzymes having a higher prevalence worldwide 
(Arlet and Jacoby 2002). The production of endogenous 
AmpC β-lactamase (chromosomal cephalosporinase) can 
be induced by several β-lactams including benzylpenicillin 
and narrow-spectrum cephalosporins (Hooper and Gordon 
2001). The enzyme is usually produced in low quantities 
(low-level expression) and determines resistance to amin-
openicillins (ampicillin and amoxicillin) and most of the 
early cephalosporins. blaCMY was the most common AmpC 
cephalosporinase gene detected in the effluent and the acti-
vated sludge of WWTPs (Szczepanowski et al. 2009).

Carbapenemases

Carbapenems, which include imipenem, meropenem, ertap-
enem, and doripenem, are the most effective β-lactams 
against Gram-negative bacilli due to their high permeability 
of bacterial outer membranes, affinity for penicillin-binding 
proteins, and stability against extended-spectrum lactamases 
(ESBLs) (Zavascki et al. 2010). The majority of carbap-
enemases are Class B metallo-β-lactamases (MBL), which 
contain zinc ions rather than serine in their active site, unlike 
the serine in classes A, C and D β-lactamases. MBLs con-
fer resistance to carbapenems, usually in addition to other 
β-lactams except aztreonam, and to clinical β-lactamase 
inhibitors (Cornaglia et al. 2011). The VIM (Verona integron 
encoded metallo-β-lactamase), IMP (imipenem resistant 
pseudomonas) and NDM (New Delhi Metallo-β-lactamase) 
enzymes and their variants are the most commonly iden-
tified as coded on a variety of plasmids and harbored by 
several strain types and species (Johnson and Woodford 
2013). Klebsiella Pneumoniae carbapenemases (KPC) and 
OXA-48-like carbapenemases belong to class A and class 
D β-lactamases, respectively (Poirel et al. 2012). blaIMP, 
blaVIM, blaKPC and blaNDM, which are common in mem-
bers of the Enterobacterales, have been detected in enteric 
bacteria isolated from hospital effluents, activated sludge, 
and effluent in WWTPs (Alexander et al. 2015; Cahill et al. 
2019).

Resistance to aminoglycosides

Aminoglycosides bind to the aminoacyl-tRNA recognition 
site (A-site), the decoding centre on the 16S rRNA of the 
ribosome, thus inhibiting protein synthesis. The most clini-
cally relevant members commonly used against infections 
caused by Gram-negative bacteria are gentamicin (GEN), 
amikacin (AMK) and tobramycin (TOB) (Bartlett 2005; Par-
tridge 2015). Resistance development associated with their 

use is due to acquired inactivation enzymes and 16S rRNA 
methylases (Poirel et al. 2018).

Aminoglycoside modifying enzymes (AME)

These enzymes, mostly linked to genes encoded on mobile 
elements mainly on integrons, confer resistance to aminogly-
cosides by acetylating, adenylylating or phosphorylating the 
aminoglycosides (Ramirez and Tolmasky 2010). The ami-
noglycoside acetyltransferases act by catalyzing the addition 
of an acetyl group (CH3CO) from acetyl coenzyme A to an 
amine group (–NH2) at positions 1, 2, 3, or 6 of the ami-
noglycoside structure, which determines the subset of the 
enzyme (Dolejska et al. 2013). In Gram-negative bacteria, 
the most common aminoglycosides nucleotidyltransferases 
are ANT(2″) and ANT(3″) encoded by the genes aadB and 
aadA, respectively, both of can be part of gene cassettes 
carried in class 1 integrons while Streptomycin resistance 
is mediated by APH(6)-Ia and APH(6)-Id aminoglycoside 
phosphotransferases encoded by the strA and strB genes 
respectively (Ramirez and Tolmasky 2010). More than 50 
genes encoding AME have been described, but many vari-
ants of the gene cassette-borne acetyltransferases (AAC) 
appear to dominate in clinically important Gram-negative 
bacteria (Partridge et al. 2009). Variants of aminoglyco-
side modifying enzymes such as AAC1, AAC2, AAC4 and 
APH(6) have been detected in bacteria isolated from hospital 
wastewater and in both the influent and effluent of WWTPs 
(Khan et al. 2019).

16S rRNA methyltransferases (RMTases)

These are mainly plasmid-borne 16S rRNA methyltrans-
ferases (RMTases) which promote target protection by 
methylating the 16S rRNA of the 30S ribosomal subunit 
at the A site, which interferes with aminoglycoside bind-
ing and results in high-level resistance to aminoglycosides 
(Wachino and Arakawa 2012). Various 16S rRNA methyl-
ases originating from natural aminoglycoside producers as 
self-protection against these antimicrobials such as ArmA, 
RmtA/B/C/D/E/F/G/H, and NmpA, have been identified in 
Gram-negative bacteria including Acinetobacter bauman-
nii, Enterobacterales and Pseudomonas aeruginosa isolates 
(Yu et al. 2007; Batah et al. 2015). ArmA, RmtB RmtC and 
RmtF are the most commonly identified enzymes in Entero-
bacterales, while ArmA RmtA, RmtB and RmtD are the 
16S rRNA methylases promoting aminoglycoside resistance 
described in P. aeruginosa (Jin et al. 2009; Lincopan et al. 
2010; Zhou et al. 2010). Some of these 16S rRNA methylase 
encoding genes, particularly armA and rmtB genes, have 
been found in municipal wastewater, hospital wastewater and 
in both influent and effluent of WWTP (Zurfluh et al. 2017).
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Resistance to quinolones and fluoroquinolones

Quinolones and fluoroquinolones act on DNA gyrase and 
topoisomerase IV enzymes, which have essential roles dur-
ing DNA replication. While DNA gyrase introduces negative 
supercoils, topoisomerase IV removes knots in DNA. The 
enzymes consist of a tetramer with DNA gyrase having two 
GyrA plus two GyrB subunits and topoisomerase IV con-
sisting of two ParC plus two ParE subunits. The enzymes 
introduce double-stranded breaks in the DNA, then re-ligate. 
Quinolones bind to the cleaved-ligated active site, thereby 
intercalating into the DNA and blocking the ligation process, 
resulting in DNA fragmentation, which impairs the function 
of the two enzymes (Aldred et al. 2014).

Chromosomal (Fluoro) quinolones resistance 
bytarget site mutations

Mutations usually occur in the gyrase gene, the preferred 
target of quinolones in Gram-negative bacteria, while addi-
tional mutations in the topoisomerase IV gene in some 
highly resistant isolates have been described (Jacoby 2005) 
(2). These mutations are found in the “quinolone resistance 
determining region” (QRDR) of gyrA and/or parC (Drlica 
et al. 2009). Mutations in gyrB and parE are not common, 
but multiple mutations in gyrA and/ or parC have been 
described in highly resistant isolates of fluoroquinolone-
resistant P. aeruginosa (Muramatsu et al. 2005; Rejiba et al. 
2008). Mutations in the DNA gyrase and topoisomerase IV 
enzymes conferring high-level resistance to fluoroquinolo-
nes, especially ciprofloxacin, have also been observed in 
Enterobacterales (Drlica et al. 2009; Tam et al. 2010). Genes 
encoding these enzymes, which occur naturally in the bacte-
rial chromosome, particularly gyrA and parC, are found in 
influent, effluent and activated sludge (Xu et al. 2015).

Plasmid‑mediated (Fluoro) quinolones resistance

Several qnr genes, including A, B, C, D, S, and VC fami-
lies that occur on plasmids, encode proteins that prevent 
quinolones from entering cleavage complexes by binding 
to DNA, which decreases the action of DNA gyrase and 
topoisomerase IV, with the resultant effect of low level 
fluoroquinolone resistance (Strahilevitz et al. 2009; Aldred 
et al. 2014). Among the most common of these proteins are 
qnrB genes, which are derived from chromosomes of dif-
ferent Citrobacter species (Jacoby et al. 2011), qnrA genes 
derived from Shewanella algae, qnrD genes mostly linked 
to small plasmids in Proteus mirabilis, and qnrS genes com-
mon in Vibrio splendidus (Poirel et al. 2005), Both qnrA 
and qnrB occur frequently on class 1 integrons where they 
are co-carried in association with other resistance determi-
nants (Robicsek et al. 2006). The occurrence of qnr genes 

in an aqueous environment is common. qnrS was detected in 
the activated sludge (Bönemann et al. 2006). Forcella et al. 
observed qnrB genes in wastewater effluent from a WWTP 
(Forcella et al. 2010), while qnrB and qnrS were identified in 
soil that had been irrigated with wastewater (Dalkmann et al. 
2012). The genes qnrA, qnrB, and qnrS were detected in a 
wetland along an urban coast bordering the United States 
and Mexico (Cummings et al. 2011). qnrC and qnrD have 
been found in activated sludge and effluent from a WWTP 
(Xu et al. 2015), whereas qnrA and qnrB have been found in 
a WWTP’s effluent (Marti et al. 2013).

Resistance to sulfonamides and trimethoprim

The combination of sulfamethoxazole and trimethoprim acts 
by interfering with the two successive steps in folate biosyn-
thesis. Sulfonamide resistance is achieved by genes encod-
ing drug-resistant dihydropteroate synthases, sul1, sul2, or 
sul3. The sul1 gene forms part of the 3′-conserved segment 
of class 1 integrons and is often transmitted together with 
other ARGs occurring on gene cassettes in the variable 
region (Recchia and Hall 1995). The sul2 gene frequently 
occurs on plasmids that harbor other ARGs. The sul3 gene is 
often associated with unusual class 1 integrons and has been 
linked to the macrolide resistance gene mef (B) (Sunde et al. 
2008; Liu et al. 2009; Siqueira et al. 2016). Sul1 and sul2 
have been found in Australian and German surface waters 
(Stoll et al. 2012), and in freshwater and marine waters in the 
Philippines (Suzuki et al. 2013). Sul1 has also been found 
in wastewater (Gao et al. 2012; Berglund et al. 2015). Sul1, 
sul2, and sul3 were all found in effluent and activated sludge 
(Szczepanowski et al. 2009). Trimethoprim resistance genes 
are categorized as dfrA and dfrB, with at least 19 different 
dfrA variants and less than 8 different dfrB gene cassettes, 
which encode trimethoprim-resistant dihydrofolate reduc-
tases. These genes were described in Enterobacterales and 
other Gram-negative bacteria (Partridge et al. 2009). Most 
dfrA and dfrB genes occur on gene cassettes integrated into 
class 1 or class 2 integrons. A few other dfrA genes are asso-
ciated with ISCR1 or ISCR2 elements. The occurrence of 
a dfrA gene linked with ISCR1 and sul1 in the 3′-CS in 
a class 1 integron can confer resistance to trimethoprim/
sulfamethoxazole (cotrimoxazole). Sul3 is linked to a type 
of class 1 integron only known to be associated with a gene 
cassette that includes dfrA12 (Partridge et al. 2009). The 
occurrence of dfr genes in the environmental matrices is 
common. dfrA1, dfrA7, dfrA12, and dfrA17 were found as 
part of integrons in a polluted lagoon in Portugal (Henriques 
et al. 2006), and dfrA1 and dfrA12 were found in a WWTP 
with a connection to a slaughterhouse (Moura et al. 2007). 
drfA1 has also been detected in surface waters in Germany 
and Australia (Stoll et al. 2012). dfrA has been reported in 
both the influent and effluent of a WWTP (Bengtsson-Palme 
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et al. 2016), while dfrA and dfrB have been detected in the 
activated sludge (Szczepanowski et al. 2009).

Resistance to tetracyclines

Tetracyclines bind to the 30S ribosomal subunit and inter-
fere with the association of aminoacyl-tRNA, inhibiting 
bacterial protein biosynthesis (Yang et al. 2005). They are 
widely used in veterinary medicine, accounting for 37% 
of the total sales of veterinary antimicrobial agents in the 
European Economic Area (Grave et al. 2014). Due to their 
widespread use, they have imposed selective pressure on 
bacteria, leading to the development of resistance. Tetracy-
clines resistance is through ribosomal protection mediated 
by large proteins coded by genes such as ortA, tetB(P), tetM, 
tetO, tetQ, tetS, tetT, tetW, tetX and decrease in intracellular 
drug concentration achieved through active efflux from the 
cell due to proteins coded by genes such as. tetA, tetA(C), 
tetA(P), tetB, tetC, tetD, tetE, tetG, tetH, tetJ, tetK, tetL, tetV, 
tetY, tetZ (Pazda et al. 2019). A rarely observed mechanism 
is enzymatic inactivation of the antibiotic coded by the gene 
tetX (Aminov et al. 2001). Tetracycline resistance genes are 
carried on bacterial chromosome (e.g. tetA(P), tetA(2), tetJ, 
tetQ, tetV), plasmids (e.g. tetA, tetA(C), tetC, tetD, tetE, tetK, 
tetY), transposons and ICEs (e.g. tetB, tetH, tetM) (Pazda 
et al. 2019). Some of the genes may be found on both the 
chromosome and the integron (e.g. tetG) or on the chromo-
some and plasmid (e.g. tetL) (Tuckman et al. 2007). Many 
of the mobile genetic elements carrying tet genes are con-
jugative and co-transmit genes encoding resistance to other 
antibiotic compounds. The diversity of mobile elements that 
mobilize tet genes includes plasmids, transposons, integrons, 
and ICEs, and contributes significantly to the transmission of 
tetracycline resistance in different bacterial genera (Roberts 
2005). Due to their widespread presence, tet genes includ-
ing tetA, tetB, tetC, tetD, tetE, tetG, tetM, tetO, tetS, and 
tetQ have been identified in wastewater from two WWTPs 
in Wisconsin, USA (Auerbach et al. 2007). tetA, tetC, tetG, 
tetM, tetS, and tetX have been detected in activated sludge 
from different wastewater treatment plants  (Zhang and 
Zhang 2011) (3). TetA, tetB, and tetC have been found in 
a WWTP’s influent, activated sludge, and effluent (Jacoby 
2009; Zhang et al. 2009b; Xu et al. 2015). tetD and tetE 
were found in WWTP influent, activated sludge, and effluent 
(Szczepanowski et al. 2009; Jiao et al. 2018).

Resistance to macrolides

Macrolides bind to the 50S subunit of the bacterial ribo-
some and inhibit protein synthesis during the early stages 
(McArdell et al. 2003; Göbel et al. 2005). Bacterial resist-
ance to macrolide antibiotics occurs through several mecha-
nisms which include: (1) the synthesis of methylase enzyme 

coded by erm genes which methylate 23S rRNA, the target 
site of the antibiotic’s action; (2) antibiotic inactivation by 
modifying enzymes—macrolide phosphotransferases (MPH) 
coded by mph (A) and mph (B) genes on plasmids; and (3) 
active efflux of the drug from the cell coded by genes such 
as mefA and msrA (Leclercq 2002). The most widespread of 
the macrolide resistance genes is ermB, which is linked with 
a variety of different mobile genetic elements such as ICEs 
located on chromosomes, plasmids and non-conjugative 
transposons (Roberts 2008). The ermB gene occurs along 
with other antibiotic resistance determinants on a conjuga-
tive platform (Roberts and Mullany 2009). erm genes such 
as ermA, ermB, ermC, ermF, ermT, and ermX are prevalent 
in a variety of different environments and have been found in 
wastewater in Portugal and surface waters in Germany and 
Australia (Araújo et al. 2010; Stoll et al. 2012). In a WWTP, 
ermB and ermF genes were found in influent, effluent, and 
activated sludge (Yang et  al. 2014), while mph(A) and 
mph(B) were found in effluent and activated sludge (Szc-
zepanowski et al. 2009). Table 3 shows different antibiotics 
and some corresponding ARGs detected in the environment.

Environmental antimicrobial contamination 
and correlation to antibiotic resistance

Antibiotic concentrations in wastewater have been reported 
ranging from ng  L−1 to mg  L−1, depending on the source: 
hospitals, urban wastewater, and/or WWTPs (Segura et al. 
2009; Hughes et al. 2013). Despite their occurence, stud-
ies have not yet established the effect of antibiotic levels 
on bacteria in the environment, although antibiotic concen-
trations lower than the minimal inhibitory concentration 
(MIC) (15,000 ng  L−1 for tetracycline, and from 2500 ng 
 L−1 to as low as 100 ng  L−1 for ciprofloxacin) have been 
shown in vitro to select for antibiotic resistant bacteria 
based on mutations carried by specific strains (Gullberg 
et al. 2011). In comparison with laboratory experiments, 
physicochemical parameters and other dynamics in a com-
plex environmental community may influence the concen-
trations required for selection. However, the negative effects 
of antibiotic contamination are likely to manifest at differ-
ent concentrations found in wastewater. Curiously, studies 
have shown that conjugation and recombination events in 
bacteria can be induced by certain antibiotics even at sub-
inhibitory concentrations (Barr et al. 1986; Úbeda et al. 
2005), confirming the role of HGT in the transfer of ARGs 
in antibiotic-contaminated environments. According to some 
studies, environments exposed to extremely high levels of 
antibiotic contamination, especially effluent from pharma-
ceutical manufacturing facilities, show increased antibiotic 
resistance indicators (Berglund 2015). For example, efflu-
ent from an oxytetracycline-manufacturing plant in China 
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was found to contain high levels of oxytetracycline (Li et al. 
2008). In this study, bacterial strains isolated downstream 
of the river receiving the oxytetracycline waste were more 
frequently multidrug resistant and had significantly higher 
MICs against various antibiotic classes compared to those 
isolated upstream of the river. In addition, many different 
tet genes were found in the isolates obtained downstream 
(Li et al. 2010). In a similar study, the concentration of 
ciprofloxacin was more than 1000 times the inhibitory 
concentration for some bacterial strains in effluent from a 
WWTP processing wastewater from an antibiotic manufac-
turing plant in India (Larsson et al. 2007), and the water 
downstream of the plant contained more abundant ARGs 
compared to upstream (Kristiansson et al. 2011). Similarly, 
sulfamethoxazole and trimethoprim concentrations in a river 
downstream of a pharmaceutical manufacturing facility in 
Pakistan were found to be 49,000 ng  L−1 and 28,000 ng 
 L−1, respectively, while the corresponding ARGs sul1 and 
dfrA1 concentrations were 0.80 and 0.43 genes/16S rRNA 
genes, respectively (Guerin et al. 2009). It was established 
that ARG abundance was correlated with antibiotic con-
tamination. For instance, in a Swedish river, higher ARG 
concentrations were determined downstream of a WWTP 
discharging treated effluent from the adjacent city (Berglund 
et al. 2015), whereas in a river in Colorado, USA, ARG 
concentrations were found to be higher at sites impacted by 

anthropogenic activity than at pristine sites upstream (Pei 
et al. 2006). It remains unclear whether the reported increase 
in ARG concentrations in these studies was due to anthropo-
genic activities or proliferation. Nonetheless, the abundance 
of these ARGs may be an indicator of their involvement in 
the transformation of bacteria into resistant strains. These 
findings necessitate advancement of experimental research 
to decipher the complex interactions involved in antibiotic 
resistance proliferation driven by antibiotics and dissemina-
tion in environmental microbial communities.

Approaches to combat antimicrobial 
resistance to complement antibiotics 
and ARGs removal in WWTPS

Various reviews have adopted an approach to summarize 
the fight against the spread of antimicrobial resistance (AR) 
from the point of view of advancing the technologies applied 
in the removal of antibiotics and ARGs during wastewater 
treatment (including chlorination, UV disinfection, ozoni-
zation, solar photocatalysis, advanced oxidation process, 
membrane bioreactor, bioelectrochemical system, solar 
Fenton oxidation) (Barancheshme and Munir 2018; Pazda 
et al. 2019; Zhu et al. 2021). However, in addition to upgrad-
ing these technologies to reduce the resistance determinants, 

Table 3  Different antibiotics and the respective ARGs found in the environment

Antibiotics classes Type of ARGs Detected environment

Tetracyclines tetA, tetA(C), tetB, tetC, tetE, tetF, tetH, tetK, tetL, 
tetM, tetN, tetO, tetQ, tetS 

Sewage, sludge, surface water, fish ponds, natural 
water bodies (Cheng et al. 2020), activated sludge 
(Bengtsson-Palme et al. 2016; Zhang et al. 2016; Jiao 
et al. 2018)

Macrolides mphA, mphB, ereA2, ermA, ermB, ermF, ermO, mefA Natural water bodies
(Cheng et al. 2020), influent, activated sludge, effluent 

(Bengtsson-Palme et al. 2016; Jiao et al. 2018; Sabri 
et al. 2020)

Sulfonamides and trimethoprim sulI, sulII, sulIII, dfrA, dfrB Natural water
bodies (Oberoi et al. 2019), influent, activated sludge, 

effluent (Bengtsson-Palme et al. 2016; Neudorf et al. 
2017; Sabri et al. 2020)

Beta-lactams tem, shv, ctx, ampR, cit, ges, nps, sme, veb Various environment
(Oberoi et al. 2019), influent, activated sludge, effluent 

(Zhang and Li 2011, Yang et al. 2013, Biswal et al. 
2014, Amador et al. 2015)

Quinolones gyr(A, B), qnrA, par(C, E), qnrB, qnrC, qnrS Natural water bodies
(Oberoi et al. 2019), influent, effluent, activated sludge 

(Marti et al. 2013; Xu et al. 2015)
Chloramphenicols catI, catII Natural water bodies

(Oberoi et al. 2019)
Glycopepetides vanA, vanB, vanC1, vanC2,

vanC3, vanD 
Natural water bodies (Oberoi et al. 2019)

Multidrug efflux pump genes amrB, mdtG, mdtH, mexD, qacE∆1 Influent, activated sludge, effluent (Yang et al. 2013, 
2014; Jiao et al. 2018)
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this review explores a divergent approach by presenting the 
alternative antibiotic therapeutic approaches to minimize AR 
by reducing or substituting antibiotic use by humans, and in 
addition, the removal antibiotics from contaminated sites 
through the bioremediation approach. Whereas stewardship 
programs are continuously promoted to enhance judicial 
use of antibiotics in the hospital and community sectors, 
create awareness on hygiene and effective management of 
medical wastes, and to limit the use of antimicrobials in 
animal husbandry among others, the development of novel 
therapeutic approaches to reduce antimicrobial resistance is 
highly desirable and continues to receive increased attention. 
Notable approaches which have shown prospects include the 
use of phage therapy, vaccine strategy, nanoparticles, and 
antimicrobial peptides (Chatterjee et al. 2016), as well as 
the use of natural compounds.

Phage therapy

Bacteriophages (phages) are viruses that infect and kill 
bacteria through lysis (Clokie et al. 2011). Phage therapy 
has several advantages, including replication at the infec-
tion site, high specificity to target bacteria without affect-
ing commensal flora, fewer side effects compared to other 
treatments, bactericidal activity against antibiotic-resistant 
bacteria, and ease of administration (Chatain-LY 2014). 
Phages can increase treatment efficacy by being genetically 
engineered to deliver antimicrobial agents to bacteria (Pires 
et al. 2016). For instance, a variety of genetically engineered 
E. coli phages were created to degrade biofilms, or target 
specific DNA sequences involved in antibiotic resistance 
by delivering RNA-guided nucleases (Citorik et al. 2014). 
Although phage-infected bacteria can develop resistance to 
phages over time, the rate of developing resistance to phages 
is much lower than the rate of developing resistance to anti-
microbials (Morris Jr et al. 2001). Instead of using a single 
type of phage, a mixture of phages may be able to slow 
the evolution of bacterial resistance to phages (Örmälä and 
Jalasvuori 2013). Moreover, phages continue to be one of 
the most abundant genetic resources, and they evolve quickly 
in response to bacterial resistance (Stern and Sorek 2011), 
which makes them promising in the control of bacterial 
infections.

Vaccine strategy

The vaccine strategy aims to prevent infection before it 
becomes established, thereby reducing bacterial infections. 
Notable examples are the potential candidate vaccines that 
have shown prospects for the control of bacteria such as 
P. aeruginosa, which include, LPS O-antigen, polysaccha-
ride protein conjugates, outer membrane proteins OprF and 
OprI, the type III secretion system component PcrV, flagella, 

pili, DNA, and whole killed cells (Döring and Pier 2008). 
Although vaccines may be effective methods of preventing 
antimicrobial resistance, impaired host defense mechanisms 
frequently reduce vaccination efficacy (Baker et al. 2020). 
Steps towards the achievement of a vaccine strategy against 
pathogens are being pursued, such as the development of 
novel P. aeruginosa vaccines, which is currently underway. 
The POH vaccination was found to be effective in protect-
ing mice against clinical P. aeruginosa strains (Yang et al. 
2017). The development of multivalent vaccines appears 
promising and may provide a future method of protection 
against bacterial infections.

Nanoparticles

Nanoparticles are tiny materials with a surface area to mass 
ratio of more than 100 nm that have been used in a variety of 
chemical, biological, and biomedical applications (Jeevanan-
dam et al. 2018). Antimicrobial nanoparticles are currently 
receiving a lot of attention for the treatment of a variety of 
diseases, including bacterial infectious diseases, due to sev-
eral advantages, including high penetrability into bacterial 
membranes, the ability to disrupt biofilm formation, pos-
sessing multiple antimicrobial mechanisms, and are good 
antibiotic carriers (Wang et al. 2017). Silver nanoparticles, 
for example, produce silver ions that inhibit DNA synthesis 
and are effective antimicrobial agents (Wang et al. 2017). 
Moreover, silver nanoparticles have demonstrated low cyto-
toxicity to mammalian cells, though further in vivo testing 
is required (Salomoni et al. 2017). It has been demonstrated 
that attaching antibiotics to nanoparticle surfaces signifi-
cantly improves the efficacy of both antibiotics and nano-
particles (Brown et al. 2012). Nonetheless, nanoparticles 
present certain drawbacks because of their high surface area 
to mass ratio, which makes them highly reactive and may 
cause reactions, thus potentially toxic to the human body 
(Elsaesser and Howard 2012). In addition, they are easily 
transported to distant organs and can cause systemic toxicity 
(Yildirimer et al. 2011). Although they may offer an effec-
tive alternative to the use of antibiotics, nanoparticles are 
still restricted to preclinical stage experiments due to their 
potential side effects and thus, have not yet been introduced 
into clinical practice.

Antimicrobial peptides

Antimicrobial peptides, also referred to as host defense pep-
tides, are produced by a variety of organisms and have anti-
microbial activity against a wide range of microorganisms 
(Toke 2005). It is widely assumed that these peptides target 
the cytoplasmic membrane, resulting in cell death (Park 
et al. 2011). They have been shown to have anti-biofilm 
properties in addition to antimicrobial activity (Chung and 
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Khanum 2017). Antimicrobial peptides have been proposed 
as an alternative to conventional antibiotics to combat bac-
terial infections due to their broad-spectrum activity, low 
levels of induced resistance, and low toxicity to the host 
(Hancock et al. 2016). Antimicrobial peptides promote anti-
biotic uptake, disrupt biofilm formation, or inhibit bacterial 
quorum sensing when used with conventional antibiotics to 
produce synergy against bacteria (Grassi et al. 2017). For 
example, GL13K combined with tobramycin increased the 
clearance of P. aeruginosa biofilm (Hirt and Gorr 2013). 
Antimicrobial peptides have the potential to reduce the 
spread of antimicrobial resistance. However, they are likely 
to be limited by rapid degradation in the human body due 
to proteolysis, hemolytic activity in host cells, and reduced 
activity based on salt and pH sensitivity (Aoki and Ueda 
2013).

Naturalcompounds

Use of natural compounds has demonstrated potential pros-
pects to control bacterial infections. A variety of natural 
compounds have been tested against pathogens and shown 
commendable levels of efficiency. Notable examples include, 
the combined effect of methicillin and the bacteriocin lead-
erless two peptides enterocin DD14 (EntDD14), which has 
recently shown the capability to reduce biofilm formation of 
Staphylococcus aureus S1 by about 30% (Belguesmia et al. 
2021). In this study, EntDD14 downregulated the expression 
of the main genes, nuc and pvl, involved in biofilm forma-
tion, which code for nuclease and Panton-Valentine leuco-
cidin, respectively, known to be responsible for MRSA-S1 
virulence. Other genes, such as cflA, cflB, and icaB, which 
code for bacterial ligand clumping factors A, B, and inter-
cellular adhesion factor, respectively, were also shown to be 
downregulated, implying that bacteriocins and antibiotics 
can be used in tandem to treat bacterial infections. The Pan-
toea Natural Product 2 (PNP-2) and Pantocin A, produced 
by the clinical strains of Pantoea agglomerans Tx10, a cystic 
fibrosis isolate, have also shown the ability to inhibit the 
growth of a wide range of multi-drug resistant Gram-neg-
ative and Gram positive bacteria, including Enterobacter, 
E. coli, Klebsiella, Kosakonia, Pseudocitrobacter, Salmo-
nella, Staphylococcus, and Streptococcus (Robinson et al. 
2020). Their broad spectrum of activity suggests potential 
for the development of a therapeutic strategy to control anti-
microbial resistance. In a recent study, some natural com-
pounds belonging to pyrrolidine, anthracyclines, and indole 
derivatives identified from the actinobacteria, Streptomyces, 
were shown to have inhibitory activity on HIV-1 reverse 
transcriptase, indicating that actinobacteria are promising 
sources of biological active metabolites, which could pro-
vide important bioactive compounds as potential antibiotic 
drugs (Hei et al. 2021).

Bioremediation of antibiotics 
from contaminatedsites

Antimicrobials are discharged into the environment through 
application in clinical treatment and via animal manure, 
often contaminating the environment where they are per-
sistent (Bunce and Hellyer 2018; Ezzariai et  al. 2018). 
Bioremediation is the in-situ or ex-situ application of liv-
ing organisms to detoxify and/or extract chemical com-
pounds (Ezzariai et al. 2018). Bioremediation presents a 
promising strategy to remove harmful compounds from 
the contaminated environment and has been given atten-
tion as an efficient and cost-effective method compared to 
conventional techniques routinely applied in WWTPs (Koch 
et al. 2021). Bacteria-mediated recovery of chemicals using 
extremophiles is an environmentally friendly approach to 
clean antibiotics from contaminated sites (Morikawa 2006). 
Several studies have explored this approach with promising 
outcomes. For example, a study conducted by Al-Gheethi 
et al. suggests the use of Bacillus subtilis 1556WTNC for the 
successful removal of beta-lactams; cephalexin, ceftaroline, 
ampicillin, and amoxicillin from wastewater (Al-Gheethi 
et al. 2014). Algae has also been found to be safe and cost-
effective in bioremediation of contaminants, including anti-
biotics (Tasho and Cho 2016). Antibiotics such as cefra-
dine, cephalexin, cefixime, and ceftazidime can be efficiently 
removed by the green alga Chlorella pyrenoidosa (Yu et al. 
2017). Recent reviews show that published studies done in 
the past few years have also demonstrated the prospects of 
using fungi in biodegradation of pharmaceuticals and pesti-
cides (Naghdi et al. 2018).

Future perspectives

There is a growing body of evidence demonstrating that the 
routine discharge of antibiotic compounds and their metabo-
lites from a variety of sources has loaded multiple antimi-
crobials, including β-lactams, macrolides, quinolones, ami-
noglycosides, sulfonamides, trimethoprim, and tetracyclines 
residues into environmental matrices in many regions across 
the world. Despite numerous studies on the impact of their 
contamination, the individual and combined health effects 
of antibiotics on living organisms, including human beings, 
and a more comprehensive understanding of their potential 
risks in the environment are subject to further investigation.

Culture independent techniques are currently available 
for the detection of resistance genes or gene families, espe-
cially polymerase chain reaction (PCR) and/or quantitative 
polymerase chain reaction (qPCR)) and have contributed to 
the expansion of knowledge on the ARGs’ diversity, and 
abundance in aqueous environments as antimicrobial resist-
ance reservoirs. In addition, intensifying the application of 
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targeted functional and sequence-based metagenomics and 
new metagenomics-based studies are likely to reveal more 
insights into the occurrence and distribution of ARGs in 
wastewater.

To reduce the threat of the escalation of antimicrobial 
resistance facilitated by the aqueous environment, strict 
threshold limits for antibiotic release from point sources 
such as hospitals and animal husbandry, as well as thresh-
olds for release of other pharmaceuticals, and biocides that 
drive co-selection of resistance, need to be established and 
applied universally. Further, diverse studies on the role of 
environmental antibiotic contamination and its correlation 
to the development of antibiotic resistance would aid in the 
formulation and strengthening of the intervention measures.

Given the threats posed by antimicrobial resistance to 
human health, it would be useful to intensify research on the 
prospective bioremediation approaches to remove environ-
mental antibiotics to complement the variety of technologies 
that are applied to remove antibiotics and ARGs in wastewa-
ter treatment facilities.

Although a combination of approaches to remove antibi-
otics and ARGs from WWTPs has yielded promising out-
comes, the adoption of novel therapeutic strategies, either 
alone or in conjunction with traditional therapies to control 
bacterial infections, offers a multifaceted approach to slow 
down the rapidly growing resistance to antimicrobial drugs 
in bacteria.

Conclusions

The environment constituted by hospital effluents and 
wastewater treatment plants is rich in antimicrobial micro 
contaminants and creates selection pressure, leading to 
the emergence of antimicrobial resistance by providing an 
ideal platform for the residence and interaction of antibiot-
ics, bacteria, and resistance genes. The absence of stand-
ardized regulations to monitor these microcontaminants has 
contributed to the escalation of antibiotic resistance in the 
environment. Evidence suggests that effluent from WWTPs 
is a reservoir of ARGs and is pivotal in their dissemination 
to both commensal and pathogenic bacteria in the receiving 
environments facilitated by horizontal gene transfer. The 
development of antimicrobial resistance spurred by anti-
biotics and other stressors in the environment raises con-
cern due to the likelihood of simultaneous transmission of 
virulence and resistance determinants to multiple antibiotic 
classes by mobile genetic elements in bacteria, which may 
directly or indirectly reach human and animal hosts. The 
progression of AR in the environment presents a consid-
erable challenge to the successful achievement of the One 
Health initiative envisaged by the World Health Organiza-
tion as well as the full realization of the United Nations 

Sustainable Development Goals. Meanwhile, advanced tech-
nologies applied to eliminate antibiotics and ARGs from 
WWTPs are important to mitigate the adverse effects of such 
toxicants on aquatic environment.
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