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Abstract: Ocean current (OC) prediction plays an important role for carrying out ocean-related
activities. There are plenty of studies for OC prediction with deep learning to pursue better prediction
performance, and the attention mechanism was widely used for these studies. However, the attention
mechanism was usually combined with deep learning models rather than purely used to predict OC,
or, if it was purely used, did not further optimize the attention weight. Therefore, a deep learning
model based on weighted pure attention mechanism is proposed in this paper. This model uses the
pure attention mechanism, introduces a weight parameter for the generated attention weight, and
moves more attentions from other elements to the key elements based on weight parameter setting.
To our knowledge, it is the first attempt to use the weighted pure attention mechanism to improve
the OC prediction performance, and it is an innovation for OC prediction. The experiment results
indicate that the proposed model can fully take advantage of the strengths from the pure attention
mechanism; it can further optimize the pure attention mechanism and significantly improve the
prediction performance, and is reliable for OC prediction with high performance for a wide time
range and large spatial scope.

Keywords: deep learning; ocean current (OC); prediction; pure attention mechanism; weighted pure
attention mechanism

1. Introduction

Ocean current (OC) prediction is one of the most important areas for marine research
and work. The monitoring and prediction of OC changes at a given geographical location
plays an important role for the global heat transport [1,2], larval transport [3], drift of water
pollutants [4–6], sediment transport [7–9], and marine transportation [10,11]. The OC is
also one of the significant parameters in the fields of weather and climate [12] and search
and rescue [13]. The OC also has a big impact on the underwater operation and it is the
key factor to be considered for the design of the underwater related system [14]. The OC
prediction is also essential for path planning, safe and reliable navigation, and control of
unmanned underwater vehicles [12,15–18]. For underwater vehicles, the OC can cause
various environmental disturbances which will lead to a big challenge if they cannot be
resolved properly [19,20]. Therefore, the study of OC prediction has become one of the
most important ocean-related research fields.

Given the importance of OC prediction and the rapid development of remote sensing
technology, there are many studies published for OC prediction or improving prediction
performance of OC prediction. Along with the development of machine learning, artificial
neural network (ANN), and deep learning, they have become the most popular meth-
ods to predict OC. For machine learning, the Gaussian Processes [21], Support Vector
Regression [22,23], and Genetic Algorithm [24] were applied to predict OC and improve
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the prediction performance. For ANN and deep learning, the full connection layer [25],
Long Short Term Memory network (LSTM) [26], Convolutional Neural Network (CNN),
and Gated Recurrent Unit (GRU), were adopted for the same purpose. There were also
many other machine learning, ANN, and deep learning methods which combined dif-
ferent models and techniques for OC prediction. A method called model tree, based on
machine learning techniques, was proposed to improve the real time predictions of OC in
the India Ocean [27]. Based on Gaussian processes, a Bayesian machine learning approach
was proposed to analyze the spatiotemporal OC data and improve the robustness for the
uncertainty and inevitable noise [28]. For better daily OC predictions, Saha et al. [29]
combined the numerical and ANN methods to first use the numerical model, a hybrid
coordinate ocean model (HYCOM), to generate the prediction results and then use ANN
models to optimize the results. Jirakittayakorn et al. [30] proposed an alternative approach
for predicting the sea surface current by utilizing a temporal k-nearest-neighbor technique
which could predict the future surface current up to 24 h in advance. Ren et al. [31] applied
a robust soft computing approach via artificial neural networks to predict surface currents
in a tide- and wind-dominated coastal area. Zhang et al. [32] designed a LSTM based
Kalman Filter for data assimilation of the spatiotemporally varying depth-averaged ocean
flow field for underwater glider path planning. Thongniran et al. [33] proposed a combined
model for OC prediction which used Convolutional Neural Network (CNN) to extract
spatial characteristics and Gated Recurrent Unit (GRU) to find a relationship of temporal
characteristics, and used this combined model to improve the performance of OC predic-
tion. These deep learning models did not distinguish the contributions of the different
input data elements, so it limited the prediction performance of deep learning models.
Therefore, Bahdanau et al. [34] and Luong et al. [35] proposed the attention mechanism
to further improve the prediction performance for deep learning models. Chen et al. [36]
applied the attention mechanism based on GRU to extract the correlation information of the
nearest neighbors for OC prediction and further improved the performance compared to
only using deep learning models. Zeng et al. [37] proposed a sequence-to-sequence model
which connected the encoder and decoder as the attention mechanism to predict ocean
wave spectrum.

Based on the above studies, it was determined that all previous studies mainly focused
on combining deep learning models or integrating attention mechanism into deep learning
models, but did not pay attention to the pure attention mechanism or did not fully take
advantage of the strength from attention mechanism. These deep learning models did not
adequately identify the importance of the key elements, compared to the pure attention
mechanism. The key elements play a more important role than the significance generated
by the pure attention mechanism. Therefore, these problems limited the performance
improvement for OC prediction, and very few studies to date focus on them.

Our research team has successfully used deep learning to predict sea surface height
(SSH) and sea surface temperature (SST), and the results showed that we achieved bet-
ter performance than other methods, especially in large-scale and long cycle prediction.
Xu et al. [38] processed a single series into three series, used LSTM to extract the features
of the three series, fused these features by convolutional neural network (CNN), and then
performed SST prediction. Xie et al. [39] created the Gated Recurrent Unit encoder-decoder
with SST codes as the implementation of attention mechanism to improve SST prediction
performance. Liu et al. [40] optimized the attention mechanism and integrated it with
LSTM to predict SSH. Liu et al. [41] proposed a model which combines cubic B-spline inter-
polation, attention mechanism, and LSTM to predict SST with much better performance.

Based on our research achievements, for further improving the performance and
resolving these problems for OC prediction, this paper first proposed a pure attention
model, named P-ATT, to fully take advantage of attention mechanism for OC prediction
and, furthermore, designed a novel model which introduced weight parameter to adjust
the attention weights to strengthen the importance of elements with the highest weights,
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named W-P-ATT. The experiment results show that this comprehensive model can break
through the bottleneck of the existing studies and significantly improve the performance.

2. Materials and Methods

In this paper, besides the proposed model, we also design three other models used
to compare the prediction performance and show the advantage of the proposed model.
We first use Convolutional LSTM plus fully connected layer (ConvLSTM-F) to predict OC,
which can leverage the spatiotemporal information for OC prediction, and then apply
the attention mechanism to ConvLSTM (A-ConvLSTM) to reflect the effect of attention
mechanism. After that, we use the pure attention model (P-ATT) for OC prediction.
Finally, we introduce a weight parameter to P-ATT, and use weighted pure attention model
(W-P-ATT) for attention mechanism enhancement. Next, we will explain these four models
in detail.

2.1. The ConvLSTM-F Model

This model includes two parts. The first part builds OC data to match the input shape
of ConvLSTM and the second part uses ConvLSTM and a fully connected layer to train
and predict OC. The structure of ConvLSTM-F model is shown in Figure 1.

Figure 1. The structure of the ConvLSTM-F.

P is the total number of points in selected sea area, D is the total number of days of
time series for each point, and the initial input shape is (D, P). For building the input shape
for ConvLSTM, the first step is to form input shape for LSTM as (D, T, P), T is time step, and
then divide data into small groups in spatial dimension for spatial attention mechanism,
and further break data into batches. Now the input data are formed into many cubes with
shape (B, T, S). B means batch size and S is group size in spatial dimension.

For the convolutional size, it is S in the spatial dimension and 1 in the time dimension.
It means the OC for S points on a day. As there are only OC data, the number of channels is
also 1. Taking time step and batch size into account, the input data are reshaped to (B, T, S,
1, 1). If we ignore the channel dimension, for one specified element of B and one specified
element of T, the corresponding matrix is (S, 1). The convolutional operation will be applied
to this matrix. The convolutional kernel size is (Ks, 1). The kernel size in spatial dimension
is Ks and it is 1 in time dimension. After the convolutional operation, the number of output
in spatial dimension is calculated by equation below.

N = (S− Ks)/Strides + 1 (1)

where Strides is stride in spatial dimension. The stride in time dimension is also 1. We can
also use Equation (1) for the number of output in time dimension. As, in time dimension,
the convolutional size is the same as kernel size, its value is 1. So the matrix shape is
changed from (S, 1) to (N, 1) after convolution. Taking batch size and time step into account,
the shape of output for ConvLSTM becomes (B, T, N, 1, U). U is the number of convolutional
filters. Then, we flatten it to (B, T × N × U) and use it as input for the fully connected layer.
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Now we have the output with shape (B, S) for one batch. As we use 30% data for test, when
all batches are completed, the shape of the output for one spatial group will be (0.3D, S).
When all spatial groups are completed, the final output for this model is generated with
shape (0.3D, P).

2.2. The A-ConvLSTM Model

Attention mechanism in deep learning is the solution used to simulate the attention
mechanism of the human brain proposed by Bahdanau et al. [34] and Luong et al. [35].
It can quickly identify the high value information from a large amount of information,
strengthen the effect from them, and weaken the effect from the low value information.

This model will use ConvLSTM to train OC first, and apply attention mechanism to
the output of ConvLSTM to strengthen the data with high value information to improve
the prediction performance. The structure of A-ConvLSTM is shown in Figure 2.

Figure 2. The structure of the A-ConvLSTM.

Until the ConvLSTM generates its output, this model is the same as ConvLSTM-F.
Next, this model will reshape the output of ConvLSTM to (B, T, N × U). The attention
weight for each element of ConvLSTM output is calculated by equation below.

αb,t,u =
exp(eb,t,u)

∑T−1
i=0 exp(eb,i,u)

, 0 ≤ b < B 0 ≤ t < T 0 ≤ u < N ×U (2)

where B is batch size, T is time step, N is the number of ConvLSTM output in spatial
dimension, U stands for the number of convolutional filters, eb,t,u is an element of a cube
(reshaped ConvLSTM output), b is the bth day within a batch, t is the tth step of time step T,
and u is index of the uth value in the third dimension of (B, T, N×U). The weight tensor will
be generated with shape (B, T, N × U) which includes weight for every element of a cube.
Next, we will calculate weighted cube by element-wise multiplication between reshaped
ConvLSTM output and weight tensor. After this step, the weight context will be calculated
through addition in the second dimension of weighted cube; its shape is (B, N × U). Then,
we use a fully connected layer to generate output with shape (B, S). Finally, the output of
A-ConvLSTM will be generated with shape (0.3D, P) after all spatial groups are completed.

2.3. The P-ATT Model

Attention mechanism has been commonly used with deep learning models, such as
the above A-ConvLSTM model for OC prediction and the attention-based LSTM model
which we used to predict SSH. For researching the power for the pure attention mechanism,
Vaswani et al. [42] from the Google machine translation team proposed a Transformer
model based on pure attention mechanism for machine translation, which was better than
deep learning models plus attention mechanism. So, for OC prediction, we designed the
pure attention (P-ATT) model. The structure of P-ATT model is shown in Figure 3.



J. Mar. Sci. Eng. 2022, 10, 592 5 of 20

Figure 3. The structure of P-ATT model.

The data pre-processing part is the same as A-ConvLSTM. It does not use ConvLSTM
to train the OC data, but calculates the attention weight for input OC data directly using
fully connected layer with softmax as activation function. The equation used to calculate
attention weight is also Equation (2). For an input cube with shape (B, T, S), there will be
attention weight tensor with the same shape. Next, we will calculate weighted cube by
element-wise multiplication between input cube and weight tensor. The weighted cube
keeps the same shape as the input cube. The weight context will be calculated through
addition in the second dimension of weighted cube and its shape becomes (B, S). It will be
used directly as the output of one batch for a spatial group; the output shape will be (B, P)
for a spatial group, and the finally output shape will be (0.3D, P) for the selected sea area.

2.4. The W-P-ATT Model

The P-ATT model can fully mine the advantage of the attention mechanism, and let
high value information play more critical role for OC prediction. If we strengthen the
weight for high value information, the performance should be improved further. So, we
proposed the weighted pure attention (W-P-ATT) model based on P-ATT model. The
structure of W-P-ATT model is shown in Figure 4.

Figure 4. The structure of the P-W-ATT model.

This model will first use the P-ATT model to train OC. We will have the trained model
for OC prediction. After that, we can obtain the attention weight for each element within
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the input data from the trained model, and the attention weight will be used for W-P-ATT
model. For a spatial group, the output weight tensor from P-ATT model has the shape
(0.3D, T, S). Here, we will start the procedure to build the weighted attention weight tensor
for the output weight tensor.

max_α =

{
max_αb,s,1 = max

0≤t<T
αb,s,t| 0 ≤ b < B, 0 ≤ s < S

}
(B, S, 1) (3)

The shape of max_α is (B, S, 1). We will duplicate its 3rd dimension from 1 to T through
equation below.

dupmax_α = max_α·11×T (B, S, 1)·(1, T) = (B, S, T) (4)

Now, we create a factor tensor and the value of its each element is 0 or 1. It is obtained
by element-wise division between α and dupmax α and rounding down the value to 0 or 1.
The value will be zero where it is non-maximal attention weight and 1 where it is maximum
attention weight. It is calculated by equation below.

0_1_ f =

⌊
α

dupmax_α

⌋
(B, S, T

)
(5)

Next, we introduce the weight parameter for attention weight. It will take away
partial weight from non-maximal attention weight to maximum attention weight. Let the
percentage of weight taken away be ω. For 0_1_f, we change 0 to ω and keep 1 unchanged
through equation below.

ω_1_ f = 0_1_ f × (1 −ω) + (α− α + ω) (B, S, T) (6)

When we have the percentage, for non-maximal attention weight we can calculate its
part which will be take away and the maximum attention weight will not change at here.
This part can be calculated by element-wise multiplication between ω_1_f and α. Then, we
add the part taken away to the maximum attention weight through the addition in the 3rd
dimension. These two steps are expressed by equation below.

sumα =

{
sum_αb,s,1 =

T−1

∑
t=0

(ω_1_ fb,s,t × αb,s,t)| 0 ≤ b < B, 0 ≤ s < S

}
(B, S, 1) (7)

It is time to calculate the new weight for the maximum attention weight. We will
first duplicate the 3rd dimension of sumα from 1 to T, and then obtain the new weight by
element-wise multiplication between duplicated sumα and 0_1_f. The equation is expressed
as below.

weighted_max = 0_1_ f × (sumα·11×T) (B, S, T) (8)

For the non-maximal attention weight, the part not taken away will be the new weight.
It is calculated by the equation below.

weighted_non_max = (1 −ω_1_ f ) × α (B, S, T) (9)

Now, we can have the entire new weight for an input cube by adding up the new
weight of maximum attention weight and the new weight of non-maximal attention weight.
The equation is expressed as below.

α′ = weighted_max + weighted_non_max (B, S, T
)

(10)

The shape of the new weight tensor for an input cube is (B, S, T), and we will reshape
it back to (B, T, S). After merging all batches, it obtains the weighted attention weight for a
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spatial group with shape (0.3D, T, S). The remaining steps are the same as the P-ATT model,
and finally we will have the prediction output with shape (0.3D, P).

For weight parameter ω, the range will be [0, 1). The bigger value will take away
more weight from non-maximal attention weight to maximum attention weight and the
performance should be better. In the experiment section, we will try different values to
show how it affects attention mechanism differently.

3. Experiment

The experiments in this paper predicted OCs using different five models. The first model
is CNN-GRU proposed by Thongniran et al. [33]. The second model is ConvLSTM-F which
predicts OCs with ConvLSTM plus fully connected layer. The third one is A-ConvLSTM
to reflect the effect of attention mechanism to ConvLSTM-F. The fourth model is the pure
attention model, P-ATT. The last one is the proposed weighted pure attention model, W-P-ATT.
If it is not explicitly defined, the default value of weight parameter ω will be 0.7.

3.1. Data Sets

The data sets used in this paper are from the East China Sea, which are China Ocean
ReAnalysis (CORA) data from the National Marine Information Center. This data are
constructed by combining observations from satellite remote sensing and other platforms.
We select OCs for which the depth is ten meters below the surface of the sea. It includes the
north component of velocity (u_current) and the east component of velocity (v_current).
The spatial resolution is 0.125◦ × 0.125◦ and the time resolution is day. The spatial scope
for the East China Sea is 23.625◦ N−31.375◦ N and 122.125◦ E−131.125◦ E (see Figure 5),
and we select 2010 points in total in experiments. It includes a total of 3287 days from
1 January 2011 to 14 December 2017.

Figure 5. The selected area of the East China Sea.

3.2. Setups

The experiments used the mean absolute error (MAE), root mean square error (RMSE),
and correlation coefficient (r) to evaluate the performance of OC prediction for the five
different models. Their equations are defined as below:

RMSE =

√
∑n

i=1(yi − xi)
2

n
(11)
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MAE =
1
n

n

∑
i=1
|yi − xi| (12)

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2∑n

i=1(yi − y)2
(13)

where xi is the actual observed value of time i, yi is the predicted value at the same time,
n is the amount of data, x is the average value of the actual observed values, and y is the
average value of the predicted values.

In order to select optimal key parameters of models, we used hyperband algorithm
to identify the parameter values for better performance. For optimizer, we used Adam.
For loss function, we used mean square error (mse). The default learning rate of Adam
was used and its value was 0.001. The training iterations were defined as 1000 and early
stopping was also used for models with patience 10. For data separation, 70% of data were
used for training and 30% of data were used for testing. The more detailed information of
key parameters is shown in Table 1.

Table 1. The detailed information of the models.

Parameter CNN-GRU ConvLSTM-F A-ConvLSTM P-ATT W-P-ATT

Kernel Size (5, 1) (5, 1) (5, 1) / /

Stride (5, 1) (5, 1) (5, 1) / /

Time Step / 10

Input Shape (10, 2010, 1) (10, 2010, 1, 1) (10, 15, 1, 1) (10, 15) (10, 15)

No. of GRU Units 256 / / / /

No. of Convolution filters 256 256 256 / /

Batch Size 32

Spatial Group Size / / 15

Spatial Scope 23.625◦ N–31.375◦ N, 122.125◦ E–131.125◦ E

Training-time range 1 January 2011 to 19 December 2015

Testing-time range 20 December 2015 to 14 December 2017

3.3. Results

In this section, we will verify the advantage of the attention mechanism, compare the
performance between deep learning model plus attention mechanism and pure attention
mechanism, and further show the effect of weighed attention mechanism for improving
prediction performance.

3.3.1. Performance Comparison for Spatial Points

The easiest way to compare the performance of different models is to select some spa-
tial points and show their OC trends in time dimension. We evenly selected three points in
the selected sea area as shown in Figure 6. These three spatial points are (122.5◦ E, 30.25◦ N),
(129.875◦ E, 29.5◦ N), and (125.75◦ E, 27.125◦ N).
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Figure 6. The three points in the selected sea area.

We compared the predicted OCs with the observed OCs for these three points. The
comparison results are shown in Figures 7–9. There are two figures for each point; the first
is for u_current, and the second is for v_current.

For the following three figures, we separate each figure to three subfigures. The
subfigure (1) is the OC trend comparison for the entire time range. In order to more clearly
reflect the performance difference between the five models, we select one month to show
the comparison results. The subfigure (2) is the comparison result for August 2017. It is
also difficult to see the difference between P-ATT and W-P-ATT in subfigure (2), so we use
a shorter period in August 2017 to compare the performance between these two models in
subfigure (3).

It is clear to see from Figures 7–9 that ConvLSTM-F is similar to CNN-GRU. Both have
big differences with actual values. After applying attention mechanism, A-ConvLSTM
greatly improves the prediction performance and is much better than ConvLSTM-F. The P-
ATT further improves the performance and is very close to the actual values after switching
to the pure attention mechanism. Based on P-ATT, we introduce weighted pure attention
mechanism. As we can see from these three figures, the W-P-ATT is the best one and
consistent with the actual values. It proves that the pure attention mechanism can better
take advantage of the key elements with high value information for target value than the
combination of deep learning models and the attention mechanism, and the weighted
pure attention mechanism further refines the pure attention mechanism by introducing the
weight parameter and can better identify the importance of the key elements.

For the W-P-ATT model, the performance will be different if we set a different value
for ω. As stated in Section 2.4, generally the bigger value will have better performance.
For spatial point (129.875◦ E, 29.5◦ N), we used five different ω for W-P-ATT model and
compared the predicted OCs with the observed OCs for them. The comparison results are
shown in Figure 10.
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Figure 7. The comparison between the predicted OCs and observed OCs for spatial point (122.5◦ E,
30.25◦ N)—(a) u_current, (b) v current.
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Figure 8. The comparison between the predicted OCs and observed OCs for spatial point (129.875◦ E,
29.5◦ N)—(a) u_current, (b) v current.
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Figure 9. The comparison between the predicted OCs and observed OCs for spatial point (125.75◦ E,
27.125◦ N)—(a) u_current, (b) v current.
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Figure 10. The comparison between the predicted OCs and observed OCs with different ω for spatial
point (129.875◦ E, 29.5◦ N)—(a) u_current, (b) v current. The subfigure (1) is the comparison result
for August 2017. In order to clearly see the performance differences for different ω, we select several
days from August and show the comparison results in subfigure (2).
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As we can see from Figure 10, for both of u_current and v_current, the performance is
worst when the value of weight parameter ω is 0.3. When we set the value of ω from 0.6 to
0.9, the performances are close to each other and much better than the performance when
weight value is 0.3. The performance become better and better along with the increment of
ω from 0.6 to 0.9. Therefore, the performance change is consistent with the change of the
weight parameter value. It proved that the performance improves with bigger ω.

3.3.2. Performance Comparison through MAE and RMSE

In this section, we will compare MAE and RMSE between different models to further
verify the advantage of the proposed model. The MAE and RMSE can be calculated by
Equations (11) and (12), and the comparison results are shown in Figure 11.

It is clear to see from Figure 11 that CNN-GRU and ConvLSTM-F have the similar
MAE and RMSE. The A-ConvLSTM has much better MAE and RMSE after attention
mechanism adoption. The pure attention mechanism model, P-ATT, further improves
the prediction performance. After introducing weight adjustment for the pure attention
mechanism model, the weighted pure attention model, W-P-ATT, becomes the best model
from the MAE and RMSE perspective. In order to see the comparison results between
P-ATT and W-P-ATT more clearly, we use subfigure (5) to show the differences through a
short point range from point 1520 to point 1550. From subfigure (5), for both u_current and
v_current, it clearly shows the advantage of the proposed model.

Figure 11. Cont.
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Figure 11. (a) The comparison of MAE between different models—u_current, (b) The comparison of
RMSE between different models—u_current, (c) The comparison of MAE between different models—
v_current, (d) The comparison of RMSE between different models—v_current. The subfigure (1)
is for all five models, the subfigure (2) is the comparison between CNN-GRU, ConvLSTM-F, and
A-ConvLSTM, the subfigure (3) is the comparison between A-ConvLSTM and P-ATT, the subfigure
(4) is the comparison between P-ATT and W-P-ATT, and the subfigure (5) is the comparison between
P-ATT and W-P-ATT through a short point range from point 1520 to point 1550.

3.3.3. Performance Comparison through Distribution of MAE and RMSE

In this section, we will use distribution of MAE and RMSE to further validate the
performance of the proposed model. The distribution can clearly show the performance
differences between the five models in another dimension. Figure 12 shows the MAE and
RMSE distributions for every models.
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Figure 12. (a,b) The MAE and RMSE distributions for five models—u_current, (c,d) The MAE and
RMSE distributions for five models—v_current. The subfigure (a) is MAE distribution for u_current
and the subfigure (b) is RMSE distribution for u_current. The subfigure (c) is MAE distribution for
v_current and the subfigure (d) is RMSE distribution for v_current.

As we can see from Figure 12, for both of MAE and RMSE, the most points for CNN-
GRU and ConvLSTM-F are distributed between 0.02 and 0.04, and the main distribution for
A-ConvLSTM shifts left and is between 0.003 and 0.018. The P-ATT model shifts left a lot
further than A-ConvLSTM and is mainly distributed between 0 and 0.007. The proposed
model, W-P-ATT, is much better than P-ATT and moves most of points to the very left area.
It proves the W-P-ATT is the best model in the perspective of MAE/RMSE distribution.

In Section 3.3.1, we verified the W-P-ATT model with different values of ω and found
that the performance became better with a bigger ω. Next, we will use MAE and RMSE to
further verify this. We will use the five different ω for the W-P-ATT model to compare their
MAE and RMSE distributions. The comparison results are shown in Figure 13.

It is clear to see from Figure 13 that as ω grows the MAE and RMSE distribution
improves. Therefore, it further proves that the performance of OC prediction becomes
better with a bigger ω.
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Figure 13. (a,b) The comparison between W-P-ATTs with different ω—u_current, (c,d) The com-
parison between W-P-ATTs with different ω—v_current. The subfigure (a) is MAE distribution
for u_current and the subfigure (b) is RMSE distribution for u_current. The subfigure (c) is MAE
distribution for v_current and the subfigure (d) is RMSE distribution for v_current.

3.3.4. Performance Comparison through the Average MAE, RMSE, and r

In the above sections, we graphically verified the advantages of the proposed model in
different dimensions. In this section, we will use the average MAE, RMSE, and r to further
show the performance difference for different models. The comparison results are shown
in Table 2.

Table 2. MAE, RMSE, and r for five different models; the values in bold mean the best results.

Metrics CNN-GRU ConvLSTM-F A-ConvLSTM P-ATT W-P-ATT (ω = 0.7)

MAE (u_current) 0.0434 0.0387 0.0172 0.0028 0.0017
RMSE (u_ current) 0.0563 0.0508 0.0232 0.0061 0.0051

r (u_ current) 0.6215 0.6499 0.9091 0.9899 0.9901

MAE (v_current) 0.0468 0.0426 0.0145 0.0026 0.0014
RMSE (v_ current) 0.0607 0.0557 0.0193 0.0059 0.0049

r (v_ current) 0.5881 0.6155 0.9240 0.9908 0.9916

As we can see from the table, the proposed model has the best average MAE/RMSE/r
for both u_current and v_current. The MAE of the proposed model decreases by 90% for
both of u_current and v_current compared to A-ConvLSTM, and 65% for u_current and
86% for v_current compared to P-ATT. The RMSE of the proposed model decreases by
more than 75% for both of u_current and v_current compared to A-ConvLSTM, and more
than 20% for both u_current and v_current compared to P-ATT. The proposed model also
has a much better r than A-ConvLSTM and P-ATT. The r reaches up to more than 0.99 for
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both u_current and v_current. It proves that the proposed model significantly improves
the performance of OC prediction.

4. Discussion

As stated in Section 3, we set up five models in order to show the advantages of the
proposed model. The first model was CNN-GRU proposed by Thongniran et al. [33]. It can
analyze the OC in both of spatial and time dimensions for improving the performance of OC
prediction. The ConvLSTM has the same features as CNN-GRU, so we used it as the second
model. As we can see from the experiments, they had a similar prediction performance and
the performance was not good. Based on the ConvLSTM, the third model, A-ConvLSTM,
integrated the attention mechanism to the second model. The attention mechanism can
make the ConvLSTM to focus more on the high value elements for predicting the target
elements, so the performance should be better than only ConvLSTM. The experiments
proved this hypothesis. However, the prediction performance was still not good enough,
so we supposed that the integration between the ConvLSTM and attention mechanism did
not identify the importance of the key elements enough comparing to the pure attention
mechanism. We introduced the fourth model, P-ATT, which used the pure attention
mechanism for OC prediction. The experiments verified our assumption that the P-ATT
significantly improved the predict performance comparing to A-ConvLSTM. As the P-ATT
could better identify the key elements for better performance, we had a further assumption
that the performance would be further improved if we adjusted the attention weights to let
the most key elements have more attention weights. So, based on P-ATT, we designed the
fifth model, the proposed model in this paper, W-ATT, by introducing the weight parameter
to move attention weights to the most key elements from other elements. According to
the experiment results, this assumption was also proven, and it greatly improved the
performance than the pure attention mechanism.

In the experiments, we selected 2010 points in spatial dimension and 3287 days
for each point in time dimension from the East China Sea. The results showed that the
proposed model was most consistent with the observed OC, had the most stable and lowest
MAE/RMSE, had the best r, and also had the best distribution of MAE and RMSE. So the
experiments proved that the proposed model was reliable for OC prediction with high
performance for a wide time range and large spatial scope.

5. Conclusions

In this paper, we analyzed the bottleneck of OC prediction performance caused by not
adequately identifying the importance of the key elements and not fully taking advantage
of the most significant elements with the attention mechanism, and proposed an innovative
deep learning model based on weighted pure attention mechanism (W-P-ATT) for OC
prediction. The proposed model can resolve these problems for OC prediction through
the pure attention mechanism and the optimization for the pure attention mechanism via
the weight parameter. This was achieved by leveraging the pure attention mechanism,
introducing the weight parameter for attention weight, and adjusting the attention weight
to make the key elements play more critical roles for OC prediction. The proposed model
demonstrates reliable results, the MAE is 0.0017 m/s for u_current and 0.0014 m/s for
v_current, the RMSE is 0.0051 m/s for u_current and 0.0049 m/s for v_current, and the
correlation coefficient reaches up to 0.99. The experiment results revealed that the proposed
model could break through the bottleneck and significantly improve the performance for
OC prediction.
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