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ABSTRACT

Previous examination of changes in global monsoon precipitation over land reveals an overall weakening

over the recent half-century (1950–2000). The present study suggests that this significant change in global

land monsoon precipitation is deducible from the atmosphere’s response to the observed SST variations.

When forced by historical sea surface temperatures covering the same period, the ensemble simulation with

the NCAR Community Atmosphere Model, version 2 (CAM2) model successfully reproduced the weak-

ening tendency of global land monsoon precipitation. This decreasing tendency was mainly caused by the

warming trend over the central-eastern Pacific and the western tropical Indian Ocean. At the interannual

time scale, the global land monsoon precipitation is closely correlated with ENSO. The simulated interan-

nual variation of the global land monsoon index matches well with the observation, indicating that most

monsoon precipitation variations arise from the ocean forcing. There are uncertainties between the GPCP

and the CMAP data in describing the evolution of global ocean monsoon precipitation. There is very little

correspondence between the simulated and the observed global monsoon index over the ocean area.

Uncertainties in the satellite data and model deficiencies in describing the ocean monsoon domain are

partly to blame. Among the components of global monsoon systems, the Asian–Australian monsoon system

has the lowest reproducibility with prescribed SST forcing due to the neglect of air–sea feedback.

1. Introduction

The global monsoon system is a persistent global-

scale overturning of the atmosphere that varies accord-

ing to the time of year (Trenberth et al. 2000). The

dominant monsoon systems in the world are the Asian–

Australian, African, and the American monsoons

(Webster et al. 1998). Although many studies have ad-

dressed the question of recent monsoon changes, pub-

lished results have mostly focused on specific regions of

the world and have used different measures of mon-

soon strength. For instance, the observed all-Indian

precipitation over the past 131 yr does not show glob-

al warming controlling the Indian monsoon trend

(Kripalani et al. 2003). Chase et al. (2003) found that

the monsoonal overturning circulations over the Aus-

tralian Maritime Continent and African regions have

diminished since 1950, but they detected no significant

changes since 1979 in the monsoon circulation accom-
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panying the strongest reported surface warming. In re-

cent decades, a marked summer precipitation change

has been observed in eastern China. Precipitation has

increased over the middle and lower reaches of the

Yangtze River valley, whereas it has decreased over the

middle to lower reaches of the Yellow River valley

(Nitta and Hu 1996; Hu 1997; Hu et al. 2003). This

marked precipitation change is associated with a strong

tropospheric cooling trend over East Asia (Yu et al.

2004). Accompanying this summer cooling, the upper-

level westerly jet stream over East Asia shifts south-

ward and the East Asian summer monsoon weakens,

which results in the tendency toward increased

droughts in northern China and excessive rainfall along

the Yangtze River Valley (Yu and Zhou 2007). Xin et

al. (2006) revealed that during 1958–2000 South China

has undergone a significant decrease in late spring pre-

cipitation since the late 1970s. The 1950–99 time histo-

ries of northern and southern Africa rainfall during

their respective wet seasons are well described by linear

downward trends (Hoerling et al. 2006). A trend to-

ward increased aridity since 1950 has emerged over

southern Africa and a 20% reduction in the climato-

logical February–March–April rainfall has been ob-

served there since 1950, compared with a 35% reduc-

tion over the same period for the Sahel (Hulme 1996).

Considering the coordination among regional mon-

soons brought about by the annual cycle of the solar

heating and the connections in the global divergent cir-

culation necessitated by mass conservation (Trenberth

et al. 2006), it is desirable to examine the monsoon

variability from a global perspective. Previous analyses

of interannual and interdecadal variations suggest that

the global monsoon system does not vary coherently

(e.g., see Webster et al. 1998). A recent examination of

the changes in the global monsoon rainfall over land by

using four sets of rain gauge precipitation datasets com-

piled for the period of 1948–2003 by climate diagnostic

groups around the world found an overall weakening of

the global land monsoon precipitation in the last 56 yr,

primarily due to the weakening of the summer mon-

soon rainfall in the Northern Hemisphere (Wang and

Ding 2006). This observational metric for quantifying

the changes of global monsoon precipitation has pro-

vided a rigorous test for climate models.

Hoerling et al. (2006) found that the spatial patterns,

time history, and seasonality of African rainfall trends

since 1950 are deducible from the atmosphere’s re-

sponse to the known variations of global sea surface

temperatures (SSTs). Drying over the Sahel during

boreal summer is shown to be a response to warming in

the South Atlantic relative to North Atlantic SST;

southern African drying during austral summer is

shown to be a response to Indian Ocean warming.

However, the role of ocean forcing in producing the

changes in the global monsoon precipitation as a whole

has not been investigated. The present study aims to

explore the causes for the decreasing trend of global

land monsoon rainfall by addressing the following ques-

tions: Have significant changes of global land monsoon

rainfall been detected that are likely to be deducible

from the atmosphere’s response to the observed SST

variations? Are the secular drying trends over specific

monsoon regions attributable to common oceanic influ-

ences? Which oceanic SST variations have been the

most relevant to the long-term trend and interannual

variability of the global land monsoon rainfall, respec-

tively? We employ an Atmospheric Model Intercom-

parison Project (AMIP) model approach to gain insight

on these questions and to quantify the robustness of

oceanic impacts on global land monsoon rainfall. In

particular, we examine the global land monsoon rainfall

sensitivity to the observed variations in global SSTs

during the last half of the twentieth century using

ensemble simulations of an atmospheric general

circulation model (AGCM). Our results suggest that

the decreasing tendency of the global land monsoon

precipitation during the last half-century was mainly

caused by the warming trend over the central-eastern

Pacific and the western tropical Indian Ocean. At the

interannual time scale, the global land monsoon pre-

cipitation is closely correlated with ENSO. If global

SSTs are known and prescribed to an AGCM, both the

secular tendency and the interannual variation of the

global land monsoon precipitation are highly reproduc-

ible. Over the Asian–Australian monsoon domain,

however, the reproducibility is lower due to the neglect

of air–sea feedback.

This paper is organized as follows. The model, its

experimental design, the observational data, and the

analyses method are described in section 2. Results are

presented in section 3, including an appraisal of the

model capacity to simulate the climatological global

monsoon rain domain according to the annual precipi-

tation range, and a diagnosis of the AGCM-simulated

rainfall trends over the global land monsoon domain

and a comparison with 52-yr rainfall trends occurring in

combined rain gauge precipitation data. Section 3 also

explores the role of specific SST forcing using the glob-

al SST history since 1950, and we focus on the role of

ocean changes at a long-term trend and the interannual

time scale. The extent to which rainfall changes over

the global ocean monsoon domain are deducible from

the atmosphere’s response to ocean forcing is also ex-

amined in section 3. Concluding remarks including a

discussion are given in section 4.
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2. Model data and analysis method

In this study, we examine the SST-induced changes

in global monsoon precipitation over a 52-yr period

(1949–2000) based on a set of atmospheric climate

model ensembles forced by observed historical SST

data. The model datasets come from the National Cen-

ter for Atmospheric Research (NCAR) Community

Atmosphere Model, version 2.0.1 (CAM2.0.1) global

SST-forced 15-member ensemble simulation. Fifteen

simulation runs were carried out using CAM2.0.1

(hereafter CAM2) and observed SSTs from January

1949 to October 2001 by the NCAR climate variability

working group (more information is available online at

http://www.ccsm.ucar.edu/working_groups/Variability/

index.html). The model is a global primitive equation

spectral model with T42 triangular truncation and 26

vertical levels. (Details of the model are described on-

line at the NCAR Web site: http://www.ccsm.ucar.edu/

models/ccsm2.0.1/cam/camUsersGuide/.) Ensemble

methods are employed in which 15 integrations are be-

gun from different atmospheric initial conditions, but

subjected to identically specified sea surface tempera-

ture conditions. The sea surface temperature boundary

dataset for the CAM2 model was constructed by Hur-

rell et al. (2008). It is a merged product based on the

monthly mean Hadley Centre SST dataset version 1

(HadISST1) and version 2 of the National Oceanic and

Atmospheric Administration (NOAA) weekly opti-

mum interpolation (OI.v2) SST analysis. This dataset is

also used to construct the Niño-3.4 index time series in

the following analysis. The Niño-3.4 index is calculated

as the regional average of SST anomalies over the re-

gion of 5°N–5°S, 170°–120°W. Output of the ensemble

simulation has been used in many studies (e.g., the forc-

ing of El Niño to the southern annular mode; Zhou and

Yu 2004). Note the ensemble simulation driven by the

history of global observed SSTs, namely the AMIP-

type run, is termed as “forcing run.” In addition to the

forcing run, we have also performed a 62-yr control run

forced by climatological SST (hereafter the control

run). The first 10-yr period is discarded as a spinup

process and the output of the remaining 52-yr simula-

tion is used in the analysis.

Three sets of monthly rain gauge precipitation data

for global land surfaces on different degree latitude–

longitude grids compiled by climate diagnostic groups

around the world were used: 1) the dataset compiled by

Delaware University (Delaware) for the period of

1950–99 (Willmott and Matsuura 2001), 2) the dataset

constructed by the Climatic Research Unit (CRU) for

the period of 1900–98 (Hulme et al. 1998; New et al.

1999), and 3) the Precipitation Recconstruction data

over Land (PREC/L) compiled for the period of 1948–

2006 by the Climate Prediction Center (CPC) at the

National Centers for Environmental Prediction

(NCEP; Chen et al. 2002).

Following Wang and Ding (2006), to reduce the un-

certainties arising from differences in data sources and

interpolation algorithms, an ensemble (arithmetic)

mean of the three datasets was calculated over the glob-

al land areas for the period of 1949–2001. To facilitate

analysis, the original data were interpolated onto a 1.0°

longitude by 1.0° latitude grid by using a bilinear inter-

polation technique. In addition, Global Precipitation

Climatology Project (GPCP) data for the period of

1979–2003 (Huffman et al. 1997; Adler et al. 2003), and

the CPC Merged Analysis of Precipitation (CMAP)

data for the same period (Xie and Arkin 1996) were

used to investigate global monsoon trends over ocean

areas during the last 25 yr. In addition, the satellite

precipitation observations from the Special Sensor

Microwave Imager (SSM/I), which extends from 1987

to the present, are also used (Wentz and Spencer 1998).

The monsoon climate is characterized by a rainy

summer and a dry winter. Precipitation is the most fun-

damental variable for determining the monsoon cli-

mate. As in Wang and Ding (2006), the local summer-

minus-winter precipitation, defined as the annual range

(AR), is used in the analyses. Here, summer means

June–August (JJA) in the Northern Hemisphere (NH)

and December–February (DJF) in the Southern Hemi-

sphere (SH). The global monsoon precipitation domain

is defined by the region in which the AR exceeds 180

mm and the local summer monsoon precipitation ex-

ceeds 35% of annual rainfall. Wang and Ding (2006)

proved that this simple definition is in an excellent

agreement with the monsoon domains that have been

previously defined based upon more complex multiple

criteria (Wang and Lin 2002).

Three methods were used to measure the monsoon

precipitation intensity. The first method measured the

global mean intensity. Since the monsoon annual range

is dominated by local summer precipitation, the NH-

averaged JJA monsoon precipitation (i.e., the precipi-

tation falling in the NH land monsoon domain) and the

SH-averaged DJF monsoon precipitation were used to

measure the strength of the NH and SH summer mon-

soon rainfalls, denoted by NHMI and SHMI, respec-

tively. The sum of NHMI and SHMI, which was termed

the global monsoon index (GMI), was used to quantify

the global mean monsoon strength. The second ap-

proach was designed to reveal the coherent pattern of

the change in global monsoon precipitation intensity.

Since the AR varies from year to year, each year’s AR

was defined as the local summer precipitation minus
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the preceding local winter precipitation. The leading

empirical orthogonal function (EOF) pattern of yearly

AR was used to describe the primary spatial variability

of the AR, while the corresponding time coefficient was

used to describe temporal behavior; this was termed the

annual range index (ARI). The third method tested the

statistical significance of the AR trend for each grid

point within the monsoon domain. Both the trend-to-

noise ratio and Mann–Kendall rank statistics (Sneyers

1990) were used to test the significance of linear trends.

3. Results

a. Evaluation on the simulated monsoon domain

Figure 1 shows the global distribution of AR of the

climatological precipitation and the long-term mean for

total annual precipitation based on CMAP data (Xie

and Arkin 1996). The spatial patterns of the annual

range of precipitation and the annual mean precipita-

tion rate all closely resemble those of GPCP data

(Wang and Ding 2006), that is, the major monsoon

rainy regions tend to reside on each side of the equa-

torial perennial rainfall regions and the global monsoon

rainfall differs from that of the global mean precipita-

tion, which tends to be maximized at the equator and is

generally more equatorially symmetric.

Figure 2 shows the spatial distributions of AR of the

climatological precipitation and the annual mean pre-

cipitation rate simulated by the CAM2 model. The

CAM2 model has reasonable performances in simulat-

ing the observed major monsoon rainy regions, which

include the southern African monsoon region, the

South and East Asian monsoon region, the Australian

monsoon region, and the southern American monsoon

region. The simulated annual range of precipitation

over the northern African monsoon regions is weaker

than the observation. The Central American and the

western Pacific monsoon rainfall are weakly simulated

in the model. The observed monsoon rainy regions over

the central tropical South Pacific and the tropical east-

ern Pacific are also weak in the simulation.

In addition, the observed South Pacific convergence

zone appears as a spurious intertropical convergence

zone (ITCZ) precipitation band south of the equator in

the central and eastern Pacific in the CAM2 simulation.

This so-called double ITCZ problem often exists in the

atmospheric GCM and is amplified in the fully coupled

FIG. 1. (a) The climatological mean for the annual range of precipitation, defined by the local summer mean precipitation rate (JJA

in the NH and DJF in the SH) minus the local winter mean precipitation rate. The bold lines delineate the global monsoon domain.

(b) The long-term mean for total annual precipitation. The data used are a blended CMAP data (1979–2003). Units are mm day�1.
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model (Zhang and Wang 2006). The deficiency of the

CAM2 model in producing the observed mon-

soon rainy regions over the central tropical South

Pacific is partly ascribed to the ill-simulated double

ITCZ.

b. Changes in precipitation intensity over the land

monsoon domain

Figure 3 shows the time series of the NHMI, SHMI,

and the GMI derived from the ensemble mean of 15

realizations of the CAM2 simulation, along with the

ensemble mean of three observational datasets. All in-

dices are shown in terms of anomalies relative to cli-

mate mean values. The climate mean values of the

NHMI, SHMI and GMI have nearly the same intensity

of 6.49 mm day�1. The corresponding values of the

simulation are 5.95, 6.88, and 6.41 mm day�1, respec-

tively. The climatological mean monsoon precipitation

is weaker (stronger) than the observation in the North-

ern (Southern) Hemisphere.

It is obvious that the variability of the observations is

larger than that of the simulations. Note that the aver-

age uses more grids (1° � 1° resolution) in observation

than in the simulation (T42, about 2.8° � 2.8° resolu-

tion). Besides the difference in physics, another possi-

bility is the difference in the ensemble means: the ob-

servation is a 3-member average but the simulation is a

15-member average.

The observational time series indicates a decreasing

trend in the NHMI across the entire 50 yr, and particu-

larly before 1980. This decreasing trend is also apparent

in the global monsoon index. The Southern Hemi-

sphere monsoon index, however, shows no significant

trend. The observational decreasing trend in the NHMI

index can be found in the CAM2 simulation. It is

however slightly weaker than the observation. The

simulated trend is �0.36 mm day�1 (50 yr)�1, while

the observational value is �0.59 mm day�1 (50 yr)�1.

The simulated decreasing trend of GMI is comparable

to the observation, with a trend of �0.21 mm day�1

(50 yr)�1 versus the observed value of �0.34 mm day�1

(50 yr)�1. The simulated SHMI index shows no appar-

ent trend (�0.05 mm day�1 (50 yr)�1, which is consis-

tent with the observation [�0.09 mm day�1 (50 yr)�1].

This result shows that the decreasing tendency of the

global land monsoon index in the past decades has oce-

anic origins.

In addition to the decreasing trend, the NHMI also

shows robust interannual variability (Fig. 3a). Similar

variations are seen in the SHMI and GMI time series

(Figs. 3b,c). The correlation coefficients between the

FIG. 2. As in Fig. 1, but for the ensemble mean of 15 realizations of CAM2 forced by observational SST.
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simulation and the observation are 0.38 for the NHMI,

0.22 for the SHMI, and 0.42 for the GMI. After linear

detrending, the correlation coefficients are 0.06, 0.22,

and 0.33, respectively. The correlation coefficient for

the GMI is still statistically significantly at the 5% level,

indicating that most of the monsoon variability arises

from the oceanic forcing. Taking an average of the

NHMI and SHMI shows the prominence of the low-

frequency variability since the high-frequency variabil-

ity is smoothed away.

FIG. 3. Time series of (a) the NH-averaged JJA precipitation, (b) the SH-averaged DJF precipitation, and (c) the

GMI, or the sum of (a) and (b). The data used are the ensemble mean of 15 realizations of the CAM2 model forced

by observational SST and three precipitation datasets (described in the text) for the period of 1949–2001. The curve

marked as “observation” is the mean of the three precipitation datasets. The time series are given as anomalies

relative to the climate mean. Units are mm day�1.
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One typical feature of Fig. 3 is that the simulated

amplitudes of the rainfall indices are in general weaker

than the observation. This difference is not unexpected

as using ensembles improves the correlation as random

variations are reduced during the averaging. Working

with ensembles increases the correlation, but decreases

the amplitude (Zhou and Yu 2006). This is further

manifested in Fig. 4, which shows the time series of the

NHMI, SHMI, and the GMI derived from each indi-

vidual realization of the CAM2 simulation. Spreads are

seen among the simulated time series for different re-

alizations, indicating the impact of internal dynamics of

the atmospheric motion. To quantitatively reveal the

contributions of external SST forcing and internal noise

FIG. 4. As in Fig. 3, but for each single realization of the ensemble simulation. Each thin gray line corresponds

to one realization. The thick black line is for the ensemble average.
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to the simulated monsoon index variation, the widely

used technique of analysis of variance is employed (Li

1999; Zhou and Yu 2006). Analysis on the NHMI index

shows that the internal atmospheric dynamics accounts

for 41% and the external SST forcing accounts for 59%

of the total variance, with a signal-to-noise ratio of 1.19.

For the SHMI time series, the corresponding statistics

are 60% and 40%, respectively, with a signal-to-noise

ratio of 0.81. The forced signal is hence much larger

than the internal noise in the NHMI, while a reverse

condition is found in the SHMI. This is the reason why

the NHMI has a higher reproducibility than the SHMI,

as shown by the correlation coefficient between the ob-

servation and the simulation. For the GMI time series,

the internal atmospheric dynamics accounts for 11%

and the external SST forcing accounts for 89% of the

total variance, with a signal-to-noise ratio of 2.8. Hence

it is highly reproducible.

Figure 5a shows the coherent spatial pattern of the

leading EOF mode of the global land monsoon precipi-

tation AR, which is obtained by analysis of the corre-

lation matrix based on the three-member ensemble

mean precipitation dataset. Figure 5b is the same as

Fig. 5a except for the model result, which is based on

the 15-member ensemble mean CAM2 simulation. The

corresponding observational ARI shows a decreasing

tendency for the entire period examined (Fig. 5c). This

is consistent with the result of Wang and Ding (2006),

which used four-member ensemble mean precipitation

datasets. The variance explained by the leading mode is

comparable to that of Wang and Ding (2006). It is in-

teresting to note that the model results match, nearly

identically, the observation in this decreasing tendency,

with a simulated trend of �1.68 mm day�1 (50 yr)�1

versus the observed trend of �2.19 mm day�1 (50 yr)�1

(Fig. 5c). The time series of the leading principle com-

ponent reasonably matches that of the observation,

with a correlation coefficient of 0.60 between the ob-

served and simulated PCs for the 1950–2000 periods

(Fig. 5c). After linear detrending, the correlation coef-

ficient reduces to 0.46, which is still statistically signif-

icant at the 5% level. Based on Mann–Kendall rank

statistics (Sneyers 1990), the decreasing trend of the

simulated ARI is significantly different from zero at the

99% confidence level. The same conclusion applies to

the observational data.

The decreasing trend of ARI derived from the en-

semble simulation has similar levels of statistical signifi-

cance as the observed counterparts. However, the frac-

tional variance of the leading EOF mode derived from

the ensemble simulation is considerably higher than the

observed counterpart, with 20.9% versus 10.7%. The

result indicates that the ensemble mean produces the

distinguished leading mode and its time evolution well,

but it tends to exaggerate the relevant fractional vari-

ance. This difference might be due to the fact that only

SST forcing was prescribed in the model simulation,

while in nature, the effects of many other forcing fac-

tors such as aerosol, change in solar activity, etc., may

affected SST, and thus have an implicit impact.

The majority of land monsoon regions in observation

show a coherent decreasing trend, with the largest am-

plitude over the North Africa (Fig. 5a). The trends over

South Africa, South and East Asia, and South America

are also robust. The spatial pattern of the leading EOF

mode over the South America monsoon region appears

as zonal positive anomalies. The largest discrepancy be-

tween the observation and the simulation is seen in the

Asian monsoon domain. The observed positive polari-

ties over the South Asian monsoon regions are absent

in the simulation (Fig. 5b), indicating a poor reproduc-

ibility of monsoon rainfall over this domain. The recent

weakening trend of monsoon rainfall over northern

China is only weakly reproduced.

Observational analyses found that the decreasing

trend of global monsoon rainfall intensity has been lev-

eling off since 1980, even though the global mean tem-

perature has experienced the most rapid increase dur-

ing this period (Chase et al. 2003; Yu et al. 2004; Wang

and Ding 2006). As shown in Fig. 5c, the declining trend

of the ARI in the simulation also leveled off since 1980,

suggesting an oceanic driving mechanism might be at

work on the leveling off of the monsoon index.

The ARI indices for different realizations are shown

in Fig. 5d. The ARI index was calculated by projecting

the anomalies of AR for single realization onto the

EOF1 pattern shown in Fig. 5b. Analysis of variance

following Li (1999) shows that the external SST forcing

accounts for 73% of the total variance, while the inter-

nal dynamics of the atmospheric motion accounts for

only 27%. The forced signal is larger than the internal

noise, with a signal-to-noise ratio of 1.63. Working with

ensembles clearly improves the simulation, although

the noise is more robust in mid- and high latitudes than

in low (tropical and subtropical) latitudes (Zhou and

Yu 2004).

The calculation of the signal-to-noise ratio could be

related to the number of ensemble members of the

CAM2 simulation. The change of the signal-to-noise

ratio as a function of sample size is given in Fig. 5e.

When the sample size is less than 7, the signal-to-noise

ratio is increased with the sample size. Starting from a

sample size of 7, if more members of simulation are

considered, the noise is also increased, and thus the

signal-to-noise ratio is decreased. Nevertheless, the am-
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FIG. 5. The spatial pattern of the leading EOF mode of the normalized annual range anomalies over the global continental monsoon

regions in (a) the observation and (b) the CAM2 simulation; (c) the corresponding principle component or ARI. (d) The ARI for each

of 15 realizations of the CAM2 ensemble simulation. (e) Changes of the signal-to-noise ratio for the ARI time series as a function of

sample size. The bold contours in (a) and (b) indicate the boundaries of the monsoon domain. (a) As in Wang and Ding (2006), but

using the combination of three datasets (see text). Each colored line of (d) corresponds to the ARI of one realization.
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plitude of the signal-to-noise ratio change is small, as

evidenced in Fig. 5e.

To confirm the decreasing tendency of the simulated

ARI shown in Fig. 5c is a forced signal, we employ

another widely accepted method to test the effect of

SSTs in the AMIP-type run. We investigate the differ-

ence of the CAM2 simulation between the forcing run

driven by 52-yr historical SST and the control run

forced by the climatological SST. The origin of global

monsoon rainfall variability can be clearly identified in

this comparison. The ARI index of the control run was

calculated by projecting the simulated anomalies onto

the EOF1 pattern shown in Fig. 5b. As shown in Fig. 6a,

no significant long-term trend is seen in the ARI index

time series of the control run. Since the expected long-

term trend of global monsoon rainfall is well captured

in the forcing run, but not in the control run, we are

confident of the effect of SST forcing in triggering this

long-term trend.

We also employ a probability density function (PDF)

approach to compare the roles of natural variation and

external SST forcing. As shown in Fig. 6b, the trend of

global land monsoon rainfall in the forcing run falls

outside the control run’s PDF. This supports the possi-

bility that the land monsoon rainfall trends in the forc-

ing run should not be the consequence of natural vari-

ability. In addition, the drying trend yielded by the forc-

ing run is less than that of the observation (cf. the black

and gray bar in Fig. 6b), suggesting the observed drying

trend might not have been uniquely determined by the

global SSTs.

In addition, the EOF2 mode of observation accounts

for 7.5% of the total variance and mainly reflects an

interannual variation of the global land monsoon rain-

fall, with centers in South Africa and North Australia

(figures not shown here). Further comparison found

little correspondence between the observation and the

simulation in this mode (figures omitted).

Figure 7 presents the statistical significance of the

observed and the simulated AR trend at each grid point

within the land monsoon domain. To facilitate the com-

parison with observational analysis of Wang and Ding

(2006), two methods were used to test the significance

of linear trends: the trend-to-noise ratio, shown in Figs.

7a,c, and Mann–Kendall rank statistics (Sneyers 1990),

illustrated in Figs. 7b,d. The significant spatial patterns

detected by the two methods are consistent. A strong

decreasing trend in monsoon rain intensity was found

for northern Africa, the Bangladesh–northern India–

eastern Tibetan Plateau, northern China, part of central

South America, and the southern part of South Africa.

An increasing trend in monsoon strength was seen over

northwestern Australia, and central China along the

Yangtze River valley (Figs. 7a,b). The decadal shift of

mid–lower Yellow River valley (34°–40°N) drought and

excessive rain in the Yangtze River valley of China has

been reported in many previous observational analyses

(e.g., Hu et al. 2003; Yu et al. 2004; Yu and Zhou 2007).

The simulated features generally matched the observa-

tion. The simulated increasing trend in monsoon rain

intensity over Madagascar is consistent with the obser-

vation. However, the observed decreasing trend over

northern China is not evident in the simulation. The

decreasing monsoon strength seen over northwestern

Australia (Fig. 7) is in contrast to the observation. The

simulated increasing trend over India and the northern

Indochina peninsula is absent in the observation. Thus,

the Asian monsoon rain intensity has the lowest repro-

ducibility with prescribed SST forcing. The internal

noise overlaps the SST-forced signal over these mon-

soon domains.

Over the Asian summer monsoon and Australian

summer monsoon, the monsoon–ocean interaction has

been recognized as a major source of the variability

(Wang et al. 2000; Lau et al. 2004; Wang et al. 2003),

and numerical simulation by 11 AGCMs was shown to

fail in the simulation of the summer precipitation dur-

ing the 1997–98 ENSO events (Wang et al. 2004). A

FIG. 6. (a) The normalized principle component of EOF1 mode

of GCM simulated annual range anomalies over global land mon-

soon regions and (b) the corresponding empirical PDFs of annual

range index trends. The data are from the 52-yr control run of the

CAM2 model forced with climatological SSTs. The trend value

from 15 individual members of the AGCM simulations forced

with the history of global observed SSTs is indicated by the gray

bar. The observed trend value is indicated by the black bar.
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five-AGCM ensemble hindcast experiment for a 21-yr

period confirms that given SST forcing the multimodel

ensemble is unable to predict the summer precipitation

in the Asian monsoon region with useful skill (Wang et

al. 2005). Hence coupled ocean–atmosphere processes

are crucial in the Asian–Australian monsoon regions

where atmospheric feedback on SST is very significant;

thus, treating the monsoon as a slave would result in the

models’ failure (Wang et al. 2005; Wu and Kirtman

2007). The neglect of atmospheric feedback makes the

FIG. 7. Statistical significance of the linear trends in summer monsoon precipitation at each grid point in (a),

(b) the observation and (c), (d) the ensemble of 15 realizations of the CAM2 simulation. Both (a) and (c) are for

trend-to-noise ratio and (b) and (d) are for Mann–Kendal rank statistics.
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forced solution depart from the coupled solution over

part of the Asian–Australian monsoon region, as also

suggested by the model results presented here.

c. The oceanic forcing of precipitation changes over

the land monsoon domain

In addition to the linear trend, the observational ARI

also shows significant interannual to interdecadal vari-

ability (Fig. 5c). After linear detrending, the time series

of the leading principle component of the ensemble

simulation has a correlation coefficient of 0.43 with the

observation, which is statistically significant at the 5%

level, indicating that the interannual variability of the

observational ARI can be partly reproduced by pre-

scribing the observational SST forcing to the CAM2

model.

The power spectra of the time series of the first prin-

ciple component for both the observation and the simu-

lation are shown in Fig. 8. The principle component

(hereinafter PC1) of the observation has double spec-

tral peaks on 2.5 and 3.5 yr, respectively. The 3.5-yr

peak seems more significant than the 2.5-yr peak. The

simultaneous correlation coefficient between the PC1

and the Niño-3.4 index (a measure of ENSO intensity,

which is defined as SST anomalies averaged within the

box of 5°S–5°N, 120°–170°W) reaches �0.43 in the ob-

servation, indicating that the leading mode of the an-

nual range of land monsoon precipitation concurs

with ENSO. The PC1 of the simulation exhibits a single

spectral peak around the center of 4.8 yr; the peak

around 3.0 yr is very weak. The relationship between

the time series of PC1 and the Niño-3.4 index in simu-

lation is comparable to the observation, having a

slightly stronger simultaneous correlation coefficient of

�0.70. A wavelet analysis reveals that the 4.8-yr oscil-

lation is more evident in the post-1970 period (figure

not shown here). The spectra difference between the

observation and simulation is not unexpected, since

only SST forcing was prescribed in the model simula-

tion, while in the real world the observed rainfall varia-

tion was also disturbed by other forcing mechanisms

such as land surface processes acting to supplement the

ocean forcing (see Yang and Lau 2006 for a review).

To further reveal whether the interannual variation

of the ARI significantly relates to ENSO, the spatial

distribution of the correlation coefficient between the

observed JJA SST anomalies and the time series of PC1

is shown in Fig. 9a. To eliminate the contribution from

linear trends, the time series of PC1 has been detrended

before the calculation. The local SST anomalies and the

time series of PC1 are negatively correlated in the

tropical eastern-central Pacific. The correlations are

positive in the western North and South Pacific and the

tropical eastern Indian Ocean. Significant positive cor-

relations are also observed in part of the tropical At-

lantic Ocean. The SST–PC1 correlations in the CAM2

simulation agree well with the observations (Fig. 9b). In

particular, over the tropical eastern-central Pacific the

observed correlation coefficient is about �0.40 while in

the simulation it is about �0.60; over the western South

Pacific, the observed correlation coefficient is beyond

0.25, while in the simulation, it is even higher than 0.4.

They are all statistically significant at the 5% level. The

close resemblance between the observation and the

simulation indicates the dominance of oceanic forcing

in the interannual AR variability. This consistency also

suggests that if tropical SSTs are known and prescribed

to an atmospheric general circulation model, there

would be some predictability of the interannual vari-

ability of the AR.

In addition to the interannual variation, the most

dominant feature of the time series of the principal

component of AR shown in Fig. 5c is the decreasing

tendency in the past decades. The consistency between

the simulation and the observation indicates the driving

mechanism of the oceanic forcing in producing this

FIG. 8. Power spectra of the observed (solid line) and simulated

(dashed line) annual range index represented by the principal

component of leading EOF mode of the normalized annual range

anomalies. The thin line is the red noise power density. A spec-

trum with a peak above the thin line distinguishes it from a red

noise spectrum with a confidence level over 95%.
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trend. Significant warming trends are observed in the

summertime SST anomalies over the central-eastern

tropical Pacific and tropical southern Atlantic; the

warming of the tropical Indian Ocean is spatially amor-

phous and of the same polarity throughout the basin

(Fig. 10a). Following Thompson et al. (2000), the linear

trends are estimated as the slope of a straight line fitted

(in a least squares sense) to the observed SST data at

each grid point based on the reference periods defined.

To reveal which part of the observed oceanic warming

accounts for the decreasing trend of the time series of

AR PC1, the observed SST anomalies trends can be

partitioned into linearly congruent and linearly inde-

pendent components with respect to the AR PC1 time

series. The component of SST trends that is linearly

congruent with the PC1 time series is estimated at each

grid point by regressing values of that grid point’s time

series onto the PC1 time series, and then multiplying

the resulting regression coefficients by the linear trend

in the PC1 time series (Thompson et al. 2000).

Significant warming trends are observed over the

central-eastern tropical Pacific and the tropical Indian

Ocean (Fig. 10b). A close resemblance is found be-

tween the PC1-congruent component and the total

trend over the tropical oceans. It is the warming of the

central-eastern Pacific and the tropical Indian Ocean

that contributes to the decreasing tends of time series of

AR PC1. The warming trend of the western northern

Pacific produces little positive contribution. A moder-

ate contribution from the recent warming of the tropi-

cal South Atlantic is seen. The structural similarity

between the observation and the simulation in the PC1-

congruent components of SST trends is striking (cf.

Figs. 10b,c), although the meridional shape of the cen-

tral-eastern Pacific warming in the simulation is wider

than that of the observation. The amplitude of the

warming over the central-eastern Pacific in the simula-

tion is comparable to that of the observation.

d. Changes of precipitation intensity over the

oceanic monsoon domain

By using the GPCP dataset, Wang and Ding (2006)

found that there was an increasing trend over the oce-

anic summer monsoon region since 1979, while no sig-

nificant trend was detected for the global land monsoon

region during the same period. What about the precipi-

tation change over the oceanic monsoon region in the

CAM2 simulation? To answer this question, anomalies

of the global monsoon indices over the ocean area are

FIG. 9. Distribution of simultaneous correlation coefficients between the time series of the leading

principal component of AR and JJA SST anomalies: (a) observation and (b) simulation. Areas exceed-

ing confidence limit of 5% are shaded.
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shown in Fig. 11a. The global monsoon indices over the

land during the same period are also drawn in Fig. 11b

for comparison. The model results are presented par-

alleling those of the observations.

In addition to the GPCP data, the CMAP dataset

also provides global precipitation measurements over

the last 25 yr, charted on a 2.5° by 2.5° grid (Xie and

Arkin 1996). The climatological, global averaged pre-

cipitation rate is 2.67 mm day�1, with a tiny yearly stan-

dard deviation of 0.04 mm day�1; both are comparable

to the GPCP data, which is 2.61 and 0.03 mm day�1,

respectively (Wang and Ding 2006). The climatological

mean precipitation rate over the land monsoon area

over the last 22 yr (1979–2000) is 6.37 mm day�1 in

merged rain gauge observation, 6.04 mm day�1 in

CMAP data, 6.12 mm day�1 in GPCP data, and 6.34

mm day�1 in the simulation. The corresponding clima-

tological mean value over the ocean monsoon area is

6.54 mm day�1 in GPCP data, 7.77 mm day�1 in CMAP

data, and 7.18 mm day�1 in the simulation. The bias of

the model in simulating the climatological mean mon-

soon precipitation is small, having a value within the

scope of data uncertainties.

It is surprising to see that there is very little corre-

spondence between the simulation and the observation

in the global monsoon index over the ocean area (Fig.

FIG. 10. (a) Linear trends of JJA SST anomalies and the components linearly congruent with the PC1

time series of AR for (b) the observation and (c) the simulation. Areas exceeding the confidence limit

of 5% using the f test are shaded. Units are °C (50 yr)�1.
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11a). The simulated oceanic monsoon index has a cor-

relation coefficient of 0.13 with the index derived from

the GPCP data, which is not statistically significant at

the 5% confidence level. In particular, no apparent in-

creasing trend is seen in the simulated oceanic mon-

soon index (Fig. 11a). This discrepancy might arise

from the uncertainty of observational data. As shown in

Table 1, the correlation between the simulation and the

CMAP observation is even lower (i.e., 0.05). While the

GPCP data shows an increasing trend of 0.55 mm day�1

(50 yr)�1 for the period 1979–2000 in the oceanic mon-

soon index, similar trends cannot be observed in the

CMAP data [the corresponding trend is �1.4 mm day�1

(50 yr)�1].

In addition to the GPCP and CMAP data, the SSM/I

estimates might be the best available precipitation es-

timates over the ocean (Wentz and Spencer 1998) and

should serve as a useful validation of the other data.

Since the SSM/I estimates are only available from 1988

to the present, we show the statistics on the variation of

oceanic monsoon rainfall for the period 1988–2000 in

Table 1 (see the values in parentheses). The oceanic

monsoon index derived from SSM/I is highly correlated

with that of the GPCP data, having a correlation coef-

TABLE 1. Correlation coefficients among the observed and the

simulated oceanic and global monsoon indices during 1979–2000.

The values in parentheses for SSM/I are for the period covering

1988–2000.

GPCP

ocean

CMAP

ocean

Simulated

ocean

GPCP ocean 1.0 0.54 0.13

CMAP ocean 0.54 1.0 0.05

SSM/I (0.63) (0.16) (�0.48)

Simulated ocean 0.13 0.05 1.0

GPCP

global

CMAP

global

Simulated

global

GPCP global 1.0 0.78 0.40

CMAP global 0.78 1.0 0.35

Simulated global 0.40 0.35 1.0

FIG. 11. The GMI over the (a) ocean and (b) land region. The data used are the GPCP data (1979–

2000), CMAP data (1979–2000), SSM/I data (1988–2000), and the ensemble mean of 15 realizations of

CAM2 simulation. Also shown in (b) is the GMI over the land region, derived from the ensemble

land-based rain gauge data. Units are mm day�1.
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ficient of 0.63. The correlation of the two indices de-

rived from the SSM/I and CMAP datasets is extremely

low (i.e., 0.16) and not statistically significant at the 5%

level. Thus the GPCP is probably a more reliable esti-

mate of rainfall than CMAP. The correlation of oceanic

monsoon indices derived from the simulation and

SSM/I data is still poor. Although the data length of

SSM/I is not long enough to accurately estimate a trend,

a comparison with the other data still has the value of

reference. The SSM/I data shows a trend of 0.52 mm

day�1 (50 yr)�1 for the period 1988–99 in the oceanic

monsoon index. This value is larger than that of the

GPCP data, which is 0.39 mm day�1 (50 yr)�1. Thus, the

consistency of different datasets in estimating the oce-

anic monsoon rainfall trends is not satisfactory. The

poor simulation of the ocean monsoon index might

arise from data uncertainties. Nevertheless, discrepan-

cies of the CAM2 model in describing the ocean mon-

soon domain should also have contributions to the low

reproducibility (see Fig. 2a).

In contrast to the global monsoon index over the

ocean area, the global land monsoon indices derived

from two satellite datasets are highly correlated, having

a correlation coefficient of 0.98 (Table 2). The land

monsoon index derived from the GPCP (CMAP) data

has a correlation coefficient of 0.80 (0.84) with the rain

gauge data derived index. The reliability of the satellite

data over the land monsoon area is better than that

over the oceanic monsoon region. Both the CMAP and

the GPCP precipitation are estimates based on satel-

lite data and in situ observations on land (Xie and

Arkin 1996; Huffman et al. 1997; Adler et al. 2003).

Because of different algorithms used to retrieve the

rainfall from the satellite data, there are some distinc-

tive differences between these two datasets over the

ocean regions (Gruber et al. 2000). There is a possibility

that the observational evidence over the oceanic mon-

soon area might not be solid enough for evaluating cli-

mate models, in particular for the long-term variability.

If this is true, great efforts should be devoted to im-

proving the qualities of precipitation products over the

ocean area.

4. Concluding remarks

a. Conclusions

The global monsoon rainfall over land has an overall

weakening trend over the last half-century (1950–2000).

Causes for this observed decreasing tendency are ad-

dressed by analyzing the output of ensemble simula-

tions of the NCAR CAM2 model forced by historical

sea surface temperature. The main results are summa-

rized below.

1) The CAM2 model has reasonable performances in

simulating the observed major monsoon rainy

regions, which include the northern African and

southern African monsoon region, the South and

East Asian monsoon region, the Australian mon-

soon region, and the Central American and

southern American monsoon region except for the

western Pacific rainy region. The deficiency of the

model in producing the rainy regions over the cen-

tral tropical South Pacific is partly ascribed to the

ill-simulated double ITCZ.

2) The significant changes of global land monsoon

rainfall are deducible from the atmosphere’s re-

sponse to the observed SST variations. Since the

signal of external SST forcing is larger than the noise

caused by internal atmospheric dynamics, the obser-

vational decreasing trend in the Northern Hemi-

sphere monsoon index has been reproduced by the

CAM2 simulation. There are significant correlations

between the simulated and the observed global land

monsoon precipitation indices, indicating that most

of the observational land monsoon rainfall variabil-

ity arises from the oceanic forcing.

3) The majority of the land monsoon region shows a

coherent decreasing tendency, with the largest am-

plitude over northern Africa. This typical feature

has been well produced in the ensemble simulation

except for the Asian monsoon rain intensity. The

observed drying trend is attributable to a common

oceanic influence (i.e., the recent warming over the

central-eastern Pacific and the tropical Indian

Ocean).

4) The interannual variation of the ARI significantly

relates to ENSO. The leading mode of the annual

range of land monsoon precipitation concurs with

ENSO. Prescribing the observational SST forcing to

the CAM2 model successfully captures the interan-

nual variation of the ARI, except for some differ-

ences in the spectral peaks.

5) There are uncertainties between the GPCP and

CMAP data in describing the evolution of global

ocean monsoon precipitation. There exists very little

TABLE 2. Correlation coefficients among the observed and the

simulated land monsoon indices during 1979–2000.

Obs

land

GPCP

land

CMAP

land

Simulated

land

Obs land 1.0 0.80 0.84 0.36

GPCP land 0.80 1.0 0.98 0.48

CMAP land 0.84 0.98 1.0 0.52

Simulated land 0.36 0.48 0.52 1.0
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correspondence between the simulated and the ob-

served global monsoon index over the ocean area.

Uncertainties in the satellite data and model defi-

ciencies in describing the ocean monsoon domain

are partly to blame.

b. Discussion

Studying how monsoon rains have changed may pro-

vide insight for understanding future changes. Current

state-of-the-art climate models are imperfect and are

not the real atmosphere. If the presented model results

provide a reliable indication of the behavior of the real

world, then they have implications for the interpreta-

tion of long-term global land monsoon rainfall change.

The evidence from our results suggests the key roles of

SST anomalies in the tropical Pacific and Indian Ocean.

The warming trend across the Indo-Pacific Ocean per-

haps also reflects the eastern Pacific SST forcing on the

Indian Ocean, as in the case of climate variability in

which ENSO forces the Indian Ocean monopole (Klein

et al. 1999; Lau and Nath 2003; Yang et al. 2006). Fur-

ther work to identify and understand the causes of

these SST anomalies will also have implications for pro-

jections of global land monsoon rainfall change, par-

ticularly its response to global warming. In addition,

this analysis focuses on typical summer and winter

monsoon seasons only. During boreal fall the convec-

tion maximum occurs in the eastern Indian Ocean, the

Malay Peninsula and Sumatra, and the southern South

China Sea, hence a large amount of rainfall also falls in

Southeast Asia during this transition season (Chang et

al. 2005). The long-term trend of monsoon rainfall dur-

ing the transition season will be analyzed in a separate

paper.

It is important to acknowledge the limitations of this

study. In particular, we have used a prescribed SST

boundary condition. Several studies have pointed out

that one must be cautious in using AGCM studies with

prescribed SSTs to interpret the influence of the extra-

tropical oceans on climate variability (e.g., Sutton and

Hodson 2007). Recent studies suggested that the mon-

soon simulation strongly depends on the correct air–sea

coupling over the Asian–Australian monsoon region

(Wang et al. 2005; Wu et al. 2006; Wu and Kirtman

2007). In the tropical Indo-western Pacific Ocean re-

gions, SST forcing and atmospheric forcing dominate

alternatively in different seasons. Atmospheric forcing

dominates in the local warm/rainy season (Wu and

Kirtman 2007). The performance of SST-forced simu-

lation is low or poor when atmospheric forcing domi-

nates; coupling an AGCM with an ocean model can

better simulate the Asian summer monsoon climatol-

ogy (Fu et al. 2002). The result of the SST-forced run

presented here is mainly successful at capturing the ob-

served long-term trend of monsoon rainfall over north-

ern and southern Africa, South America, eastern Aus-

tralia, Bangladesh–northern India–eastern Tibetan Pla-

teau, and part of northern China, except for the rainfall

trend over southern Asia, and western Australia (cf.

Figs. 5a,b). With the inclusion of the air–sea feedback,

whether it is possible to correctly simulate the long-

term trend of summer monsoon rainfall over this region

warrants further study. Kim et al. (2008, manuscript

submitted to J. Climate) evaluated the twentieth cen-

tury Coupled Climate Model simulations for the period

of 1951–99 collected from the World Climate Research

Programme’s Coupled Model Intercomparison Project

phase 3 (CMIP3) multimodel dataset. They found that

regardless of the prescribed external forcing, none of

the models is able to faithfully simulate the observed

decreasing tendency in the Northern Hemisphere land

monsoon domain. As an extension of AMIP-type run,

the “partial-coupling” approach may help us to further

understand the mechanism. For this purpose, the lower

boundary conditions surrounding the maritime sites

outside the tropical Pacific are either set to an oceanic

mixed layer model or an oceanic general circulation

model, while observed monthly SST variations are pre-

scribed in the tropical Pacific, as has been done in the

simulation of interannual variability of the Asian–

Australian monsoon (Lau and Nath 2000, 2003, 2006).

Another potential limitation is the definition of mon-

soon domains. The monsoon not only exhibits changes

in rainfall intensity, but also experiences changes in

coverage. The monsoon domains can migrate spatially

over time with changes in internal and external forcing

agents of the coupled system. Since the monsoon index

was calculated as the average of precipitation intensity

falling within the climatological annual range-defined

monsoon region as Wang and Ding (2006), it is unable

to describe the changes of area covered by monsoon

rain. There has been a substantial change in land–sea

thermal contrast over the past 52 yr; the monsoon do-

main should have been affected by the change of ther-

mal contrast. For example, Kitoh et al. (1997) raised an

important issue about an apparent paradox between

the South Asian summer monsoon’s increasing precipi-

tation and its decreasing circulation intensity. This

paradox is explained by the northward shift of the mon-

soon circulation (see also Kitoh 2006 for a review).

Thus, the migration of the monsoon domain might not

be correctly interpretated by simply using an increasing

or reduction of monsoon precipitation. A more robust

analysis approach, which is capable of quantifying the

migration of monsoon domain, needs to be developed.

1 AUGUST 2008 Z H O U E T A L . 3849



One potential caveat of this work is the experimental

design, since only the historical SST variation was pre-

scribed. In nature, however, both natural and anthro-

pogenic forcing agents contribute to the monsoon rain-

fall change (e.g., Meehl and Washington 1993; Yu et al.

2004; Li et al. 2005; Kitoh and Uchiyama 2006; Xin et al.

2006; Yang and Lau 2006). Previous studies have spec-

ulated that man-made absorbing aerosols in remote

populous industrial regions alter regional atmospheric

circulation and cause regional climate change (e.g.,

Qian and Giorgi 1999; Qian et al. 2001). Recent studies

suggested that sulfate and black carbon aerosols have

played a role in forcing the recent changes in monsoon

rains by cooling the surface or reduce the latitudinal

SST gradient (Menon et al. 2002; Lau et al. 2006; Meehl

et al. 2008). However, the responses of climate models

to the inclusion of aerosols are model-dependent. For

example, Menon et al. (2002) suggest that precipitation

trends in China over the past several decades may be

related to the increased Black carbon aerosols. Meehl

et al. (2008) argue that the observed increasing precipi-

tation trends over southern China appear to be associ-

ated with natural variability connected to surface

temperature changes in the northwest Pacific. The in-

clusion of aerosols seems to suppress the simulated in-

creasing trends in Southeast Asia as seen in many gen-

eral circulation model simulations (e.g., Mitchell and

Johns 1997), but not in all (e.g., Roeckner et al. 1999).

A spread is also seen in the surface air temperature

responses to prescribed forcing agents including aero-

sols simulated by 19 coupled models involved in the

CMIP3 project (Zhou and Yu 2006). Nonetheless, our

suggestion of the contribution of tropical ocean warm-

ing to the decreasing tendency of global land monsoon

rainfall does not rule out any other factors. There is a

need to better understand the roles of other forcing

agents including aerosols as potential causes of global

monsoon rainfall variation.

In addition, we have carried out analyses with the

single atmospheric model CAM2. Whether other mod-

els can yield consistent climate responses with respect

to main features reported here warrants further study.

A set of such comparisons will be taken as part of the

Climate Variability and Predictability (CLIVAR) In-

ternational Climate of the Twentieth Century Project

(C20C; Folland et al. 2002). Such multimodel intercom-

parisons should help us to gain insight on the forcing

mechanisms of global monsoon rainfall variation. The

present results provide a useful reference for the future

multimodel assessment of C20C.
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