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ABSTRACT 

The energetically costly transition from free-swimming larvae to benthic life stage and 

maintenance of a calcareous structure can make calcifying marine invertebrates vulnerable to 

ocean acidification. The first goal of this study was to evaluate the impacts of ocean acidification 

on calcified tube growth for two Serpulidae polychaete worms. Spirorbis sp. and Spirobranchus 

triqueter were collected at 11 m depth from the Northwest Mediterranean Sea and maintained for 

30 and 90 d, at three mean pHT levels (total scale) of 8.1 (ambient), 7.7, and 7.4. Moderately 

decreased tube elongation rates were observed in both species at a pHT of 7.7 while severe 

reductions occurred at pHT 7.4. There was visual evidence of dissolution and tubes were more 

fragile at lower pH but, fragility was not attributed to changes in fracture toughness. Instead, it 

appeared to be due to the presence of larger alveoli covered in a thinner calcareous layer. The 

second objective of the study was to test for effects in offspring development of the species S. 

triqueter. Spawning was induced, and offspring were reared in the same pH conditions the 

parents experienced. Trochophore size was reduced at the lowest pH level but settlement success 

was similar across pH conditions. Post-settlement tube growth was most affected. At 38 d post-

settlement, juvenile tubes at pHT of 7.7 and 7.4 were half the size of those at pHT 8.1. Results 

suggest future carbonate chemistry will negatively affect initiation and persistence of both 

biofouling and epiphytic polychaete tube worms.  

 

Key words: pH, Spirorbis sp., Spirobranchus triqueter, trans-generational effects, tube worms 
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INTRODUCTION 

The uptake of anthropogenic carbon dioxide (CO2) by the ocean generates changes in the 

carbonate chemistry of seawater. Dissolved inorganic carbon increases whereas the 

concentration of carbonate ions (CO3
2-) and pH decrease. This process is known as ocean 

acidification and it can have deleterious effects on some species, particularly calcifiers. The 

impact of ocean acidification on invertebrates has been studied in the past two decades (Byrne, 

2011; Kroeker et al., 2013; reviewed by: Kurihara, 2008). Many prior studies have shown that 

adult invertebrate calcifiers exposed to elevated CO2 partial pressure (pCO2) exhibited 

physiological stress and reduced calcification rates (Gazeau et al., 2007; Miles et al., 2007; 

Pörtner et al., 2004). 

Serpulidae is a large family of sedentary benthic polychaete worms that have a 

worldwide distribution and secrete and live within calcareous tubes. The family includes 

members from the subfamilies Spiborbinae, Filograninae and Serpulinae (Ten Hove and 

Kupriyanova, 2009). They live in varied marine habitats and are economically relevant as one of 

the most significant groups of marine fouling invertebrates. For example, many have undesirable 

effects such as clogging of seawater intake pipes and fouling of ship hulls (Bastida-Zavala et al., 

2017; Hoagland and Turner, 1980). Many serpulids are epiphytes on marine plants or live 

attached to rocks and shells and a few species aggregate to form calcified reefs (Kupriyanova et 

al., 2001; Smith et al., 2005). They are also often major ecological components of marine 

communities; they occur in great numerical abundance or biomass, add structural complexity to 

the habitat, and link pelagic and benthic food webs by filter feeding (Kupriyanova et al., 2001). 
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The mineralogy and structure of serpulid polychaete tubes could make them vulnerable to 

ocean acidification (Smith et al., 2013). The calcareous tube is formed by secretions from a pair 

of exocrine glands in the ventral part of the peristomium; these glands are in contact with the 

surrounding seawater and discharge a mucopolysaccharide matrix (Neff, 1971) that induces the 

precipitation of calcium carbonate (CaCO3) from seawater. The mixture of CaCO3 and 

mucopolysaccharides is then deposited to the leading edge of the tube by the collar. The timing 

and the details of the formation can be species-specific but, it tends to occur rapidly (within 

hours) and appears necessary for survival (Rouse and Pleijel, 2001). Furthermore, unlike many 

other groups in which calcification is impacted by ocean acidification such as corals, 

crustaceans, and molluscs, most serpulid tubes lack an external organic layer which would 

isolate their calcified structures from the surrounding seawater and protect them from negative 

effects (Ries et al., 2009). Serpulid tubes vary in skeletal mineralogy from aragonite, a form of 

CaCO3 highly soluble at low pH, to moderate to high-Mg calcite and many tubes are a mixture of 

both forms (Smith et al., 2013; Vinn et al., 2008). The few studies which have investigated low 

pH effects on serpulid tube growth have found a range of responses from no effect at elevated 

temperature (Chan et al. 2013) to reduced growth rates and changes in mineralogy. 

Mineralogical changes often result in subsequent losses in fracture hardness and elasticity (Chan 

et al., 2012; Lane et al., 2013; Lane et al., 2015; Li et al., 2014). 
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Early life stages of invertebrates are often the most sensitive to environmental changes 

(Byrne, 2011; Kurihara, 2008). The transition from a pelagic to a benthic life history stage is 

irreversible, energetically costly, and it is when most of the mortality is thought to occur. Thus, 

effects at the early benthic stages could cause a major bottleneck in population dynamics 

(Gosselin and Qian, 1997). Indeed, several bioassays with invertebrate larvae reared under 

elevated pCO2 have shown deformed larvae, reduced sizes at metamorphosis, and smaller 

juveniles (Dupont et al., 2008; Kroeker et al., 2013; Kurihara, 2008).  

The consequences of ocean acidification on the offspring of serpulid polychaetes are not 

yet fully understood. The success of larvae may depend on reproductive investment by parental 

generation, direct effects of lower pH conditions on larval and juvenile physiology, and their 

ability to adapt to rapid changes over generations. Lane et al. (2013) studied inter-generational 

adaptation in the serpulid polychaete Hydroides elegans to find that both paternal and maternal 

low pH exposure affects offspring growth rate with evidence for trans-generational plasticity. 

Rodríguez-Romero et al. (2016) worked for six generations with the dorvilleid polychaete 

Ophryotrocha labronica, which does not produce calcium carbonate tubes. They found that in 

early generations (F1 and F2), fecundity was significantly lower at low pCO2 but from F3 

onwards there were no significant differences between pCO2 treatments, indicating trans-

generational adaptation. This highlighted the usefulness of trans-generational experiments to 

understand the response to ocean acidification.  

The objective of the present study is to test for the effects of ocean acidification on the 

serpulid polychaetes, Spirobranchus triqueter and Spirorbis sp. These species have differing 

ecologies and belong to different serpulid phylogenetic clades (see Smith et al., 2013). 

Spirobranchus triqueter is a biofouling species, a broadcast spawner, and has a calcified 
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operculum while Spirorbis sp. broods eggs, lacks an operculum, and lives epiphytically on 

seagrass and algae (Kupriyanova et al., 2001). These differing ecologies and evolutionary 

lineages may have consequences on their sensitivity to ocean acidification (Lucey et al., 2015; 

Smith et al., 2013). The tube growth of these polychaetes was measured after being maintained 

under three pHT (total scale) conditions (8.1, 7.7, 7.4) for 30 to 90 days. Additionally, we tested 

for effects on the offspring of S. triqueter under the same control and pHT conditions. We 

hypothesize: (1) that calcareous tube growth is negatively impacted at low pH and (2) the early 

life stage development is also negatively affected from lowered parental investment and/or from 

direct effects of pH on development and growth. 

MATERIALS & METHODS 

Serpulid collection and calcein staining 

Thirty Posidonia oceanica seagrass shoots (33 cm maximum leaf length) colonised by 

Spirorbis sp. were collected on 26 March 2014 at 11 m depth in a seagrass meadow within the 

Bay of Villefranche (NW Mediterranean Sea; 43°40.73′N, 07°19.39′E).  

Spirobranchus triqueter (Linnaeus, 1758) was collected eight days later on 3 April 2014 

on 2 x 1 m Perspex© sheets. Sheets were deployed on 6 March 2014 in the same meadow and at 

the same depth where Spirorbis sp. was collected and, ~ 4 weeks later, had a single S. triqueter 

recruitment event colonising its surface. At the time of collection, all tubes were of similar size 

(about 1.5 cm in length). The sheets were then cut into 20 x 10 cm plates.  
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Posidonia shoots with Spirorbis sp. and the plates harboring S. triqueter were 

immediately brought to the laboratory and placed in a tank with buffered calcein (60 mg L-1) for 

48 to 72 h, in a temperature-controlled room (14 °C). The purpose was to stain the tubes in order 

to have a mark for future growth measurements. The polychaetes were fed ad libitum with the 

microalgae Isochrysis galbana during staining. The plates and seagrass shoots were then placed 

into the experimental setup (Fig. 1). 

Experimental setup and pH control – Spirorbis sp. and S. triqueter parental generation 

After staining, plates and seagrass shoots with attached serpulids were placed into nine 

transparent (Perspex) open-top cylinder tanks of 8.4 L (Fig. 1). There were five shoots per tank. 

The nine tanks were randomly assigned to three pH treatments (three tanks per pH level) referred 

to as ambient, treatments #1 and #2 with targeted pHT levels of 8.1, 7.7 and 7.4 respectively. 

Tanks initially contained Spirorbis sp. on leaves and 8 d later, after collection, also contained S. 

triqueter on plates. Both species were kept in a flow-through system in a temperature-controlled 

room (14 - 15 °C) under a 9.5:14.5 light:dark photoperiod (to mimic day length at depth in 

March) provided by six 39 W Solar Nature Ultra light (JBL) tubes for up to 30 or 90 d, for 

Spirorbis sp. and S. triqueter, respectively. During this time, polychaetes were fed twice per 

week (75 mL, 60,000 cells mL of a culture I. galbana). The flow through was interrupted for 1 h 

during feeding.  
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Seawater, pumped at 8 m depth 100 m from the coast, was continuously supplied to three 

200 L header tanks at a minimal rate of 50 L h-1. From each header tank, seawater was delivered 

continuously by gravity to the three experimental tanks at each pH level. The flow into 

experimental tanks was adjusted to reach a renewal time of about 15 min, ensuring good water 

quality without large fluctuations of pH, nutrients, dissolved oxygen, and temperature. A pump 

was located in each header tank to ensure mixing.  

pH was controlled by bubbling pure CO2 in the corresponding header tanks using a pH-

stat system (IKS, Karlsbad, Aquastar). The pH electrodes of the pH-stat system were inter-

calibrated every two days using a glass combination electrode (Metrohm Ecotrode Plus) 

calibrated on the total scale using TRIS buffer with a salinity of 38 corresponding to the salinity 

of the seawater pumped from the bay.  

Carbonate chemistry measurements 

Every two or three days, during both the experiments on adults and S. triqueter offspring, 

samples were taken for dissolved inorganic carbon (CT) in each header tank and for total 

alkalinity (AT) in the ambient header tank. Furthermore, during the experiment on offspring, 

approximately every 2-3 d, samples for CT and AT were taken prior to each seawater renewal (see 

thereafter). Samples for CT (60 mL) were immediately poisoned with 100 μL of a saturated 

solution of mercuric chloride (HgCl2) and analysed within two days using an AIRICA 

(automated infra-red inorganic carbon analyzer, Marianda, Germany) coupled to a LI-COR 

infrared gas analyser (LI-6262), on triplicate 1.2 mL subsamples at 22 °C. The instrument was 

calibrated before every set of measurements using certified reference material (CRM) from A. 

Dickson (Scripps University, San Diego, USA; batch 132). Samples for AT (300 mL) were 

filtered on 47 mm diameter GF/F membranes, immediately poisoned with 100 μL of saturated 
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HgCl2 and analysed within two days. AT was determined at 22 °C on triplicate 50 mL subsamples 

by potentiometric titration on a Metrohm Titrando 880 titrator coupled to a glass combination 

electrode (Metrohm, Ecotrode Plus) calibrated daily on the total scale using TRIS buffers of 

salinity 38. AT was calculated as described by Dickson et al. (2007). During the experiment, 

standards provided by A. Dickson (batch 132) were used to check precision and accuracy (n = 

11; 1.3 and 1.3 μmol kg-1, respectively). The pHT levels and temperature were also measured 

approximately every two days in each cylinder using a glass combination electrode (Metrohm, 

Ecotrode Plus) calibrated as described above. At the conclusion of study for Spirorbis sp. (at 40 

d in the experiment for S. triqueter adults), we considered we had successfully shown the pHT 

and temperature in experimental cylinders reflected the pH of the header tanks and the 

temperature of the room. Thereafter, pH and temperature measurements in the cylinders were 

interrupted and only CT and AT were measured ever two or three days in the header tanks for the 

remainder of the experiment with S. triqueter. The carbonate chemistry was assessed using CT 

and AT (flag 15) at salinity of 37.5 with the corresponding room temperature in R package 

seacarb (Lavigne et al. 2014).  

Tube elongation-Spirorbis sp. and S. triqueter parental generation 

 Tube elongation rates were determined for Spirorbis on day 30 and for S. triqueter 

throughout the experiment at 36 and 90 d for the parental population. Polychaetes were 

photographed under a fluorescence Zeiss microscope at 515 nm, a wavelength under which 

calcein fluoresces yellow-green. Growth measurements were performed using the Image J 

analysis software. New tube growth for Spirorbis sp. was estimated from the external arc of the 

coil to the stained line of the tube edge, while for S. triqueter it was estimated as the length from 

the staining line to the distal end of the tube.  
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Culturing of S. triqueter offspring and measures of growth and development 

Spawning 

  After S. triqueter had been maintained for 45 d, four females and one to two males were 

randomly selected from each treatment. Gametes were obtained by breaking the posterior part of 

tubes; this mechanical perturbation caused the release of eggs and sperm. Once they began 

spawning they were immediately placed into a beaker (three in total, one for each pH level), at a 

seawater pHT of 8.1, where fertilisation took place. They were left for 30 min to allow embryos 

to develop. Offspring were cultured and maintained in the same temperature-controlled room as 

the parents. 

Trochophore density and size 

Embryos were then transferred to 2 L beakers (three in total, one for each pH level) 

containing filtered seawater at the respective pH level taken from the header tanks and closed 

with plastic wrap to avoid CO2 exchange with the atmosphere. Fifteen hours after fertilisation, 

the density of developed trochophore was estimated for each treatment in 1 mL samples which 

were placed under a microscope and counted with a Sedgewick grid.  

Trochophore larvae from each treatment were maintained in these 2 L beakers at the 

respective pH levels (Fig. 1). During development from embryo to competent larvae, seawater 

was changed twice a day and replaced with water from the respective header tanks. 

Approximately every 2 d for a month, an attempt was made to collect seawater from beakers and 

measure carbonate chemistry using the methods described earlier. Larvae were fed daily with 10 

mL of a culture of Isochrysis galbana at a density of 50,000 cells mL-1.  
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Two and 10 d after the appearance of trochophore larvae, 20 larvae from each treatment 

were placed into separate Petri dishes. The dishes were then placed for 3 min in a refrigerator to 

reduce mobility. Larval size was measured using a stereoscopic microscope with a micrometer 

previously calibrated using a scaled slide. The larvae not measured remained in culture until they 

reached metamorphic competence (three segments).  

Settlement 

After 20 d of larval culture, when the metatrochophore stage had been reached, a batch of 

25-30 competent larvae from each of the three pH treatments were pipetted into 18 Petri dishes 

(six per treatment) filled with seawater from respective header tanks. In each Petri dish, larvae 

were provided a microscope slide covered in biofilm to induce settlement. Biofilm was obtained 

by placing the slides in running seawater for 8 to 10 d prior to induce settlement. After 48 h, 

settled larvae were counted and percent settled calculated.  

Offspring tube elongation 

Slides with settled S. triqueter were stained for 40 h in a calcein (100 mg L-1) bath that 

had been buffered to a pHT of 8.1. The 18 slides were then placed into (three in total) 2 L glass 

beakers filled with seawater at the respective pH level. At 15, 22, and 38 d after the appearance 

of first settlement the new tube length of juveniles was assessed using the same method as 

described for their parental generation.  

Tube hardness and fracture toughness- S. triqueter parental generation 

  At the conclusion of the experiment, S. triqueter tubes from the parental generation were 

oven-dried at 60 ºC for 48 h, stored in air tight containers, and shipped to the University of 

Glasgow, Scotland. New growth of S. triqueter tubes (three per treatment, nine in total) were 

embedded in epoxy resin (EpoxyCure, Buehler) blocks and sliced transversely using a diamond 
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trim saw blade. Resin blocks were ultra-polished using aluminium oxide (0.3 and 1 µm) and 

colloidal silica (0.6 µm). Fracture toughness was determined using Vickers Hardness 

microindentation (Micro Vickers 401, MVA, Wilson Wolpert Co., Ltd). Indents were made on 

the calcite material surrounding the porous structures of the tubes midway between the pores and 

the resin (indents per tube n = 6 - 15). A load of 0.2 N was applied for 10 s, the lengths of the 

diagonals of the indent were measured to calculate the Vicker’s hardness (H) and the length of 

the cracks developed from the corners of the indent measured to determine fracture (KIC; Fitzer 

et al., 2015). 

Statistical Analysis 

 Replication was considered at the individual level with the exception of settlement 

success when each slide was considered a replicate. Pooling of individuals was done to increase 

sample size for statistical analyses. Replicate containers were thus only considered as sources of 

variability. Subsequently, analyses were subjected to potential container effects. However, 

obvious differences in measures between containers were not observed, all containers were a 

source of individual measures, and sampling efforts (environment monitored, treated similarly, 

transferred between container type with development) were taken to minimize this effect. In 

instances where multiple measurement intervals were collected from the same pH treatment, data 

were treated separately by day. This data treatment was done because when data were pooled for 

statistical analyses in a two-factor test with pH treatment and time interval included as factors, 

data did not meet parametric requirements and could not be successfully transformed to meet 

parametric requirements. Therefore, all data were tested with separate one-way analysis of 

variance (ANOVA). Prior to testing, data were checked for normality and homogeneity of 

variance and transformed when necessary. Measures of tube elongation at 90 d in S. triqueter 
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(parental generation) and measures at 38 d in the offspring still did not meet parametric 

requirements and in these instances a Kruskal-Wallis test was used (see Table 3) . Additionally, 

rates of tube elongation by Spirorbis sp. were square root transformed prior to testing. Tukey’s 

or Dunn’s (when non-parametric) post hoc tests were used to examine for pairwise differences 

when significant main results were found. Unless otherwise noted, data are reported as mean ± 

standard error (SE) throughout. 

RESULTS 

Carbonate chemistry and environmental measures 

Spirorbis sp. and S. triqueter parental generation 

Environmental conditions in the header tanks are shown in Table 1 and Supplementary 

Table 1. Under ambient conditions, pHT averaged 8.11 ± 0.04 (SD) during the culture of 

Spirorbis sp. and 8.13 ± 0.06 (SD) during the culturing of the adult S. triqueter, while in the two 

low pH conditions, it was, on average, 7.73 ± 0.05 and 7.72 ± 0.07 in treatment #1 and 7.40 ± 

0.07 and 7.38 ± 0.14 in treatment #2 for the two species, respectively. Serpulid worms cultured 

at pHT 8.1 and 7.7 were exposed to seawater always supersaturated with respect to both calcite 

and aragonite. In contrast, at the lowest pH condition, seawater was mostly undersaturated with 

respect to aragonite (Ωa = 0.4 to 1.1) and close to saturation for calcite (Ωc = 0.6 to 1.5). pHT 

measured in the cylinders (from 31 March to 15 May) was very close to values determined in the 

header tanks (Fig. 2). 
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S. triqueter offspring 

Environmental and carbonate chemistry parameters in header tanks and in the beakers in 

which offspring were reared (before water replacement) are shown in Table 1 and 2. Under 

ambient conditions, pHT averaged 8.10 ± 0.05 (SD) in the beakers. In the two low pH conditions, 

pHT increased by 0.1 to 0.2 units between water changes but the pH gradient between treatment 

levels was maintained (ambient > #1 > #2). For example, the mean pHT in header tanks for 

treatment #1 and treatment #2 was 7.7 and 7.4, respectively, whereas the mean (± SD) pHT in 

beakers at time of water change for treatment #1 was 7.82 ± 0.06 and for pH treatment #2, 7.57 ± 

0.06. Similarly, the aragonite and calcite saturation was proportionally increased from values 

measured in the header tanks at time of water change. 

Tube elongation – Spirorbis sp. and S. triqueter parental generation 

Spirorbis sp. tube elongation (measured once at the end of study) was affected by pH 

(Table 3, Fig. 3). Rates were relatively reduced at the two lower pH levels and tubes grown at the 

lowest pH were thinner and broke easily.  

 Tube elongation by S. triqueter (parental generation) was also impacted by lowered pH 

conditions and rates differed over the duration of the experiment (Table 3, Fig. 3). Over 36 d and 

90 d, individuals maintained at ambient pH had the fastest rates of tube elongation: 0.23 (± 0.02) 

mm d-1 over 36 d. This rate reduced to 0.17 (± 0.01) mm d-1 over 90 d. During the 36 d when 

ambient treated serpulids had the fastest rates of tube elongation, the S. triqueter exposed to the 

lower pH levels (#1 and #2) had reduced elongation rates that significantly differed from the 

rates measured under ambient pH, those at pHT level of 7.7 having greater rates than those at pHT 

level of 7.4 (Table 3, ambient > #1 > #2).  After a longer period of growth (90 d), individuals of 

S. triqueter kept at pHT level of 7.7 (treatment #1) and 7.4 (#3 at pHT 7.4) had further reduced 
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elongation rates (mean of 0.06 ± 0.01 and 0.03 ± 0.02 mm d-1) that did not differ from each other 

(Table 3, ambient > 1 = 2).  

S. triqueter trochophore density and size 

 Data are most congruent with the hypothesis that lowered pH conditions affected 

trochophore density and growth (Table 3, Fig. 4). Indeed, the mean density in treatment #2 (57 ± 

11.8 trochophore ml-1) was substantially lower than the mean density at ambient (101 ± 12). 

Initial size estimates of larvae at day 2 were similar and all larvae increased in size from day 2 to 

day 10. However, at day 10 post-fertilisation, the larvae at the lowest pH level were significantly 

smaller (Table 3, 376 ± 7.9, 369.4 ± 5.5 and 361.2 ± 6.7 µm for ambient, treatment #1 and #2, 

respectively). 

S. triqueter settlement 

Most larvae attained metamorphic competence but at the lowest pH level (treatment #2) 

five abnormal larvae were observed (out of 25 - 30 larvae). All five of them had one side of the 

body more developed than the other making the larvae swim in an unusual way. Settlement of 

metatrochophores took place first (21 d after fertilization) in treatment #2 (mean pHT of 7.4 to 

7.6), then 24 to 48 h later (22 to 23 d after fertilization) for those maintained in ambient and pH 

treatment #1. Settlement success of competent larvae ranged between 89 to 93% and no 

differences between treatments were detected (Table 3). 

Tube elongation – S. triqueter offspring 

One hour after settlement larvae began to secrete a transparent primary tube, and 24 h later 

they were cemented permanently in place, building the secondary calcified white tube. Initially, 

the calcified tubes in the lowest pH level were significantly smaller (ambient = 1.67 ± 0.03, #1 = 

1.67 ± 0.02 and #2 = 1.64 ± 0.02 mm), but a week later (22 d) juveniles in pH treatment #1 and #2 
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were elongating tubes at a similar rate to those in ambient (Table 3, Fig. 4). Then, 38 d post-

settlement, S. triqueter juveniles in ambient conditions had nearly doubled rates from previous 

days while the juveniles at the lower pH levels (treatment #1 and #2) continued to elongate tubes 

at a similar rate, slightly above the rate recorded at 22 d.  

Fracture toughness and hardness - S. triqueter parental generation 

 Fracture toughness (KIC) was greatest for tubes maintained at the intermediate pH level 

(#1) yet remained similar for worms measured from all three treatment levels (Table 3, Fig. 5). 

Likewise, tubes maintained at the mid-pH level (treatment #1) were significantly harder 

compared with the significantly reduced hardness at the pH treatment #2 (Table 3, Fig. 5). 

Alveoli size visually differed among treatments (Fig. 6). Alveoli were present inside the two 

lateral tube flanges. Alveoli form in tube growth and house the notopodial chaetae (Hedley, 

1958). As the tube elongates the chaetae move forward and prevent calcareous deposition in a 

new location. In cross section, the tube section formed at the lowest pH (treatment #2) had the 

largest alveoli with a thinner layer of calcareous covering corresponding to the significantly 

reduced hardness of the tube. However, the tubes grown in treatment #1 had very small alveoli; 

noticeably smaller than those in tubes at ambient pHT.  

DISCUSSION 

Our results support the hypothesis that ocean acidification will affect the calcification of 

serpulid tubes. The lowered pH and the subsequent lowered saturation states of calcite and 

aragonite reduced tube growth and appeared to alter tube integrity in both species.  
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Tube growth 

According to Waldbusser et al. (2015), the effects that ocean acidification has on shell 

formation of bivalve larvae are modulated by a combination of dissolution of the tube as well as 

physiological changes to the internal acid-base balance, affecting the rate of new CaCO3 

deposition. Dissolution and reduced growth under acidified conditions have also been reported in 

other serpulid species. A well-studied tropical serpulid, Hydroides elegans, raised under lowered 

pH (7.8 - 7.4 NBS) produced smaller, thinner, less dense and weaker tubes (Chan et al., 2012; Li 

et al., 2014; Li et al., 2016). In one report, most of the H. elegans larvae raised at pH conditions 

below 7.7 (NBS scale) were unable to produce calcified tubes at the time of metamorphosis and 

juvenile calcification was also negatively affected (Lane et al., 2013). In the Baltic Sea, tube 

growth of Spirorbis spirorbis, an epiphytic species on algae, was decreased by 25% and 40% at 

1200 and 3150 µatm CO2, respectively (Saderne and Wahl, 2013). Adult and juvenile tubes 

exhibited dissolution that in some cases exposed the worms and their embryo bags (Saderne and 

Wahl, 2013).  

Mineral composition 

The fact that most serpulid tubes lack an outer organic protective layer and are composed 

of aragonite, calcite and, for some, high Mg-calcite makes them sensitive to acidified conditions 

(Chan et al., 2012; Smith et al., 2013; Vinn, 2013; Vinn and Kupriyanova, 2011). Mineral 

composition of serpulid tubes shows a strong phylogenetic signal, but it can be somewhat plastic 

(Smith et al., 2013). Spirorbis spirorbis (as S. borealis) have been reported to be 10 to 14% 

aragonite with the rest being moderate to high Mg calcite depending on environmental factors 

such as temperature (Bornhold and Milliman, 1973). This bimineralic composition is typical for 

Spirorbis spp. and both mineral types are highly soluble. Therefore, this serpulid group is 
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suspected to be highly sensitive to dissolution (Smith et al., 2013); results in the present study 

support this hypothesis. Spirobranchus triqueter tubes have been reported to be composed of 

98.4% moderate to high calcite and 1.6% aragonite (Vinn et al., 2008). In contrast, polychaete 

species belonging to the genus Hydroides are reported to be almost entirely aragonitic (Smith et 

al., 2013). However, biomineralogical plasticity (increased the ratio of magnesium to calcite) in 

response to CO2-induced ocean acidification was observed in the biofouling species Hydroides 

crucigera (Ries, 2011). Ontogenetic mineral changes have also been noted; juvenile H. elegans 

tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas 

adult tubes were bimineralic with considerably more calcite (Chan et al., 2012). Probably early 

stages of S. triqueter are less aragonitic than H. elegans and this gives them more resistance to 

changes in seawater chemistry, as we did not observe polychaetes unable to build tubes. 

However, lowered pH conditions had the greatest impact post-settlement on S. triqueter juvenile 

tube elongation. Thus, ontogenetic change in mineral composition is a possibility in this species 

but more studies are needed on the topic. Also, the present study may underestimate effects on S. 

triqueter, because the calcified opercula, known to be almost entirely aragonitic in this group 

(see Smith et al., 2013), were not investigated. 

Tube hardness and elasticity 

Alterations in tube mineralogy can result in deterioration of the tube hardness and 

elasticity which are two factors that can have important ecological consequences on survival 

(predation, withstanding wave force; Chan et al., 2012; Li et al., 2014). However, for S. triqueter, 

in the present study, the change in alveolus size, reduced hardness and not the calcified fracture 

toughness (KIC) presumably accounts for the fragility of the tube at pHT 7.4. Spirobranchus 

triqueter may have some ability to compensate to conditions at a pHT of 7.7, as evidenced by the 
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greater hardness and smaller alveoli. Perhaps, S. triqueter allocated energy to maintain structural 

tube integrity at the expense of growth. The price of compensating for lowered pH has an 

associated energy cost. Such changes in the energy budget have been observed in several 

calcifiers such as molluscs and foraminifera (Pan et al., 2015; Wood et al., 2008). When 

additional energy is channelled to calcification in order to repair dissolved zones of the tube or 

shell, it cannot be used for other processes, restricting growth and reproductive output. 

Furthermore, the ability to change tube morphology in response to environmental conditions has 

been observed. For example, H. elegans subjected to both elevated temperature and lowered pH 

conditions produced longitudinal keels that increased the volume of tubes and mitigated the 

weakness observed under acidified conditions at lower temperature (Li et al., 2016).  

Larval development 

Few studies have noted ocean acidification effects on serpulid larval size or 

metamorphosis (Lane et al., 2013; Lane et al., 2015). We observed reduced larvae density 

and size but no impact on metamorphosis when cultured at a pHT 7.4 (Fig. 4). Some authors 

(Kurihara, 2008; Parker et al., 2010) have reported that effects at adult stages may have “carry-over” consequences from one life history stage to the next. In the present study and 

in many studies on the topic to date (e.g. Chan et al. 2012, Li et al. 2014, Li et al. 2016), 

fertilization of tubeworm gametes has occurred at a pHT of 8.1. It has been reported that 

pH, salinity, and temperature do not directly alter fertilization in tubeworms such as H. 

elegans (Li et al. 2014). However, without an acclimation period or some examination to 

rule out carry over effects, fertilization at ambient prior to treatment conditions may 

mitigate or, alternatively cause cellular stress and exacerbate low pH impacts on early 

development. Future efforts should ensure that all life stages are kept at treatment 
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conditions to better determine ocean acidification effects. Nevertheless, decreased size in 

early developmental stages of marine organisms has been shown to affect juvenile fitness 

by reducing competitive ability and increasing post settlement mortality (Anil et al., 2001).  

The negative effect observed at early development (Fig. 4) could be explained by the 

lower pHT (7.4) used and exposure of both parents to lowered pH conditions; as differential 

gender effects have been noted (see Lane et al., 2015). The more extreme ocean acidification 

scenario could cause great stress on the parental generation or more drastic direct effects on acid-

base balance or ion regulation in trochophore larvae. For example, from a 5 d transplant 

experiment, the polychaete Sabella spallanzanii was estimated to only be able to survive in the 

short-term under low pH conditions because ocean acidification causes a significant decrease in 

carbonic anhydrase concentration and an increase in energy metabolism (Turner et al., 2015). 

While the mechanism resulting in smaller trochophores at 10 d (not at 2 d) post-fertilisation is 

unclear (Fig. 4). There are several accounts of reduced larval size in invertebrates under acidified 

conditions (Kroeker et al., 2010). Echinoderm larvae of the sea urchins Hemicentrotus 

pulcherrimus and Paracentrotus lividus subjected to elevated CO2 presented delayed 

development and smaller size (Byrne et al., 2013; Dupont et al., 2008). In the present study, 

however, lowered pH conditions did not delay settlement. 

Additionally, invertebrate larvae with short life cycles have the potential for short-term 

evolution in response to ocean acidification; this capacity of adaptation can reduce biological 

impacts of climate change (Hoffmann and Sgrò, 2011). Polychaete worms transplanted to CO2 

vents in Ischia (Italy) have shown acclimation, adaptation, and plasticity to elevated pCO2 

environments (Calosi et al., 2013). No acclimation was observed for S. triqueter in the present 

study (Fig. 3,4); experiments with several generations may be needed in order to evaluate 
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adaptive capability of this species. If there was trans-generational plasticity it was not apparent 

with our  study design. For instance, Lane et al. (2015) concluded H. elegans exhibited trans-

generation plasticity evident only when the first-generation offspring were cultured in ambient 

pH (NBS, 8.1; i.e. mismatch between parental and offspring exposure).  

Ecological relevance 

Reduced tube growth and the lower number of trochophores produced at the lowered pH 

conditions (Fig. 4) are likely to affect serpulid recruitment. Examinations of serpulid 

establishment in natural settings support this conclusion but, also highlight the importance of 

including ecological interactions and environmental variability when predicting population 

responses. Observational studies along CO2 vents have found a reduction in numbers of serpulid 

individuals nearer to the vent source; citing both direct effects on calcification and decreased 

competitive abilities with more tolerant species (Cigliano et al., 2010; Donnarumma et al., 2014; 

Martin et al., 2008). Species of Spirorbis that settle on photosynthesising organisms can be 

somewhat buffered from ocean acidification effects by the chemically mediated environment 

provided by their host (Cox et al., 2017; Hendriks et al., 2014; Saderne and Wahl, 2013). 

However, to be buffered, the benefits during the day need to be great enough to offset the 

negative effects of respiration at night. In addition, the tube worm response can be driven by 

temperature (Campbell and Fourqurean, 2014; Ni et al., 2017). For example, Spirorbis spirorbis, 

in the laboratory, had reduced recruitment on a fucoid alga at extreme pCO2 (3150 µatm) but not 

at moderate levels (1200 µatm, Saderne and Wahl, 2013). An in situ benthocosm study, using the 

same species, concluded that early life stages are promoted by moderately warm temperatures. 

However, high temperatures exacerbate tube dissolution and do not alter growth, when water is 

undersaturated with respect to CaCO3 (Ni et al., 2017). In the Northwest Mediterranean Sea, 
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Spirobis sp. recruited less on tiles placed inside an in situ acidified enclosure than on tiles placed 

in the control enclosure at ambient pH. Also, the density of epiphytic Spirorbis sp. on Posidonia 

oceanica seagrass leaves appeared unaffected in both enclosures, leading to the conclusion that 

the chemically mediated boundary layer around the leaf provided an ocean acidification refuge 

(Cox et al., 2017). In contrast though, Spirorbis sp. had fewer individuals on leaves of the 

subtropical seagrass Thalassia testudinum exposed to lowered pH and the effect was greater 

during winter months (Campbell and Fourqurean, 2014). Moreover, food availability is a critical 

factor in larval development and juvenile growth (Olson and Olson, 1989). In the present study 

worms were fed adequately and that could have allowed for some resistance to more negative 

effects. 

 Future implications under global climate change 

Ocean warming will shape the response to ocean acidification. It is predicted that tropical 

tube worms will shift towards the poles in distributions with continued global climate change 

(Faroni-Perez, 2017). In the predictive model, which considered both warming and acidification, 

elevated temperature was the most influential driver of distributions, although Faroni-Perez 

(2017) points to the need for more information on the effects of ocean acidification on tube 

worms to inform models. This shift in distributions should cause alarm because serpulid reefs 

allow for greater biodiversity and their loss can have implications on temperate shallow-water 

ecosystem function. The composition of biofouling communities will also probably change 

significantly with a decrease in invertebrate calcifiers, particularly Serpulidae.  
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Table 1.  Carbonate chemistry calculated from determined AT and CT with a salinity of 37.5 and measured temperature (T, ℃) 

within ambient, treatment #1, and treatment #2 header tanks over the experimental duration for Spirorbis sp. (30 d), and 

Spirobranchus triqueter collected from the field (90 d) and reared in tanks (offspring, 43 d): total alkalinity (AT, µmol kg-1), pH (on 

the total scale; pHT), partial pressure of carbon dioxide (pCO2, µatm), total dissolved inorganic carbon (CT, µmol kg-1) and 

saturation states with respect to aragonite (Ωa) and calcite (Ωc).  

     Ambient Treatment #1 Treatment #2 

   T AT pHT pCO2 CT ΩA ΩC pHT pCO2 CT Ωa Ωc pHT pCO2 CT Ωa Ωc 

Spirorbis sp.  Mean 16.2  2551 8.11 367 2251 3.3 5.1 7.73 1011 2439 1.5 2.4 7.40 2268 2557 0.8 1.2 

  SD 0.8 6 0.04 37 24 0.2 0.4 0.05 128 12 0.1 0.2 0.07 401 23 0.1 0.2 

S. triqueter  Mean 15.9 2546 8.13 347 2242 3.3 5.1 7.72 1047 2440 1.5 2.3 7.38 2510 2565 0.8 1.2 

  SD 1.2 10 0.06 49 20 0.2 0.3 0.07 177 26 0.2 0.3 0.14 848 46 0.2 0.3 

S. triqueter  Mean 14.9 2546 8.15 328 2235 3.4 5.2 7.73 1019 2438 1.5 2.3 7.41 2381 2560 0.8 1.2 

Offspring  SD 0.4 13 0.03 29 17 0.2 0.3 0.10 247 39 0.3 0.5 0.18 1038 62 0.3 0.4 
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Table 2.  Carbonate chemistry calculated from determined AT and CT with a salinity of 37.5 and measured temperature 

(T,℃)  within ambient, treatment #1, and treatment #2 culture beakers just prior to water changes over 28 d of 

experimental duration for Spirobranchus triqueter (S. t.) offspring: total alkalinity (AT, µmol kg-1), pH (on the total 

scale; pHT), partial pressure of carbon dioxide (pCO2, µatm), total dissolved inorganic carbon (CT, µmol kg-1) and 

saturation states with respect to aragonite (Ωa) and calcite (Ωc). * signifies measures for juveniles (post-settlement 1-2 

d).  

    Ambient Treatment #1 Treatment #2 

Date Day T AT pHT pCO2 CT Ωa Ωc pHT pCO2 CT Ωa Ωc pHT pCO2 CT Ωa Ωc 
5/23/2014 2 18.1 2546 8.06 416 2258 3.2 4.9 - - - - - - - - - - 
5/24/2014 3 14.7 2510 8.03 454 2275 2.6 4.0 - - - - - - - - - - 
5/25/2014 4 15.4 2521 8.06 422 2264 2.8 4.4 7.74 966 2411 1.5 2.3 - - - - - 
5/26/2014 5 14.2 2537 8.14 339 2242 3.2 4.9 7.83 779 2399 1.7 2.7 - - - - - 
5/28/2014 8 14.4 2535 8.14 340 2239 3.2 5.0 7.85 738 2387 1.8 2.8 7.56 1529 2497 1.0 1.5 
5/31/2014 11 15.2 2543 8.15 325 2228 3.4 5.3 7.75 958 2431 1.5 2.4 7.59 1414 2489 1.1 1.7 

6/5/2014 16 15.5 2546 - - - - - - - - - - 7.53 1647 2512 1.0 1.5 
6/6/2014 17 14.6 2542 - - - - - 7.78 866 2418 1.6 2.5 - - - - - 
6/7/2014 18 14.8 2544 - - - - - 7.89 667 2375 2.0 3.1 7.54 1614 2511 1.0 1.5 

6/10/2014 21* 15.0 2549 - - - - - 7.91 638 2370 2.1 3.3 7.54 1607 2514 1.0 1.5 
6/13/2014 24* 15.0 2537 8.16 320 2222 3.4 5.3 7.85 735 2384 1.9 2.9 7.68 1124 2451 1.3 2.1 
6/17/2014 28* 15.0 2539 8.08 395 2269 3.0 4.6 - - - - - - - - - - 

                   

Mean  15.1 2540 8.10 380 2250 3.1 4.8 7.82 793 2397 1.8 2.8 7.57 1489 2496 1.1 1.6 
SD  1.2 12 0.05 47 18 0.3 0.4 0.06 125 22 0.2 0.3 0.06 198 24 0.1 0.2 
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Table 3. Results of one-way ANOVA or Kruskal-Wallis (specified below) tests used to test for differences in Spirorbis sp. and S. triqueter tube 

elongation, development, and tube fracture hardness and toughness when exposed to three pH treatments (ambient, treatment #1 and treatment #2). 

Significant differences are in bold text with the results of pairwise poc hoc tests. * p<0.05, **p<0.01 

Parameters  n df MS F-stat (or H) p-value pairwise post hoc 

Tube elongation rates       

      Spirorbis sp. (square-root transformed) 14-15 2 0.315 16.30 <0.001 ambient >1*>2** 

      S. triqueter parental generation        

            36 d  13 2 0.084 92.55 <0.001 ambient > 1**>2** 

90 d (Kruskal-Wallis) 23-28 2  28.45 <0.001 ambient > 1 = 2* 

S. triqueter offspring       

     Trochophore size        

              2 d post-fertilization 10 2 9.733   2.39   0.111 N/A 

            10 d post-fertilization 10 2 564.133 12.35 <0.001 ambient = 1 > 2** 

     Settlement success 6 2 41.8   0.93   0.415 N/A 

     Juvenile tube growth       

            15 d post-settlement 11-13 2 0.0000207   9.83 <0.001 ambient = 1 > 2** 

            22 d post-settlement 11-13 2 0.00000451   4.13   0.025 ambient = 1, ambient = 2, 1 > 

2* 

            38 d post-settlement (Kruskal-Wallis) 18 2  32.82 <0.001 ambient >1 = 2* 

Hardness (H) 3 2 35203 16.47 <0.001 ambient < 1 and > 2, 2 > 1** 

Fracture toughness (KIC) 3 2 5982627612     0.50   0.606 N/A 
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Figures 

 

Fig. 1 Experimental design: Spirorbis sp. on Posidonia oceanica shoots and Spirobranchus 

triqueter on tiles were collected from the field and exposed to three pH treatments: ambient, 

treatment #1, and treatment #2 for 30 and 90 days, respectively. Header tanks were used to feed 

three replicate cylinder tanks containing tube worms. A pH-stat system was used to bubble pure 

CO2 into header tanks to maintain pH. After 45 d, one to two males and four females of S. 

triqueter from each treatment were induced to spawn. Larvae were allowed to develop for 20 d 

in 2 L beakers and transferred to Petri dishes that contained a slide covered with biofilm for 

settlement. Worms settled within 1-3 d and were placed into a calcein bath for 48 h. Then 

juveniles were placed into 2 L beaks and allowed to grow for 38 d. Offspring were exposed to 

experimental conditions a total of 43 d. The water was changed in culture beakers twice per day.  

 

J
o

u
rn

a
l o

f 
E

x
p

e
ri

m
e

n
ta

l B
io

lo
g

y
 �

 A
c

c
e

p
te

d
 m

a
n

u
sc

ri
p

t



 

 

 

 

 

 

 

Fig. 2 pHT measured in experimental cylinders in March (Mar), April (Apr), and May with 

Spirorbis sp. and S. triqueter (parental generation).  
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Fig. 3 Tube elongation rates (mean + SE in mm d-1) for Spirorbis sp. at 30 d and S. triqueter 

(parental generation, B) at 36 and 90 d of experimental exposure to ambient, treatment #1, and 

treatment #2 conditions. Sample sizes were as follows S. triqueter at 36 d all treatments had an n 

= 13; for Spirorbis n = 15, 14, 15 and for S. triqueter at 90 d: n = 23, 28, 25 for ambient, 
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treatment #1 and #2 conditions, respectively. Lines within graph note the distinct measurement 

interval which was tested separately. Letters above bars represent statistical results from pairwise 

comparisons when main effects were found in one-way ANOVA or Kruskal-Wallis test (see 

Table 3). Images C-F capture the visual differences in new growth, after the yellow calcein mark, 

between treatments for Spirorbis sp. (C, D) at 30 d and S. triqueter at 90 d (E,F). Scale bar 

represents 1 and 9 mm for Spirorbis sp. and S.triqueter, respectively. 
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Fig. 4 Spirobranchus triqueter early life history stage development (A, B,C) and juvenile tube 

elongation rates (D, mean + SE) when cultured under ambient, treatment #1, treatment #2. 

Sample sizes were as follows: n = 10 for trocophore density and size at all treatment conditions, 

n = 6 for settlement success at all treatment conditions but not statistically tested, at 15 and 22 d 

n = 11, 12, 13 for ambient, treatment #1 and #2 conditions, respectively and at 38 d n = 18 for all 

treatment conditions. Lines within graph note the distinct measurement intervals which were 

tested separately. Letters above bars represent statistical results from pairwise comparisons when 

main effects were found in  one-way ANOVA or Kruskal-Wallis test (NS = no significant 

differences found, see Table 3).  
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Fig. 5 Fracture hardness (A) and toughness (B, mean ± SE in Megapascals, MPa) of new growth 

of S. triqueter (parental generation) after 90 d of exposure to ambient (8.1), treatment #1 (7.7), 

and treatment #2 (7.4) pHT (total scale) conditions. n = 3, see Table 3 for statistical results. 
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Fig. 6 Images that show the fragility of S. triqueter (parental generation) tubes in treatment #2 

after 90 d of exposure. In A,B,C tubes have been sectioned and prepared for measures of fracture 

toughness and hardness. An alveolus in each treatment is outlined in black to note the difference 

in size. Note the small alveoli after exposure to pHT 7.7 and the large alveoli covered in a thin 

calcareous layer after 90 d at pHT 7.4.  On the right (D) is a close-up (~4x) image of an intact 

worm tube at pHT (total scale) 7.4 showing the exposed alveoli and the thin calcareous layer. 

Scale bar is adjusted in all images for direct comparison.  
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Table S1.  Carbonate chemistry calculated from determined AT and CT with a salinity of 37.5 and measured temperature (T, ℃) within 
ambient, treatment #1, and treatment #2 header tanks over the experimental duration for Spirorbis sp. (30 d), and Spirobranchus 

triqueter collected from the field (90 d) and reared in tanks (offspring, 43 d): total alkalinity (AT, µmol kg-1), pH (on the total scale; 
pHT), partial pressure of carbon dioxide (pCO2, µatm), total dissolved inorganic carbon (CT, µmol kg-1) and saturation states with 
respect to aragonite (Ωa) and calcite (Ωc). 

Ambient Treatment #1 Treatment #2 

Date 
Day # 
S. sp. 

Day # 
S. t T AT pHT 

pCO
2 CT Ωa Ωc pHT pCO2 CT Ωa Ωc pHT pCO2 CT Ωa Ωc 

3/28/2014 1 - 14.9 2555 8.12 354 2260 3.2 5.0 7.78 878 2430 1.6 2.5 7.47 1899 2544 0.8 1.3 
3/31/2014 3 - 15.1 2556 8.10 375 2271 3.1 4.8 7.80 838 2422 1.7 2.7 7.34 2601 2590 0.6 1.0 
4/2/2014 5 - 15.5 2554 8.11 373 2265 3.2 4.9 7.78 882 2426 1.7 2.6 7.40 2244 2564 0.7 1.2 
4/4/2014 7 - 15.4 2550 8.16 321 2229 3.5 5.4 7.74 988 2441 1.5 2.3 7.46 1931 2539 0.8 1.3 
4/7/2014 10 1 15.8 2555 8.12 357 2253 3.3 5.1 7.79 872 2423 1.7 2.6 7.46 1935 2542 0.9 1.3 
4/9/2014 12 3 16.1 2549 8.12 363 2249 3.3 5.1 7.71 1042 2444 1.5 2.3 7.52 1674 2514 1.0 1.5 

4/11/2014 14 5 16.8 2554 8.07 407 2272 3.1 4.8 7.73 995 2437 1.6 2.5 7.43 2105 2548 0.8 1.3 
4/14/2014 17 8 17.1 2556 8.13 351 2238 3.5 5.3 7.73 1014 2440 1.6 2.5 7.45 2029 2543 0.9 1.4 
4/16/2014 19 10 17.0 2551 8.10 382 2254 3.2 5.0 7.71 1047 2441 1.5 2.4 7.34 2613 2576 0.7 1.1 
4/18/2014 21 12 16.7 2549 8.07 410 2270 3.1 4.7 7.68 1153 2456 1.4 2.2 7.43 2123 2545 0.8 1.3 
4/22/2014 25 14 16.4 2535 8.06 416 2264 3.0 4.6 7.63 1294 2462 1.2 1.9 7.28 3037 2587 0.6 0.9 
4/24/2014 27 16 16.4 2547 8.10 379 2254 3.2 5.0 7.69 1102 2449 1.4 2.2 7.33 2678 2579 0.7 1.0 
4/25/2014 28 19 17.0 2548 8.20 283 2183 3.9 6.1 7.72 1038 2437 1.5 2.4 7.34 2611 2573 0.7 1.1 
4/28/2014 22 16.9 2551 8.11 364 2244 3.3 5.2 7.72 1042 2441 1.5 2.4 7.42 2140 2547 0.8 1.3 
4/30/2014 - 24 17.3 2546 8.09 391 2252 3.2 5.0 7.69 1119 2445 1.5 2.3 7.33 2689 2574 0.7 1.0 
5/2/2014 - 26 17.1 2545 8.12 360 2235 3.4 5.2 7.73 1008 2429 1.6 2.4 7.20 3626 2622 0.5 0.8 
5/5/2014 - 29 17.4 2548 8.10 374 2243 3.3 5.1 7.70 1082 2441 1.5 2.3 7.38 2410 2559 0.8 1.2 
5/7/2014 - 31 17.7 2542 8.11 368 2232 3.4 5.2 7.67 1156 2444 1.4 2.2 7.31 2851 2577 0.7 1.0 

5/14/2014 - 38 17.4 2539 - - - - - - - - - - 7.11 4581 2657 0.4 0.6 
5/16/2014 - 40 18.1 2539 - - - - - - - - - - 7.36 2479 2551 0.8 1.2 
5/23/2014 - 47-O2 15.0 2546 8.35 193 2258 3.0 4.8 - - - - - - - - - - 
5/24/2014 - 48-O3 14.7 2536 8.13 343 2239 3.2 5.0 7.62 1308 2474 1.1 1.8 7.63 1290 2472 1.2 1.8 
5/26/2014 - 50-O5 15.4 2537 8.12 357 2242 3.2 5.0 7.74 969 2426 1.5 2.4 - - - - - 
5/28/2014 - 61-O8 14.2 2551 8.16 317 2239 3.4 5.2 - - - - - 7.60 1366 2497 1.1 1.7 
5/31/2014 - 64-O11 14.4 2539 8.16 319 2228 3.3 5.2 - - - - - 7.59 1408 2489 1.1 1.7 
6/3/2014 - 67-O14 15.2 2543 - - - - - 7.70 1063 2447 1.4 2.2 - - - - - 
6/5/2014 - 69-O16 14.1 2539 - - - - - 7.66 1170 2464 1.2 1.9 - - - - - 
6/7/2014 - 71-O18 15.5 2544 - - - - - 7.85 736 2387 1.9 3.0 - - - - - 
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6/10/2014 - 74-O21 14.6 2550 - - - - - 7.80 833 2419 1.7 2.6 7.55 1573 2514 1.0 1.5 
6/13/2014 - 77-O24 14.8 2553 8.18 300 2222 3.6 5.5 - - - - - 7.23 3346 2629 0.5 0.8 
6/17/2014 - 81-O28 15.0 2559 8.12 360 2266 3.2 4.9 7.86 716 2399 1.9 3.0 7.47 1896 2547 0.9 1.3 
6/20/2014 - 84-O31 15.0 2521 8.10 377 2244 3.0 4.7 7.68 1122 2436 1.3 2.0 7.12 4322 2643 0.4 0.6 
6/23/2014 - 87-O34 14.9 2545 8.17 315 2225 3.4 5.3 7.86 709 2385 1.9 3.0 7.18 3752 2640 0.4 0.7 
6/27/2014 - O38 15.1 2581 8.18 304 2246 3.6 5.6 7.68 1150 2495 1.3 2.1 7.43 2119 2584 0.8 1.2 
6/30/2014 - O41 15.2 2538 8.19 292 2202 3.6 5.6 7.58 1430 2487 1.1 1.7 7.34 2597 2573 0.6 1.0 
7/2/2014 - O43 15.0 2547 - - - - - - - - - - 7.35 2518 2577 0.7 1.0 

Spirorbis 
sp.  Mean 16.2  2551 8.11 367 2251 3.3 5.1 7.73 1011 2439 1.5 2.4 7.40 2268 2557 0.8 1.2 

  SD 0.8 6 0.04 37 24 0.2 0.4 0.05 128 12 0.1 0.2 0.07 401 23 0.1 0.2 
S. triqueter  Mean 15.9 2546 8.13 347 2242 3.3 5.1 7.72 1047 2440 1.5 2.3 7.38 2510 2565 0.8 1.2 

  SD 1.2 10 0.06 49 20 0.2 0.3 0.07 177 26 0.2 0.3 0.14 848 46 0.2 0.3 
S. triqueter  Mean 14.9 2546 8.15 328 2235 3.4 5.2 7.73 1019 2438 1.5 2.3 7.41 2381 2560 0.8 1.2 
offspring  SD 0.4 13 0.03 29 17 0.2 0.3 0.10 247 39 0.3 0.5 0.18 1038 62 0.3 0.4 
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