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Abstract

Ocean acidification driven by anthropogenic climate change is causing a global decrease in

pH, which is projected to be 0.4 units lower in coastal shallow waters by the year 2100. Pre-

vious studies have shown that seaweeds grown under such conditions may alter their

growth and photosynthetic capacity. It is not clear how such alterations might impact interac-

tions between seaweed and herbivores, e.g. through changes in feeding rates, nutritional

value, or defense levels. Changes in seaweeds are particularly important for coastal food

webs, as they are key primary producers and often habitat-forming species. We cultured the

habitat-forming brown seaweed Fucus vesiculosus for 30 days in projected future pCO2

(1100 μatm) with genetically identical controls in ambient pCO2 (400 μatm). Thereafter the

macroalgae were exposed to grazing by Littorina littorea, acclimated to the relevant pCO2-

treatment. We found increased growth (measured as surface area increase), decreased tis-

sue strength in a tensile strength test, and decreased chemical defense (phlorotannins) lev-

els in seaweeds exposed to high pCO2-levels. The herbivores exposed to elevated pCO2-

levels showed improved condition index, decreased consumption, but no significant change

in feeding preference. Fucoid seaweeds such as F. vesiculosus play important ecological

roles in coastal habitats and are often foundation species, with a key role for ecosystem

structure and function. The change in surface area and associated decrease in breaking

force, as demonstrated by our results, indicate that F. vesiculosus grown under elevated lev-

els of pCO2 may acquire an altered morphology and reduced tissue strength. This, together

with increased wave energy in coastal ecosystems due to climate change, could have detri-

mental effects by reducing both habitat and food availability for herbivores.

Introduction

Ocean acidification (OA) is the decrease in pH caused by the absorption of atmospheric CO2

into the surface of the oceans [1]. The majority of dissolved CO2 concentrates above the ther-

mocline, generating an estimated drop in pH to 7.7 [2] or 0.4 units [1,3,4] by year 2100 in

open ocean surface waters and the entire water column in the shallow coastal waters [5]. Thus,

coastal ecosystems and the organisms that live there are expected to be among the most
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impacted by OA. Seaweeds are key habitat-forming primary producers that support high bio-

diversity in coastal areas [6] and therefore their responses to OA may have impacts throughout

the ecosystem. Seaweeds primarily use CO2, and most species also use HCO3
-, for carbon fixa-

tion and growth, and may therefore benefit from the increase in available carbon caused by

OA [7]. A growing number of studies have, however, shown that OA can have positive, neu-

tral, or negative direct effects on basic performance traits such as growth and photosynthesis

of seaweeds [e.g. 7,8], and these effects may differ between life stages of a species, as well as

between closely related species [9–11].

Aside from effects on basic performance traits, OA can also impact both primary and sec-

ondary metabolism in seaweeds, sometimes resulting in higher carbon to nitrogen (C:N) and

carbon to phosphorous (C:P) ratios [but see 8,12–14], which indicate a change in the nutri-

tional content of the seaweed tissue. Increase in carbon availability for seaweeds generally

results in decreased protein content [e.g. 15–19], and either increased [17,18] or decreased [20]

levels of fatty acids. Furthermore, the content of secondary metabolites, such as the grazing

deterrent dimethylsulfoniopropionate (DMSP) in green seaweeds, has been shown to increase

in response to elevated pCO2 levels [15]. In brown seaweeds phlorotannins (polyphenolic

compounds) are ubiquitous metabolites that can occur in high concentrations, especially in

fucoid species (Fucales). Phlorotannins have multiple functions e.g. as defense against UV-

radiation and defense compounds against gastropod grazing [21,22]. To our knowledge, only

two studies have investigated the effects of OA on phlorotannin production in brown sea-

weeds, with mixed results [9,11]. Olischläger et al. [9] found no effect on phlorotannin produc-

tion in the kelp Laminaria hyperborea when grown under 700 μatm, while Swanson & Fox

[11] found increased phlorotannin production in Saccharina latissima but not Nereocystis leut-
keana when exposed to 3000 μatm pCO2.

The nutritional and defensive characteristics of seaweeds are critical traits in ecological

interactions since they affect the growth and fecundity of herbivores [23,24]. Therefore, apart

from direct effects on the physiology and biochemical content, OA may also have indirect

effects on macroalgae through interactions with grazers. A decrease in the nutritional value

and increase in deterrent defense metabolites under OA may lower the palatability of macroal-

gae to grazers [e.g. 16,25,26]. This may, however, also lead to an increase in the per capita graz-

ing pressure through compensatory grazing if less nutritious food is available [e.g. 16]. Grazing

may also be altered by direct effects of OA on the herbivore, e.g. through changes in respiration

or behavior [e.g. 27,28]. Bibby et al. [27] showed that the snail Littorina littorea had noticeable

reductions in both metabolic rate and induced defense (shell formation), which increased the

avoidance behavior of the snails and could in turn affect their interactions with other species.

Additionally, Young et al. [28] found that the grazing rate of a snail (Lacuna vincta) decreased

when it was exposed to elevated pCO2, regardless of the effects of pCO2 on the seaweeds (Ulva
spp.) that the snail was grazing on.

In temperate coastal ecosystems, fucoids are dominant habitat-forming seaweeds that pro-

vide shelter, habitat, and food for other organisms [29]. The presence of fucoids is associated

with a local increase in species abundance and diversity [30], but there is no consensus how

OA will affect the adult stage of associated species [but see e.g. 31 for effects on early life-

stages]. Since many fucoids have an active uptake of bicarbonate [32], which is abundant in

seawater (up to 91% [7]), it has been suggested that they should not increase growth in

response to increased pCO2 since they may not be carbon limited [33]. We are only aware of

two studies that investigate potential indirect effects of OA on fucoids through changes in

interactions with herbivores [34,35]. One of these studies found that the herbivore Littorina
obtusata consumed more of Ascophyllum nodosum under OA conditions, albeit this difference

was not statistically different [35]. In contrast, the other study showed no effect of decreased
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pH on the interaction between herbivores and F. vesiculosus [34]. This relative lack of literature

is surprising, considering the abundance of fucoids. Given the high phlorotannin content

found in many fucoids, the effect of OA on phlorotannin production may also alter the inter-

action between seaweed and herbivore, but this has, to our knowledge, not yet been

investigated.

The overall aim of the present study was to examine potential direct effects of OA on the

fucoid F. vesiculosus, as well as indirect effects on the seaweed through changes in its interac-

tions with the gastropod grazer L. littorea, both common species along coasts in the North

Atlantic. We conducted manipulative experiments to determine how the growth rate, photo-

synthesis, carbon and nitrogen content, as well as chemical defense (phlorotannin content),

and breaking strength of F. vesiculosus will be affected by increasing pCO2 levels in the future.

Furthermore, we also tested the effect of elevated pCO2 on consumption, feeding preference,

and condition index of L. littorea.

Materials and methods

Experimental design

Sixty individuals of F. vesiculosus were collected from the west coast of Sweden, in July 2018

and kept at Tjärnö Marine Laboratory (TML, 58˚52’36.4”N 11˚6’42.84”E) under ambient con-

ditions (Table 1) for 7 days to acclimatize. Due to the small tidal range in the area, F. vesiculo-
sus in western Sweden can be submerged for long time periods depending on prevailing

weather conditions (personal observations, A. Kinnby), hence the algae were kept under water

throughout the experiment. The experiment was performed in a greenhouse with natural light-

ing (natural light cycle 18:6 h, L:D). After the acclimation period, each seaweed was split into

one experimental thallus and one control thallus, placed in separate 1L aquaria (a total of 120

aquaria, i.e. n = 60) with constant seawater flow from header tanks (4 per treatment, n = 15).

Control thalli were maintained at ambient pCO2 (400 μatm) while experimental thalli were

exposed to gradually increasing (~100 μatm/day) CO2 until a pCO2 of 1100 μatm was reached

7 days later (corresponding to the projected value at the end of this century [36]). 360 individu-

als of similar sized L. littorea were also collected and exposed to the same conditions as the sea-

weed, i.e. 180 snails were exposed to ambient water and 180 snails were exposed to treatment

water in separate tanks from the seaweed thalli (these snails were used in a grazing experiment

described below). The header tanks were aerated with either ambient atmospheric air (pCO2

of 400 ppm) or CO2-enriched air controlled by solenoid valves and pH-computers (Aqua

Medic) to provide a final pCO2 of 1100 μatm. The pCO2 was monitored daily with LI-850

CO2/H2O Gas Analyzer (Li-COR). The CO2 analyzer was calibrated with custom mixed gas,

970 ppm (Linde Gas AB, Sweden). Filtered seawater (5 μm) flow was constant at 0.3 L/min

in each aquarium throughout the experiment. Salinity, temperature, pCO2, and pHNBS were

measured in the 1L aquaria. pH was recorded using HANNA instruments pH electrode

HALO probe (HI-1102) calibrated with NBS pH 4.01, 7.01, and 10.01 standards (HANNA

Table 1. Seawater chemistry of experimental treatments; partial pressure of CO2 (pCO2), pHNBS, salinity, and temperature were measured twice a week.

pCO2 (μatm) pHNBS pHT AT (μmolkg-1) Salinity (PSU) Temperature (˚C)

Ambient 400 ± 47 8.04 ± 0.03 8.05 2258 32 ± 0.8 15 ± 1

Treatment 1100 ± 61 7.64 ± 0.04 7.66 2258 32 ± 0.8 15 ± 1

Total alkalinity was estimated from salinity using long-term salinity:alkalinity relationship data for this location (r = 0.94) and pHT was calculated from the temperature,

salinity, pCO2, and total alkalinity using CO2calc. Data are averages (SD), n = 8.

https://doi.org/10.1371/journal.pone.0245017.t001
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instruments) before each measurement. Total alkalinity was estimated from salinity using

long-term salinity:alkalinity relationship data for this location (r = 0.94; data obtained from

SMHI https://www.smhi.se/data/oceanografi/datavardskap-oceanografi-och-marinbiologi/

sharkweb) [37] and pHT was calculated from the temperature, salinity, pCO2, and total alkalin-

ity using CO2calc [38; Table 1].

All seaweed thalli were weighed fresh (n = 60) and photographed (for area (n = 60) mea-

surements using Image J [39]) at the beginning and end of the 30-day experiment. At the end

of the experiment the efficiency of photosystems II (Fv/Fm and P- index, n = 60 for both mea-

surements) were measured in the new tissue formed during the experiment. The tissue was

dark-adapted for 10 minutes, the fiber optics were held at a fixed 10 mm distance from the

algae, and measurements were taken with a PAM (pulse amplitude-modulated fluorometer;

Walz, Effeltrich, Germany). Breaking strength was measured by securing the seaweed to a

dynamometer (Lutron FG-5020; Taiwan) such that only one apical tip was being strained, and

increasing the strain until the thallus broke (n = 10). Thus, measuring breaking strength on tis-

sue that was formed during the experiment. Following this, apical tissue samples were frozen

(-60˚C) for further elemental and phlorotannin analysis, the remaining tips were used in the

consumption and preference experiment with L. littorea (see below).

Phlorotannin analysis

For phlorotannin analysis, the frozen samples (n = 60) were freeze-dried, homogenized to a

fine powder, and 10 mg of each sample was extracted in 60% acetone. Total phlorotannin con-

tent was quantified colorimetrically using the Folin-Ciocalteu method [40], with phlorogluci-

nol (1,3,5-trihydroxybenzene, art. 7069; Merck, Darmstadt, Germany) as a standard. Results

are presented as % dw (dry weight).

Elemental analysis

For the determination of carbon (C) and nitrogen (N) content the frozen seaweed tissue was

freeze-dried and homogenized to a fine powder and weighed to the nearest 0.01 mg. The total

tissue C and N content, as well as δ13C and δ15N of the samples (n = 60) were analyzed with

an elemental analyzer (ANCA-GSL, Sercon Ltd., Crewe, UK) coupled to an isotope ratio mass

spectrometer (20–22, Sercon Ltd., Crewe, UK).

Consumption and feeding preference of Littorina littorea
The palatability of the F. vesiculosus thalli grown in ambient and elevated pCO2 during 30 days

was measured in two-choice feeding trials using starved L. littorea as the grazer. The feeding

experiment was performed using a total of 120 containers (200 mL) with constant seawater

flow of ambient pCO2 (400 μatm). In each container two similarly sized apical pieces of F. vesi-
culosus were placed (0.50 ± 0.019 g mean ± SD), one piece from the ambient pCO2 treatment

and one from the elevated pCO2 treatment; as both pieces came from the same thallus they

were genetically identical. Six individuals of L. littorea, exposed to either ambient or elevated

pCO2 were placed in half of the containers (n = 30, i.e. a total of 60 containers with herbivores).

To control for autogenic changes in mass (i.e. growth) during the experiment that was not

caused by the grazing of the snails, each container with seaweed pieces and herbivores were

paired with an identical control container without herbivores containing similarly sized apical

pieces from the same genetic individual of seaweed. The wet weight of all seaweed pieces was

determined at the start and at the end of the 24-hour experiment by using a standard blotting

procedure, and the wet-weight change of each seaweed piece was calculated by subtracting the

weight at the end of the experiment from the starting weight. The consumption of the snails
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exposed to different pCO2-levels was determined by calculating the total change in weight

between initial and post-grazing weights for each container and subtracting the weight change

in the autogenic control containers. To study feeding preference of herbivores exposed to dif-

ferent pCO2-levels, the difference between weight changes of the two seaweed pieces in each

container was calculated by subtracting the wet weight change of the seaweed exposed to ele-

vated pCO2 from the weight change of the seaweed piece exposed to ambient pCO2 [41].

Condition index for Littorina littorea
Following the feeding preference experiment all snails were euthanized by freezing at -20˚C.

To assess whether the elevated pCO2 treatment had affected the physiological status of the

snails a condition index was calculated, where a higher condition index is a sign of a healthier

individual [35,42]. Snails were thawed and weighed whole; following this the shell was weighed

alone. The dry weight of the soft tissue was obtained by weighing the body after drying for 48

hours at 50˚C. The condition index was derived from the weights according to the following

formula:

¼ ð100 � dry tissue weightÞ=ðwhole weight � shell weightÞ

Data analysis

The seaweed response variables, i.e. growth (% increase in area and weight), breaking strength,

efficiency of photosystem II (Fv/Fm and P-index), as well as phlorotannin, and nutritional

content were all statistically analyzed with mixed model ANOVAs with pCO2 treatment as a

fixed factor and header tank as a random factor nested within pCO2 treatment. However,

since header tank was non-significant (p> 0.40 for all variables, the mean square for this fac-

tor was pooled with the residual mean square and paired t-tests were used to determine if

there was a significant difference between the seaweed in ambient and elevated levels of pCO2.

Paired t-tests were used because every treatment thallus was paired with a genetically identical

control thallus. Before analysis the data for each response variable was checked and found to

meet the assumptions of normality. To investigate if there was a difference in condition index

between the snails exposed to ambient and treatment water a t-test was performed. The condi-

tion index data was not normally distributed, hence a Mann Whitney U-test was run. The con-

sumption of herbivores exposed to ambient and elevated pCO2 was analyzed with a t-test.

Preference for seaweed grown under the different pCO2 conditions was evaluated by compar-

ing the difference in weight change between the seaweed pieces kept with the herbivores and

their respective autogenic controls with two separate paired t-tests; one each for herbivores

exposed to ambient and elevated pCO2. A significantly lower difference in wet weight change

for seaweed pieces kept with herbivores compared to autogenic controls will indicate a prefer-

ence for feeding on the control seaweed [41]. All analyses were performed in RStudio (version

1.0.136).

Results

The seaweed thalli exposed to elevated levels of pCO2 grew significantly more than the thalli

exposed to ambient pCO2 when growth was measured as increase in surface area of the sea-

weed (Fig 1A; Table 2). On average, growth rates under elevated pCO2 were 34% higher than

growth under ambient conditions. However, thallus weight did not differ significantly between

the two treatments (Fig 1B; Table 2). We found a significant difference in the force needed to

break the seaweed tissue in the control group compared to the seaweeds exposed to elevated

pCO2; thalli from the treatment group were 57% weaker than those in the control group
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(Fig 1C; Table 2). We found no statistically significant differences in the efficiency of photosys-

tem II measured as Fv/Fm and P-index (Fig 1D and 1E; Table 2).

The results of chemical analyses showed that there was a statistically significant decrease

(3%) in phlorotannin content between the tips of thalli exposed to elevated levels of pCO2 and

those being exposed to ambient levels (Fig 1F; Table 2). There were no statistically significant

differences in C or N tissue content, nor in the C:N ratio. However, the stable carbon isotope

(δ13C) content of F. vesiculosus was significantly reduced when exposed to elevated pCO2; the

δ13C values decreased to -13% under elevated pCO2 levels. Tissue δ15N was not significantly

changed when exposed to elevated levels of pCO2 (Fig 1G–1K; Table 2).

The mean condition index of L. littorea was 28.9% higher in snails that had been exposed to

high pCO2-levels than those exposed to ambient pCO2-levels (U = 13155, z-score = -2.60,

p = 0.0093; Fig 2). Despite having a higher condition index, the herbivores exposed to high

pCO2 levels consumed 37.5% less than the snails exposed to ambient pCO2 (t-test, t58 = 2.67,

p = 0.0098, Fig 2). However, the herbivores did not show a statistically significant difference in

preference based on the experimental treatment of the seaweed, regardless if the herbivores

had been exposed to ambient pCO2 (paired t-test, t29 = -0.517, p = 0.609) or elevated pCO2

(paired t-test, t29 = -0.584, p = 0.564).

Discussion

Seaweeds play important ecological roles in coastal habitats and are often foundation species,

with a key role for ecosystem structure and function. Hence, it is important to understand how

seaweeds will be directly affected by changes in their environment, and also if these changes

will alter seaweed interactions with other species. Here, we show that elevated pCO2-levels

increased the thallus area, decreased the phlorotannin content, and reduced the breaking

strength of F. vesiculosus. This may result in that the seaweeds become less robust in field

Fig 1. Effects on response variables of Fucus vesiculosus grown under ambient (400 μatm) and elevated (1100 μatm) pCO2 for 30 days. Values

are means ± 95% CI, n = 60 for a-j and n = 10 for k. Response variables measured as a) Growth measured % increase in area (n = 60), b) growth

measured as % increase in weight (n = 60), c) breaking force (N) (n = 10), d) efficiency of photosystem II (Fv/Fm) (n = 60), e) efficiency of

photosystem II (P index) (n = 60), f) Phlorotannin content (%dw) (n = 60), g) %Nitrogen (n = 60), h) δ15N (n = 60), i) C:N ratio (n = 60), j) %

Carbon (n = 60), and k) δ13C (n = 60).

https://doi.org/10.1371/journal.pone.0245017.g001

Table 2. Summary of effects of ambient (400 μatm) and elevated (1100 μatm) levels of pCO2 on Fucus vesiculosus measured as ten responses.

Response variable p-value t-value Df Mean (400ppm) 95%CI (400ppm) Mean (1100ppm) 95%CI (1100ppm)

Growth: area (%) 9.2e-07 -5.48 59 147.5 6.54 180.1 11.47

Growth: weight (%) 0.767 -0.30 59 136.0 5.91 136.7 4.68

Breaking force (N) 0.032 2.33 18 1.36 0.54 0.59 0.27

Photosystem II (Fv/Fm) 0.407 -0.83 59 0.695 0.011 0.701 0.007

Photosystem II (P index) 0.147 -1.47 59 1.5 0.20 1.7 0.19

Phlorotannin content (% dw) 0.030 2.22 59 10.6 0.53 10.3 0.57

% Nitrogen 0.379 0.89 59 1.32 0.055 1.29 0.066

% Carbon 0.865 0.17 59 36.04 0.43 36.00 0.37

C:N 0.236 -1.20 59 28.2 1.44 29.3 1.80

δ13C 4.762e-09 6.85 59 -11.77 0.32 -13.33 0.41

δ15N 0.315 -1.01 59 6.51 0.14 6.57 0.13

P-values and corresponding t-values and degrees of freedom of paired t-tests are reported for the analyses of all response variables as well as means and 95% confidence

intervals. Values in bold denote statistically significant values.

https://doi.org/10.1371/journal.pone.0245017.t002
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conditions. This could lead to an overall loss of seaweed coverage which in turn is likely to

affect all the organisms that live in, or consume, this seaweed. The condition index of the snails

increased under exposure to elevated levels of pCO2, but the consumption decreased and we

saw no significant effect of treatment on the palatability of F. vesiculosus thalli.

Effects on growth

Increased pCO2 had no significant effect on the weight change of F. vesiculosus, but signifi-

cantly increased the thallus surface area. Previous studies with F. vesiculosus have reported

unaltered [43,44] or reduced [45] growth, measured as wet weight, under elevated pCO2-levels.

Graiff et al. [46], however, reported a tendency (not statistically significant) of higher growth

of F. vesiculosus, measured both as wet weight and length in apical tips, at elevated pCO2 levels.

These different experimental results suggest that other factors interact with pCO2 to determine

growth, e.g. seasonality or the life-cycle stage (age) of the seaweed, or genetic differences due to

local adaptation among the populations used in the different studies. Such genetic differences

in phlorotannin production and growth were recently demonstrated among F. vesiculosus
populations at distances less than 100 km [47].

Effects on breaking strength

The combination of a significantly larger thallus with no effect on the weight of F. vesiculosus
under enhanced CO2 conditions found in the present study strongly indicates a decrease in tis-

sue density, which is corroborated by the drastic (57%) decrease in breaking strength of the

thallus. To our knowledge, this is the first time such an effect of increased pCO2 levels is

reported for seaweeds, and it parallels findings in developing seaweed spores and terrestrial

plants. For example, Guenther et al. [48] found that reduced pH delayed spore attachment in

two different red algae, while Pretzsch et al. [49] documented an increase in growth rate,

attributed to increasing CO2 levels, among tree species in central Europe between 1960 and

2014. They also showed that this increase in growth was coupled with a decrease in tissue

Fig 2. a) Consumption of the alga Fucus vesiculosus by the gastropod Littorina littorea, exposed to ambient (400 μatm) and elevated (1100 μatm) pCO2 for 30 days. b)

Condition index for individuals of L. littorea following the grazing experiment. Values are means ± 95% CI.

https://doi.org/10.1371/journal.pone.0245017.g002
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density and/or strength. This leaves forests more vulnerable to the increased weather variabil-

ity that is also associated with climate change [49,50]. Our results suggest that similar effects

may also be present in coastal marine systems. The reduced breaking strength could make sea-

weeds more vulnerable to storms and wave action, which are projected to become more fre-

quent as the climate changes [51,52]. Increased vulnerability will likely reduce the role F.

vesiculosus plays in the nearshore ecosystem, with negative impacts on species that rely on this

seaweed for food or habitat.

Effects on photosynthesis

We observed no significant differences in the Fv/Fm ratio or P-index in our experiment, sug-

gesting that F. vesiculosus does not increase the maximum quantum efficiency of photosystem

II or sample vitality in response to elevated pCO2. This follows the findings of Fernández and

colleagues [53], who demonstrated that the increased carbon availability from increased

pCO2-levels had no effect on photosynthesis. Seaweeds in general acquire carbon by passive

diffusion of CO2 and active transportation of bicarbonate; as the concentration of CO2 rises

the amount of passively diffusing CO2 potentially also rises, reducing the seaweed’s reliance on

active transport proteins, and potentially allowing more energy to be allocated for growth [54].

Increased uptake of CO2 coincides with a decrease in tissue δ13C [8]. In this study we found

that the δ13C decreased from -11.77% to -13.33% when seaweeds were exposed to increased

levels of CO2, which indicates a transition away from active intake of bicarbonate towards pas-

sive uptake of CO2. A similar change was previously documented in both Gracillaria sp. and

Ulva sp.,[54], as well as in Lomentaria australis where an increase in growth and decrease in

δ13C were hypothesized to indicate a transition away from a more costly CCM (carbon diox-

ide-concentrating mechanism) [8]. In our study, however, this did not translate to an increase

in biomass as we did not find any significant differences in the weight gain of the seaweeds

exposed to different levels of CO2. Fucus vesiculosus can use two parallel CO2 pathways for

photosynthesis, both directly taking up carbon from their environment and also storing it as

an organic intermediate for use when other carbon in less available [55], suggesting that under

normal circumstances F. vesiculosus plants are most likely not carbon-limited. This, together

with the fact that F. vesiculosus used in our experiment were constantly submerged (which is

common due to the low tidal range along the Swedish west coast) may explain the lack of effect

from increased pCO2 on growth measured as weight gain.

Effects on elemental and phlorotannin content

In terrestrial plants, increased atmospheric CO2 has been shown to increase C:N ratios as well

as lead to an accumulation of phenolic compounds, such as tannins, affecting the consumption

and growth rates of grazers [56,57]. However, we found no significant differences in C or N tis-

sue content, nor in the C:N ratio. In contrast, Gutow et al., [45] showed that elevated levels of

pCO2 (700 μatm) decreased the C:N ratio of F. vesiculosus. Studies on the effects of increased

CO2 on phenolic compounds in marine macrophytes are few and only one previous study on

kelp species found that elevated CO2 leads to increased levels of phlorotannins [11]. By con-

trast, marine vascular plants have been shown to reduce phenolic acid production under

increased CO2 conditions [58], which aligns with our results on F. vesiculosus showing slightly

lower phlorotannin content in apical tips exposed to elevated pCO2-levels.

Effects on interactions with a grazer

Despite finding a somewhat lower phlorotannin content in seaweeds exposed to elevated

pCO2, we did not find a difference in grazing preference of the gastropod L. littorea between
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seaweeds from the different treatments. However, snails exposed to elevated pCO2 generally

consumed less than those exposed to ambient conditions, regardless of which food type they

were offered. Reduced consumption by snails at increased pCO2 levels could indicate easier

ingestion and digestion of food, or decreased activity of the grazer (and therefore decreased

caloric requirements), in line with previous research on L. littorea [27] and other marine inver-

tebrates [59] showing reduced metabolic rates at increased pCO2 levels. The snails exposed to

elevated levels of pCO2 had a higher condition index than snails exposed to ambient condi-

tions. This combination of results is surprising, as a decreased consumption would be expected

to result in a drop in condition index. Increased condition index, i.e. a higher dry to wet weight

ratio of the soft tissue, could indicate more accumulation of tissue, i.e. increased growth, but

also possibly failure to osmoregulate or other associated physiological problems. In summary,

the results from the feeding experiment in the present study suggest that there are direct effects

of increased pCO2 on herbivores and their consumption of seaweeds, but any indirect effects

mediated by changes the palatability of the seaweeds are harder to discern.

Conclusion

In conclusion, our study shows that under OA conditions the habitat forming seaweed F. vesi-
culosus increases growth by thallus area, reduces reliance on active carbon uptake, shows a

slight decrease in phlorotannin content and a drastic reduction in breaking strength. At the

same time the herbivore L. littorea seems to tolerate increased pCO2 with an increased condi-

tion index even as they reduce their consumption of seaweeds. Reduced consumption for the

herbivore suggests that the seaweed could gain some ecological benefits under OA. However,

our most unanticipated finding–that the seaweed could become more vulnerable to physical

forces under OA because of a significantly reduced breaking strength–could result in loss of

seaweed biomass due to increased storm events that are associated with climate change. This

might in turn have implications for the future community structure of shallow coastal areas

under OA.
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