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Abstract

For centuries, the mechanisms surrounding spatially complex animal migrations have

intrigued scientists and the public. We present a new methodology using ocean heat con-

tent (OHC), a habitat metric that is normally a fundamental part of hurricane intensity fore-

casting, to estimate movements and migration of satellite-tagged marine fishes. Previous

satellite-tagging research of fishes using archival depth, temperature and light data for geo-

locations have been too coarse to resolve detailed ocean habitat utilization. We combined

tag data with OHC estimated from ocean circulation and transport models in an optimization

framework that substantially improved geolocation accuracy over SST-based tracks. The

OHC-based movement track provided the first quantitative evidence that many of the

tagged highly migratory fishes displayed affinities for ocean fronts and eddies. The OHC

method provides a new quantitative tool for studying dynamic use of ocean habitats, migra-

tion processes and responses to environmental changes by fishes, and further, improves

ocean animal tracking and extends satellite-based animal tracking data for other potential

physical, ecological, and fisheries applications.

Introduction

Movements and seasonal migration ecology of vertebrate animals are largely driven by

dynamic environmental features [1–4]. A strong relationship between oceanic temperature

patterns and the migratory forays of many large pelagic tunas, billfishes, sharks, and tarpon has

long been recognized [2, 5, 6]. Fronts and eddies are well known dynamic ocean habitats for

fishes [7–9], but knowledge of their utilization has been based mostly on qualitative evidence

from ecological theory or extractive fisheries data [7, 8, 10]. However, significant advances in

the geolocation accuracy of electronic tags over the past two decades as a result of improved

GPS and Argos positioning used on sea turtles[11, 12], sea birds[13, 14], and marine mammals

[15, 16] have provided direct quantitative evidence that many marine vertebrates use ocean

fronts and eddies as preferred habitats. In these studies modeled ocean current vectors and
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satellite remote sensing data (e.g., sea surface height (SSH, altimetry data); sea surface tempera-

ture (SST, infrared and microwave); and, sea surface chlorophyll (SSC, ocean color imagery)

were used to distinguish these important ocean features. However, due to the relatively short

surface intervals of most fishes, it has been difficult to fully utilize the advanced features of geo-

location tags to produce accurate positions. A few recent studies have used these Argos geolo-

cation tags on sharks [17, 18], striped marlin (Kajikia audax) [19] and Atlantic tarpon

(Megalops atlanticus) [18], fishes which spend time at or near the surface. Nevertheless, due to

their infrequent surfacing, geolocation data lack the temporal and spatial resolution required to

study utilization of mesoscale fronts and eddies. As a default, some studies have used the light-

level derived geolocations from electronic tags and ocean models to explore the large-scale

ocean feature utilizations by marine predator fishes [20, 21].

Over the past decade, thousands of pop-up satellite archival tags (PSATs) with high fre-

quency temperature‐depth-light sensors have been deployed on coastal and pelagic fishes [2, 6,

22, 23]. PSATs provide previously unavailable concurrent observations of fish movements and

hydrographic conditions over relatively large ocean areas. Geolocation estimates between

deployment and pop-up positions are derived from light, time and depth data recorded by the

PSAT [24]. Inherent restrictions limit the accuracy of light-based longitudinal locations to ± 1

degree [24], and improvement of these estimates has been possible by re-processing the light-

based positions using a Kalman filter (KF) and an unscented Kalman filter (UKF), then incor-

porating SST (KF-SST, UKF-SST) [25]. Despite advanced KF-SST and UKF-SST methods, the

homogenous distribution of SST (Fig 1a) in tropical regions greatly denigrates usefulness of

SST in refining movement tracks and in explicitly delineating fish utilization of dynamical

ocean features. Among the variables (currents, SSH, SST, SSC) used to derive ocean features,

only SST is directly recorded by the satellite tags. In this paper, we introduce a new method to

estimate movements, and habitat association with ocean fronts and eddies, of electronically

monitored marine animals, while avoiding the deficiencies inherent in SST-based geolocation

estimates.

Ocean heat content (OHC), a fundamental measure of the heat stored in the upper surface

layers, has been used for more than four decades by oceanographers and meteorologists to pre-

dict hurricane intensity [26, 27]. The minimum SST for hurricane formation is 26°C [27].

Expressed in kilo joules cm-2, OHC is estimated by integrating temperature from the depth of

the 26°C isotherm to the ocean’s surface. OHC is typically obtained from satellite remote

sensed SST data and vertical thermal structure measurements. For hurricane intensity forecast-

ing, OHC is routinely estimated by an Atlantic regional temperature and salinity (SMARTS)

climatology model that systematically merges daily thermodynamic fields from satellite remote

sensing (i.e., radar altimetry and SST) with ocean observing system data [28, 29].

While evaluating the usefulness of OHC estimated from PSATs as a supplemental data

source for SMARTS, we discovered that time-series OHC maps appeared to be superior for

revealing pelagic fish habitats as compared to maps based solely on SST. During the tropical

cyclone season (June 1 –November 1), SST maps of the Caribbean Sea and Gulf of Mexico

regions of the central western Atlantic are generally featureless during most days (Fig 1a). In

contrast, OHC maps revealed unseen structure in the upper thermocline of the water column

due to the integrated heat content (Fig 1b). Thus, the goal of this research was to introduce and

develop a new methodology using OHC to refine movement tracks of PSAT-monitored large

pelagic fishes and to use examples to demonstrate how the refined movements tracks help us to

explore the quantitative relationships between fish migration paths and dynamic oceanic fea-

tures (fronts and eddies).

OHC Improves Fish Movement Tracks
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Methods

Depth, temperature and light data were obtained from 137 PSATs deployed since 2004 on

pelagic fishes for periods ranging from 10–180 d in the western central Atlantic Ocean from

Fig 1. Ocean fronts and eddies revealed by ocean heat content (OHC). (a) Sea surface temperature (SST) and (b) OHC, on July 21, 2012.

doi:10.1371/journal.pone.0141101.g001
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previously published [30–35] and unpublished studies. Light intensity data were processed

using the global positioning software WC-AMP (Wildlife Computers, Redmond, WA, USA) to

provide initial geolocations [36]. The light data provided sunrise and sunset times used to gen-

erate initial geolocation estimates. Then an SST-corrected Kalman filter [25, 37] (KF-SST or

UKF-SST) was applied to refine light-derived geolocations. To relocate the points that were

either on land or in shallow waters, we modified the estimates by also filtering depths based on

2 minute grid ETOP02 bathymetry data and the daily maximum depth from the tag [38].

Profiles of depth and temperature (PDT) along the migration tracks of individual fishes

were mapped based on the continuous PSAT data binned at 3-h time intervals (Fig 2a). The

midpoint of temperature minimum and maximum at each depth from PDT data was used to

generate the vertical temperature profile of each tagged fish. The missing data bins were line-

arly interpolated with the nearest neighbor bins for both vertical and horizontal dimensions.

However, in our analysis when a tag had, on average, more than three gaps of five days each, it

was eliminated from further analysis. These eliminations comprised about 10% of the tags orig-

inally available to us. For fish track analysis, OHC values (Fig 2b) were calculated by integrating

the thermal energy from the depths of the 26°C isotherm (D26) to the ocean surface according

to the following equation [26]:

OHC ¼ cpr

Z

0

D26

ðTz � 26
�Þdz ð1Þ

where, cp is the specific heat constant of water, ρ is sea water density, and Tz is water tempera-

ture at depth z. For fishes inhabiting cooler waters, the OHC concept still holds, and simply

requires adjusting the lower thermal limit downwards such as 20°C for tropical tunas and bill-

fishes, or 10°C for temperate tunas (e.g., bluefin).

We generated OHCmaps (OHCM) based on the global hybrid coordinate ocean model

(HYCOM) by the US Navy Oceanographic Office (NAVO), using the real-time ocean data

assimilation method [39]. We used the standard output, which has a spatial resolution of 0.08

deg (~7 km) and a daily time step. Global HYCOM has been shown to accurately resolve meso-

scale processes such as meandering currents, fronts, and oceanic eddies [39]. We used the

above equation and HYCOM temperature data to estimate the OHC, then we re-gridded the

OHC values using linear interpolation methods to 2x2 min (0.033 x 0.033 degree) spatial reso-

lution maps (OHCM) to match the ETOP02 [40] bathymetric grid.

We determined that migration tracks could be further optimized using OHC maps and a

practical genetic optimization algorithm (GA) [41]. Our GA-OHC filtering method was similar

to methods described previously [42]; however, we substituted SST maps with OHC maps.

Here, we defined OHCT as the OHC value estimated from the tag at time t, and OHCM as the

OHC value derived from the HYCOMmodel at position Pt at time t from either a KF-SST or

UKF-SST derived track. In theory, if the position Pt, OHCT and OHCM are estimated without

error, then OHCT and OHCM should have the same value (i.e., ΔOHC = OHCM—OHCT = 0). If

the position Pt is not accurate, ΔOHC will not equal to zero. Thus, we needed to find a new

position P0
t where ΔOHC will be zero or minimized, a simple task if a single position was con-

sidered. However, an individual fish movement track over several months consists of hundreds

to thousands of auto-correlated positions. Thus, the minimization procedure had to satisfy all

track positions. To accomplish this goal, we applied a GA to minimize the sum of the square

root of ΔOHC for all track positions. The optimization search method is schematically illus-

trated in Fig 3. At each time step, a search area is defined by a circle of a radius R, a variable

ranging from 4–50 km that decreases as a function of generation time. R was also constrained

by either land or shallow bathymetry (i.e., where water depths were less than the maximum
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depth of fish at the time t). The current position Pt was indicated by the dot at the center of the

circle, and Pt-1 was the fish’s position at previous time step, while Pt+1 was the fish’s position at

the subsequent time step. The mid-point between Pt-1 and Pt+1 is indicated by the center posi-

tion (CP). In the simulations, the new position (P0
t) takes a particular pixel according to one of

nine scenarios:

1. The pixel with minimum absolute difference between the tag OHC (OHCT) and the model

OHC (OHCM), that is, min[OHCT—OHCM].

2. The pixel with shortest distance to the center of the circle (Pt) from the subset of minimum

ΔOHC (a subset pixels where ΔOHC is> (ΔOHCmin + 0.1ΔOHCmin).

3. The pixel with longest distance to the center of the circle (Pt) from a subset of minimum

ΔOHC.

4. The pixel with shortest distance to the CP of previous and next time step from a subset of

minimum ΔOHC.

5. The pixel with the smallest OHC and shortest distance to the center of the circle Pt.

6. The pixel with the smallest OHC and longest distance to the center of the circle Pt.

7. The pixel with largest OHC and shortest distance to the center of the circle Pt.

8. The pixel with largest OHC and longest distance to the center of the circle Pt.

9. The pixel with shortest geometric average distance to previous (Pt-1) and next (Pt+1) posi-

tion, that is,minð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
2

t�1
þ D

2

tþ1

q

Þ.

The nine scenarios spread pixels over the entire range within the circle to overcome potential

local minimizations during a given simulation. The basic idea was to use a GA to optimize the

Fig 2. Estimates of OHC from satellite-tagged fish. (a) Profile of depth and temperature (PDT) from a
PSAT tagged blue marlin in Gulf of Mexico during July 2004. The black line shows the depth of the 26°C
isotherm. (b) OHC estimated from the above PDT profile.

doi:10.1371/journal.pone.0141101.g002
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Fig 3. Search schematic of the genetic algorithm (GA). A circle of radius R is centered at the current position Pt. The search area was constrained by land
or shallow bathymetry. The numbers correspond to the nine scenarios outlined in the text.

doi:10.1371/journal.pone.0141101.g003
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selection of the scenarios so as to not only minimize the sum square root of the error for an

entire track, but also keep the distance between each position within the limit of known move-

ment rates.

At the beginning of GA track simulation for a particular fish, 25 sequences (vectors) of

movement rules were created for a movement track of N positions, where each vector will have

a “gene code” of length N that is randomly generated, i.e., the movement rule for each time

step was randomly selected from one of the 9 scenarios described above. At the end of each

generation (i.e., completion of Nmovements), a selection function (SF) was calculated for each

of the 25 tracks as the root-mean-square (RMS) error of OHC between the observed OHCT

and predicted OHCM for all N positions as

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

1
ðOHCT � OHCMÞ

2

N � 1

s

ð2Þ

For the next generation, the three tracks (populations P1, P2, P3) with the lowest SFs were

selected as parents and these retained the same genes (same movement rules) as their parents

(P1, P2, P3). For the other 22 populations, the first 11 populations had the genes crossed (i.e.,

mixing movement rules) between P1 and P2 at a random crossing point, and then for the

remaining 11 populations the genes were crossed between P1 and P3. Finally, for these 22 pop-

ulations, 10% of their genes were allowed to mutate (i.e., change in movement rules) at ran-

dom. Simulations ran until the SF reached a constant level within a specified tolerance (<0.01)

[41, 42].

To increase speed and efficiency of the simulations, the OHCM data were generated ahead of

the tracking GA procedure and saved into a data base for all tags. Additional OHCM data will

be added to the database as they become available with time. In general, each simulation of a

100-day track took about 15 minutes to complete using currently available middle-tier specifi-

cation desktop computers (i.e., Intel(R) Core™ i7 CPU @2.93 GHz).

To evaluate the accuracy of the GA-OHC method, a sinusoidal track extended over known

OHCM maps in the Gulf of Mexico (GoM) was generated as the “true” unbiased track, and the

OHCM values at the track positions were taken as the unbiased OHCT. Then, an altered track

was generated by adding systematic sinusoidal biases of 0.5 degrees in latitude and random

normal errors N(0,σ) on both the longitudes and latitudes of the “true” track. Finally, the

GA-OHC method was applied to the altered track and unbiased OHCT to generate an esti-

mated track, then compared with the true track. The “true” track was 45 days long and was

simulated bi-monthly using 2007 OHCM data (Table 1) to evaluate the effects of different

ocean conditions, i.e., seasonal changes in OHC. To evaluate the effect of OHC variation errors,

an OHC average track was estimated by averaging all longitude and latitude values within a cir-

cle of a 0.5 degree radius at each point location where the OHCM values were within OHCT ±1

range. The mean and standard deviation of the differences between the average OHC track and

the “true” track were calculated. Similarly, to repeat the validation simulations in a different

geographic area, a 90 day blue marlin track from the South Atlantic Ocean was used as the

“true” unbiased track, and the OHCM values at those track positions were taken as the unbiased

OHCT. Actual simulations were performed quarterly using 2005 OHCM data.

For the purposes of demonstration and application of the new method, the refined move-

ments tracks of 124 pelagic fishes monitored with PSATs were used to explore the quantitative

relationships between fish migration paths and oceanic features (fronts and eddies). We used

the Belkin-O’Reilly algorithm [43] to compute the gradient of OHCM and classified areas

where gradients greater than 50 kJ cm-2 per grid cell were determined as zones of ocean discon-

tinuities (ZOD). Fish track positions were then compared with the ZOD and all positions

OHC Improves Fish Movement Tracks
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within one grid cell distance from ZOD were classified as being associated with ocean fronts

and eddies. To simplify the presentation, the proportion of time that each fish spent associated

with ZODs was calculated and categorized into three levels of eddy and front association: low

(0–30%); medium (30–60%); and high (>60%). All numerical and visualization procedures

were computed using IDL (Interactive Data Language, http://exelisvis.com), the procedures are

available directly from the first author upon request. Fish handling and tagging procedures

were followed Prince et al. [44], and was conducted under permits from the National Marine

Fisheries Service Highly Migratory Species Division (TUNA-EFP-13-05, HMS-EFP-02-003),

Florida Fish and Wildlife Conservation Commission (SAL-13-0062-SRP), National Park Ser-

vice (EVER-2013-SCI-0064, DRTO-2014-SCI-0006), and the University of Miami Institutional

Animal Care and Use Committee (Protocol # 12–221).

Results

The UKF-SST filtered tracks (Fig 4a) were further refined with the GA that strives to minimize

the RMS error between the observed OHCT and predicted OHCM. The resultant GA-OHC fil-

tered track (Fig 4b) revealed fish movements with much greater detail than those tracks pro-

duced by the UKF-SST method alone. The evolution of learning for the GA-OHC filter is

shown by a decrease in the RMS as a function of generation time (Fig 4c). The strong similarity

of the final OHC values is shown by comparing the OHCT to the OHCM (Fig 4d).

Another example is presented for a blue marlin track (Fig 5) in the South Atlantic Ocean.

The GA-OHC filtered track (Fig 5a) revealed fish movements with much greater detail than

those tracks produced by the UKF-SST method (blue line). The 95% confidence interval (grey

shaded area) was calculated for each location using ±5 kJ cm-2 OHC variation around the esti-

mated location. The confidence intervals are plotted as probability ellipses with 2 standard

deviations of longitude, latitude as the major axes and angle of rotation determined by the

covariance. The comparisons of longitude and latitude from the UKF-SST and GA-OHC track

estimation methods are shown (Fig 5b and 5c). The final OHCM values (red crosses) are

Table 1. Validation results for GA-OHC filtered track estimates for Gulf of Mexico and South Atlantic Ocean. GoM validation simulations used bi-
monthly OHC data on a 45-day sinusoidal track, and South Atlantic Ocean validation simulations used quarterly OHC data on 90-day blue marlin track. OHC
variation (kJ cm-2) is the mean of the standard deviation (msd) of OHC values within a circle of 0.5 degree radius at each point location. OHC variation error
presents the mean difference between the averaged OHC track and the “true” track, and the msd for each estimated location considering OHC errors of ±1,
±5 kJ cm-2.

OHC data period OHC Variation msd OHC error ±1 OHC error ±5

Longitude Latitude Longitude Latitude

mean msd mean msd mean msd mean msd

2007 Gulf of Mexico Track

Jan-Feb 25.86 -0.007 0.146 -0.001 0.199 -0.009 0.155 -0.003 0.211

Mar-Apr 20.70 -0.012 0.186 -0.027 0.155 -0.011 0.197 -0.027 0.173

May-Jun 12.69 -0.025 0.180 0.014 0.186 -0.025 0.199 0.012 0.199

Jul-Aug 22.18 -0.008 0.211 -0.015 0.146 -0.006 0.221 -0.014 0.154

Sep-Oct 24.39 -0.016 0.145 -0.011 0.196 -0.018 0.156 -0.007 0.207

Nov-Dec 25.26 -0.017 0.166 -0.012 0.175 -0.013 0.175 -0.003 0.187

2005 South Atlantic Track

Jan-Mar 7.86 -0.025 0.152 0.018 0.148 -0.019 0.182 0.024 0.171

Apr-Jun 8.57 -0.027 0.185 -0.008 0.144 -0.023 0.203 -0.006 0.162

Jul-Sep 7.57 0.008 0.179 -0.032 0.156 0.005 0.201 -0.033 0.182

Oct-Dec 6.84 0.002 0.173 -0.037 0.166 -0.002 0.197 -0.037 0.191

doi:10.1371/journal.pone.0141101.t001
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optimized very close to the values of OHCT (Fig 5d) as compared to the OHC values from the

UKF-SST track (blue line).

The validation results of the simulated sinusoidal track (Fig 6a) showed that the GA-OHC

filter improved the precision for determining the “true” track. The mean difference between

the estimated track and the “true” track was less than 0.001 degrees and less than 0.01 degrees

standard deviation for longitude and latitude during all periods of the year. The results were

confirmed through validation of tagged fish that showed similar results in accuracy (Fig 6b).

The effect of OHC variation (Table 1) was demonstrated by comparing the OHC average track

to the “true” track. The mean differences in both longitude and latitude for all validation simu-

lations were less than 0.04 degree, which is consistent with the 2-minute grid resolution (0.033

degree) of the model. For the GoM track and all periods of the year, the mean of the standard

deviation (msd) ranged from 0.145 to 0.211, and 0.154 to 0.221, with OHC variation of ±1 and

±5 kJ cm-2, respectively. For the South Atlantic Ocean track, the msd ranged from 0.144 to

0.185, and 0.162 to 0.203, with OHC variation of ±1 and ±5 kJ cm-2, respectively. The OHC

Fig 4. Movement tracks of a yellowfin tuna by different geolocationmethods. (a) Geolocation estimates from light data (white x and line); light-based
Kalman filtered track (yellow triangles and green line); UKF-SST track (red line). The white dot indicates the tag deployment location and the green dot
indicates the tag pop-off location. (b) GA-OHC filtered track of the same fish. (c), The root-mean-square (RMS) error of OHC between the observedOHCT

and predictedOHCM as a function of generation time. (d), Comparison of OHC values between UKF-SST and GA-OHC filtered tracks (black line is theOHCT

estimates from PSAT depth and temperature data; red line isOHCM values at the location determined by the UKF-SST filtered track; and, purple dots are the
OHCM values at the location determined by the GA-OHC filtered track.

doi:10.1371/journal.pone.0141101.g004
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msd values (Table 1) within the circle of the 0.5 degree radius from each GA-OHC position

ranged from 12.74 to 25.81 kJ cm-2, and 6.84 to 8.57 kJ cm-2, for the GoM and South Atlantic

Ocean, respectively. This suggests the presence of a year-round OHC gradient for both geo-

graphic areas. On average, the OHC gradient is much steeper for the GoM than the South

Atlantic Ocean.

The GA-OHC filtered tracks revealed detailed movements of fishes that were not apparent

from track estimates using UKF-SST alone. For example, the detailed movements of one yel-

lowfin tuna (Thunnus albacares) around an eddy and the Loop Current (LC) in the GoM are

shown (Fig 7). FromMarch 27 to April 9, 2012, this tuna was moving among weak fronts off

the Mississippi River (Fig 7a) before reaching an eddy centered in the GoM on April 10th. The

eddy structure is discernible on the OHCM and PSAT temperature-depth profile (Fig 7c). The

Fig 5. Movement tracks of a blue marlin in the South Atlantic. (a) UKF-SST track (blue line), GA-OHC filtered track (black line), and the 95% confidence
intervals (grey shaded area). The green dot indicates the starting location (November 8, 2004) and red dot indicates the end location (Feb 5, 2005). (b)
Longitude and (c) latitude before (blue) and after (black) GA-OHC filter as a function of days at liberty with 95% confidence intervals (red lines). (d)
Comparison of OHC values between UKF-SST and GA-OHC filtered tracks. Black line shows theOHCT estimates from PSAT depth and temperature data;
blue line isOHCM values at the locations determined by the UKF-SST filtered track; and, red crosses are theOHCM values at the locations determined by the
GA-OHC filtered track.

doi:10.1371/journal.pone.0141101.g005
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Fig 6. GA-OHC filter validation comparison. (a), Track based on a hypothetical sinusoidal curve (black),
OHC track (red), and Kalman-filtered track (blue). (b), Track based on a tagged yellowfin tuna from April 7 to
April 29, 2012 (black). GA-OHC filtered tracks were generated with ± 1 standard OHC error for 0% (red), 25%
(green), 50% (light blue), 75% (yellow), 100% (blue) of the total positions. Dots are altered positions of “true”
tracks.

doi:10.1371/journal.pone.0141101.g006
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Fig 7. OHC refinedmovement track of a yellowfin tuna in the Gulf of Mexico. (a) Track position overlain on the OHCmap for April 10, 2012. (b) Track
position overlain on the OHCmap for April 23. (c) PDT from the tagged yellowfin tuna. (d) Track positions overlain on OHCmap for June 30. (e) Track
positions overlain on OHCmap for July 13.

doi:10.1371/journal.pone.0141101.g007

OHC Improves Fish Movement Tracks
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fish left the eddy on April 23 (Fig 7b). For the next two months it moved between weak fronts

on the continental slope. On June 30th, it arrived on the western side of a newly formed eddy

that was shed from the LC (Fig 7d), then proceeded around the boundary to the east side of the

eddy by July 13 (Fig 7e).

The 124 pelagic fishes monitored with PSATs, including yellowfin tuna, blue marlin

(Makaira nigricans), white marlin (Tetrapturus albidus), and sailfish (Istiophorus platypterus),

exhibited a strong preference for fronts and eddies, the dominant features of ocean discontinui-

ties (Table 2). From 2009 to 2013 the area of “ocean discontinuities” accounted for about 18%

of total available habitat (range of 10.6% to 27.1%, mean of 17.9%, standard deviation of 3.8%)

in the GoM and Atlantic Ocean (50°W to 100°W longitude, 0° to 50°N latitude). More than

50% of these tagged fish spent greater than 60% of their time associated with ocean discontinu-

ities. To further highlight these associations, we provide here some individual illustrative

tracks. The yellowfin tuna previously described showed clear preferences for the edges of the

eddy (Fig 8a) and the LC (Fig 7e). Another yellowfin tuna exhibited a high affinity for the edge

of the same eddy located in the center of the GoM (Fig 8b). Remarkably, this particular tuna

swam around the periphery of the eddy many times over 20 days (March 22 to April 11), rarely

crossing over the eddy. One bluefin tuna was observed using the eastern edge of the LC while

in the GoM, then the western edge of the Gulf Stream as it migrated north in the western

North Atlantic Ocean (Fig 8c). Front and eddy edge use were also observed for billfishes. Blue

marlin appeared to prefer the edges of cold- and warm-core eddies, and also the LC (Fig 8d).

Similarly, the edge of the Gulf Stream front was used by white marlin off Cape Hatteras (Fig

8e). Finally, a sailfish monitored in the Florida Keys used the edge of the Florida Current, then

transitioned to the edge of the LC while moving north-northwest in the GoM (Fig 8f).

Discussion

Our validation results (Fig 6 and Table 1) clearly demonstrated that the GA-OHC is effective

in elucidating the “true” track from biased location data. The GA technique was very efficient

in addressing the complexities that have hindered calculus-based methods [41]. No previous

fish tracking studies [47, 48] have incorporated GA methods to match tag SST with satellite

SST data for the purpose of improving location estimates from the light level data. Teo et al.

[47] reported a mean error ranging from 0.73 to 1.41 degrees and standard deviation ranging

from 0.54 to 1.28 degrees, while no error estimates were provided by Domeier et al. [48]. Niel-

sen et al. [37] and Lam et al. [25] included SST data into the KF and UKF state-space model to

estimate the most probable tracks. They reported a standard deviation of 0.5 degree in longi-

tude, and 1.2 degree in latitude. Our validation results are not directly comparable to earlier

studies as regards accuracy basically because we lacked Argos positions from double-tagged

fish for direct comparisons; however, these results did give a relative sense of the method’s pre-

cision. Our GA-OHC method had mean differences less than 0.04 degrees between the “true”

and estimated tracks for both longitude and latitude, and msd of 0.15–0.22 degrees (~15–25

km) for both longitude and latitude when considering OHC errors of ±1 and ±5 kJ cm-2

(Table 1). This represents a large reduction in position error, which is much smaller than meso-

scale eddies (<100 km [49, 50]). While all of these methods do not necessarily require the pres-

ence of a spatial gradient in the data per se (i.e., SST or OHC), it greatly facilitates model fitting.

In tropical and sub-tropical ocean regions SST data are more or less uniform throughout large

areas (Fig 1a), while the OHC data revealed the ocean with mesoscale features such as fronts

and eddies (Fig 1b). Our study showed that OHC gradients are present year-round in the GoM

and South Atlantic Ocean (Table 1) with much higher OHC gradients in the GoM. When the

objective is to explore the relationship between fish migration paths and ocean features, an
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exact geolocation (i.e., errors in SST or OHCmaps) may be less important than when the fish

are in the proximity of these features. Use of an OHC gradient of 50 kJ cm-2 to discriminate

ocean features should produce robust estimates of fish associations with those dynamic ocean

features.

Besides SST and OHC, other variables such as SSH, SSC and ocean current vectors, could be

used to differentiate mesoscale ocean features in oceanographic and ecological studies [10, 13,

43, 51]. However, we did not use them for fish tracking purposes because these variables were

not recorded or estimated by any satellite fish tags under present technologies. The OHC is a

unique metric because it can be estimated from ocean circulation models and satellite tags,

despite not being measured or recorded directly by the sensors presently aboard either satellites

or the electronic fish tags. By combining the power of the genetic algorithm and OHC, the

GA-OHC filtering method could provide, with a little refinement, a powerful tool for improv-

ing the accuracy of movement tracks for satellite tagged fishes.

Through the novel application of OHC in this study, a clear connection emerged between

the behaviors of fish and spatiotemporal dynamics of oceanographic features. The GA-OHC

filtered tracks suggested that fishes use oceanographic habitat features as ecological road maps

to guide migrations. It was not clear whether they were responding directly to the physical fea-

tures, or were searching for prey, where the prey also may have responded to the physical fea-

tures, or both. Ocean fronts and eddies support high biological productivity at all trophic levels

[7, 52], and are well known as “hotspots” of marine fish habitats [4, 53]; however, most of this

knowledge has been garnered from ichthyoplankton surveys [54], recreational and commercial

fisheries catch data, or ecological theory [7, 8]. Compared to UKF-SST tracks (Fig 4a), the

GA-OHC track methodology (Fig 4b) greatly improved the level of detail elucidating fish

movements in a dynamic ocean environment (Figs 7 and 8) over those previously presented

for large pelagic fishes monitored with electronic tags [2]. We believe the reason GA-OHC gen-

erated more realistic movement tracks and revealed previously unknown levels of front and

eddy use during fish migrations was not only due to higher track resolution, but also because

OHC integrates the vertical thermal properties of oceanographic features in a way that is simi-

lar to what fishes do when they naturally swim through those features and use ambient infor-

mation to discriminate zones of ocean discontinuity.

These detailed movement tracks present tremendous implications for the use of satellite tag-

ging data to study fish behavior in relation to habitat features in the seemingly monotonous

seascape of the vast ocean. For example, the GoM is the only known spawning ground for the

bluefin tuna in the western North Atlantic Ocean. The bluefin tuna track (Fig 8c) showed the

fish was located at the eastern edge of the LC, an area known for spawning activity based on

high concentrations of newly hatched larvae [54] and adult bluefin tuna catches [55]. The idea

that ocean fronts and eddies are “hotspots” of marine fish habitats is not necessarily a new

Table 2. Front and eddy utilization by satellite-tracked fish. Summary of proportion of total time at liberty associated with fronts and eddies by individual
PSAT-tagged yellowfin tuna, blue marlin, white marlin, and sailfish based on GA-OHC filtered tracks. Individual tracks were grouped into high, moderate and
low utilization.

Species Number of fish Days at Liberty High >60% Moderate 30–60% Low <30%

Yellowfin tuna [34] 59 3,287 41 16 2

Blue marlin [30, 45] 29 2,730 24 5 0

White marlin [35] 28 3,117 16 12 0

Sailfish [46] 8 988 8 0 0

Species Combined 124 10,122 65 28 2

Percent 52.4% 22.6% 1.6%

doi:10.1371/journal.pone.0141101.t002
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Fig 8. Front and eddy utilization by pelagic tunas and billfishes. (a) A yellowfin tuna along the edge of an eddy in the center of GoM on April 14, 2012. (b)
Another yellowfin tuna along the edge of an eddy in the center of GoM on March 23, 2012. (c) A bluefin tuna along the eastern edge of the Loop Current (LC)
and later along the western edge of the Gulf Stream from April 26 to June 6, 2012. (d) A blue marlin along the eastern edge of the LC on July 12, 2004. (e) A
white marlin along the edge of the Gulf Stream on September 23, 2011. (f) A sailfish at the edge of Florida Current and the eastern edge of the LC fromMay
10 to July 1, 2005.

doi:10.1371/journal.pone.0141101.g008
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concept [4, 9, 53] per se, what is novel is the explicit empirical association of fishes with these

prominent oceanographic features. The inherent physical characteristics of fronts and eddies

are known to concentrate, retain, and enhance the productivity of living resources [7, 8, 56].

While fronts and eddies may only account for a small fraction of the vast ocean, they play a

major role in shaping the seascape of marine ecosystems as key zones of intense predator-prey

interactions across every trophic level.

This study demonstrates that OHCT estimated from PSAT data are precise and can be useful

as another integrated data source to refine OHC maps and improve the prediction of oceanic

states in models. Development of a satellite tag capable of GPS quality location and instanta-

neous transmissions of position and multi-sensor data could be highly beneficial to the

SMARTS system, resolving smaller-scale oceanic variability in the OHCmaps that could

improve hurricane intensity forecasting [28]. Improving OHCmeasurements at the boundaries

of fronts and eddies is essential to the generation of accurate and precise OHCmaps. Because

large pelagic fishes have an affinity for these areas, using a network of satellite-tagged fish to

monitor OHC values and augment other platforms is highly advantageous and cost-effective,

as compared to the more traditional use of XBTs, floats, drifters, and gliders that are very diffi-

cult to keep in these boundary zones. Fish could greatly assist the resolution of structures

around oceanic fronts and eddies at much smaller scales where important air-sea interactions

occur under strong winds.

Given the potential availability of this new GA-OHCmethod, re-analyses of existing satellite

tagging data will almost certainly shed new light on movement and behavior, and afford scien-

tists a powerful tool to develop and investigate new hypotheses. Besides facilitating improve-

ments in track prediction, OHC maps may also be applicable to other aspects of marine

ecosystem research. These might include, for example, replacement of SST maps with OHC as

a primary ecosystem indicator variable to help define, identify, and model essential habitats

and improve estimates of the spatial abundance distribution for fishery abundance forecasts

[57], conservation and management policy [58, 59], reproductive ecology [60], and climate

changes [61].

Supporting Information

S1 Movie. Animated migration track of yellowfin tuna. Filename: ftp://ftp.rsmas.miami.edu/

users/jluo/OHC/track/YFT_OHC_track.mp4.

(MP4)

S2 Movie. Animated migration track of bluefin tuna. Filename: ftp://ftp.rsmas.miami.edu/

users/jluo/OHC/track/BFT_OHC_track.mp4.

(MP4)
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