Vol. 189: 35-51, 1999

Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae

S. W. Jeffrey^{1,*}, H. S. MacTavish^{1,2,3}, W. C. Dunlap⁴, M. Vesk², K. Groenewoud^{1,2}

¹CSIRO Division of Marine Research, GPO Box 1538, Hobart, Tasmania 7001, Australia
 ²Electron Microscope Unit, Sydney University, New South Wales 2006, Australia
 ³Department of Agricultural Science, University of Tasmania, Tasmania 7001, Australia
 ⁴Australian Institute of Marine Science, PMB 3, Townsville, Queensland, 4810, Australia

ABSTRACT: Marine microalgae (152 species, 206 strains) from 12 classes were examined for the presence of UVA- and UVB-absorbing compounds. Cultures were grown under white fluorescent light without supplementary UVA or UVB radiation and were extracted after harvest in tetrahydrofuran:methanol (20:80, v/v). Ratios of UV absorbance (280 to 390 nm) to chlorophyll *a* (chl *a*) (665 nm) obtained by spectrophotometry ranged from 0.18 to 6.75. Three groups of species were distinguished: those with low UV:chl *a* ratios (0.18 to 0.9, diatoms, green algae, cyanophytes, euglenophytes, eustigmatophytes, rhodophytes, some dinoflagellates, some prymnesiophytes), those with intermediate ratios (0.9 to 1.4, chrysophytes, some prasinophytes, some prymnesiophytes) and those with very high ratios (1.4 to 6.75, surface bloom-forming dinoflagellates, cryptomonads, prymnesiophytes and raphidophytes). UV-absorbing pigments varied across species of the same algal class and strains of the same species. HPLC analysis of extracts of 5 species (1 diatom, 2 bloom-forming raphidophytes and 2 bloomforming dinoflagellates) showed suites of mycosporine-like amino acids in 4 of them, which included mycosporine-glycine, asterina-330, shinorine, porphyra-334 and palythine. The dinoflagellate *Gymnodinium catenatum* also contained major quantities of unknown UV-absorbing compounds.

KEY WORDS: Ultraviolet radiation · Microalgae · Dinoflagellates · Cryptomonads · Prymnesiophytes · Raphidophytes · Mycosporine-like amino acids Bloom-forming species · *Gymnodinium catenatum*

INTRODUCTION

Ultraviolet-B radiation (UVB) reaching the earth's surface is increasing as a result of anthropomorphic damage to the stratospheric ozone layer. First detected over the Antarctic by Farman et al. (1985), seasonal ozone depletion has now also been documented above the Arctic and mid-latitudes (north and south) (e.g. Frederick & Snell 1988, Roy et al. 1990, Stolarski et al. 1992, Kerr & McElroy 1993). Of immediate concern to this expanding global problem are the potential threats to biological ecosystems (Calkins 1982). UVB (280 to 320 nm) has a high energy level per photon and is effectively absorbed by nucleic acids (affecting the genome), proteins and pigments. Not only are terrestrial ecosystems at risk (Caldwell 1981, Bornman 1989, Bornman & Teramura 1993, Rozema et al. 1997), with evidence that UVB affects plant morphology, biomass production and photosynthesis, but marine ecosystems may also be threatened (Worrest 1982, El-Sayed & Stephens 1992).

Even before the recent ozone concerns were apparent, it was known from direct measurements (Jerlov 1950, 1976) and from inhibition studies of *in situ* phytoplankton productivity (Steeman Nielsen 1964, Jitts et al. 1976, Lorenzen 1979, Smith et al. 1980, Worrest et al. 1980) that, in aquatic systems, UVB penetrates to ecologically significant depths (up to 20 m). More recent *in situ* measurements by Smith et al. (1992) have shown that UV penetrates to 70 m depth in oligotrophic waters, and that direct inhibition of phyto-

^{*}E-mail: s.w.jeffrey@marine.csiro.au

plankton productivity in Antarctic waters (0 to 12%) is correlated with ozone depletion (Worrest & Häder 1997).

Recent research has highlighted a variety of UVB damage effects in phytoplankton, expanding on early concepts (Halldal 1967). These include damage to nuclear DNA (dimer formation, Karentz et al. 1991a, Buma et al. 1995, 1996) with consequent inhibition of cell growth rates, inhibition of photosynthesis with lesions in the Photosystem II-D1 reaction centre protein (Jordan et al. 1991), loss of, and changes to, the key photosynthetic enzyme, ribulose bis-phosphate carboxylase (Rubisco) (Strid et al. 1990, Lesser et al. 1994, 1996, Wilson et al. 1995, Lesser 1996), decreased nitrogen uptake, metabolism and protein synthesis (Döhler et al. 1987, 1991, Goes et al. 1995, Döhler 1996), and loss of photo-orientation and motility in dinoflagellates, diatoms and other species (e.g. Häder & Häder 1988, Ekelund 1990, Donkor et al. 1993, Nielsen & Ekelund 1993, Sundbäck et al. 1996, 1997). The severity of these effects depends on the length and intensity of UVB exposure, the nutrient status of the cells, individual species responses, and supplementary radiation involved in repair processes (e.g. photosynthetically active radiation (PAR), UVA or red/blue radiation).

To counteract harmful UV effects, terrestrial and aquatic plants have evolved UV-protective, anti-oxidant, avoidance and repair mechanisms to aid survival (see Dunlap & Shick 1998). These include rapid DNA repair mechanisms (Sancar & Sancar 1988, Buma et al. 1995), avoidance reactions (e.g. photo-orientation in diatoms and dinoflagellates, see above), protective sheaths in cyanobacteria and protective cell walls in freshwater green microscopic algae (Garcia-Pichel & Castenholz 1991, Xiong et al. 1997), and synthesis of cytoplasmic protective pigments with a UV-absorbing sunscreen function. These last compounds include flavonoids in higher plants (Caldwell 1981) and mycosporine-like amino acids (MAAs) in marine biota (Nakamura et al. 1982, reviewed by Dunlap & Shick 1998).

UV-absorbing MAAs have been found in marine plants and animals from Antarctic regions to the tropics (Tsujino et al. 1980, Nakamura et al. 1981, 1982, Dunlap & Chalker 1986, Dunlap et al. 1986, 1989, Karentz et al. 1991b, Shick et al. 1991, 1992, 1995, Stochaj et al. 1994, Dionisio-Sese et al. 1997, Dunlap & Shick 1998). MAA-like compounds were studied in a small number of microalgae—the 4 dinoflagellates *Noctiluca miliaris* (Balch & Haxo 1984), *Alexandrium excavatum* (Carreto et al. 1990), *Prorocentrum micans* and *Gonyaulax polyedra* (Vernet et al. 1989), colonial strains of the prymnesiophyte (=haptophyte) *Phaeocystis pouchetii* (Marchant et al. 1991), Antarctic diatom mats (Karentz et al. 1991b), a number of Antarctic diatom cultures (Helbling et al. 1996, Riegger & Robinson 1997), and the tropical cyanobacterium *Trichodesmium* sp. (Shibata 1969). Some cyanobacteria are known to have the UV-absorbing extracellular sheath pigment scytonemin (Garcia-Pichel & Castenholz 1991), whereas in freshwater green algae sporopollenin in cell walls acts as a UV absorber (Xiong et al. 1997). MAAs have also been found in 20 strains of cyanobacteria (13 genera) isolated from habitats receiving high natural solar radiation (Garcia-Pichel & Castenholz 1993), 20 isolates of *Microcoleus* (cyanobacteria) (Karsten & Garcia-Pichel 1996), and in a community of halophilic cyanobacteria (Oren 1997).

UV-absorbing compounds have long been suggested to protect cells from UV damage (see Shibata 1969, Dunlap et al. 1986, Vernet et al. 1989, Carreto et al. 1990, Helbling et al. 1996), but experimental evidence was unclear until recently. Adams & Shick (1996) provided the first direct experimental evidence for the UV-photoprotective function of MAAs in the eggs of sea urchins during reproductive development. More recently Neale et al. (1998) have shown that UV sunscreens (MAAs) in the dinoflagellate *Gymnodinium sanguineum* clearly protect against UV inhibition of photosynthesis.

In the present work we investigated the occurrence of UV-absorbing compounds in 152 species (= 206 strains) of cultured marine microalgae from 12 classes, a greater variety than had previously been examined, in order to gain further understanding of MAA distribution as a possible protective mechanism against UV radiation in the phytoplankton. The strains came from our extensive bank of cultured microalgae in the CSIRO Algal Culture Collection and were isolated from a variety of tropical, temperate and polar habitats, both in Australia and overseas (Jeffrey 1980, Jeffrey & LeRoi 1997, CSIRO 1998). Particular attention was given to surface bloom-forming species that might normally live in a UV-rich environment (dinoflagellates, prymnesiophytes, cryptomonads and raphidophytes). In addition, we examined natural surface phytoplankton samples, containing mainly dinoflagellates and diatoms, that had received ambient solar radiation.

MATERIALS AND METHODS

Algal cultures. Cultures (152 species, 206 strains) from 12 algal classes were obtained from the CSIRO Algal Culture Collection (Jeffrey 1980, CSIRO 1998). Full details including dates of isolation and deposition into the Collection are given in CSIRO (1998).

The cultures were grown according to Jeffrey & LeRoi (1997), and were maintained in stationary 125 ml

pyrex Erlenmeyer flasks containing 75 ml medium. Names of species examined, CSIRO culture code numbers, culture media and growth temperatures are listed in Table 1 Growth temperatures were 25 to 27°C for tropical species, 12 to 17.5°C for temperate species and 5°C for Antarctic species. Photosynthetically active radiation was provided by banks of Philip's Daylight fluorescent tubes (TL20W47 de Luxe), beneath glass shelves supporting the culture flasks. Philip's Daylight fluorescent lamps produce a more uniform spectrum than cool white lamps and therefore simulate the natural daylight spectrum more closely (see Behrenfeld et al. 1994). Dinoflagellates received overhead illumination. No supplementary UV radiation was provided. Light irradiances (12 h light:12 h dark cycles) were generally 70 to 80 $\mu E~m^{-2}~s^{-1},~or~20~\mu E~m^{-2}~s^{-1}$ for picoplanktonic cyanobacteria isolated from the deep euphotic zone. Light measurements were obtained in the culture flasks with a Biospherical Optics light meter before algal innoculation.

Field samples. Natural phytoplankton field samples having received natural incident radiation were collected with a 33 μ m mesh plankton net from a depth of 1 m at the CSIRO Marine Laboratories wharf station (Derwent River Estuary, water depth 5 to 6 m). Dates of collection were 11 March 1991, 16 May 1991, 22 July 1992, and 15 September 1992. This station is usually rich in dinoflagellates (*Ceratium, Dinophysis, Gymnodinium* spp.) alternating with diatoms (mainly *Chaetoceros* spp., Hallegraeff et al. 1989). Each sample was examined microscopically to determine major cell types before extraction. The samples were extracted by the same techniques as the cultured samples, described below.

Culture harvest and pigment extraction for spectrophotometry. Cultured microalgae, which had been maintained in the absence of supplementary UV radiation for between 2 and 35 yr, were harvested in mid to late log phase. Before extraction each culture was checked microscopically to ensure good cell morphology. Duplicate 10 ml samples were withdrawn from each culture, usually 2 to 4 h into the light cycle, and cells were harvested by centrifugation at 2000 q for 3 to 5 min. The pellet was extracted with 1 ml cold (5°C) tetrahydrofuran : methanol (20:80, v/v), a solvent mixture which provided maximum extraction efficiency for both MAAs and lipophilic pigments (Chalker & Dunlap 1982, Dunlap et al. 1986). Cells were chilled in an ice bath during extraction and were sonicated for 60 s in a sonicator bath, using a Bransonic Model 52 sonicator. The solvent mixture extracted both UVabsorbing mycosporine amino acids and photosynthetic pigments from most algal cells, leaving a colourless pellet. Some of the chlorophytes with tough cellulose walls were extremely difficult to extract. In

these cases cell pellets were frozen in a small volume of distilled water before solvent extraction, to weaken the cell walls for enhanced extraction efficiency. After centrifugation in a Sorvall refrigerated centrifuge, the absorption spectrum of the supernatant was taken between 190 and 700 nm with a Shimadzu UV-240 recording spectrophotometer, the baseline of which had been previously set to zero. No drift was encountered. The relative proportion of UV absorbance to chl *a* was calculated as the ratio of absorbance intensity at the UV maxima between 280 and 390 nm to that of chlorophyll *a* at 665 nm. All extraction procedures were carried out in a darkened fume cupboard, to minimize photo-oxidative pigment breakdown of chlorophylls and carotenoids during analysis.

Extraction of samples for HPLC analysis of mycosporine amino acids. Extracts of 5 species of microalgae were examined by HPLC to see if they contained UV-absorbing compounds similar to the MAAs found in other marine plants and animals. Cultures examined were the diatom Chaetoceros affinis, the raphidophytes Heterosigma carterae and Fibrocapsa sp., and the dinoflagellates Woloszynskia sp. and Gymnodinium catenatum. For each species 450 ml late log phase cultures were used for these extractions. Cultures were centrifuged in a Sorvall refrigerated centrifuge at 5000 g for 5 min. The cell pellets were extracted with 1 to 2 ml of cold (5°C) tetrahydrofuran:methanol (20:80, v/v) in an ice bath, using a Braun Labsonic Model 1510 sonicator with a 4 mm needle probe (1 min), and left for 30 min at 5°C to fully extract. MAAs are stable in wet methanol under the following conditions: 1 to 2 d at room temperature (e.g. 20°C), 1 wk at 5°C, 2 to 3 wk at -20°C and 2 mo at -80°C. Since stability rapidly decreases with storage temperatures greater than 30°C care was taken to keep temperatures around 5°C during experimental treatments. When dry, samples are stable at room temperature for several months.

After centrifugation of the combined extracts (about 5 to 6 ml), a small aliquot (0.1 to 0.2 ml) was diluted for spectrophotometry, and equal volumes of the remaining extract were placed in 4 Eppendorf tubes and evaporated in a Savant evaporator for several hours at ambient temperature (0.9 to 1.5 ml). Samples could be left overnight at -20° C if evaporation was not complete, and evaporations were then completed the following day. The quadruplicate tubes of the lyophilized algal extracts of each species were then dispatched to Dr W. Dunlap at the Australian Institute for Marine Science (AIMS) for HPLC analysis. MAAs are stable under these conditions (see above).

HPLC analyses. Analyses of MAAs were performed according to published procedures (Dunlap & Chalker 1986, Dunlap et al. 1989, Karentz et al. 1991b, Stochaj Table 1. UV-absorption characteristics of tetrahydrofuran:methanol (20:80, v/v) extracts of 152 species (206 strains) of cultured unicellular manne algae. Ratios of UV absorption to chl *a* absorption are listed with UV maxima in parentheses. For geographic origin of strains see the CSIRO Algal Culture Collection Strain List (CSIRO 1998)

Class and species	CSIRO culture code	Culture medium ^a	Growth temp. (°C)	Abs. ratio of major UV peaks:chl a (665 nm) 280–320 nm 320–340 nm 340–390 nm
BACILLARIOPHYCEAE				
Centrales	00.70	C	17.5	0.74 (227.0)
Chaetoceros affinis Lauder	CS-78	G ₂	17.5	0.74 (337.9)
Chaetoceros calcitrans (Paulsen) Takano	CS-178	IE ₂	17.5	0.04 (337)
Chaetoceros didymus Ehrenberg	CS-2	f ₂	17.5	0.00(337)
Chaetoceros muelleri Lemmermann	CS-176	f ₂	17.5	0.74 (337.5)
Chaetoceros cf. mitra (Bail.) Cleve	CS-70	G	17.5	0.48 (337.9)
Chaetoceros cf. radians Schutt	CS-68	G	17.5	0.81(337.3)
Chaetoceros socialis Lauder	CS-236	G	17.5	0.83 (337.1)
Coscinodiscus cf. wailesii Gran. et Angst.	CS-238	f ₂	17.5	0.52 (338.1)
Coscinodiscus sp.	CS-151	f ₂	17.5	0.69 (338)
<i>Detonula pumila</i> Schutt	CS-103	f ₂	17.5	0.78 (337.1)
Ditylum brightwellii (T. West) Grunow	CS-74	G	17.5	0.49 (337.3)
Ditylum brightwellii (T-West) Grunow	CS-131	f ₂	17.5	0.72 (337.9)
<i>Extubocellulus spinifer</i> (Hargraves et Guillard) Hasle, Von Stosch et Syvertsen	CS-136	G ₂	17.5	0.82 (337.9)
Lauderia annulata Cleve	CS-30	G	17.5	0.71 (337.5)
Minutocellus polymorphus (Hargraves et Guillard) Hasle, Von Stosch et Syvertsen	CS-3	f ₂	17.5	0.74 (337.7)
<i>Odontella aurita</i> (Lyngbye) de Brebisson	CS-19	f ₂	17.5	0.61 (337.7)
Odontella mobiliensis (Bail.) Grunow	CS-82	f2	17.5	0.54 (300.9) 0.71 (336.9)
Odontella mobiliensis (Bail.) Grunow	CS-133	f ₂	17.5	0.57 (336.3)
Rhizosolenia setigera Brightwell	CS-62	f_2	17.5	0.74 (337.5)
Skeletonema pseudocostatum Medlin	CS-76	G_2	17.5	0.68 (336.7)
Skeletonema costatum (Greville) Cleve	CS-167	G_2	17.5	0.70 (337)
Skeletonema costatum (Greville) Cleve	CS-181	f ₂	17.5	0.72 (336.7)
Stephanopyxis turris (Greville) Ralfs in Pritchard	1 CS-31	Ĝ	17.5	0.82 (337.5)
Stephanopyxis turris (Greville) Ralfs in Pritchard	1 CS-100	G	17.5	0.83 (336.9)
Streptotheca tamesis Shrubsole	CS-81	G_2	17.5	0.77 (338.3)
Streptotheca tamesis Shrubsole	CS-130	G	17.5	0.93 (337.7)
Thalassiosira eccentrica (Ehrenb.) Cleve	CS-148	f	27	0.66 (338.1)
Thalassiosira oceanica Hasle	CS-67	f2	17.5	0.55 (338.1)
Thalassiosira pseudonana (Hust.) Hasle et Heimda	1 CS-20	f2	17.5	0.64 (337.3)
Thalassiosira pseudonana (Hust.) Hasle et Heimda	L CS-173	fÊa	17.5	0.68 (336.7)
Thalassiosita rotula Meunier	CS-32	G	17.5	0.58 (338.7)
Thalassiosita rotula Meunier	CS-77	Ğ	17.5	0.79 (336.7)
Thalassiosira rotula Meunier	CS-102	G	17.5	0.72 (337.7)
Thalassiosira stollaris Hasle et Guillard	CS-16	G	17.5	0.64 (337.7)
Pennales	00 10	C	1710	
Amphiprora hvalina Eulenstein	CS-28	f ₂	17.5	0.65 (337.7)
Amphora sp	CS-10	$\tilde{f_2}$	17.5	0.63 (337.9)
Amphora sp.	CS-361	$f\tilde{E}_2$	27	0.66 (337.1)
Asterionella glacialis Castracane	CS-90	f ₂	17.5	0.75 (337.3)
Asterionella glacialis Castracane	CS-135	f_2	17.5	0.66 (338.1)
Cylindrotheca fusiformis Reimann et Lewin	CS-13	$\tilde{f_2}$	17.5	0.75 (337.5)
Delphineis sp	CS-12	$\tilde{f_2}$	17.5	0.77 (338.5)
Fragilaria nínnata Ehrenh	CS-121	f2	27	0.68 (338.6)
Grammatonhora oceanica Ehrenh	CS-84	f2	17.5	0.57 (338.5)
Haslea ostrearia Bory	CS-250	f	15	0.88 (337.1)
Navioula ieffrevi Hallegraeff et Burford	CS-46	f	17.5	0.85 (337.1)
Nitzachia af hilabata W. Smith	CS-47	fo	17.5	0.76 (337.9)
Nitzschia clastorium (Ebroph.) W. Smith	CS-1	fo	17.5	0.18 (338.3)
Nitzschia closterium (Ehrenb.) W. Smith	CS-5	12 f-	17.5	0.72 (337.9)
Nilzschia closterium (Ehrenb.) W. Smith	CS 114	12 F	27	0.72 (337.3)
Nitzschia closienum (Ehroph.) W. Smith	CS 111	+2 f	27	0.85 (337.3)
INIZSCALA CLOSIERIUM (Enrend.) W. Smith	CS-111	C	27	0.86 (336.7)
INITZSCHIA CI. ITUSTUIUM (KUIZ.) GTUN.	CS-238	G2	27	0.00 (000.7)
Nitzschia ci. Irustulum (Kutz.) Grun.	CS-115	I ₂	27	0.86 (227.1)
Nitzschia ct. constricta (Greg.) Grun.	CS-106	G	21	1 22 (227.1)
Nitzschia sp. (Prydz Bay, Antarctica)		t ₂	5	1.22 (330.9)
Phaeodactylum tricornutum Bohlin	CS-29	f ₂	17.5	0.75 (333.6)
Thalassionema nitzschioides Hustedt	CS-146	t ₂	27	0.80 (337.8)
Thalassiothrix heteromorpha Karsten	CS-132	t ₂	17.5	1.02 (337.7)

Table 1 (continued)

Class and species	CSIRO culture code	Culture medium ^a	Growth temp. (°C)	Abs. ratio of n 280–320 nm	najor UV peaks:c 320–340 nm	hl <i>a</i> (665 nm) 340–390 nm
				_		_
CHLUKUPHYCEAE Chlamydomonas reinhardii Dangoard	CS 51	MRI /NR	17.5	0 42 (205 2)	0 63 (338 7)	
Chlorella protothecoides Krüger	CS-41	MBI /NB	17.5	0.42 (295.2)	0.63 (337.5)	
<i>Chlorella vulgaris</i> Beijerinck	CS-42	MBL/NB ₂	17.5		0.65 (338)	
Chlorella sp.	CS-122	D	25		0.73 (339.5)	
<i>Chlorella</i> -like	CS-195	fE_2	25		0.78 (339.3)	
Chlorella-like	CS-247	G ₂	17.5		0.80 (338.6)	
Chlorella-like	CS-248	G_2	17.5		0.87 (330.9)	
Dunaliella salina (green form) Teodoresco	CS-265	f ₂	25		0.71 (339.3)	
Dunaliella salina (orange form) Teodoresco	CS-265	1 ₂	30	0.04 (000 7)	1.35 (340.4)	
Dunaliella se (Burten Lake Antarctica)	CS-175	I2 f	17.5	0.34 (296.7)	0.58 (338.9)	
Dunaliella sp. (Ace Lake Antarctica)		12 fo	5		0.65 (338.1)	
Nannochloris atomus Butcher	CS-183	fa	17.5		0.56 (338.5)	
Nannochloris atomus Butcher	CS-184	f2	17.5		0.56 (338.8)	
Stichococcus sp.	CS-92	f ₂	17.5		0.71 (338.2)	
CHRYSOPHYCEAE Polagogogous subviridis Norris	CS 50	f	175		1 00 (227 0)	
Pelagococcus subviridis Norris	CS-99	12 fo	17.5		1.06 (337.9)	
relagococcus subvirtus relitis	05-00	12	17.5		1.00 (337.3)	
CRYPTOPHYCEAE						
Rhodomonas salina (Wislouch) Hill et Wetherbee	CS-24	fE	17.5		0.66 (339.1)	
Rhodomonas salina (Wislouch) Hill et Wetherbee	CS-174	fE	17.5	0.47 (288.3)	0.58 (339.4)	
Chroomonas placoidea Butcher	CS-200	G	17.5		0.95 (335)	
et Wetherbee	CS-85	fE	17.5		0.68 (339.3)	
Rhodomonas baltica Karsten	CS-201	G	17.5	2.96 (284.8)	0.73 (337.2)	
SIX-157 (Chroomonas sp.?)	CS-48	IE 6	17.5	2.07 (280.0)	0.68 (337.9)	
Chroomonas sp. (MB-3)	CS-136	1 ₂	17.5	2 11 (283 5)	0.63 (339)	
Rhodomonas sp. (MB-3)	CS-204	G	17.5	2.44 (203.3)	0.07 (337.9) 0.9 (345.9)	
Rhodomonas sp.	CS-215	G	17.5	2.42 (290.7)	0.67 (338.8)	
					× /	
Anahaana gulindriga Lammarmann	CC 52	N / N / 1 1	17.5		0.67 (220.2)	
Anabaena cylindrica Lemmermann	CS-172	MM11	17.5		0.67 (338.5)	
Oscillatoria sp	CS-52	fo	17.5		0.6 (339.0)	
Oscillatoria sp.	CS-180	f2	27	0.89 (293.7)	0.56 (339.7)	
Synechococcus sp.	CS-94	fĒ	17.5	()	0.72 (338.1)	
Synechococcus sp.	CS-197	f ₂	17.5		0.61 (339.9)	
Synechocystis sp.	CS-95	fE	17.5	0.50 (293.8)	0.81 (340.2)	
DINOPHYCEAE	CS 212	CSo.	15		1 21 (222 0)	
Balech	(AABB01)	CSo	15		1.17 (226.1)	
Balech	(ACPP01)	GSe	15		1.70 (332.6)	
Balech Alexandrium catenella (Whedon et Kofoid)	(ACJP01)	GSe	15		2 47 (334 4)	
Balech Alexandrium margalefi Balech	(ACCA01) CS-322	GSe	15		3.00 (337.4)	2.3 (364)
Alexandrium minutum Halim	(AMADE01) CS-323/2	GSe	15		1.42 (337.2)	()
Alexandrium minutum Halim	(AMAD02) CS-323/4	GSe	15		1.55 (336.7)	
Alexandrium minutum Halim	(AMAD04) CS-324/13	GSe	15		1.06 (337.3)	
Alexandrium minutum Halim	(AMAD13) CS-324/17	GSe	15		1.81 (336.5)	
Alexandrium tamarense (Lebour) Balech	(AMAD17) CS-298	GSe	15		1.18 (337)	
Alexandrium tamarense (Lebour) Balech	(ATBB01) CS-299	GSe	15		1.19 (336.9)	
	(AT IP01)					

(Table continued on next page)

Class and species	CSIRO culture code	Culture mediumª	Growth temp.(°C)	Abs. ratio of n 280–320 nm	najor UV peaks: 320–340 nm	chl a (665 nm) 340–390 nm
Amphidinium cartorae Hulburt	CS-212	G	17.5	0.59 (280.6)	0.88 (337.8)	
Amphidinium klabsii Kofoid et Swezy	CS-33	G	17.5	0.00 (200.0)	0.93 (338.3)	
Amphidinium sp	CS-109	G	25		0.93 (337.7)	
Amphidinium sp.	CS-259	Ga	25		1.24 (338)	
<i>Cumpodinium catonatum</i> Graham	CS-301/2	GSe	17.5		2.17 (336.3)	
Gymnodinium catenatum Graham	(GCDE02) CS-301/8	GSe	17.5		2.07 (336.7)	1.69 (380.5)
	(GCDE08)	GSe	17.5		1 84 (337 4)	1.62 (385.4)
Gymnodmum catenatum Granam	(GCHU20)		17.5		1.92 (225.7)	1 63 (384 3)
<i>Gymnodinium catenatum</i> Granam	(GCHU22)	036	17.5		0.49 (220.4)	2.57 (274.7)
<i>Gymnodinium catenatum</i> Graham	(GCHU09)	GSe	17.5		2.46 (339.4)	2.57 (574.7)
<i>Gymnodinium catenatum</i> Graham	CS-304/2 (GCHA02)	GSe	17.5		1.49 (337.6)	1.56 (390)
<i>Gymnodinium catenatum</i> Graham	CS-305 (GCJP10)	GSe	17.5		3.5 (337.1)	1.5 (377.4)
<i>Gymnodinium catenatum</i> Graham	CS-306/4 (GCSP04)	GSe	17.5		2.94 (338.8)	2.6 (373.9)
<i>Gymnodinium catenatum</i> Graham	CS-309/1 (GCPT01)	GSe	17.5	4.0 (319.7)		4.68(345) 6.75(370.3)
<i>Gymnodinium catenatum</i> Graham	CS-309/3 (GCPT03)	GSe	17.5		2.65 (340)	3.46 (372.3)
<i>Gymnodinium galatheanum</i> (Braarud) Taylor	CS-214	GSe	17.5		0.96 (337.5)	
<i>Gymnodinium sanguineum</i> Hirasaki	CS-35	G	17.5	0.22 (281.8)	1.24 (335.8)	
Heterocapsa niei (Loeblich) Morrill et Loeblich	CS-36	G	17.5		1.33 (333.7)	
Heterocapsa niei (Loeblich) Morrill et Loeblich	CS-89	G	17.5		1.65 (323.8)	
Katodinium cf. rotundatum (Lohmann) Loeblich	CS-290/2	GSe	15		1.14 (332.1)	
Kryptoperidinium foliaceum (Stein) Lindemann	CS-37	G	17.5		0.70 (337.9)	
Peridinium balticum (Lev.) Lemm	CS-38	G	17.5	0.67 (295.9)	0.59 (338.2)	
Prorocentrum compressum (Bailey) Abé ex Dodg	e Proro 1	GSe	17.5		1.32 (336.2)	
Prorocentrum gracile Shutt	CS-80	G	17.5		1.33 (337.3)	
Prorocentrum micans Ehrenberg	CS-27	G	17.5		0.97 (336)	
Scrippsiella sp.	CS-168	G	17.5		0.99 (336.3)	
Scrippsiella sp.	CS-295/1	GSe	17.5		1.79 (336.8)	
Scrippsiella sp.	CS-297	GSe	17.5		1.10 (336.8)	
Symbiodinium microadriaticum Freud.	CS-73	G	27		0.88 (337.5)	
Symbiodinium microadriaticum Freud.	CS-153	f ₂	27		0.88 (336.9)	
Symbiodinium microadriaticum Freud.	CS-154	f_2	27		1.17 (336.9)	
Symbiodinium microadriaticum Freud.	CS-156	f ₂	27		0.93 (337.3)	
Symbiodinium microadriaticum Freud.	CS-158	f ₂	27		0.93 (336.6)	
Symbiodinium microadriaticum Freud.	CS-164	t ₂	27		0.90 (337.3)	
Woloszynskia sp.	CS-341 (Wol 1)	GSe	27		3.40 (339.7)	
<i>Woloszynskia</i> sp. (Shearwater ballast)		GSe	27		1.56 (335)	
EUGLENOPHYCEAE <i>Euglena gracilis</i> Klebs	CS-66	MBL/NB ₂	17.5		0.58 (339.1)	
EUSTIGMATOPHYCEAE	CS-144	RR	17.5		0.53 (336.7)	
Nannachloronsis oculata (Droon) Green	CS-144 CS-179	fa	17.5		0.47 (338.1)	
Nannochloropsis oculata (Droop) Green	CS-189	fE-	17.5		0.52 (337.5)	
Nannochloropsis oculata (Droop) Green	CS-216	fEa	17.5		0.69 (340.5)	
Nannochloropsis salina Hibberd	CS-190	fa	17.5		0.52 (337.8)	
Nannochloropsis salina Hibberd	CS-191	fEa	17.5		0.51 (337.8)	
Nannochloropsis sallia Entotetu	CS-192	fE-	17.5		0.48 (337.5)	
Nannochloropsis-like	CS-246	-##2 fa	27		0.64 (337.7)	
Vischaria halvetica (Vischer et Pasher) Hibberd	CS-143	BB	17.5		0.59 (338.1)	
Vischeria punctata Vischer	CS-142	BB	17.5		0.72 (330)	
PRASINOPHYCEAE Mantoniella squamata (Manton et Parke)	CS-199	f_2	17.5		0.91 (339)	
Desikachary	CC 06	Ċ	175		0 97 (338 0)	
Micromonas pusilla (Butcher) Manton et Parke	CS 170	G	27		0.99 (339.5)	
Micromonas pusila (Butcher) Manton et Parke	CS-222	fE ₂	17.5	0.81 (295.7)	0.81 (339.3)	

Table 1 (continued)

Class and species	CSIRO culture code	Culture medium⁴	Growth temp. (°C)	A.bs. ratio of m 280–320 nm	ajor UV peaks:chl <i>a</i> (665 nm) 320–340 nm 340–390 nm
Nephroselmis minuta (Carter) Butch.	CS-207	G	17.5		0.72 (339.4)
Nephroselmis rotunda (Carter) Fott	CS-223	fE_2	17.5	0.70 (294.7)	0.91 (340)
Pseudoscourfieldia marina (Throndsen) Manton	CS-208	G	17.5	· · · ·	0.97 (338.3)
Pvcnococcus provasolii Guillard	CS-185	fa	17.5		0.96 (339.4)
Pyramimonas cordata McFadden	CS-140	G	17.5		0.97 (334.8)
Pyramimonas gelidicola McFadden,	CS-139	f2	5		0.74 (339.2)
Moestrup et Wetherbee					
Pyramimonas oltmansii Schiller	CS-225	fE_2	17.5		0.88 (339.9)
Pyramimonas propulsa Moestrup et Hill	CS-226	fE_2	17.5		0.76 (338.5)
Tetraselmis chuii Butcher	CS-26	f ₂	17.5		0.67 (339.3)
Tetraselmis suecica (Kylin) Butcher	CS-56	f ₂	17.5		0.72 (339.3)
Tetraselmis suecica (Kylin) Butcher	CS-187	f2	17.5	0.47 (290)	0.63 (339.1)
Tetraselmis sp.	CS-91	f ₂	17.5		0.68 (340.6)
Unidentified prasinophyte (CCMP-BT5)	CS-211	f ₂	17.5		1.2 (339.3)
PRYMNESIOPHYCEAE					
Chrysochromulina camella Leadbeater et Manton	CS-268	GSe	15		1.27 (337)
Chrysochromulina hirta Manton	CS-228	GSe	15		1.31 (337.1)
Chrysochromulina kappa Parke et Manton	CS-269	GSe	15		1.20 (337)
Chrysochromulina minor Parke et Manton	CS-270	GSe	15		1.38 (337)
Chrysochromulina strobilus Parke et Manton	CS-271	GSe	15		1.65 (337)
Chrysochromnulina strobilus Parke et Manton	CS-231	GSe	15		1 49 (337 3)
Chrysochromulina sp	CS-219	fE	15		1 37 (337 2)
Chrysotila Jamellosa Anand	CS-272	CSe	15		0.88 (337)
Cricosphaera carterae (Braarud et Fagerland)	CS-40	D	17.5		0.85 (339)
Braarud Crystallolithus hyabous Gaarder et Markali	CS-273	C.Se	15		1 05 (337)
Diacronema vikianum Prauser	CS-266	GSe	15		0.67 (337)
Dicrateria inornata Parko	CS-267	GSe	15		1 22 (337)
Emiliania huvlovi (Lohmann) Hav of Mohlor	CS 57	GSe f	17 5		1.23 (337)
Emiliania huxleyi (Lohmann) Hay et Moller	CS-37	12	17.5		1.49 (337.7)
Emiliania huxleyi (Lohmann) Hay et Mohler	CS-274	GSe	15		1.24 (337)
Eminania nuxieyi (Lonmann) Hay et Monier	CS-2/5/2	GSe, K	15		1.38 (337)
Imantonia rotunda Reynolds	CS-194	IE2	17.5		1.34 (337.1)
Isochrysis galbana Parke	CS-22	12	17.5	4.04.070.41	0.76 (338)
Isochrysis sp.	CS-177	12	17.5	1.04 (279.1)	0.84 (337.8)
Ochrosphaera neopolitana Schussing	CS-285	GSe	15		1.05 (337)
Pavlova gyrans Butcher	CS-213	f ₂	17.5		0.73 (337.9)
Pavlova lutheri (Droop) Green	CS-23	f ₂	17.5		0.81 (338.9)
Pavlova lutheri (Droop) Green	CS-182	f ₂	17.5		0.57 (338.9)
Pavlova pinguis Green	CS-286	GSe	15		0.76 (337)
<i>Pavlova salina</i> Carter (Green)	CS-49	f ₂	17.5		0.72 (337.5)
Pavlova sp.	CS-63	f ₂	17.5		0.79 (337.3)
Pavlova sp.	CS-50	f ₂	17.5		0.70 (337.6)
Phaeocystis pouchetii (Hariot) Lagerheim	CS-239	GSe	15		1.14 (336.9)
Phaeocystis pouchetii (Hariot) Lagerheim	CS-240	GSe	15		1.15 (337.8)
Phaeocystis pouchetii (Hariot) Lagerheim	CS-241	GSe	15		1.34 (337.2)
Phaeocystis pouchetii (Hariot) Lagerheim	CS-243	G ₅	5		1.36 (336.3)
Phaeocystis pouchetii (Hariot) Lagerheim	CS-244	G ₅	5	2.89 (3157)	2.32 (337)
Prymnesium parvum Carter	CS-288	GSe	15		0.87 (337)
Pleurochrysis aff. carterae (Braarud et	CS-287	GSe	15		0.68 (337)
Prymnesionhyte 120	CS-120	f	27	1 46 (206)	0.96 (335.9)
Pseudoisochrysis paradoxa Ott	CS-120	f_2	17.5	0.75 (279)	0.71 (338.3)
RAPHIDOPHYCEAE				-	
Chattonella antiqua (Hada) Ono	CS-171	G	17.5		1.43 (333.3)
Fibrocapsa sp.	CS-220	fEa	17.5		1.86 (325)
Heterosigma carterae (Hulbert) Taylor	CS-39	D	17.5		0.69 (337)
Heterosigma carterae (Hulbert) Taylor	CS-169	G	17.5		0.66 (337)
RHODOPHYCEAE					
Porphyridium purpureum (Bory) Drew et Ross	CS-25	f ₂	17.5		0.54 (335)

Table 1 (continued)

^aMedia codes: f = medium from Guillard & Ryther (1962); $f_2 = 50:50$ dilution of f-medium with seawater; fE = f + EDTA (Jeffrey 1980); G = GPM medium {Loeblich & Smith 1968}; G_2 and G_5 = 50:50 and 20:80 dilution of GPM medium with seawater; GSe = G + selenium (CSIRO medium); D = D medium (Provasoli et al. 1957); MBL/NB₂ (Nichols 1973); BB = Bold's Basal medium (Nichols & Bold 1965); K = Keller medium (Keller et al. 1987; modified by CSIRO)

666

665

665

665

700

600

Diatom F Prymnesiophyte Α Asterionella glacialis CS-135 Antarctic Phaeocystis pouchetii CS-244 130 665 G Dinoflagellate Raphidophyte Alexandrium margalefi AMADE01 Fibrocapsa sp. CS-220 Cryptomonad С H Dinoflagellate Rhodomonas sp. CS-215 Gymnodinium catenatum GCJP10 Absorbance 666 Dinoflagellate Cyanophyte D Т Synechococcus sp. CS-197 Gymnodinium catenatum GCPT03 Prasinophyte Dinoflagellate Е J Tetraselmis chuii CS-26 Gymnodinium catenatum GCPT01 600 200 400 500 200 300 400 500 700 300 Wavelength (nm)

UV-B 280-320 nm UV-A 320-380 nm

Fig. 1. UV-visible absorption spectra of tetrahydrofuran:methanol (20:80, v/v) extracts of selected microalgae. (A) Asterionella glacialis, CS-135 (diatom); (B) Fibrocapsa sp., CS-220 (raphidophyte); (C) Rhodomonas sp., CS-215 (cryptomonad); (D) Synechococcus sp., CS-197 (cyanophyte); (E) Tetraselmis chuii, CS-26 (prasinophyte); (F) Phaeocystis pouchetii, CS-244 (prymnesiophyte); (G) Alexandrium margalefi, AMADE01 (dinoflagellate); (H) Gymnodinium catenatum, GCJP10 (dinoflagellate); (I) G. catenatum, GCPT03 (dinoflagellate); (J) G. catenatum, GCPT01 (dinoflagellate)

et al. 1994, Carroll & Shick 1996, Helbling et al. 1996). Lyophilized algal extracts were reconstituted in 80% aqueous methanol (1/5 volume for Chaetoceros affinis and Heterosigma carterae, equi-volume for Fibrocapsa sp., Woloszynskia sp. and Gymnodinium catenatum). Individual MAAs were separated and quantified by isocratic HPLC on a reverse-phase, Brownlee RP-8 column (Spheri-5, 4.6 i.d. × 250 mm) protected with a RP-8 guard column (Spheri-5, 4.6 i.d. \times 30 mm) with a mobile phase consisting of aqueous 25% methanol containing 0.1% acetic acid which was delivered at a flow rate of 0.8 ml min⁻¹. MAAs were identified by comparison and co-chromatography (where applicable) with authenticated standards and quantified by dual wavelength absorbance at 313 and 340 nm (Waters Model 440 dual wavelength detector) and peak area integration (Spectra-Physics 4400 dual channel integrator). Chromatographic standards were previously prepared (W. Dunlap) from the macroalgae Porphyra tenera (porphyra-334: Dunlap & Yamamoto 1995) and Mastocarpus stellatus (shinorine: Carroll & Shick 1996), the zoanthid Palythoa tuberculosa (mycosporine-glycine, palythine and palythinol: Dunlap & Chalker 1986), the ascidian Lissoclinum patella (mycosporine-glycine and shinorine: Dunlap & Yamamoto 1995), the sea anemone Anthopleura elegantissima (mycosporinetaurine, shinorine, porphyra-334 and mycosporine-2glycine: Stochaj et al. 1994) and the ocular lens of the coral trout Plectropomus leopardus (palythine, asterina-330, palythinol and palythene: Dunlap et al. 1989).

RESULTS

The relative proportions of UVA- and UVB-absorbing compounds (280 to 390 nm) compared to chl a (665 nm) in extracts of microalgae from 12 classes are shown in Table 1, together with the culture conditions for each of the 152 species (= 206 strains). A total of 85 genera were represented, with 26 strains from tropical waters, 173 from subtropical and temperate waters and 7 from Antarctic waters. These included surface-living, bloom-forming strains

Fig. 2. Scatter plot of ratios of the maximum UV absorbance (290 to 390 nm) to chl *a* absorbance (665 nm) for each algal strain examined in Table 1. Data are grouped according to algal class

(dinoflagellates, prymnesiophytes, cryptomonads and raphidophytes), many species from coastal waters and some from the deep euphotic zone (e.g. picoplanktonic cyanobacteria).

Extracts of microalgae showed environmentally relevant, ultraviolet absorption maxima in 3 main regions: UVB (280 to 320 nm), UVA (320 to 340 nm) and near-UVA (340 to 390 nm). All strains, without exception, had maxima in the UVA region between 320 and 340 nm (most were close to 337 nm), 22 strains showed strong absorption in the UVB region (280 to 320 nm), and 9 strains of the dinoflagellate *Gymnodinium cate-natum* had high absorbance in the near-UVA (340 to 390 nm) (Table 1).

UV-visible spectra of tetrahydrofuran-methanol extracts of 10 selected strains are shown in Fig. 1. The diatom *Asterionella glacialis* (Fig. 1A) and the prasinophyte *Tetraselmis chuii* (Fig. 1E) were 2 examples of species with very low absorbance in UVA and UVB regions. In contrast, the raphidophyte *Fibrocapsa* sp. (Fig. 1B), the prymnesiophyte *Phaeocystis pouchetii* (Fig. 1F), and the dinoflagellates *Alexandrium margalefi* (Fig. 1G) and *Gymnodinium catenatum* (Fig. 1H, I, J) were rich in UVA- and UVB-absorbing compounds, with some species showing multiple peaks in the UVA and UVB regions.

Fig. 2 presents a scatter plot of the ratio of the maximum UV absorbance to that of chl *a* at 665 nm for each strain listed in Table 1, grouping the data according to algal class. Strains rich in UV-absorbing compounds (ratios 1 to 6.75) came mostly from the bloom-forming flagellate classes: dinoflagellates, prymnesiophytes, raphidophytes and cryptomonads. The lowest ratios (<0.90) were found in the diatoms, eustigmatophytes, chlorophytes, prasinophytes, cyanophytes, chrysophytes, euglenophytes and rhodophytes.

A summary of all UV to chl *a* ratios by algal class is shown in Table 2. The majority of microalgae had UV:chl a ratios less than 1 (range 0.5 to 0.9, see Fig. 2). A second group had slightly higher ratios (0.9 to 1.4). It included the chrysophytes, and some of the prasinophytes and prymnesiophytes. A third group had the highest ratios (1.4 to 6.75). It included many bloomforming members of the cryptomonads, dinoflagellates, prymnesiophytes and raphidophytes. Exceptions to these generalisations for each class were found, but the main trends were as specified (see Fig. 2). These data show that algal extracts differ across classes and strains of the same species (Table 3), having a range of UV-absorbing peaks with different patterns of absorption maxima and intensities, in both UVA and UVB regions.

The dinoflagellates were a special group, showing the greatest variations in UV-absorbing compounds across species and across strains of the same species (Tables 1 & 3, Figs. 1 & 2). Some dinoflagellates had very low UV:chl a ratios (e.g. Amphidinium carterae). The 2 endosymbiont-containing species—*Peridinium balticum* and *Kryptoperidinium* foliaceum—also had low ratios, possibly reflecting the presence of their

Table 2. Summary of the	number of strains studied from 12
algal classes with their	range of ratios of maximum UV
absorbance (280 to 390	nm) to chlorophyll a absorbance
	(665 nm)

Algal class	No. of strains	Range of absorbance ratios of max. UV _{abs} (280–390 nm) to chl ā (665 nm)
Bacillariophyceae	57	0.18 = 1.22
Chlorophyceae	15	0.34 - 1.35
Chrysophyceae	2	1.06 - 1.08
Cryptophyceae	10	0.47 - 2.96
Cyanophyceae	7	0.50 - 0.89
Dinophyceae	47	0.18 - 6.75
Euglenophyceae	1	0.58
Eustigmatophyceae	10	0.47 - 0.72
Prasinophyceae	17	0.47 - 1.20
Prymnesiophyceae	35	0.57 - 2.89
Raphidophyceae	4	0.66 - 1.86
Rhodophyceae	1	0.54
Total	206	0.18 - 6.75

chrysophyte or diatom endosymbionts (Tomas & Cox 1973, Jeffrey et al. 1975, Jeffrey & Vesk 1976). Other dinoflagellates, such as the surface bloom-forming species *Gymnodinium catenatum*, were rich in UVabsorbing compounds, with ratios of up to 4.0 at 319.7 nm, 4.6 at 345 nm and 6.75 at 370 nm (CS-309/1, GCPT01). Table 3 shows that strains of the same species either had very similar UV:chl a ratios (e.g. *Amphidinium carterae*, *Symbiodinium microadriaticum* and *Heterocapsa niei*) or varied widely (e.g. *Alexandrium catenella*, *Alexandrium minutum* and *Gymnodinium catenatum*). These data indicate that even in species rich in UV-absorbing compounds, significant strain variations are found.

The UV-absorbing properties of natural phytoplankton field populations obtained by net tows from the CSIRO wharf station (Derwent River Estuary) are shown in Fig. 3. When dinoflagellates were the main component of the phytoplankton (Fig. 3A, B), high values were obtained for UV:chl *a* absorbance ratios (e.g. 2.4 at 337 nm and 3.1 at 339 nm for the 2 samples, respectively). When diatoms were the main component (Fig. 3C, D), lower ratios (1.4 at 335 nm and 1.5 at 336 nm) were seen. The UV-visible spectrum of a field sample in which *Gymnodinium catenatum* was dominant (Fig. 3A) closely resembled that of one maintained culture of *Gymnodinium catenatum* (Fig. 1H), originally isolated from a local estuary.

Five microalgal cultures were examined by isocratic HPLC to check for the presence of MAAs. The strains were selected on the basis of their UV:chl *a* absorbance ratios obtained by spectrophotometry to represent a range of UV-absorbing properties (Fig. 4). The diatom

Chaetoceros affinis had a low ratio $(UV_{337nm} : chl a = 0.75)$, the raphidophyte *Heterosigma carterae* ratio was also low $(UV_{338nm} : chl a = 0.66)$, the raphidophyte *Fibrocapsa* sp. had a high ratio $(UV_{323nm} : chl a = 2.33)$, the ratio of the dinoflagellate *Gymnodinium catenatum* was also high $(UV_{370nm} : chl a = 6.56)$ and that of the dinoflagellate *Woloszynskia* sp. was moderately low $(UV_{365nm} : chl a = 1.13)$.

HPLC analyses of the 5 species are shown in Fig. 5. Chaetoceros affinis with a low UV:chl a ratio (0.75) gave no trace of MAAs, but the other 4 species had various combinations of MAA components. Heterosigma carterae, with a low UV:chl a ratio (0.66) contained both shinorine and asterina-330. The raphidophyte Fibrocapsa sp. with a high UV:chl a ratio (2.33) showed 2 major fractions, mycosporine-glycine and porphyra-334, as well as 3 minor components (palythine, asterina-330 and 1 unknown). The dinoflagellate Woloszynskia sp., with a UV:chl a ratio of 1.13, had 2 major components, shinorine and porphyra-334, and 5 minor fractions, mycosporine-glycine, palythine and 3 unknowns. The dinoflagellate Gymnodinium catenatum had the highest UV:chl a absorbance ratio (6.56), but only 3 MAA fractions could be identified in reason-

Table 3. Variation in the ratios of UV absorption maxima in the 320-340 nm region to chlorophyll *a* absorbance (665 nm) in extracts from selected dinoflagellate species and strains

Dinoflagellate species	No. of strains	Range of abs. ratios UV(320–340 nm): chl a (665 nm)
Alexandrium affine	1	1.21
Alexandrium catenella	3	1.17 - 2.47
Alexandrium margelefi	1	2.66
Alexandrium minutum	4	1.06 - 1.81
Alexandrium tamarense	2	1.18 - 1.19
Amphidinium carterae	2	0.79 - 0.88
Amphidinium klebsii	1	0.93
Amphidinium sp.	2	0.93 - 1.24
Gymnodinium catenatum ^a	10	1.49 - 4.68
Gymnodinium galatheanum	1	0.96
Gymnodinium sanguineum	1	1.24
Heterocapsa niei	2	1.33 - 1.65
Katodinium cf. rotundatum	1	1.14
Kryptoperidinium foliaceum ^b	1	0.70
Peridinium balticum ^b	1	0.59
Prorocentrum compressum	1	1.32
Prorocentrum gracile	1	1.33
Prorocentrum micans	1	0.97
Scrippsiella sp.	3	0.99 - 1.79
Symbiodinum microadriaticum	6	0.88 - 1.17
Woloszynskia sp.	2	1.56 - 3.40

^dNote ratio of UV:chl a absorbance in the range 340 to 390 nm was 6.75 (370.3 nm) for strain GCPT01 (see Table 1) ^bContain chrysophyte-like endosymbionts with fucosinthin containing chloroplasts (Tomas & Cox 1973, Jeffrey et al. 1975, Jeffrey & Vesk 1976)

Fig. 3. UV-visible absorption spectra of tetrahydrofuran:methanol (20:80, v/v) extracts of natural phytoplankton from the Derwent River Estuary, Hobart, Tasmania (CSIRO wharf station). Major species present, 337:665 nm ratios and sample collection date are given: (A) Gymnodinium catenatum bloom (dinoflagellates), ratio 2.4, 16 May 1991; (B) Dinophysis spp. and Ceratium spp. (dinoflagellates), ratio 3.1, 22 July 1992; (C) Chaetoceros spp. and Nitzschia spp. (diatoms), ratio 1.4, 11 March 1991; (D) Coscinodiscus sp. (diatoms) with some Dinophysis spp. (dinoflagellates), ratio 1.5, 15 September 1992

666

700

600

200

300

400

Wavelength (nm)

500

able yield—mycosporine-glycine, porphyra-334 and shinorine. The major peak (retention time ~9.4 min) was an unknown compound, which occurred together with several unknown minor fractions. The major UV-absorbing component responsible for the large 370 nm absorption peak in the extract of *G. catenatum* (Fig. 4E) was not detected by this method of HPLC analysis (detection was at 313 and 340 nm, see Fig. 5), and may not be an MAA compound.

400

500

600

700

200

300

The relative proportions of MAAs analyzed in each of the 5 selected species are given in Table 4. Concentrations per unit cell were not determined; concentrations per unit chlorophyll could not be assessed because the extinction coefficients of chlorophylls *a* and *c* in the extraction solvent had not been determined (tetrahydrofuran:methanol = 20:80, v/v, see Jeffrey & Welschmeyer 1997). The most noteworthy features are the dominance of porphyra-334 and mycosporine-glycine in *Fibrocapsa* sp. (with palythine and asterina-330 minor components), the dominance of porphyra-334 and shinorine in *Woloszynskia* sp., and

	-
л	- 4
-	

Species C	SIRO culture			MAAs (nmol	ml ⁻¹ extract)ª		
-	code	Mycosporine -glycine	Shinorine	Porphyra-334	Palythine	Asterina-330	Unknown MAA (RT ~9.4 min)
Chaetoceros affinis	CS-78	-	_	_	-	-	-
Heterosigma carterae	CS-169	-	0.76 ± 0.42	-	-	1.54 ± 0.04	_
Fibrocapsa sp.	CS-220	74.86 ± 1.20	-	156.66 ± 4.77	1.23 ± 0.89	1.31 ± 0.16	-
Woloszynskia sp.	CS-341	2.34 ± 0.79	18.51 ± 0.45	23.78 ± 0.99	4.11 ± 0.35	-	-
Gymnodinium catenatum	CS-309/3	37.11 ± 1.01	7.36 ± 1.25	31.42 ± 3.35	-	_	Major component (not quantified)
"Not related to unit of	tissue mass						

 Table 4. Relative proportions of mycosporine-like amino acids (MAAs) in quadruplicate analyses of tetrahydrofuran:methanol

 (20:80, v/v) extracts of 5 cultures of microalgae

a major unidentified MAA in *Gymnodinium catenatum*, which co-occurred with lesser amounts of mycosporine-glycine, porphyra-334 and shinorine.

DISCUSSION

The 206 strains of cultured marine microalgae examined from 12 classes showed a wide variation in the distribution of putative UV-screening pigments as grown under visible light conditions. The UV-screening capacity was judged on the basis of ratios of UVabsorbance (maxima 280 to 390 nm) to chl a absorbance (665 nm) in extracts of algal cells grown without supplementary UV radiation (see Table 1 & Fig. 2). The highest UV-screening capacity in both cultured microalgae and phytoplankton field samples was found in surface bloom-forming species of dinoflagellates, particularly strains of Gymnodinium catenatum, Alexandrium, Heterocapsa, Scrippsiella and Woloszynskia (see Table 3). Other bloom-forming flagellates had less, but still significant, UV-absorbing potential: the prymnesiophytes Chrysochromulina, Emiliania, Imantonia and Phaeocystis, the cryptomonads Chroomonas, Rhodomonas (including several unidentified strains), and the raphidophytes Chattonella and Fibrocapsa. Other algal classes showed UV:chl a absorbance ratios of less than 0.9 (see Table 1 & Fig. 2): they included diatoms, chlorophytes, chrysophytes, eustigmatophytes, planktonic cyanophytes, prasinophytes, 1 euglenophyte and 1 rhodophyte.

The small spectral differences in *Fibrocapsa* sp. in Fig 1B and a later culture used for HPLC analysis (Fig. 4C) could have been due to slightly different growth conditions or harvest times. The cause of small variations in absorption characteristics of individual strains were not studied here.

Because some of our microalgae were cultured for many years in the absence of supplementary UV radiation (see CSIRO 1998) the UV:chl a absorbance ratios should be considered the minimum achievable for the strains examined (Table 1). There is good evidence from the literature that UVA and/or UVB radiation can stimulate MAA synthesis in some microalgae: e.g. cyanobacteria (Garcia-Pichel & Castenholz 1993), Antarctic marine diatoms (Helbling et al. 1996), Phaeocystis antarctica (Riegger & Robinson 1997) and natural Antarctic phytoplankton field samples (Villafañe et al. 1995). Future work needs to examine if supplementary UV and blue radiation (370 to 460 nm) during growth can induce synthesis of UV-absorbing compounds in cultured microalgae across the algal classes, as it does for MAAs in some cultured Antarctic marine diatoms (Riegger & Robinson 1997). It is also necessary to examine whether algal species capable of MAA synthesis under conditions of visible light exposure alone may have an adaptive advantage, given the greater penetration of light of increasing wavelengths, for competitive survival of these species within a well-mixed photic zone.

Our HPLC analyses of MAAs in 2 cultures with low UV:chl a absorbance ratios (Chaetoceros affinis [0.75] and Heterosigma carterae [0.66]) while showing no MAAs in C. affinis, clearly showed the presence of small amounts of shinorine and asterina-330 in H. carterae. The lack of MAA peaks on the HPLC trace for C. affinis, which showed a small spectrophotometric peak at 337 nm in Fig. 4A, may have been due to the very low signal to noise ratio in the HPLC response. If MAA-like or other unidentified compounds are indeed present in algal species showing low UV:chl a absorbance ratios, then the capacity for their synthesis might be more widely distributed across algal classes than this study would suggest, needing only an external environmental trigger, such as UV or blue radiation exposure, for activation. These radiation effects may be even more complex, since UVA can inhibit photosynthesis in mixed assemblages of Antarctic phytoplankton (Holm-Hansen 1997), whereas UVA also reduces the effects of UVB inhibition in Antarctic cyanobacteria (Quesada et al. 1995).

While the range of species examined for the occurrence of MAAs by HPLC was small (5 species from 3 algal classes), the results showed suites of MAAs clearly evident in species with moderate to high UV:chl *a* absorbance ratios: *Fibrocapsa* sp. (UV:chl *a* = 2.33, porphyra-334, mycosporine-glycine, palythine and asterina), *Woloszynskia* sp. (UV:chl *a* = 1.13, porphyra-334, shinorine, palythine and mycosporine-glycine) and *Gymnodinium catenatum* (UV:chl *a* = 6.56, major and minor unknown MAAs, plus mycosporine-glycine, porphyra-334 and shinorine).

Gymnodinium catenatum consistently showed UV absorption by spectrophotometry at 370 to 372, 377 to 378 nm (see Figs. 1H, I, J, 3A & 4E, respectively). This absorption does not match that of any known MAA, and may be due to a new MAA derivative with extended conjugation, a new class of UV-absorbing compounds or perhaps the *cis*-peak of a carotenoid. Further work is needed to secure the identification of the *G. catenatum* unknowns.

On the basis of these limited results it is expected that most microalgae with moderate to high UV:chl *a* absorbance ratios would be likely to contain significant amounts of MAAs, and good correlation between UV absorption recorded by spectrophotometry and MAA content determined by HPLC analysis has previously been observed (Dunlap et al. 1995). Indeed, the presence of unknown MAAs, as well as compounds absorbing in the near UVA region (370 to 378 nm, see Fig. 4E, *Gymnodinium catenatum*) may indicate a rich source of new UV-absorbing compounds in dinoflagellates. These MAAs and related compounds may well act as effective UV screens to ensure the success of surface bloom-forming species in UV-rich environments.

Natural phytoplankton field samples obtained locally also showed high UV:chl *a* absorbance values for dinoflagellate-rich samples, and lower values when diatoms predominated. A natural bloom of *Gymnodinium catenatum* (Fig. 3A) showed absorption characteristics similar to those of 1 local strain maintained in culture (Fig. 1H), but differed from 2 other *G. catenatum* strains (Fig. 1I, J). Strain differences were a characteristic of species examined in this study (see Table 3).

The present investigation adds to the body of work provided by other authors (e.g. Vernet et al. 1989, Carreto et al. 1990, Helbling et al. 1996, Riegger & Robinson 1997) to document the distribution of UV-protective pigments in microalgae. Our screen of 152 microalgal species (206 strains) showed that most algal classes had representatives with both low and high UV-absorptive capacity (Table 2). Bloom-forming species, especially dinoflagellates, were particularly enriched, and our study of *Fibrocapsa* sp. (raphidophyte), *Woloszynskia* sp. (dinoflagellate) and *Gymnodinium catenatum* (dinoflagellate) bear similarities to the results of Carreto et al. (1990). These authors reported a suite of MAAs in the red-tide dinoflagellate *Alexandrium excavatum*, whose UV-absorbing compounds spanned an absorption range from 310 to 360 nm, to include MAAs with absorption at 310 nm (mycosporine glycine), 320 nm (palythine), 330 nm (asterina-330), 332 nm (palythinol), 334 nm (shinorine, porphyra-334), 337 nm (palythinol), 357 (*cis*-usujirene) and 360 nm (palythene). These screening compounds would be expected to give broad cover from UVB (280 to 320 nm) and UVA (320 to 380 nm) radiation.

The successful bloom-forming dinoflagellate *Gymnodinium catenatum* contained previously known MAAs (mycosporine-glycine, porphyra-334 and shinorine) together with unidentified UV-absorbing components in the UVB (280 to 320 nm), UVA (320 to 360 nm) and the near UVA (>360 nm) regions (see Figs. 4E & 5). The value of both spectrophotometric and HPLC techniques used in the present work is clearly seen, since the former picks up most UV-absorbing compounds, and the latter, as currently used, identifies known MAAs. Unidentified UV-absorbing components as found in *G. catenatum* will need further analytical study (eg. nuclear magnetic resonance/mass spectrometry) to secure identification.

It is clear from this survey that certain bloom-forming microalgae are 'sun-adapted' and have the capacity to synthesize sunscreen pigments whose chemistry, stimulation of biosynthesis by light of particular wavelengths and protective function warrant further investigation. While the most recent evidence shows a global levelling off of ozone-depleting emissions (Houghton 1996), indicating that the Montreal Protocol is beginning to work, the ozone hole over Antarctica formed in 1998 is the largest ever recorded (Soloman 1998). A heightened global UV flux is forecast to continue for several decades (Van der Leun et al. 1998), and could alter the biomass and floristic composition of marine phytoplankton species in certain habitats to favour those surface bloom-forming species most adapted to UV stress. Further study should determine whether this is a permanent or reversible threat to particular marine ecosystems.

Acknowledgements. We thank Ms Jeannie-Marie LeRoi for assistance with algal culturing. Dr H. S. MacTavish and Ms K. Groenewoud were supported by an ARC grant to Drs M. Vesk and S. W. Jeffrey for studies on UVB effects in marine microalgae.

LITERATURE CITED

Adams NL, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin *Strongylocentrotus droebachiensis*. Photochem Photobiol 64:149–158

- Balch WM, Haxo FT (1984) Spectral properties of *Noctiluca miliaris* Suriray, a heterotrophic dinoflagellate. J Plankton Res 6:515–525
- Behrenfeld MJ, Lee H, Small LF (1994) Interactions between nutritional status and long term responses to ultraviolet-B radiation stress in a diatom. Mar Biol 118:523–530
- Bornman JF (1989) New trends in photobiology: target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobiol B Biol 4:145–158
- Bornman JF, Teramura AH (1993) Effects of ultraviolet-B radiation on terrestrial vegetation. In: Young AR, Bjorn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum Press, New York, p 427–471
- Buma AGJ, van Hannen EJ, Roza L, Veldhuis MJW, Gieskes WWC (1995) Monitoring ultraviolet-B-induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection. J Phycol 31:314–321
- Buma AGJ, van Hannen EJ, Veldhuis MJW, Gieskes WWC (1996) UV-B induces DNA damage and DNA synthesis delay in the marine diatom *Cyclotella* sp. Sci Mar 60(Suppl 1):101-106
- Caldwell MM (1981) Plant responses to solar ultraviolet radiation. In: Lange OL, Nobel PS, Osmund CB, Ziegler H (eds) Physiological Plant Ecology. I. Responses to the physical environment. Encyclopedia of plant physiology, New Series, Vol 12A. Springer Verlag, New York, p 169–198
- Calkins J (1982) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York
- Carreto JI, Carignan MO, Daleo G, de Marco SG (1990) Occurrence of mycosporine-like amino acids in the redtide dinoflagellate *Alexandrium excavatum*: UV-photoprotective compounds? J Plankton Res 12:909–921
- Carroll AK, Shick JM (1996) Dietary accumulation of UVabsorbing mycosporine-like amino acids (MAAs) by the green sea urchin (*Stronglocentrotus droebachiensis*). Mar Biol 124:561–569
- Chalker BE, Dunlap WC (1982) Extraction and quantitation of endosymbiotic algal pigments from reef-building corals.
 In: Gomez ID et al. (eds) Proc 4th Int Coral Reefs Symp.
 Vol 2. Marine Sciences Center, University of the Philipines, Manila, p 45–50
- CSIRO (1998) Collection of living microalgae: strain list. Report obtainable from senior author
- Dionisio-Sese ML, Ishikura M, Marayama T, Miyachi S (1997) UV-absorbing substances in the tunic of a colonial ascidian protect its symbiont, *Prochloron* sp. from damage by UV-B radiation. Mar Biol 128:455–461
- Döhler G (1996) Effect of UV irradiance on utilization of inorganic nitrogen by the Antarctic diatom *Odontella weissflogii* (Janisch) Grunow. Bot Acta 109:35–42
- Döhler G, Worrest RC, Biermann I, Zink J (1987) Photosynthetic ¹⁴CO₂ fixation and ¹⁵N-ammonia assimilation during UV-B radiation of *Lithodesmium variabile*. Physiol Plant 70:511–515
- Döhler G, Hagmeier E, Grigoleit E, Krause KD (1991) Impact of solar UV radiation on uptake of ¹⁵N-ammonia and ¹⁵Nnitrate by marine diatoms and natural phytoplankton. Biochem Physiol Pflanz (BPP) 187:293–303
- Donkor VA, Amewowor DHAK, H\u00e4der DP (1993) Effects of tropical solar radiation on the velocity and photophobic behaviour of filamentous gliding cyanobacteria. Acta Protozool 32:67–72
- Dunlap WC, Chalker BE (1986) Identification and quantitation of near-UV absorbing compounds (S-320) in a reefbuilding coral. Coral Reefs 5:155-159
- Dunlap WC, Shick JM (1998) Ultraviolet-radiation-absorbing

mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34: 418–430

- Dunlap WC, Yamamoto Y (1995) Small molecule antioxidants in marine organisms: antioxidant activity of mycosporineglycine. Comp Biochem Physiol 112B:105–114
- Dunlap WC, Chalker BE, Oliver JK (1986) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J Exp Mar Biol Ecol 104:239–248
- Dunlap WC, Williams D McB, Chalker BE, Banaszak AT (1989) Biochemical photoadaptation in vision: UV-absorbing pigments in fish eye tissues. Comp Biochem Physiol 93B:601-607
- Dunlap WC, Rae GA, Helbling EW, Villafane VE, Holm-Hansen O (1995) Ultraviolet-absorbing compounds in natural assemblages of antarctic phytoplankton. Antarct J US 30:323–326
- Ekelund NGA (1990) Effects of UV-B radiation on growth and mortality of four phytoplankton species. Physiol Plant 78: 590-594
- El-Sayed SZ, Stephens FC (1992) Potential effects of increased ultraviolet radiation on the productivity of the Southern Ocean. In: Dunerette DA, O'Brien RJ (eds) The science of global change: the impact of human activities on the environment. Am Chem Soc Symp Ser 483, Washington, DC, p 188–206
- Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClO_x/NO_x interaction. Nature (Lond) 315:207–210
- Frederick JE, Snell HE (1988) Ultraviolet radiation levels during the Antarctic Spring. Science 241:438-440
- Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409
- Garcia-Pichel F, Castenholz RW (1993) Occurrence of UVabsorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169
- Goes JI, Handa N, Taguchi S, Hama T (1995) Changes in the patterns of biosynthesis and composition of amino acids in a marine phytoplankter exposed to ultraviolet-B radiation: nitrogen limitation implicated. Photochem Photobiol 62: 703–710
- Guillard RRL, Ryther JH (1962) Studies of marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239
- Häder DP, Häder MA (1988) Inhibition of motility and phototaxis in the green flagellate *Euglena gracilis* by UV-B radiation. Arch Microbiol 150:20–25
- Halldal P (1967) Ultraviolet action spectra in algology: a review. Photochem Photobiol 6:445-460
- Hallegraeff GM, Stanley SO, Bolch CJ, Blackburn SI (1989) Gymnodinium catenatum blooms and shellfish toxicity in southern Tasmania, Australia. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier Publishing, New York, p 77–80
- Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen E, Villafañe VE (1996) Photoacclimation of antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101
- Holm-Hansen O (1997) Short- and long-term effects of UVA and UVB on marine phytoplankton productivity. Photochem Photobiol 65:266–269
- Houghton JT (1996) Report of Working Group 1 of the Intergovernmental Panel on Climate Change. Cambridge University Press

- Jeffrey SW (1980) Cultivating unicellular marine plants. In: Fisheries and oceanography annual reports 1977–1979. CSIRO, Hobart, Tasmania, p 22–43
- Jeffrey SW, LeRoi JM (1997) Simple procedures for growing SCOR reference microalgal cultures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, p 181–205
- Jeffrey SW, Vesk M (1976) Further evidence for a membranebound endosymbiont within the dinoflagellate *Peridinium foliaceum*. J Phycol 12:450–455
- Jeffrey SW, Welschmeyer NA (1997) Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, p 597–615
- Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J Phycol 11:374–384
- Jerlov NG (1950) Ultraviolet radiation in the sea. Nature (Lond) 116:111-112
- Jerlov NG (1976) Marine optics. Elsevier, New York
- Jitts HR, Morel A, Saijo Y (1976) The relation of oceanic primary production to available photosynthetic irradiance. Aust J Mar Freshw Res 27:441–454
- Jordan BR, Chow WS, Strid Å, Anderson JM (1991) Reduction in *cab* and *psb* A RNA transcripts in response to supplementary ultraviolet-B radiation. FEBS Lett 284:5–8
- Karentz D, Cleaver JE, Mitchell DL (1991a) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341
- Karentz D, McEuen FS, Land MC, Dunlap WC (1991b) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166
- Karsten U, Garcia-Pichel F (1996) Carotenoids and mycosporine-like amino acid compounds in members of the genus *Microcoleus* (cyanobacteria): a chemosystemaic study. Syst Appl Microbiol 19:285–294
- Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23: 633–638
- Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034
- Lesser MP (1996) Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate *Prorocentrum micans*. Mar Ecol Prog Ser 132:287–297
- Lesser MP, Cullen JJ, Neale PJ (1994) Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: relative importance of damage and repair. J Phycol 30:183–192
- Lesser MP, Neale PJ, Cullen JJ (1996) Acclimation of Antarctic phytoplankton to ultraviolet radiation: ultraviolet absorbing compounds and carbon fixation. Mol Mar Biol Biotechnol 5:314–325
- Loeblich AR, Smith VE (1968) Chloroplast pigments of the marine dinoflagellate *Gyrodinium resplendens*. Lipids 3:5–13
- Lorenzen CJ (1979) Ultraviolet radiation and phytoplankton photosynthesis. Limnol Oceanogr 24:1117-1120
- Marchant HJ, Davidson AT, Kelly GJ (1991) UV-B protecting compounds in the marine alga *Phaeocystis pouchetii* from Antarctica. Mar Biol 109:391–395
- Nakamura H, Kobayashi J, Hirata Y (1981) Isolation and structure of a 330 nm UV-absorbing substance, asterina-

330, from the starfish Asterina pectinifera. Chem Lett 1981:1413-1414

- Nakamura H, Kobayashi J. Hirata Y (1982) Separation of mycosporine-like amino acids in marine organisms using reversed-phase high-performance liquid chromatography. J Chromatogr 250:113–118
- Neale PJ, Banazak AT, Jarriel CR (1998) Ultraviolet sunscreens in *Gymnodinium sanguineum* (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J Phycol 34:928-938
- Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, p 7–24
- Nichols HW, Bold HC (1965) *Trichosarcina polymorpha* gen. et sp. nov. J Phycol 1:34–38
- Nielsen T, Ekelund NGA (1993) Effect of UV-B radiation and humic substances on growth and motility of *Gyrodinium aureolum*. Limnol Oceanogr 37:1570–1575
- Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231-240
- Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428
- Quesada A, Mouget JL, Vincent WF (1995) Growth of Antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition. J Phycol 31:242–248
- Riegger L, Robinson D (1997) Photoinduction of UV-absorbing compounds in Antarctic diatoms and *Phaeocystis* antarctica. Mar Ecol Prog Ser 160:13–25
- Roy CR, Gies HP, Elliott G (1990) Ozone depletion. Nature (Lond) 347:235-236
- Rozema J, Gieskes WWC, van de Geijn, Nolan C, de Boois H (1997) UV-B and the biosphere. Kluwer Academic Publications, Dordrecht
- Sancar A, Sancar GB (1988) DNA repair enzymes. Ann Rev Biochem 57:29–67
- Shibata K (1969) Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant Cell Physiol 10:325–335
- Shick JM, Lesser MP, Stochaj WR (1991) Ultraviolet radiation and photooxidative stress in zooxanthellate Anthozoa: the sea anemone *Phyllodiscus semoni* and the octocoral *Clavularia* sp. Symbiosis 10:145–173
- Shick JM, Dunlap WC, Chalker BE, Banaszak AT, Rosenzweig TK (1992) Survey of ultraviolet radiation-absorbing mycosporine-like amino acids in organs of coral reef holothuroids. Mar Ecol Prog Ser 90:139–148
- Shick JM, Lesser MP, Dunlap WC, Stochaj WR, Chalker BE, Wu Won J (1995) Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar Biol 122:41–51
- Smith RC, Baker KS, Holm-Hansen O, Olsen R (1980) Photoinhibition of photosynthesis in natural waters. Photochem Photobiol 31:585–592
- Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959
- Soloman S (1998) Ozone depletion from pole to pole. Priestly Lecture, CSIRO Atmospheric Research, October 1, 1998, Melbourne, Australia
- Steemann Nielsen E (1964) On a complication in marine productivity work due to the influence of ultraviolet light. J Cons Int Explor Mer 29:130–135

- Stochaj WR, Dunlap WC, Shick JM (1994) Two new UVabsorbing mycosporine-like amino acids from the sea anemone Anthopleura elegantissima and the effects of zooxanthellae and spectral irradiance on chemical composition and content. Mar Biol 118:149–156
- Stolarski R, Bojkov R, Bishop L, Zerefos C, Staehelin J, Zawodny J (1992) Measured trends in stratospheric ozone. Science 256:342–349
- Strid A, Chow WS, Anderson JM (1990) Effects of supplementary ultraviolet-B radiation on photosynthesis in *Pisum* sativum. Biochim Biophys Acta 1020:260–268
- Sundbäck K, Nilsson C, Odmark S, Wulff A (1996) Does ambient UV-B radiation influence marine diatom-dominated microbial mats? A case study. Aquat Microb Ecol 11:151–159
- Sundbäck K, Odmark S, Wulff A, Nilsson C, Wängberg SÅ (1997) Effects of enhanced UVB radiation on a marine benthic diatom mat. Mar Biol 128:171–179
- Tomas RN, Cox ER (1973) The symbiosis of *Peridinium balticum* (Dinophyceae). I. Ultrastructure and pigment analysis. J Phycol 9(Suppl):16
- Tsujino I, Yabe K, Sekikawa I (1980) Isolation and structure of a new amino acid, shinorine, from the red alga *Chondrus yendoi* Yamada et Mikami. Bot Mar 23:65–68
- Van der Leun JC, Tang X, Teuini M (eds) (1998) Environmental effects of ozone depletion: 1998 assessment. United Nations Environmental Programme, Nairobi

Editorial responsibility: Otto Kinne (Editor), Oldendorf/Luhe, Germany

- Vernet M, Neori A, Haxo FT (1989) Spectral properties and photosynthetic action in red-tide populations of *Prorocen*trum micans and Gonyaulax polyedra. Mar Biol 103: 365–371
- Villafañe VE, Helbling EW, Holm-Hansen O, Chalker BE (1995) Acclimation of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J Plankton Res 17:2295–2306
- Wilson Ml, Ghosh S, Gerhardt KE, Holland N, Sudhakar Babu T, Edelman M, Dumbroff EB, Greenberg BM (1995) In vivo photomodification of ribulose-1, 5-bisphosphate carboxylase/oxygenase holoenzyme by ultraviolet-B radiation. Plant Physiol 109:221–229
- Worrest RC (1982) Review of literature concerning the impact of UV-B radiation upon marine organisms. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York, p 429–457
- Worrest RC, Häder DP (1997) Overview of the effects of increased solar UV on aquatic microorganisms. Photochem Photobiol 65:257-259
- Worrest RC, Brooker DL, Van Dyke H (1980) Results of a primary productivity study as affected by the type of glass in the culture bottles. Limnol Oceanogr 25:360–364
- Xiong F, Komenda J, Kopecky J, Nedbal L (1997) Strategies of ultraviolet-B protection in microscopic algae. Physiol Plant 100:378–388

Submitted: December 21, 1998; Accepted: June 3, 1999 Proofs received from author(s): November 9, 1999