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As ocean temperatures rise, species distributions are tracking towards historically cooler 10 

regions in line with their thermal affinity1,2. However, warming, different species responses 11 

and presence of other species means predicting biodiversity redistribution and relative 12 

abundance remains a challenge 3,4. Here we use three decades of fish and plankton survey 13 

data to assess how warming changes the relative dominance of warm-affinity and cold-14 

affinity species5,6. Regions with stable temperatures show little change in dominance 15 

structure (Northeast Pacific, Gulf of Mexico), while warming sees strong shifts towards 16 

warm-water species dominance (North Atlantic). Importantly, communities whose species 17 

pools had diverse thermal affinities and narrower range of thermal tolerance show greater 18 

sensitivity, as anticipated from simulations. Composition of fish communities changed less 19 

than expected in regions with strong temperature depth gradients. There, species track 20 

temperatures by moving deeper2,7, rather than horizontally, analogous to elevation shifts in  21 

land plants8. Temperature thus emerges as a fundamental driver for change in marine 22 

systems, with predictable restructuring of communities in the most rapidly warming areas 23 

using metrics based on species thermal affinities derived for diverse taxa. The emerging 24 

relationships provide a metric for assessment of biodiversity model predictions. The ready 25 
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and predictable dominance shifts suggests a strong prognosis of resilience to climate change 26 

for these communities.  27 

Abundance and distributions of marine species are changing in response to anthropogenic 28 

climate change1 but these changes vary geographically and across taxa. Shifts in geographical 29 

range and temporal species turnover, for example, tend to be accelerated where temperature 30 

changes coincide with widely spaced isotherms1,2. Unlike terrestrial ecosystems, marine species 31 

may be unable to shelter from extreme temperatures, making the effect of ambient temperature 32 

immediate, unavoidable, and easier to detect. Local gain and loss of species, combined with 33 

changes in the relative abundance of species with different thermal affinities, drive change in 34 

community structure. On land, failure of species distributions to track temperature means that 35 

community thermal composition lags behind expected change, seen in communities of birds, 36 

butterflies, and plant species 5,9-14. Identifying the aspects of community change that can be 37 

accurately forecasted is needed to assist managers to adaptively deal with ecosystem change.  38 

We use time series of species incidence in standardised international surveys of plankton 39 

and demersal species since 1985 (Supplementary Table 1) to quantify regional changes in 40 

community structure. Combined with estimates of species’ thermal affinities, these data describe 41 

regional changes in the average thermal affinity of marine communities, as measured by the 42 

Community Temperature Index (CTI, Supplementary Table 2). CTI is the community-wide 43 

average of species’ thermal affinities, which are calculated from each Species Temperature 44 

Index, STI (the median of sea surface temperatures across each species’ estimated geographical 45 

range, see Methods and Fig. 1a). The variation of thermal affinities among species (Community 46 

Thermal Diversity, CTDiv) is here described by the incidence-weighted standard deviation of 47 

STIs. Low values of thermal diversity reflect communities composed of species with similar 48 
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STIs, and high values reflect communities composed of a mix of warm- and cold-water species. 49 

The incidence-weighted average width of species’ thermal ranges (STRs, Fig. 1a), the 50 

Community Thermal Range (CTR), indicates whether communities are composed of broad-51 

ranged species (eurytherms) or narrow-ranged species (stenotherms). The fact that distributions 52 

of marine ectotherms generally fill their thermal tolerances15 supports the inference that thermal 53 

range can be approximated by species’ geographic range. 54 

The difference between CTI and local temperature (used to define STIs) is termed 55 

community thermal bias: positive where communities are dominated by species from warmer 56 

areas, implying reduced sensitivity to warming16, and negative for communities dominated by 57 

species from colder areas, implying increased vulnerability17. Less compositional change in 58 

response to temperature is expected in areas of strong vertical and horizontal gradients in ocean 59 

temperature (and low velocity of climate change18) because small shifts may allow species to 60 

remain in the same temperature as before. Thermal bias is distinct from CTI lag5 or extinction 61 

debt, since it refers to the difference in spatial patterns of temperature and average thermal 62 

affinity rather than to a perceived delay in community response to temperature change. 63 

We focused on the sensitivity of CTI to regional temperature change (sCTI), defined as the 64 

ratio of the change in CTI through time to the corresponding change in environmental 65 

temperature. We evaluated the influence of community thermal diversity and community thermal 66 

range on CTI sensitivity by developing quantitative expectations from simulations. These 67 

simulated communities comprised pools of species with a thermal diversity set by the standard 68 

deviation of STI values. Each species had incidence-temperature curves19 defined by their 69 

thermal range (Gaussian Fig. 1a, other forms in Supplementary Fig. 1), consistent with 70 

organisms more abundant near the middle of their range20,21. While contested22, the Gaussian 71 
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pattern holds for our fish and plankton datasets (Fig. 1b, Supplementary Fig. 3) when abundance 72 

and incidence data are expressed relative to thermal range location. We used species’ thermal 73 

ranges and temperature changes to simulate changes in species incidence with temperature 74 

which, when aggregated across species, produced changes in CTI. Simulated CTI sensitivity was 75 

large where thermally diverse communities were made up of narrow-ranged species17 (Fig. 1c, 76 

g), but smaller where thermal ranges were broad or thermal diversity was low (Fig. 1d, f, g). For 77 

functions with declining abundance from a central maximum, simulated CTI sensitivity 78 

suggested more change in thermally diverse communities made up of small-ranged species, and 79 

less in communities of species with similar thermal affinities and large thermal ranges 80 

(Supplementary Fig. 2, Supplementary Table 4). With Gaussian curves, CTI sensitivity was 81 

proportional to the squared ratio of thermal diversity to average range width (Fig 1g and 82 

Supplementary Table 2), independent of thermal bias (see also 23). Below we explored this 83 

hypothesized relationship with empirical data. 84 

Spatial patterns in CTI for demersal species and plankton, averaged from 1985 to 2014, 85 

broadly followed patterns in surface temperatures in the HadISST1 dataset24 and seabed 86 

temperatures from the Hadley Centre EN4 dataset25 (Supplementary Figs. 5a, 9a). Community 87 

thermal diversity was highest midway along thermal gradients. Thermal ranges were larger for 88 

plankton than demersal species, with plankton thermal ranges increasing in size with latitude 89 

(Supplementary Figs. 5b, 6). Average species’ thermal affinity and range width in 2° grid cells 90 

were positively correlated in cool-temperate latitudes, where cold-affinity species having smaller 91 

thermal ranges than those from lower latitudes, and negatively correlated towards sub-tropical 92 

areas (Supplementary Fig. 6d). This pattern results from the bounds on species thermal ranges at 93 

the equator and the poles (Supplementary Figs 5, 6). 94 
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For SST-derived CTIs, areas with strong vertical temperature gradients had more negative 95 

community thermal bias in demersal species (Fig. 3a), with species’ STIs more associated with 96 

cooler subsurface (50-100 m) rather than surface temperature. Plankton community thermal bias 97 

was less influenced by vertical gradients, suggesting a stronger association with surface 98 

temperatures. CTI derived from seabed temperature was more weakly associated with the spatial 99 

pattern in SBT (Methods, Supplementary Fig. 9g). 100 

Both plankton and demersal communities, aggregated over 2° areas, changed in thermal 101 

affinity from 1985 to 2014 (Fig. 2, Supplementary Fig. 8) at local (<500 km) to ocean-basin 102 

scales (10,000 km). Sea surface temperatures warmed across the North Atlantic over this period 103 

by up to 0.5°C per decade, but cooled slightly or stayed the same in the Northeast Pacific (Fig. 104 

2a,b). Regional trends in CTI for plankton and for demersal fish and invertebrates more clearly 105 

followed trends in sea surface temperature (R2 = 0.23, Fig. 2e) than seabed temperature (R2 = 0.1 106 

Supplementary Fig. 9g). Demersal communities shifted towards dominance by warm-water 107 

species around northeast USA and Europe, while North Pacific, southeast USA and other areas 108 

with little temperature change had stable CTIs (Fig. 2c). CTI changes in plankton communities 109 

were also most pronounced in areas of greater SST change in the northwest Atlantic and the 110 

northwest European Shelf (Fig. 2d).  111 

In European waters, CTI for demersal species changed more consistently than plankton CTI 112 

(Fig. 2c,d), especially in the southern North Sea, despite observed large distribution changes in 113 

plankton species26. Reduced CTI sensitivity in plankton is expected given the greater 114 

temperature ranges of plankton species compared to demersal invertebrates and fishes 115 

(Supplementary Figs 5c, 6d). The positive effect of thermal diversity and inverse effect of 116 

community thermal range (CTR) on CTI sensitivity explained much of the variability in 117 
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responses of community composition to warming (R2=0.39), but the negative and near-zero 118 

response of Canadian demersal communities remained (Fig. 3c). Vertical gradients in 119 

temperature (up to 7°C over the top 50m) explained much of the remaining variation in 120 

sensitivity of CTI to temperature, improving the performance of regression models (Fig. 3c, 121 

Supplementary Table 4). SST-derived thermal bias in natural communities had a small positive 122 

effect on sensitivity, but this effect was lost when compared alongside vertical and horizontal 123 

gradients in regression models (Supplementary Table 4, Model R1). Horizontal spatial gradients 124 

in surface temperature had no effect on CTI sensitivity when considered with vertical gradients 125 

(Supplementary Table 4).  126 

Reduced CTI sensitivity to surface warming in areas of steep vertical temperature gradients 127 

is consistent with a redistribution of species to greater depths27. Such vertical gradients may 128 

allow thermal niche tracking without horizontal shifts, and may provide refugia for cold-water 129 

species without significant ecological consequences, unless limited to the surface by a need for 130 

light (phytoplankton, coral, macroalgae), or habitat (intertidal organisms). The lack of influence 131 

of horizontal thermal gradients on CTI sensitivity to surface temperature change suggests that 132 

horizontal shifts in species distribution had comparatively little effect at the scale of the analysis 133 

(2° × 2° grids over 30 years).  134 

Patterns of observed CTI sensitivity matched expectations from simulations. More change in 135 

community composition was seen in communities composed of species with greater diversity of 136 

thermal affinities, narrower thermal ranges, and without access to refuges from climate change at 137 

greater depths (i.e., outside areas of steep vertical temperature gradients where observed changes 138 

do not match predictions). While negative thermal bias has been implicated as an indicator for 139 

community-level vulnerability with warming17, we found instead instances of apparent negative 140 
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SST-derived thermal bias (e.g. demersal species in the Canadian Atlantic Maritimes: Fig. 3a) that 141 

were better explained by vertical temperature gradients, with species’ affinities closer to 142 

temperatures experienced at depth than surface temperatures.  143 

Studies of birds, butterflies and plant communities showing smaller changes in CTI than 144 

changes in temperature have generally been interpreted as lags in response5,9-12, but thermal 145 

range width and community thermal range effects on CTI sensitivity may explain some of these 146 

apparent lags. Short-lived plankton and species of highly mobile fish and invertebrates may be 147 

more responsive to temperature change in time and space2,6 than analogous communities on land, 148 

potentially as a consequence of living closer to their thermal limits28. Communities of long-lived, 149 

slowly dispersing species may be less responsive in thermal affinity composition when 150 

increasing in abundance, but may decline rapidly, as in the loss of cold-water kelp and influx of 151 

tropical fish in response to a recent warming event in Western Australia29. Slower-than-expected 152 

community responses may also be caused by compensatory population dynamics30 in individual 153 

species. Replacement of cooler-affinity species by incoming warmer-affinity species is not 154 

possible in the tropics, likely resulting in the depression in species richness at the equator31. In 155 

addition, geographical barriers can also restrict routes for incoming migrants, such as in the 156 

Mediterranean32, resulting in a lowered species turnover6 and capacity for CTI change17.  157 

Our study shows the dominant effects of recent temperature change on community turnover 158 

across marine species from regional to ocean scales, regardless of other influences such as 159 

fishing impacts and ocean acidification. The prediction of temperature effects at community 160 

scales derived from species thermal performance curves33 provides a benchmark against which 161 

the pace of reorganization of global biodiversity to climate can be judged, and allows assessment 162 

of the performance of quantitative models3,4. The predictability with which thermal diversity, 163 
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average thermal range width and vertical temperature gradients directly drive patterns of 164 

sensitivity of community composition to warming gives a strong prognosis for the resilience of 165 

ocean communities to respond to climate change. In the northern temperate coastal oceans in this 166 

study, warm-tolerant species of plankton and fishes are slowly replacing their cold-tolerant 167 

counterparts over the timescales of climate change, and if those species have similar roles, 168 

suggesting a capacity for the oceans to continue to function.  169 

 170 
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 316 

Fig. 1 | Simulated communities to illustrate the effects of thermal diversity and thermal 317 
range width on the sensitivity of Community Temperature Index (CTI) to temperature 318 
change. a, a Gaussian abundance-temperature distribution for Species Temperature Index (STI) 319 
= 15 and Species Thermal Range (STR) = 10. b, quantiles (a50 = 50th percentile etc.) of 320 
abundance across thermal ranges for US trawl survey species. c-f, Thermal characteristics in 321 
simulated pools of species varying in thermal diversity and thermal range, showing subsets 322 
forming communities at 15oC mean annual sea temperature. g, Sensitivity in simulated 323 
communities (symbols) of Community Temperature Index (sCTI, the ratio of CTI change to 324 
temperature change) to changing Community Thermal Diversity (CTDiv). Thermal diversity in 325 
the species pool (standard deviation of STIs) and the species thermal range were changed for 326 
each simulated community of 1000 species, with average sCTIs shown for 1000 repeat runs. 327 
Grey lines and similar coloured symbols link simulated communities with the same thermal 328 
diversity, black lines linking communities with similar thermal ranges . Letters in g indicate the 329 
sensitivity of CTI associated with thermal diversity and thermal ranges in the example 330 
communities shown in c-f.  331 

 332 

  333 
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   334 
 335 

Fig. 2 | Trends in temperature and composition of demersal and plankton communities 336 
shown by Community Temperature Index (CTISST) values from 1985 to 2014. a, Trend in 337 
sea surface temperature (SST) from the Hadley Centre Sea Ice and Sea Surface Temperature data 338 
set (HadISST v1) where blue is colder and red warmer. b, as (a) aggregated into the 2° × 2° 339 
latitude-longitude grid cells surveyed for plankton and demersal fish. c, Trends in CTISST for 340 
bottom trawls, and d, for Continuous Plankton Recorder hauls. e, CTISST trends compared with 341 
SST trends. CTI trends are shown as bootstrap averages and standard deviations of computed 342 
regression slopes over time (n=500 using random selection of species with replacement). SST 343 
trends are shown as regression slopes ± standard errors. Symbol sizes are scaled by the number 344 
of years sampled, while colours denote the survey programme (black, CPR, Continuous Plankton 345 
Recorder; red, DFO, Department of Fisheries and Oceans, Canada; green, IBTS, International 346 
Bottom Trawl Survey; blue, NMFS, US National Marine Fisheries Service). The dependence of 347 
CTISST trend on SST trends per gridcell is shown by two regression slopes ± 95% confidence 348 
intervals: with an intercept term (solid line with grey shading, Model A, R2=0.08) and without 349 
(line with red shading, Model B, R2=0.23, Supplementary Table 4). 350 

 351 

  352 
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   353 
Fig. 3 | Trends in Community Temperature Index (CTISST) for Northern Hemisphere 354 
demersal and plankton communities from 1985 to 2014 influenced by near-surface vertical 355 
and horizontal temperature gradients. a, Thermal bias (CTISST –SST) versus vertical 356 
temperature gradient (lower regression through demersal species, upper regression through 357 
plankton). b, Difference between observed CTI trends and those predicted from surface 358 
temperature trends (Model B residuals) versus local Community Thermal Diversity. c, Residuals 359 
from a regression including SST trends combined with community thermal diversity, community 360 
thermal range (Model I residuals, mapped in d) versus local vertical temperature difference. 361 
Error bars in a-c show bootstrap standard errors for CTISST trend estimates. e, Vertical 362 
temperature gradients (0-50m, 1985-2014 from Hadley Centre EN4 dataset). f, Relationships 363 
among CTI sensitivity, vertical and horizontal temperature gradients and thermal bias shown by 364 
correlation (grey arrows, round parentheses) and regression beta coefficients (black arrows, 365 
square parentheses) from regression of residuals from b (Supplementary Table 4 Model R1).  366 

  367 
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Online only Methods 368 

Simulation of sensitivity of the community temperature index to temperature change.  369 

Expected effects on the response of community thermal indices to temperature change were 370 

explored in a simulation model based on species-level functions relating abundance to 371 

temperature. Four functional forms were used: (i) Gaussian, with abundance declining 372 

symmetrically away from a central optimum, (ii) a trimmed Gaussian, with a central plateau, and 373 

(iii) left- and right-skewed functions based on the gamma distribution (Supplementary Fig. 1). 374 

Pools of 1000 species were created by randomly selecting species’ thermal midpoints (STI) from 375 

a Gaussian distribution with a mean of 15°C plus or minus an offset representing thermal bias 17, 376 

the degree to which the community is composed of types from warmer or colder conditions. 377 

Variation in thermal affinities in the species pool was manipulated via the standard deviation of 378 

STI values in the species pool, (sdSTI, species pool thermal diversity in Fig. 1e). Each species in 379 

the pool was assigned a thermal range (STR, species pool thermal range in Fig. 1e), as the 380 

difference between the 90th and 10th percentiles of the abundance-temperature function.  381 

The four abundance-temperature functions (Supplementary Fig. 1) simulated different 382 

patterns of abundance across species ranges. The Gaussian function represented species that are 383 

more abundant, or occur in a greater proportion of samples, at the centre of the distribution 384 

range. In this form, the equivalent standard deviation for a given STR (the difference between 385 

the 10th and 90th percentiles of the distribution) was obtained by dividing STR by 2· t0.1, (the 386 

number of multiples of SD percentiles of a Gaussian distribution). Simulated abundance (or 387 

incidence) of any species across the range of temperatures considered, here 0°C to 30°C, was 388 

obtained from the probability density function of the Gaussian distribution with the species’ STI 389 

as the mean and SD-equivalent range width as its standard deviation (as in Fig 1a-d). For the 390 
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trimmed Gaussian function, simulated abundance between mean–SD and mean+SD was set at 391 

the probability density value for the mean-SD and otherwise followed the standard Gaussian 392 

formulation. For the skewed functions based on the gamma distribution, simulated abundance 393 

was produced using the gamma probability density function for varying shape values, and scale 394 

factors obtained by dividing the STR by the difference between the 90th and 10th percentiles of 395 

each gamma distribution for the applicable shape value and a scale factor of 1.  396 

Simulated abundance/incidence values were used to calculate Community Temperature 397 

Index values (CTI, abundance-weighted average STI) and Community Thermal diversity 398 

(CTDiv, abundance-weighted standard deviations of STI values) at different temperatures. The 399 

sensitivity of CTI to temperature change (sCTI) was measured by calculating CTI for species at 400 

temperatures 0.1°C below and above 15°C, and dividing the difference in CTI values by 0.2°C to 401 

give the ratio of CTI change to temperature change.  402 

We used linear regression analysis to analyse the response of CTI sensitivity (sCTI) to the 403 

distribution of species thermal properties in these simulated communities. For the Gaussian 404 

abundance-temperature function, CTI sensitivity exactly depended on the squared ratio of CTDiv 405 

to STR (Supplementary Table 3, Model Z), with thermal bias having no meaningful effect. 406 

Adding variable Species Thermal Ranges (Supplementary Table 3, Model Z1) reduced the 407 

sensitivity of CTI to temperature at low levels of thermal diversity, but the effect was relatively 408 

small (Supplementary Table 5). With a flattened response of abundance to temperature emulated 409 

by the trimmed Gaussian function, the negative effect of average species thermal range (CTR) 410 

was completely eliminated. Communities composed of narrow- or wide-ranged species for the 411 

same level of thermal diversity had the same CTI sensitivity (Supplementary Fig. 2b). This 412 
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suggests that CTI metrics estimated from range information alone would not be sensitive to the 413 

average range width of the species involved for this functional form. 414 

For the asymmetrical abundance-temperature functions represented by the gamma and 415 

reversed gamma functions (Supplementary Fig. 1), the effects of varying CTDiv, CTR and the 416 

shape of the function were similar in both cases (Models Z3 and Z4, Supplementary Fig. 2c, 2e) 417 

but the effects of thermal bias depended on the direction of the skew. For the right-skewed 418 

gamma distribution, CTI sensitivity to temperature increased with thermal bias, producing a CTI 419 

that would change more rapidly with temperature if composed of warmer-water species. The left-420 

skewed reverse gamma abundance-temperature function, with a shape more similar to 421 

physiological temperature performance curves, showed the opposite effect, with more sensitivity 422 

of CTI to temperature if the community was composed largely of species from colder waters. 423 

This behaviour suggests the rapid changes in abundance at temperatures above the optimum 424 

produce more rapid shifts in CTI than the more gradual changes in abundance below the 425 

optimum (Supplementary Fig. 1d). Notwithstanding such effects of functional form of the 426 

abundance-temperature response on the sensitivity of CTI to temperature, the observed patterns 427 

of abundance more closely followed the simple Gaussian function (see section: Average 428 

abundance and incidence across species thermal ranges). 429 

Marine community data sources.  430 

Five marine community datasets were used (Supplementary Table 1). For analysis of 431 

patterns in responses across spatially extensive time-series data, data from three bottom-trawl 432 

survey programs and one plankton sampling program were downloaded and prepared such that 433 

every taxon record in each sample (either a single trawl or section of Continuous Plankton 434 

Recorder silk) was associated with a latitude, longitude and date. The three bottom-trawl surveys 435 
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were organized into different regional sampling programs, and data from each regional program 436 

were combined. US National Marine Fisheries Service (NMFS) data were obtained from the 437 

Ocean Adapt website and pre-processed using existing R code (Pinsky group, 438 

https://github.com/pinskylab/OceanAdapt downloaded February 2016). European International 439 

Bottom Trawl Survey (IBTS) datasets were downloaded in a common format with details of 440 

sizes of species caught and of each trawl, of which only the abundance, date and location were 441 

used. Canadian Department of Fisheries and Oceans data came from the Ocean Biogeographical 442 

Information System (OBIS) web portal, with similar details of sampling. Continuous Plankton 443 

Recorder data were obtained directly from the Continuous Plankton Recorder Survey, including 444 

date of hauls, longitude and latitude alongside estimated species abundance.  445 

Each dataset recorded abundance in a different way but, for every dataset including those 446 

that lacked abundance data, analyses were possible using species incidence among samples taken 447 

in the aggregating location and period. Species incidence (the relative frequency of trawls in 448 

which the species occurred, for data aggregated by area and time period) was used as the 449 

weighting factor in all calculations of community thermal metrics (CTI, CTDiv, CTR), and was 450 

highly correlated with abundance when available (Supplementary Fig. 10).  451 

Ocean temperature data. 452 

 We used five sea-surface-temperature datasets and one layered subsurface dataset for 453 

analysis of temperature change in the study region (Supplementary Table 1). Annual sea surface 454 

temperatures per 1° latitude-longitude grid cell were averaged over 1985 to 2014 for each dataset 455 

to represent long-term climate over the period of surveys.  Seabed temperatures were derived 456 

from the deepest layer in the Hadley Centre EN4 dataset and averaged over the same period. 457 

Trends in °C/yr were calculated for 1° cells using annual means from 1985 to 2014 (Fig. 2e, 458 

https://github.com/pinskylab/OceanAdapt
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Supplementary Fig. 13). Vertical gradients in temperature (Fig. 3d) were calculated using the 459 

EN4 dataset25 from layer means (surface: 5.02m, “50m”: 45.4m, “100m”: 98.3m, “200m”: 460 

207.4m) based on annual means from 1985 to 2014 .  461 

Derivation of Species Temperature Indices (STIs) and fitted Maxent models.  462 

Global predicted distribution maps were produced using presence-only Maxent models for 463 

each species in fish and plankton datasets occurring in ten or more 1° cells, and using default 464 

parameters for a random seed, convergence threshold, maximum number of iterations, maximum 465 

background points and the regularization parameter3 (Maxent version 3.3.3k). Observations of 466 

species presence from OBIS were gridded such that 1° grid cells with observations were set as 467 

present. Only 2% of species were found in <10 1°latitude/longitude gridcells, with most species 468 

found in 10 to 100 gridcells (10-32, 36%; 32-100, 37%; >100, 24%). These observations were 469 

then modelled as a function of the following environmental predictors: (1) average annual 470 

temperatures from the HadISST v1.1; (2) the logarithm of distance to the nearest coastline; (3) 471 

ocean depth from the GEBCO marine atlas; and (4) FAO major fishing areas 472 

(http://www.fao.org/fishery/area/search/en). Frequency of all records in OBIS in 1° grid cells 473 

was used as the bias correction file. Although we did not additionally spatially thin the input 474 

records as has been suggested34, the reduction of records to presence in 1° cells and inclusion of 475 

the bias file were attempts to reduce spatial bias due to uneven sampling effort. Global maps of 476 

predicted presence were produced using a threshold probability of 0.4, restricting the range of 477 

possible areas to those of high suitability4.  478 

Resulting Maxent-predicted distribution maps were used to extract sea temperature values 479 

from long-term climatology average 1985-2014 from HadISST (henceforth CTIhadsst1), EN4 480 

surface (CTIen4sst) and EN4 seabed (CTIen4sbt). Quantiles (0, 0.1, 0.25, 0.5, 0.75, 0.9 and 1.0, 481 

http://www.fao.org/fishery/area/search/en
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area-weighted by the cosine of the latitude) of these map-extracted temperatures were used to 482 

define the thermal niche of the species. The 50th percentile (median) of temperatures in occupied 483 

areas was used as the Species Temperature Index (STI, derived separately for HadISST and EN4 484 

SST and seabed). The difference between 10th and 90th percentile temperatures (T90 – T10, Fig. 485 

1a) defined the Species Thermal Range (STR). A Species Temperature Index derived as the 486 

average of T90 and T10 values obtained from species presence in 1° grid cells was also used to 487 

(i.e. not Maxent modelled STIhadsst2) 488 

Patterns in ocean temperature were used twice in the analysis: (i) as long-term mean values 489 

matched to modelled species distributions to derive STIs and STRs, and (ii) as local trends over 490 

the 30-year study period to compare with local trends in CTI values. Despite the use of 491 

information on sea temperature more than once, information flows in the derivation of species 492 

thermal affinities and analysis of spatial patterns were separate from those in the analysis of  493 

temporal patterns in community thermal composition related to temperature trends 494 

(Supplementary Fig. 4). These separate pathways allowed us to avoid circularity in reasoning. 495 

 496 

Average incidence (relative frequency of occurrence) across species thermal ranges. 497 

The form of the relationships of species incidence with range location was determined by 498 

first matching species’ incidence to local temperatures in 2° grid cells, and then locating those 499 

temperatures relative to the thermal limits of the distribution of each species (Fig. 1b, 500 

Supplementary Fig. 3). Average incidence values were calculated for every species in 2° 501 

latitude-longitude grid cells as the frequency of samples in which the species occurred, expressed 502 

as a proportion of the total number of samples across the whole period of each survey. Range 503 
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location was derived from the average temperature in the cell relative to range limits (Fig. 1b, T10 504 

and T90, equation in Supplementary Table 2).. Incidence values per 2° cell were rescaled for 505 

every species to give values relative to the average incidence within the STR, so reducing the 506 

effect of prevalent species on the resulting pattern. Percentiles (50%, 75%, 90%) of scaled-507 

incidence values were then calculated in range-location unit classes of 1/25 from -2 to 2 (Fig. 1b, 508 

Supplementary Fig. 3). To check how well incidence reflected species abundance, calculations 509 

were repeated for abundance measures where available (average weight per trawl for NMFS data 510 

and number per haul for CPR and IBTS data) by summing numbers or biomass and dividing this 511 

sum by the total number of samples in each 2° latitude-longitude grid cell (Supplementary Fig. 512 

3). Abundance changes across thermal ranges were calculated in the same way as incidence 513 

changes. 514 

Community Temperature Index (CTI), Thermal Diversity (CTDiv), average Species 515 

Thermal Range (CTR) and Thermal Bias in surveys. 516 

CTI values were calculated as incidence-weighted average STIs using data aggregated in 2° 517 

× 2° grid 1° grid cells to produce maps (Supplementary Figures 4 and 9), and temporal trends 518 

(Fig. 2). Community thermal diversity, CTDiv, the spread of STI values around each CTI 519 

measure, was similarly calculated as the incidence-weighted standard deviation of the STIs for 520 

species present in the grid cell or grid cell/ year combination. Community thermal range (CTR) 521 

was the incidence-weighted average of species’ STR values. Incidence (relative frequency of 522 

species in samples per aggregation unit) was used as the weighting factor because abundance 523 

was expressed differently in each dataset (Supplementary Table 1): as total numbers per trawl 524 

sample (IBTS data), biomass per haul (NMFS data), and as scores per silk (CPR data). However, 525 

incidence was strongly related to abundance in each set for which abundance data were available 526 
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(Supplementary Fig. 8). Thermal bias was calculated as the CTI minus local sea temperature 527 

(using whichever temperature dataset was used to derive corresponding STIs), giving positive 528 

values where more species were from warmer areas and negative values where the species were 529 

from cooler places.  530 

Uncertainty in CTI estimation is often poorly estimated35 so, in addition to the four 531 

alternative methods of derivation of STIs, we used bootstrap resampling of species to generate 532 

standard errors and confidence intervals for means and trends in CTI and for the outcomes of 533 

more complex regression analyses. Bootstrap sets of species were randomly selected with 534 

replacement from those in each survey scheme (141 CPR, 285 IBTS, 585 NMFS, and 285 DFO 535 

species). The frequency of each species in the bootstrap set was used as a multiplier on species 536 

incidence as the weighting factor (wi in Supplementary Table 2) to give bootstrap estimates of 537 

each of the community thermal metrics. Each metric (annual mean, anomaly, trend) and 538 

regression model was computed for 500 repeated bootstrap species selections, and summarised 539 

to give bootstrap averages, standard errors and 95% confidence intervals.  540 

For time-series analysis, the annual CTI values averaged per 2° × 2° grid cell were 541 

expressed as an anomaly from the 1985-2014 average CTI for that cell. US NMFS data had 542 

several regional series that occurred together in the same grid cell, notably in the Northeast and 543 

Southeast US spring and fall series. In this case, anomalies were calculated for each series 544 

separately then averaged to give final CTI values for that cell. Trends in CTI for each 2° × 2° cell 545 

were calculated using all years for which CTI values were available, and matching trends for 546 

SST values were calculated for the same set of years.  547 
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Uncertainty in annual CTI anomalies and temporal trends: data filtering 548 

The magnitude of CTI anomalies from long-term means in 2° × 2° grid cells shows the 549 

effect of sampling effort on the uncertainty in these estimates (Supplementary Fig. 11a, b). As 550 

expected, given the standard error of the mean being proportional to the underlying standard 551 

deviation multiplied by the square root of the sample size, the magnitude of anomalies declined 552 

with the number of species records (STIs) used to compute each CTI value (Supplementary Fig. 553 

11a). CTI anomalies were omitted from trend analysis for bottom-trawl surveys if comprising 554 

fewer than 20 species records. Similarly, annual CTI anomalies tended to be larger when 555 

composed of fewer bottom trawls or plankton samples. Estimates based on fewer than 10 bottom 556 

trawls or plankton hauls per year were also excluded from further analysis (Supplementary Fig. 557 

11b). 558 

Standard errors associated with trends in CTI over time in each 2° × 2° grid cell were also 559 

related to the number of years sampled and the total species records over the time series in each 560 

cell (Supplementary Fig. 11c, d). Trends based on fewer than 10 years of data and less than 1000 561 

species records were omitted from further analysis.  562 

Analysis of trends in CTI versus community thermal traits: community thermal diversity 563 

(CTDiv), average thermal range width (CTR) and thermal bias, and predictions of 564 

sensitivity from simulated communities. 565 

Relationships between trends in Community Temperature Index (as bootstrap-mean CTISST) 566 

and trends in sea temperature (HadISST), as modified by community thermal affinities, were 567 

analyzed by fitting least-squares multiple linear regression models (Supplementary Table 4). The 568 

relative importance of models was evaluated using Akaike weights. Intercepts were omitted from 569 

models because no CTI change would be expected where the temperature trend was zero (unless 570 
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there was some delayed shift from an earlier period of warming or cooling). Adding intercepts 571 

back into these models (Models A and Ci to Ni) had very little effect on model fits (as shown by 572 

ΔAICc) or the parameter value estimates, and did not result in intercepts that were significantly 573 

different from zero.  574 

Terms were introduced first as linear effects and then as squared terms, reflecting the results 575 

from the simulation model (Model Z). Modifying effects of average community thermal metrics 576 

(CTDiv, CTR, Thermal bias) and local vertical and horizontal gradients in average temperature 577 

were expressed as interactions with the temporal trend in sea surface temperature to address 578 

sensitivity of CTI to temperature. Considering effects only as interaction terms reflected the 579 

assumption that change in average thermal affinity would respond to changes in temperature, and 580 

that patterns of local average thermal diversity, species range, or thermal bias would modify that 581 

change in CTI in response to temperature. The model with the squared ratio of community 582 

thermal diversity (CTDiv) to species thermal range (CTR, Model G) links the observational data 583 

with the simulation analysis. In simulations using the Gaussian function, regression of log CTI 584 

sensitivity on log STR (=CTR in this case, since all species in the simulation had the same STR) 585 

and CTDiv gave a perfect fit with coefficients of -2 and 2 respectively, which back transforms 586 

from logs to the one-parameter equation involving the squared ratio of CTDiv to CTR (Model 587 

Z). 588 

Adding the interactive effect of thermal diversity (CTDiv) to SST trend (dSST) produced a 589 

better model (Model D vs B, AICcD - AICcB = -63.90), while adding thermal range (CTR) alone 590 

did not (Model C vs B, AICcC - AICcB = -2.52). Including both factors, either as linear predictors 591 

(E) or squared terms (F), further improved the model (Model E vs B, AICcE - AICcB = -82.62; 592 

Model F vs B, AICcF - AICcB = -77.03). Thermal diversity was negatively correlated with 593 
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inverse thermal range width, resulting in large changes in parameter values when each factor was 594 

added to a model containing the other. The squared-ratio model (CTDiv2:CTR2), Model G, 595 

equivalent to the model fitted to simulation data (Z), had similar explanatory power to other 596 

models including those terms (E, F). The parameter value for this model (G, 7.63) was close to 597 

the 6.54 obtained for simulated communities (Z).  598 

Thermal bias affected CTI sensitivity in the simulations, negatively or positively depending 599 

on the direction of skew of the abundance-temperature relationship, and so was introduced as an 600 

addition to the squared ratio model. Adding thermal bias slightly improved model fit (Model H 601 

vs G, AICcH - AICcG = -1.18) and increased the sensitivity of CTI by 0.04 for each °C of thermal 602 

bias. This positive effect meant that communities comprising warm-water species showed greater 603 

change in CTI than those composed of cold-water species for the same change in temperature. 604 

The effect was also consistent with the effect of realized right-skewed (gamma) abundance-605 

temperature distribution in the simulations, but not a left-skewed one as implied by typical 606 

physiological thermal performance curves36.  607 

Both horizontal and vertical gradients in temperature were expected to influence CTI 608 

sensitivity. Steep vertical gradients in temperature may have a negative effect on CTI sensitivity 609 

because species may be able to shift to cooler temperatures in the same area by moving deeper. 610 

Gentle horizontal gradients in temperature, combined with temperature change through time, 611 

result in higher velocities of climate and thereby more rapid distribution shifts among species2,18. 612 

With a greater rate of species turnover in areas of high climate velocity, we expected a negative 613 

relationship between CTI sensitivity and the magnitude of the horizontal gradient in temperature. 614 

Adding shallow vertical temperature differences (surface less 50m) improved the model with 615 

community thermal diversity and thermal range (Model I vs G, AICcI - AICcG = -33.39), albeit 616 
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with no effect of vertical differences from surface to 100m (Model J) or 200m depth (Model K). 617 

Adding horizontal temperature gradient (Model L) to the basic model (G) had a smaller effect on 618 

model fit (AICcL - AICcG = -3.15) and did show the expected negative influence of the 619 

horizontal gradient. Combining vertical and horizontal gradients in temperature (Model M) did 620 

not improve model fit, and the horizontal gradient coefficient did not differ from zero. A 621 

regression model that included thermal bias effects as well as horizontal and vertical gradients in 622 

temperature (Model N) was the most parsimonious, albeit with the parameter for horizontal 623 

gradient not significantly different from zero. Residuals from the squared-ratio model proved to 624 

be related most strongly to the effect of vertical temperature gradient (Model R1, Fig. 3b).  625 

Cross validation of was used to examine the predictive skill of Model I (Supplementary 626 

Table 4, Supplementary Fig. 12). We used dataset type (bottom trawls or plankton) and latitude 627 

and longitude (giving contiguous spatial blocks) to split the data into near similar-sized training 628 

and test datasets, with each set alternately used as the training set for the other test set of data. 629 

Choices of splits for latitude (50°N) and longitude (40°W) were arbitrary, but adopted to produce 630 

adequately sized datasets for fitting. Model I fitted to the plankton subset as training data (Model 631 

Icpr) and bottom-trawl subsets (Model Idem) produced similar parameter estimates (significant 632 

P<0.05), with CTI trends for bottom trawls explained markedly better. Splitting into plankton 633 

and demersal species gave the worst fits to the other as test data (CV rsme 0.0284), the plankton 634 

training set predicting larger CTI trends than the bottom-trawl training set. Splitting by latitude 635 

and longitude gave similar root mean squared errors to the plankton / bottom-trawl split 636 

(Supplementary Table 4), but produced non-significant parameter estimates for the vertical 637 

temperature gradient term for data west of 40°W. Model residuals for Model I showed some 638 



 

28 

 

spatial structure (Supplementary Fig. 12a), with evidence for spatial autocorrelation in the CTI 639 

trends and in the predictor variables (Supplementary Fig. 12b-c). 640 

Of all predictors tested beyond the effects of thermal diversity and thermal range, the 641 

vertical temperature gradient effect had the largest influence on CTI sensitivity, (Fig. 3f). The 642 

apparent positive effect of thermal bias was due to the negative association with vertical gradient 643 

for demersal species (Fig. 3a), and the small negative effect of horizontal gradient was due to the 644 

weak positive association of vertical and horizontal gradients of temperature, particularly in the 645 

northwest Atlantic.  646 

Evaluation of explanatory power of alternate sea temperature datasets in explaining spatial 647 

variation in trends in CTI anomalies 648 

We fitted a subset of regression models in Supplementary Table 4 to every combination of 649 

four variants of CTI and temperature trends from nine dataset layers: five surface layers 650 

(EN4SST, COBESST, ERSST, HadISST and OISST, Supplementary Fig. 13) and four 651 

subsurface layers (EN4SBT, EN4 50m depth, EN4 100m depth and EN4 200m depth). Models 652 

were fitted for every bootstrap selection of species (n=500), with model fits and 95% bootstrap 653 

confidence intervals shown in Supplementary Fig. 14. The most variation in CTI was explained 654 

for CTISST from STIs obtained by matching modelled species distributions to surface temperature 655 

(aCTIen4sst and aCTIhadsst1), with the poorest performance of models fitted to CTISST from 656 

STIs obtained by matching 1° mapped observations of species presence in gridcells (from OBIS 657 

data summed for the period 1960 to 2009) to surface temperatures (aCTIhadsst2). Trends in 658 

seabed temperatures did least well in terms of adjusted R2 at predicting CTISBT or CTISST. 659 

Models that included terms for the squared ratio of thermal diversity to range width fitted better 660 

when in combination with magnitude of vertical gradient and/or horizontal gradient.  661 
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 662 

Data availability 663 

The data that support the findings of this study are available at the publicly accessible 664 

repositories listed in Supplementary Table 1. 665 

 666 

Data Availability Statement 667 

The Community Temperature Index (CTI) values and species thermal affinity data that support 668 
the findings of this study are available in figshare with the identifiers 669 
https://doi.org/10.6084/m9.figshare.9699068 for annual values and 30 year means 670 
(Supplementary Fig. 7), https://doi.org/10.6084/m9.figshare.9699107 for trends in 2° × 2° grid 671 
cells (Figs 2, 3, Supplementary Fig. 5), and https://doi.org/10.6084/m9.figshare.6855203.v1 for 672 
species thermal affinities. Source data for the analyses presented are available at links given in 673 
the supplementary information files. Source code for the simulation of CTI response to 674 
temperature change is available at https://github.com/michaeltburrows/ctisimulation (Fig. 1).675 

https://doi.org/10.6084/m9.figshare.9699068
https://doi.org/10.6084/m9.figshare.9699107
https://doi.org/10.6084/m9.figshare.6855203.v1
https://github.com/michaeltburrows/ctisimulation


 

30 

 

Supplementary Table 1 | Datasets used in analyses of spatial and temporal trends in community average thermal traits.  

Ecological community datasets. 

Name Area Short Source / Access date Reference Abundance 

US National 
Marine Fisheries 
Service 

North Atlantic, 
Gulf of Mexico, 
North Pacific 

NMFS http://oceanadapt.rutgers.e
du/ 

(11/2/2016) 

Pinsky et al 2013 2 Wet weight 

Department of 
Fisheries and 
Oceans Canada 

Canada 
Maritimes, 
Newfoundland 
and Labrador 

DFO http://www.iobis.org/ 

i. DFO Newfoundland and 
Labrador Region 
Ecosystem Trawl Surveys 

ii. DFO Maritimes 
Research Vessel Trawl 
Surveys Fish Observations 

(6/5/2016) 

Use:  
Pinsky et al 2013 2 

Data citation: 

i. Brodie et al 2013 37 

ii. DFO38 

Presence only 

International 
Bottom Trawl 
Surveys 

NW European 
shelf 

IBTS ICES DATRAS 

(https://datras.ices.dk/Data
_products/Download/Dow
nload_Data_public.aspx) 

(30/10/2015) 

Use: Heessen et al 
2015 39 

Data citation: 

ICES 40 

Number per 
haul 

Continuous 
Plankton 
Recorder Survey 

North Atlantic CPR CPR Survey 

(URL by application: 
https://www.cprsurvey.org
/data/data-request-form/) 

(16/10//2015) 

Use: Reid et al 2003 41 Categories, 
abundance per 
area of silk 

 

  

http://oceanadapt.rutgers.edu/
http://oceanadapt.rutgers.edu/
http://www.iobis.org/
https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx
https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx
https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx
https://www.cprsurvey.org/data/data-request-form/
https://www.cprsurvey.org/data/data-request-form/
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Supplementary Table 1 (continued) 
Sea temperature datasets 

Dataset Description Portal Accessed 
HadISST 
v1.124 

Hadley Centre Sea Ice and Sea 
Surface Temperature data set  

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html  31/07/2017 

COBESSTv542 A centennial sea surface temperature 
(SST) analysis  

ftp://ftp.cdc.noaa.gov/Datasets/COBE2/sst.mon.mean.nc  18/05/2018 

ERSSTv543 Extended Reconstructed Sea Surface 
Temperature (ERSST) v5. 2° monthly 
average temperatures. Dataset DOI: 
10.7289/V5T72FNM 

ftp.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf 18/05/2018 

OISST NOAA Optimum Interpolation (OI) 
Sea Surface Temperature (SST) V2. 
1° monthly average temperatures . 

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html  18/05/2018 

HadEN425 EN4.2.0. Objective analyses of quality 
controlled subsurface ocean 
temperature profiles. 1° monthly 
average temperatures at 43 depth 
layers, aggregated into yearly 
averages  

https://www.metoffice.gov.uk/hadobs/en4/download.html  02/08/2017 

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
ftp://ftp.cdc.noaa.gov/Datasets/COBE2/sst.mon.mean.nc
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://www.metoffice.gov.uk/hadobs/en4/download.html
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Supplementary Table 2 | Definitions of species’ and community thermal trait metrics. 

Abbr Metric Definition Note 

STI Species 
Thermal 
Index 

STI = 𝑇50 

the temperature at the 50th 
percentile of temperatures 
experienced throughout the 
species range 

Ranges predicted using Maxent 
models fitted to occurrence data in 
OBIS. 

STR Species 
Thermal 
Range 

STR = 𝑇90  −  𝑇10 

the difference between 10th 
percentile and 90th percentile 
temperatures of the species 
range 

Species-level measure of the 
temperature range across their 
distribution. 

CTI Community 
Temperature 
Index 

CTI = ∑ STI𝑖𝑤𝑖𝑖=𝑁𝑖=1∑ 𝑤𝑖  

where wi is the weight for 
species i , and N is the 
number of species in the 
community (in single surveys 
or aggregated across areas 
and years) 

Community-level measure of 
average species thermal affinity. 

Weighted average of Species 
Thermal Indices calculated for a 
community. Incidence (relative 
frequency of occurrence in 
grouped samples) was used as the 
weight in analyses. 

CTR Community 
Thermal 
Range 

CTR = ∑ STR𝑖𝑤𝑖𝑖=𝑁𝑖=1∑ 𝑤𝑖  
Community-level measure of 
average species thermal range 
width, here weighted by incidence. 

CTDiv Community 
Thermal 
diversity 

CTDiv = √∑(STI𝑖 − CTI)2𝑤𝑖∑ 𝑤𝑖  
Community-level measure of 
cross-species variation in thermal 
affinity. 

Weighted standard deviation of 
STI values across community 
members. 

 Thermal bias Thermal bias = CTI − SST The difference between CTI and 
local sea surface temperature. 

sCTI CTI 
Sensitivity sCTI = ∆CTI∆SST 

Change in CTI per change in SST.  

 Range 
location RL = 2 𝑇𝑙𝑜𝑐𝑎𝑙  −  𝑇10STR − 1 

 

Scaled range location for 
abundance-temperature 
relationships among species 
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Supplementary Table 3. Summary of effects of types of abundance-temperature relationships 
on sensitivity of CTI to temperature change (sCTI) based on linear regression. Values shown are 
regression coefficients (± standard errors). A full list of parameter estimates is given in 
Supplementary Table 5. 

 

Model Functional 
type 

Plot log10 
(CTDIV) 

log10 
(STR) 

Thermal bias sdSTR / Shape 

(parameter ranges)  (1 to 15) (2 to 20 
by 2) 

(-5 to 5 by 1)  

Z Gaussian Fig. 1f 2.00 -2.00 0.00  
   (1 to 15) (4 to 12 

by 2) 
(-5 to 5 by 1) (sdSTR: 0.001, 1 to 4) 

Z1 Gaussian 
plus 
variable 
STR 

Supplementary 
Fig. 2a 

2.00 -2.00 Sensitivity 
declines as 
thermal bias 
increases 

sdSTR: Negative effect. 
CTI sensitivity (sCTI) 
declines as variation in 
STR increases. Interacts to 
reduce negative STR effect 
as variability in STR 
increases, but has little 
influence on the effect of 
thermal diversity. 

Z2 Trimmed 
Gaussian 

Supplementary 
Fig. 2b 

1.93 0, Effect 
of 
thermal 
range 
width is 
removed 

Negligible  

   (1 to 15) (4 to 12 
by 2) 

(-5 to 5 by 1) (Shape: 1 to 4) 

Z3 Gamma 
(right-
skewed) 

Supplementary 
Fig. 2c, 2d 

0.97 
(0.05) 

-1.03 
(0.05) 

Positive, 
sensitivity 
increases 
with thermal 
bias 

Shape: >1 increases 
sensitivity. Increases 
positive effects of thermal 
diversity and negative 
effects of thermal range 
width towards the Gaussian 
values (+2 and -2) 

Z4 Reversed 
gamma 
(left-
skewed) 

Supplementary 
Fig. 2e, 2f 

0.92 
(0.05) 
(shape 1) 

-1.01 
(0.05) 

Negative, 
sensitivity 
declines with 
thermal bias 

Shape: >1 increases 
sensitivity. Increases 
positive effects of thermal 
diversity and negative 
effects of thermal range 
width towards the Gaussian 
values (+2 and -2) 

 

 

 



 

34 

 

Supplementary Table 4 | Parameter estimates (± standard error) from regression models fitted to bootstrap mean HadISST-derived CTISST 1 
trends among 2° × 2° grid cells (n=215), using CPR, NMFS, IBTS and DFO data combined. Definitions of terms are given in Supplementary Table 2. 2 
Model Z gives the dependence of CTI sensitivity to temperature change on the squared ratio of community thermal diversity (CTDiv) and range width 3 
(CTR) in the simulation model (Fig. 1g). Models B to G include thermal diversity (CTDiv, CTDiv2) and inverse community thermal range (invCTR, 4 
invCTR2) as interaction terms with temporal trend in sea surface temperature (dSST). Models H to K add thermal bias (thermbias) to these models, while 5 
models I to M add the effect of local horizontal (mnsg) and vertical gradients in temperature (slessdeep, differences between surface and deeper layers: 6 
50m, 100m, and 200m) as covariates from EN4 analysis products. Model weights44 give the relative likelihoods of each model based on ΔAIC relative to 7 
Model N. Cross validation of Model I used training data subsets split by plankton and demersal species (Icpr, Idem), north and south of 50°N (INorth, 8 
ISouth), and east and west of 40°W (IWest, I East). Cross-validation root mean squared error (CV rmse) measured model skill. 9 

 10 
Values in parentheses give the parameter estimate for the squared value of the community thermal metric (dSST x CTDiv2, dSST x invCTR2). § denotes 11 
coefficients not significantly different from zero at P<0.05.  12 

M# Description ΔAICc

Model 
weight, 

w R²
Adj 
R² Intercept dSST

dSST x  
CTDiv(^2)

dSST x  
CTDiv² x 
invCTR²

dSST x  
invCTR(^2)

dSST x  
mnsg

dSST x  
slessdeep

dSST x  
thermbias

Z Simulations 6.54

A SST trends effect 85.42 0.00 0.08 0.08 0.004 ± 0.004§ 0.47 ± 0.11
B SST trends effect, no intercept 84.57 0.00 0.23 0.22 0.56 ± 0.07
C Thermal Range width 82.06 0.00 0.24 0.24 1.19 ± 0.30 -9.37 ± 4.37
D Thermal diversity 20.68 0.00 0.43 0.43 -1.33 ± 0.22 0.43 ± 0.05
E Thermal range plus thermal diversity 1.95 0.11 0.48 0.48 -3.70 ± 0.55 0.62 ± 0.06 22.45 ± 4.83
F as squared terms 7.54 0.01 0.47 0.46 -1.56 ± 0.29 (0.07 ± 0.01) (146.62 ± 34.24)
G combined 33.69 0.00 0.39 0.39 7.63 ± 0.65
H Thermal bias effect 32.51 0.00 0.40 0.39 7.33 ± 0.67 0.04 ± 0.02§
I Vertical gradient effects:  using 50m 0.30 0.32 0.48 0.48 11.14 ± 0.83 -0.16 ± 0.03
J 100m 164.94 0.00 0.44 0.43 11.99 ± 1.07 -0.16 ± 0.03
K 200m 347.31 0.00 0.29 0.28 7.89 ± 1.36 -0.03 ± 0.05§
L Horizontal gradient effect 30.54 0.00 0.40 0.40 8.84 ± 0.83 -18.55 ± 8.10

M Vertical plus horizontal gradient effects 0.52 0.27 0.49 0.48 10.86 ± 0.85 12.66 ± 9.24§ -0.19 ± 0.03

N
Thermal bias, combined with vertical 
gradient effects

0.00 0.30 0.49 0.48 10.53 ± 0.87 13.39 ± 9.22§ -0.18 ± 0.03 0.03 ± 0.02§

Cross-validation of Model I
Subset 
rmse

CV 
rsme

Icpr Model I for CPR data (n=84) 0.0362 0.0284 0.51 0.49 21.80 ± 2.49 -0.42 ± 0.07
Idem Model I for bottom trawl data (n=131) 0.0221 0.61 0.60 9.25 ± 0.68 -0.12 ± 0.02
INorth Model I for >50°N (n=94) 0.0306 0.0302 0.60 0.60 11.62 ± 1.02 -0.11 ± 0.05
ISouth Model I for <=50°N (n=121) 0.0299 0.23 0.21 8.35 ± 1.60 -0.13 ±  0.04
IWest Model I for <40°W (n=108) 0.0234 0.0321 0.48 0.47 13.55 ± 1.39 -0.21 ± 0.03
IEast Model I for >=40°W (n=107) 0.0362 0.49 0.49 10.08 ± 1.18 -0.10 ± 0.06§
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. 13 

Supplementary Table 4 (continued) | Regression models fitted to CTI trends. Models shown here (Ci to Ni) are the same as C to N above with added 14 
intercept terms to allow a non-zero change in CTI for zero change in temperature. 15 

  16 
Values in parentheses give the parameter estimate for the squared value of the community thermal metric (dSST x CTDiv2, dSST x invCTR2). § denotes 17 
coefficients not significantly different from zero at P<0.05. 18 

 19 

 20 

M# Description ΔAICc

Model 
weight, 

w R²
Adj 
R² Intercept dSST

dSST x  
CTDiv(^2)

dSST x  
CTDiv² x 
invCTR²

dSST x  
invCTR(^2)

dSST x  
mnsg

dSST x  
slessdeep

dSST x  
thermbias

Ci Thermal Range width 83.90 0.00 0.10 0.09 0.002 ± 0.004§ 1.11 ± 0.35 -8.74 ± 4.55§
Di Thermal diversity 22.68 0.00 0.32 0.31 -0.001 ± 0.003§ -1.32 ± 0.23 0.43 ± 0.05
Ei Thermal range plus thermal diversity 3.75 0.11 0.38 0.37 0.002 ± 0.003§ -3.78 ± 0.57 0.62 ± 0.06 23.04 ± 4.94
Fi as squared terms 8.98 0.01 0.37 0.36 0.003 ± 0.003§ -1.66 ± 0.31 (0.07 ± 0.01) (153.66 ± 35.26)
Gi combined 35.43 0.00 0.27 0.27 -0.002 ± 0.003§ 7.99 ± 0.90
Hi Thermal bias effect 33.41 0.00 0.28 0.28 -0.003 ± 0.003§ 7.97 ± 0.89 0.04 ± 0.02
Ii Vertical gradient effects:  using 50m 0.68 0.32 0.39 0.38 0.004 ± 0.003§ 10.59 ± 0.92 -0.17 ± 0.03
Ji 100m 165.17 0.00 0.33 0.32 0.005 ± 0.003§ 11.19 ± 1.22 -0.16 ± 0.03
Ki 200m 348.93 0.00 0.13 0.12 0.003 ± 0.004§ 7.08 ± 1.79 -0.03 ± 0.05§
Li Horizontal gradient effect 32.66 0.00 0.29 0.28 0.000 ± 0.003§ 8.86 ± 0.97 -18.47 ± 8.36

Mi Vertical plus horizontal gradient effects 1.20 0.27 0.39 0.38 0.004 ± 0.003§ 10.38 ± 0.94 11.75 ± 9.26§ -0.19 ± 0.03

Ni
Thermal bias, combined with vertical 
gradient effects

1.57 0.30 0.39 0.38 0.002 ± 0.003§ 10.27 ± 0.94 12.67 ± 9.27§ -0.19 ± 0.03 0.02 ± 0.02§

R1 Residual from Model G vs vertical and 
horizontal gradients and thermal bias

0.14 0.12 0.020 ± 0.006 0.759 ± 0.468§ -0.010 ± 
0.002

-0.0003 ± 
0.0008§
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Supplementary Table 5. Parameter estimates from linear regression analysis of CTI sensitivity (log10 21 
transformed) in simulated communities using different types of abundance-temperature functions (see 22 
Supplementary Fig. 1). Results are summarised in Supplementary Table 3, including the ranges of input 23 
parameters. Abbreviations: CTDiv, Community Thermal Diversity; CTR, Community Thermal Range; sdSTR, 24 
standard deviation in Species Thermal Range; thermbias, Thermal Bias; shape, gamma shape parameter. 25 
Interactions are denoted by x between two terms. 26 
 27 
 28 

Model Z1, Adjusted R2 = 0.9243. Gaussian function with variable STR 

Term Estimate 
Std. 

Error t value 
Intercept 0.786 0.018 44.24 
log10(CTDiv) 1.998 0.022 88.90 
log10(CTR) -1.997 0.025 -80.05 
sdSTR = 1 -0.058 0.024 -2.39 
sdSTR = 2 -0.167 0.024 -6.87 
sdSTR = 3 -0.222 0.025 -8.74 
sdSTR = 4 -0.161 0.027 -5.88 
thermbias = -4 0.013 0.006 2.02 
thermbias = -3 0.025 0.006 4.02 
thermbias = -2 0.038 0.006 6.06 
thermbias = -1 0.052 0.006 8.25 
thermbias = 0 0.058 0.006 9.16 
thermbias = 1 0.053 0.006 8.41 
thermbias = 2 0.036 0.006 5.64 
thermbias = 3 0.021 0.006 3.35 
thermbias = 4 0.013 0.006 2.01 
thermbias = 5 0.003 0.006 0.41 
log10(CTDiv) x sdSTR = 1 0.023 0.032 0.73 
log10(CTDiv) x sdSTR = 2 0.094 0.031 2.98 
log10(CTDiv) x sdSTR = 3 0.285 0.031 9.15 
log10(CTDiv) x sdSTR = 4 0.237 0.031 7.61 
log10(CTR) x sdSTR = 1 0.046 0.035 1.31 
log10(CTR) x sdSTR = 2 0.113 0.035 3.26 
log10(CTR) x sdSTR = 3 0.056 0.035 1.59 
log10(CTR) x sdSTR = 4 -0.004 0.037 -0.11 

  29 
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Model Z2, Adjusted R2 = 0.9907. Trimmed Gaussian function 

Term Estimate 
Std. 

Error t value 
Intercept -1.370 0.007 -200.94 
log10(CTDiv) 1.930 0.005 351.15 
log10(CTR) -0.001 0.005 -0.18 
thermbias = -4 0.003 0.005 0.53 
thermbias = -3 0.000 0.005 -0.09 
thermbias = -2 -0.013 0.005 -2.57 
thermbias = -1 -0.016 0.005 -3.38 
thermbias = 0 -0.004 0.005 -0.90 
thermbias = 1 -0.009 0.005 -1.78 
thermbias = 2 -0.009 0.005 -1.80 
thermbias = 3 -0.008 0.005 -1.65 
thermbias = 4 0.001 0.005 0.21 
thermbias = 5 -0.004 0.005 -0.81 

Model Z3, Adjusted R2 = 0.6681. Gamma abundance-temperature function 

Term Estimate 
Std. 

Error t value 
Intercept 0.213 0.040 5.34 
log10(CTDiv) 0.974 0.048 20.40 
log10(CTR) -1.029 0.054 -19.22 
thermbias = -4 0.025 0.016 1.58 
thermbias = -3 0.053 0.016 3.31 
thermbias = -2 0.084 0.016 5.13 
thermbias = -1 0.113 0.017 6.64 
thermbias = 0 0.145 0.018 8.09 
thermbias = 1 0.187 0.019 9.87 
thermbias = 2 0.225 0.020 11.25 
thermbias = 3 0.270 0.021 12.70 
thermbias = 4 0.308 0.023 13.69 
thermbias = 5 0.345 0.024 14.43 
shape = 2 0.331 0.052 6.35 
shape = 3 0.375 0.052 7.16 
shape = 4 0.392 0.052 7.47 
log10(CTDiv) x shape = 2 0.823 0.064 12.90 
log10(CTDiv) x shape = 3 0.912 0.066 13.88 
log10(CTDiv) x shape = 4 0.942 0.066 14.20 
log10(CTR) x shape = 2 -0.768 0.073 -10.48 
log10(CTR) x shape = 3 -0.849 0.074 -11.43 
log10(CTR) x shape = 4 -0.879 0.075 -11.76 
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Model Z4, Adjusted R2 = 0.6818: Reversed gamma function 

Term Estimate 
Std. 

Error t value 
Intercept 0.563 0.039 14.53 
log10(CTDiv) 0.924 0.047 19.53 
log10(CTR) -1.020 0.052 -19.44 
thermbias = -4 -0.036 0.015 -2.39 
thermbias = -3 -0.074 0.015 -4.85 
thermbias = -2 -0.120 0.016 -7.58 
thermbias = -1 -0.151 0.017 -9.12 
thermbias = 0 -0.194 0.017 -11.15 
thermbias = 1 -0.220 0.018 -11.93 
thermbias = 2 -0.264 0.019 -13.54 
thermbias = 3 -0.294 0.021 -14.22 
thermbias = 4 -0.313 0.022 -14.26 
thermbias = 5 -0.346 0.023 -14.88 
shape = 2 0.338 0.051 6.67 
shape = 3 0.368 0.051 7.23 
shape = 4 0.383 0.051 7.50 
log10(CTDiv) x shape = 2 0.954 0.064 15.03 
log10(CTDiv) x shape = 3 0.995 0.065 15.35 
log10(CTDiv) x shape = 4 1.005 0.065 15.38 
log10(CTR) x shape = 2 -0.834 0.072 -11.61 
log10(CTR) x shape = 3 -0.878 0.073 -12.07 
log10(CTR) x shape = 4 -0.895 0.073 -12.25 

 30 
  31 
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 32 

 33 
 34 

Supplementary Fig. 1. | Forms of abundance-temperature relationships used in simulations of 35 
CTI sensitivity to changes in temperature: a, Gaussian; b, trimmed Gaussian; c, right-skewed 36 
gamma distribution; d, left-skewed gamma distribution. Curves are shown for STI = 15°C and for STR 37 
= 10 using gamma shape = 1.5 for c and d. 38 
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 39 
Supplementary Fig. 2. | Sensitivity of CTI to temperature change in simulated communities. a, 40 
Gaussian abundance-temperature function with varying species range widths; b, trimmed Gaussian 41 
abundance-temperature function; c, gamma function, varying with shape parameter; d, gamma 42 
function, varying with thermal bias; e, f, as c, d with the reversed gamma function. 43 

 44 
  45 
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 46 
Supplementary Fig. 3. | Abundance and incidence across scaled locations in species thermal 47 
ranges. Symbols give averages and lines show Gaussian expectations for quantiles (50, 75 and 90th 48 
percentiles) of species abundance (a, c, e) and incidence (b, d, f) in range location classes, after scaling 49 
to average values between Species Thermal Range locations -1 (T10) to +1 (T90), the 10th and 90th 50 
percentiles of temperatures occupied in predicted global distribution maps. a, b, NMFS species; c, d, 51 
IBTS species, and e, f, CPR species. Red symbols, for example, show how the 90th percentile of all 52 
species abundance or incidence values change across from the cold to the warm part of the species 53 
thermal range. 54 
 55 
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 56 
 57 
Supplementary Fig. 4 | Information flow and causation in spatial patterns and temporal trends in 58 
Community Temperature Index. Species thermal affinities (Species Temperature Index values STIs, 59 
and Species Thermal Ranges STRs) were derived from the match between global species distributions 60 
from global biodiversity data (OBIS) and long-term average temperatures (L-T avg SST). CTI values 61 
for bottom trawls and plankton hauls aggregated for 2x2° areas result from the local incidence of 62 
species as a response to average temperature. Trends in CTI values over time in these aggregated areas 63 
were related to trends in local temperature, taking STIs and STRs from the spatial matching process, 64 
but using independent information on change in community composition and temperature change. 65 
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 66 

  67 
Supplementary Fig. 5 | Spatial patterns in community thermal metrics, duration and number of 68 
species recorded in 2° x 2° grid cells in North American and European bottom-trawl surveys (DFO, 69 
IBTS, NMFS) and North Atlantic Continuous Plankton Recorder (CPR) surveys. a Community 70 
Temperature Index (CTISST) with mean SST as isotherms at 2°C intervals. b Community Thermal 71 
Diversity (CTDiv) values. c Community Thermal Range (CTR). d, Number of years sampled. e, 72 
Number of species recorded. 73 
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 74 
a     b    c 75 

d  76 

Supplementary Fig. 6. | Species Thermal Ranges are smaller towards upper and lower bounds of 77 
Species Temperature Index but range width is unrelated to species rarity. Interrelationships 78 
among alternate measures of Species Thermal Range (STR) and Species Temperature Index (STI) for 79 
species in North American and European bottom-trawl surveys (DFO, IBTS, NMFS) and North 80 
Atlantic Continuous Plankton Recorder (CPR) surveys. Metrics were derived by matching average 81 
annual Hadley Centre HadISST sea surface temperature (1985 to 2014) to: a observation of species 82 
presence in OBIS thinned to presence in 1° grid cells (used for CTIhadisst2); b, c predicted presence in 83 
1-dg cells from Maxent models fitted to OBIS data. Species Thermal Range was calculated as T90 – 84 
T10, and Species Temperature Index in a, b as 0.5 × (T90 + T10) and as T50 in c (used for 85 
CTIhadisst1). Symbol size indicates the frequency of each species in the combined dataset of bottom 86 
trawls and plankton hauls. d, Resulting patterns of average species thermal metrics in 2° × 2° areas. 87 
Average species thermal range width (Community Thermal Range, CTR) showed a hump-shaped 88 
relationship with CTI.  89 

  90 
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a   b  91 

c   d  92 

Supplementary Fig. 7. | Estimated Species Thermal Ranges are not related to species incidence in 93 
analysed data but are positively influenced by incidence in a global biodiversity database (OBIS). 94 
Species Thermal Range (STR, T90-T10) derived (a, b) from Maxent models and (c, d) observed 95 
presence in 1-dg grid cells plotted against their incidence in (a, c) combined data for bottom trawls and 96 
plankton, and (b, d) as presence in 1-dg cells occupied in OBIS data. Species in North American and 97 
European bottom-trawl surveys (DFO, IBTS, NMFS) and North Atlantic Continuous Plankton 98 
Recorder (CPR) surveys. Incidence in the OBIS dataset had a more marked effect on estimated species 99 
thermal range based solely on observations than on STR estimated from Maxent models fitted to these 100 
same observations. 101 

 102 

 103 
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   104 
 105 

Supplementary Fig. 8 | Examples of changes from 1985 to 2014 in composition of selected 106 
demersal and plankton communities shown by Community Temperature Index (CTISST and 107 
CTISBT). Values shown are bootstrapped averages (n=500) of CTI annual anomalies in 2 x 2° latitude-108 
longitude cells. CTIs are based on Species Temperature Index values derived from matching Maxent-109 
modelled distributions to HadISST (aCTIhadsst1) and EN4 seabed temperatures (aCTIen4sbt), and 110 
from the midpoint of extreme observations of species presence in global datasets (aCTIhadsst2). Error 111 
bars show bootstrap 95% confidence intervals. Solid lines show CTI (aCTIhadsst1) regression slopes 112 
with shaded 95% confidence intervals.   113 
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  114 
 115 
Supplementary Fig. 9 | Patterns of average species thermal affinity and changes in demersal and 116 
plankton communities shown by seabed-temperature-derived Community Temperature Index 117 
(CTISBT) values from 1985 to 2014, related to seabed temperature trends. a Spatial patterns in 118 
CTISBT with 2°C isotherms showing average seabed temperature (SBT from the Hadley Centre EN4 119 
Temperature dataset). c, d, Trend in seabed temperature (SBT) per 1° and sampled 2x2° aggregated 120 
grid cells. e, Trends in CTISBT for bottom-trawl communities, and f, for Continuous Plankton Recorder 121 
communities. g, CTISBT trends vs SBT trends. Regression slopes are shown by solid lines ± 95% 122 
confidence intervals for a model with an intercept term (solid line with grey shading, R2 = 0.10), and 123 
without an intercept (line with red shading, Model A Supplementary Table 4). 124 

  125 
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 126 

 127 
 128 

Supplementary Fig. 10 | Average abundance versus relative frequency of occurrence (incidence) 129 
for all species with thermal affinity information in all samples in 1° latitude-longitude cells in a, 130 
CPR data; b, IBTS data; and c, NMFS data. Data are shown as frequencies in hexagonal bins, with 131 
darker shades showing higher frequencies. 132 

 133 
  134 
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 135 
Supplementary Fig. 11. | Uncertainty in annual means and trends in CTISST in 2° x 2° grid cells 136 
shown by the magnitude of anomalies from 1985 to 2014 means. a, CTISST anomaly versus the 137 
number of species records making up each annual mean. b, CTISST anomaly versus number of bottom 138 
trawls and plankton hauls for annual means. Red lines in a and b show slopes of y=x-0.5. c, Standard 139 
error in CTISST trend versus (c) trend error df and (d) number of species records per tren. Vertical 140 
dashed lines show filter values: annual CTI anomalies were omitted from trend analysis if made up of 141 
(a) less than 20 species records or (b) 10 samples. CTISST trend values were omitted from further 142 
analysis if based on (c) <10 years of data or <1000 species occurrence records.  143 
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Supplementary Fig. 12. | Regression model validation. Variograms showing the spatial error 148 
structure for: a, residuals from Model I; b, CTI trends data; and c, d: predictor variables derived from c 149 
temperature trends and community thermal composition metrics (ST trend × CTDiv2/CTR2); and d, 150 
temperature trends and vertical temperature gradients (ST trend × sless50m). Plots e, f, g show plots of 151 
observed CTI trends versus predicted CTI trends, using subsets as training and test data: e, split by 152 
plankton and bottom trawls; f, split by latitude, and g by longitude. Crosses in f, g, h show predictions 153 
for test data from models fitted to training sets.  154 
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 157 

Supplementary Fig. 13. | Trends from 1985 to 2014 in different Sea Temperature (ST) measures.  158 
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Supplementary Fig. 14. | Comparison of performance of regression models fitted to 1985-2014 162 
trends in four CTI metrics using nine Sea Temperature datasets. Eight models were fitted to each 163 
pair of response and predictor variables. Response variables are shown by different coloured bars. 164 
(aCTIen4sbt = CTISBT , aCTIen4sst = CTISST fitted using EN4 surface temperatures, aCTIhadsst1 = 165 
CTISST fitted using STI from modelled species distributions matched to HadISST temperatures, 166 
aCTIhadsst2 = CTISST fitted using STI from species observations matched to HadISST temperatures). 167 
Plots show model adjusted R2

 with 95% bootstrap confidence intervals. Terms included in models are 168 
indicated each group of bars. 169 


