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Abstract

The potential for climate predictability at seasonal time scales resides in information provided by
the ocean initial conditions, in particular the upper thermal structure. Currently, several
operational centres issue routine seasonal forecasts produced with coupled ocean-atmosphere
models, requiring real-time knowledge of the state of the global ocean. Seasonal forecasting
needs the calibration of the numerical output of the coupled model, which in turn requires an
historical ocean reanalysis, as will be discussed in this paper.

Assimilation of observations into an ocean model forced by prescribed atmospheric fluxes is the
most common practice for initialization of the ocean component of a coupled model. It is shown
that the assimilation of ocean data reduces the uncertainty in the ocean estimation arising from
the uncertainty in the forcing fluxes. Although data assimilation also improves the skill of
seasonal forecasts in many cases, its impact is often overshadowed by errors in the coupled
models. This paper offers a review of the existing ocean analysis efforts aiming at the
initialization of seasonal forecasts. The current practice, known as "uncoupled" initialization, has
often been criticized as having several shortcomings, the initialization shock being one of them.
On the other hand, the uncoupled initialization usually benefits from better knowledge of the
atmospheric forcing fluxes, an advantage that should not be overlooked.

In recent years, the idea of obtaining truly "coupled" initialization, where the different
components of the coupled system are well balanced, has stimulated several research activities
that will be reviewed in light of their application to seasonal forecasts.
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1.Introduction
Seasonal forecasting is now a routine activity in several operational centers around the world. Seasonal
forecasting systems are based on coupled ocean-atmosphere general circulation models that predict both
the lower boundary conditions (namely sea surface temperatures (SSTs)) and their impact on the
atmospheric circulation. This approach is often called a one-tier approach. In a one-tier approach,
forecasting the SST using a fully-coupled model is essentially an initial value problem since predictability
largely resides in the initial state of the ocean. The probabilistic nature of seasonal forecasting is



addressed by performing an ensemble of integrations with the aim of sampling the probability density
function (PDF), primarily for the atmosphere. The uncertainty in the ocean initial conditions should be
considered in the ensemble generation (Vialard et al. 2003). Because of deficiencies in the component
models the coupled model drifts with forecast lead time towards the biased coupled model climate. A
common approach is to remove the drift a posteriori: a set of historical hindcasts is performed to provide
an estimate of the model climatological PDF, which is then used for a-posteriori calibration of the
forecast results. The quality of seasonal forecasts is determined by the various elements of the forecasting
system (the ocean initialization, the coupled model, the ensemble generation and the calibration strategy),
all of which are closely interrelated. The interdependence of the different elements becomes clear when
considering the calibration procedure. The a-posteriori calibration of model output requires an estimate of
the model climatology, which is obtained by performing a series of coupled hindcasts during some
historical period (typically 15-25 years). A historical record of hindcasts is also needed for skill
assessment. Ocean initial conditions spanning the chosen calibration period, equivalent to an ocean
“reanalysis” of the historical data stream, are then required. The interannual variability represented by the
ocean reanalysis will have an impact on both the calibration and on the assessment of the skill.

The skill of the seasonal forecasts is often used to gauge the goodness of the ocean initial conditions
although that may not always be an appropriate measure: the quality of the coupled model will determine
the precision of the assessment - if the major source of forecast error comes from the coupled model,
changes to the ocean initial conditions would have little impact on the forecast skill. This is something to
bear in mind when interpreting results of the impact of the ocean data assimilation on seasonal forecasts.

Although ocean data assimilation is now commonly used to generate ocean initial conditions for seasonal
forecasts, the procedure is not without issues. For instance, the assimilation can improve the forecasts by
correcting the mean state, but it can also introduce problems such as initialization shock. The non-
stationary nature of the ocean observing system can degrade the interannual variability of the ocean initial
conditions if not treated carefully (Balmaseda et al. 2007). This paper discusses the potential benefits and
problems induced by ocean data assimilation, mainly due to the existence of systematic biases in the
coupled system. The paper is organized as follows. Section 2 offers a brief description of the initialization
procedures used in operational seasonal forecasts. The impact of data assimilation in the creation of the
initial conditions and in the seasonal forecasts is presented in sections 3 and 4. A brief review of recent
initiatives towards a second generation of initialization procedures aiming at a balance initialization is
offered in section 5. The paper ends with a summary and main conclusions.

2 Overview of initialization in existing seasonal forecasting systems
Most seasonal forecast systems have a separate initialization of the ocean and atmospheric components of
the coupled system, aiming at generating the best analyses of the atmosphere and ocean through
comprehensive data assimilation schemes in both media. This is the strategy followed in the operational
or quasi-operational seasonal forecasting systems listed in table 1 and described briefly below. It is also
the most common strategy followed in most of the coupled integrations in several research projects, such
as DEMETER and ENSEMBLES, which will not be described in this paper.

The production of seasonal forecasts is expensive: the need for ensembles and calibration implies the
integration of the coupled model for several hundreds of years. This computational burden limits the
practical resolution of the ocean model, which is typically of the order of 1 degree with some equatorial
refinement in the horizontal, and about 10 meters in the vertical in the upper ocean. The emphasis is on
the initialization of the upper ocean thermal structure, particularly the tropics, where the ocean has a
strong driving influence on the atmospheric circulation. The atmospheric analysis in turn has very strong
impact on the quality of the ocean analysis since it provides the fluxes used to drive the ocean model in
the production of the first guess. The atmospheric fluxes are usually provided by an atmospheric re-
analysis system (ERA40, JRA-25, NCEP), and as these are usually limited in duration, the fluxes from
the operational analysis are then used (ops in table 1). A key parameter in the ocean analysis is SST. It is
one of the better-observed variables and the ocean analysis usually does not modify this field greatly.



MRI-JMA http://ds.data.jma.go.jp/tcc/tcc/products/elnino/index.html
Operational
MOVE/MRI.COM-G (1x1 +0.3eq) .50

vertical levels
Multi-variate 3DVAR
JRA-25(1979-2003)+JMA ops fluxes
10 days assimilation cycle+IAU

COBE-SST gridded product
Subsurface T&S (GTS+)
SLA along track from AVISO
MDT analyzed with historical T, S

Weighted mean of clim. (1%)
and model fields is used for FG..

From 1979 onwards
Both Delayed (34-38 days) and

NRT (3-7 days)
Lagged ensemble

ORA-S3 (ECMWF) www.ecmwf.int/ products/forecasts/d/charts/ocean
ECMWF System 3 http://www.ecmwf.int/products/forecasts/d/charts/seasonal/
Operational
HOPE (1x1+0.3 eq). 29 vertical levels
Multivariate OI
ERA40 (1959-2002)+ ECMWFops fluxes
10 day assim cycle+IAU

HadISST+ Reynolds OI v2 SST
Subsurface T&S

(ENACT/ENSEMBLES+GTS)
SLA maps from AVISO
MDT by assimilating T,S

Bias correction (T,S and
Pressure)

10-year relaxation to clim
From 1959 onwards
Both Delayed (12 days) and RT
5-analyses ensemble

POAMA – PEODAS (CAWCR, Melbourne)
In transition to Operations
ACOM-2 Ocean Model Based on MOM2.
ERA-40 (1980-2001)+NCEP2 (2002

onwards) fluxes
3 Day assimilation cycle
Multi-variate ensemble OI

ENACT observational data set T&S
SST from NCEP re-analysis
Time evolving covariances from

ensemble perturbed about main
analysis using forcing perturbations

T&S 3D relaxation to Levitus
with 2year time scale

Ensemble initial conditions from
ensemble of states used for
covariance calculation

GODAS (NCEP) http://www.cpc.ncep.noaa.gov/products/GODAS/
Operational
MOMv3 (1x1 + 1/3 at eq). 40 vertical

levels, 3DVar
NCEP/DOE R2 atmospheric fluxes
12 hour assimilation cycle+IAU

Temperature from NODC,GTSPP
and GTS.

Along Track SLA from Jason-1
SST from Reynolds OIv2.
MDT by assimilation of T,S

From 1979 onwards
Both 14 days and 1 day lags

relative to RT
No relaxation to climate

MERCATOR (Meteo France) http://bulletin.mercator-ocean.fr/html/welcome_en.jsp
Operational
OPA8.2 ORCA2 (2cosx 2° + 0.5° eq.)

reduced order Kalman Filter (SEEK)
ERA-40 (1979-2001) + ops fluxes
7-day assimilation cycle

Reynolds OI v2 SST
Subsurface T&S

(ENSEMBLES+CORIOLIS)
SLA along track from AVISO
Model MDT

10-year relaxation to clim
From 1979 onwards
7 days behind RT

MO (MetOffice) http://www.metoffice.gov.uk/research/seasonal/
Operational
HadOM3/OI (1x1+0.3 eq)
ERA40 (1985-2002)+ ECMWFops fluxes
7 days assim cycle+IAU

HadISST+ Reynolds OI v2 SST
Subsurface T&S

(ENACT/ENSEMBLES+GTS)

Bias correction (Pressure)
From 1985 onwards
3 days behind RT
5-analyses ensemble

GMAO ODAS-1 http://gmao.gsfc.nasa.gov/research/oceanassim/ODA_vis.php
GMAO Seasonal Forecasts: http://gmao.gsfc.nasa.gov/cgi-bin/products/climateforecasts/index.cgi
Operational
Poseidon/OI and EnKF (5/8 x 1/3)
NCEP R1+ SSMI winds GPCP precip
5 day assim cycle+IAU

Reynolds OI v2 SST
Subsurface T&S (NCEP GTS + TAO

+ GDAC Argo)
SLA along-track from JPL (EnKF

only)
Online bias correction for MDT

(EnKF only)

Bias correction (SLA)
From 1993 onwards
Delayed (about 7 days)
3-analyses ensemble

Table1: Summary of different ocean assimilation systems used in the initialization of operational and
quasi-operational seasonal forecasts.

Most of the initialization systems also use subsurface temperature, most recently also salinity (mainly
from Argo), and altimeter derived sea-level anomalies (SLA). The latter usually needs the prescription of
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an external Mean Dynamic Topography (MDT). Some of the initialization systems may use an on-line
bias correction scheme or relaxation to climatology to control the mean state.

2.1 MRI-JMA
The Japan Meteorological Agency (JMA) provides operational information of the real time state of the
ocean and atmosphere in the tropical Pacific associated with ENSO. JMA has also forecast the anomalies
of the monthly mean SST in the NINO3 region (5ºS-5ºN, 90-150ºW) since March, 2008
(http://ds.data.jma.go.jp/tcc/tcc/products/elnino/ index.html). These products are based on a data
assimilation system, MOVE/MRI.COM-G (Usui et al. 2006), and a coupled ocean-atmosphere general
circulation model, JMA/MRI-CGCM (Yasuda et al. 2007). MOVE/MRI.COM-G is the global data
assimilation system composed of the ocean model, MRI.COM (Ishikawa et al. 2005), and the ocean
analysis scheme, MOVE (Fujii and Kamachi 2003; Fujii et al. 2005). The model uses a near-global
domain (75ºS-75ºN) and 50 levels in the vertical. The grid spacing is 1º, with meridional equatorial
refinement to 0.3º within 5ºS-5ºN. The layer thicknesses are less than 10m above 200m depth. The
analysis scheme, MOVE, adopts a multivariate 3-Dimesional Variational (3DVAR) method with vertical
coupled Temperature-Salinity (T-S) Empirical Orthogonal Function (EOF) modes. A nonlinear
observation operator for SLA data, a constraint avoiding density inversion, and a variational quality
control procedure is adopted. The optimal temperature and salinity fields analyzed in MOVE are inserted
into the model using the Incremental Analysis Updates (IAU) technique (Bloom et al. 1996), using an
assimilation cycle of 10 days.

MOVE/MRI.COM-G assimilates satellite SLA data from AVISO (http://www.aviso. oceanobs.com),
the gridded COBE-SST (Ishii et al. 2005), and in situ temperature and salinity profiles. In reanalyses,
temperature and salinity profiles are obtained from the World Ocean Database 2001 (WOD01; Conkright
et al. 2002), the Global Temperature-Salinity Profile Program (GTSPP) database (Hamilton 1994), and
the data of the TAO/TRITON array (Hayes et al. 1991; McPhaden et al. 1998; Kuroda 2002). For the real
time analyses, the in-situ data is acquired via the GTS and some domestic sources (in Table 1)

2.2 ECMWF ORA-S3
The ECMWF Ocean Reanalysis System ORA-S3 (Balmaseda et al. 2008a) has been operational since
August 2006, providing ocean initial conditions for the ECMWF seasonal and monthly forecasts since
March 2007. The ocean data assimilation system for ORA-S3 is based on the HOPE-OI scheme. The
ocean model has a horizontal resolution of 1º with equatorial refinement ( 0.3º meridional resolution
within 5º of the equator).The first guess is obtained by forcing the ocean model with daily fluxes of
momentum, heat and fresh water from the ERA-40 reanalysis (Uppala et al. 2005) for the period January
1959 to June 2002 and NWP operational analyses thereafter. The ORA-S3 system uses a 3D Optimal
Interpolation (OI) scheme to assimilate temperature, salinity, altimeter derived sea-level anomalies and
global sea level trends. The assimilation of altimeter is described in Vidard et al. 2008. Physical
constraints relate the temperature and salinity increments (Troccoli et al. 2002.), density and velocity
increments (Burgers et al. 2002) and sea level and vertical profile displacement (Cooper and Haines
1996). The background temperature, salinity and pressure gradient are bias corrected following the
algorithm described in Balmaseda et al. 2007. A selection of historical and real-time ocean analysis
products can be seen at www.ecmwf.int/ products/forecasts/d/charts/ocean. The subsurface observations
come from the quality-controlled dataset prepared for the ENACT and ENSEMBLES projects until 2004
(Ingleby and Huddleston, 2006), and from the GTS thereafter (ENACT/GTS). The altimeter data used are
global gridded weekly maps from 1993 onwards (Le Traon et al., 1998). The model SSTs are strongly
relaxed to analyzed daily SST maps from the OIv2 SST product (Reynolds et al., 2002) from 1982
onwards. Prior to that date, the same SST product as in the ERA-40 reanalysis was used.

In ORA-S3, the introduction of a bias correction algorithm with both prescribed and adaptive components
has improved the representation of the inter-annual variability of the upper ocean heat content. However,
there may still be problems with the representation of the variability in very poorly observed areas such as
the Southern Ocean and also in the salinity field. ORA-S3 consists of an ensemble of five simultaneous
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reanalyses, aiming at sampling uncertainty in the ocean initial conditions, and thereby contributing to the
creation of the ensemble of forecasts for the probabilistic predictions at monthly and seasonal ranges.

2.3 MERCATOR-Meteo France
Mercator-Ocean has provided ocean initial conditions for the Météo-France ocean-atmosphere coupled
system since September 2004. These ocean initial conditions are produced with PSY2G2 operational
ocean analysis / forecasting system based on the OPA8.2 ocean model (ORCA2 model configuration,
Madec et al. 1998) and on a reduced order Kalman filter data assimilation scheme. The ocean model has a
horizontal resolution of 2.cosx 2° with an equatorial meridional refinement of ~0.5° resolution near the
equator.The ocean model is forced with daily fluxes of momentum, heat and fresh water from the ERA-40
reanalysis for the period January 1979 to December 2001 and from the operational analysis thereafter. It
assimilates subsurface temperature and salinity, SLA data and SST maps. The subsurface data comes
from the ENACT/ENSEMBLES data base until 2001. Afterwards, data are quality controlled and
provided by the CORIOLIS data center (http://www.coriolis.eu.org) both in delayed mode and real-time.
The altimetric data are along-track SLA provided from November 1992 onwards by SSALTO/DUACS.
The assimilated SST product is used as boundary conditions in the atmospheric analyses subsequently
used to force the ocean model (ERA-40 and ECMWF operational analyses after 2001).

The data assimilation scheme is a reduced order Kalman filter based on the SEEK formulation (Pham et
al. 1998). The control vector is composed of the temperature and salinity fields and the barotropic height.
The forecast error covariance is based on the statistics of a collection of 3D ocean state anomalies
(typically a few hundred) and is seasonally variable. In this case, the anomalies are high pass filtered
ocean states available over the period 1992-2001 sampled every 3 days. The analysis produces
temperature and salinity as well as barotropic velocity increments. Physical balance operators are used to
deduce zonal and meridional velocity fields from these increments.

2.4 POAMA – PEODAS (CAWCR)
The Predictive Ocean Atmosphere Model for Australia (POAMA) is a dynamical seasonal prediction
system developed by the Centre for Australia Weather and Climate Research (CAWCR: an adjunct
centre of the Australian Bureau of Meteorology and CSIRO). One of the major new developments in
POAMA is a new ocean data assimilation system called PEODAS (POAMA Ensemble Ocean Data
Assimilation System. The system is based on multivariate ensemble Optimum Interpolation (Oke et al.
2005) where the background error covariance is calculated from an ensemble of ocean states. Unlike Oke
et al. (2005) which uses a static ensemble, PEODAS uses a time evolving ensemble to calculate a time
dependent multivariate error covariance matrix. An ensemble is run in parallel to the main analyses by
perturbing the ocean model forcing about the main analysis run, using a method developed by Alves and
Robert (2005).

An ocean re-analysis has been conducted from 1977 to 2007, assimilating temperature and salinity
observations from the ENACT/ENSEMBLE project. During the assimilation, temperature and salinity
were relaxed to monthly climatology through the water column with an e-folding time scale of 2 years.
The model SST was strongly nudged to the SST product from the NCEP re-analysis with a 1-day time
scale.

2.5 NCEP
The NOAA/NCEP Global Ocean Data Assimilation System (GODAS) (Behringer, 2007) was developed
as a replacement for the earlier Pacific Ocean system and was made operational in 2003. It has provided
the oceanic initial conditions for seasonal and interannual forecasting with the NCEP coupled Climate
Forecast System (CFS) (Saha et al., 2006) since 2004. The GODAS is based a quasi-global configuration
of the GFDL MOMv3. The model domain extends from 75OS to 65ON and has a resolution of 1O by 1O

enhanced to 1/3O meridionally within 10O of the equator. The model has 40 levels with a 10 meter
resolution in the upper 200 meters. The GODAS is forced by momentum, heat and fresh water fluxes
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from the NCEP/DOE atmospheric Reanalysis 2 (R2) (Kanamitsu et al. 2002) which is maintained
operationally at NCEP. In addition to the R2 forcing, the temperature at the top model level is relaxed to a
weekly OI analysis of sea surface temperature (Reynolds et al., 2002) and the surface salinity is relaxed to
an annual climatology. The assimilation method is a 3DVAR scheme derived from the work of Derber
and Rosati (1989). Some of the improvements that have been made include the incorporation of revised
background error covariances that allow for spatial and temporal variation of the local error variance
(Behringer et al. 1998) and the assimilation of satellite altimetry data (Vossepoel and Behringer, 2000;
Behringer, 2007). The GODAS assimilates temperature profiles from XBTs, from TAO, TRITON and
PIRATA moorings and from Argo profiling floats (The Argo Science Team, 2001). For use in ocean
reanalysis, XBT observations made prior to 1990 have been acquired from the NODC World Ocean
Database 1998 (Conkright et al., 1999), while XBTs made subsequent to 1990 have been acquired from
the Global Temperature-Salinity Profile Project (GTSPP) (Hamilton, 1994). For use in operations,
temperature profile data are acquired via the GTS. The GODAS also assimilates synthetic salinity
profiles which are computed for each temperature profile using a local T-S climatology based on the
annual mean fields of temperature and salinity from the NODC World Ocean Database. Finally, the
GODAS assimilates along-track Jason-1 altimetry data that NCEP receives through a direct link from the
US Naval Oceanographic Office in the form of Interim Geophysical Data Records. Only the variable part
of the altimetry is assimilated. The variability of the altimetry is determined relative to the 1993-1999
mean of a consolidated TOPEX/Jason-1 data set. The mean dynamic topography (MDT) of the model is
computed for the same time period from a GODAS run that assimilates only temperature and salinity.
Products derived from the GODAS can be found at www.cpc.ncep.noaa.gov/products/GODAS/.

2.6 Met Office
The Met Office seasonal ocean data assimilation system has been operational since March 2004 to
provide ocean initial conditions for the Met Office seasonal forecasting system (GloSea3). The
assimilation uses an optimal interpolation scheme based on the ocean component of the GloSea model
which has a horizontal resolution of 1º with equatorial refinement (0.3º meridional resolution within 5º of
the equator). The first guess is obtained by forcing the ocean model with daily fluxes of momentum, heat
and fresh water from the ERA-40 reanalysis for the period January 1985 to June 2002 and ECMWF’s
NWP operational analysis thereafter. It assimilates subsurface temperature and salinity. The subsurface
observations come from the quality-controlled dataset prepared for the ENACT and ENSEMBLES
projects until 2004, and from the ENACT/GTS. The model SSTs are strongly relaxed to analyzed daily
SST maps from the OIv2 SST product.

2.7 GMAO
The GMAO Ocean Data Assimilation System Version 1 (ODAS-1), using an Ensemble Kalman Filter
(EnKF, Keppenne et al . 2008) has been operational since 2005, providing ocean initial conditions for the
GMAO seasonal forecasts since March 2007. The ODAS-1 system using univariate OI has provided
initial conditions for seasonal forecasts since 2000. The ocean model domain is almost global, having a
sponge layer boundary at 72ºN and at the Strait of Gibraltar. The horizontal resolution is 5/8º zonally and
1/3º meridionally, and there are 27 quasi-isopycnal vertical layers. The first guess is obtained by forcing
the ocean model with daily fluxes of heat from the NCEP CDAS1 reanalysis, with momentum from an
SSM/I analysis until 2002 and a QuikSCAT analysis after September 2002, and with monthly mean
freshwater fluxes using GPCP. The ocean analyses have been generated from January 1993 to the
present. The systems assimilate subsurface temperature and salinity, including synthetic salinity derived
for temperature using a T-S climatology. The subsurface observations come from GTS data quality-
controlled by Dr. David Behringer of NOAA/NCEP, from the TAO data portal, and from the Argo
GDAC at FNMOC. The altimeter data from the JPL/PODAAC are assimilated as along-track data from
1993 onwards in the EnKF. The model SSTs are strongly relaxed to analyzed daily SST maps from the
OIv2 SST product and the model sea surface salinity is relaxed to the Levitus-Boyer climatology.

The ODAS-1 OI is implemented both with a salinity correction scheme following Troccoli and Haines
(1999) and with a univariate assimilation of synthetic and Argo salinity profiles in addition to the



univariate assimilation of temperature profiles (e.g., Sun et al., 2007). The ODAS-1 EnKF system
includes an on-line bias correction algorithm for the assimilation of altimeter data (Keppenne et al.,
2005). A selection of historical and real-time ocean analysis products can be seen at
http://gmao.gsfc.nasa.gov/research/oceanassim/ODA_vis.php.

The GMAO seasonal forecasts using the CGCMv1 are initialized with all three analyses. In addition,
perturbed analyses are generated for the analysis with the Troccoli-Haines salinity correction, by merely
adding small perturbations according to analyses close to the central time of the forecast initialization. An
additional multivariate analysis has also been tested based on coupled bred vectors and shows promise for
capturing the state-dependent covariances relevant to the coupled problem and for improving the forecast
skill (Yang et al., 2008).

3 Impact of assimilation on the ocean initial conditions

The simplest technique for ocean initialization is to run an ocean model forced with observed wind stress
and with a strong relaxation of the model SST to observations. Such stand-alone integrations are referred
to as control runs (CNTL) in what follows. This technique would be satisfactory if errors in the forcing
fields and ocean model were small. However, surface flux products, even wind stress, as well as ocean
models are known to have significant errors.

Figure 1: Averaged temperature in the upper 300m in the Equatorial Atlantic region resulting from ocean model
integrations forced by fluxes from ERA15/OPS (red) and ERA40 (blue) . The upper panel shows the results from
the CNTL integration, i.e., without data assimilation. The large uncertainty in the ocean state can be reduced by
assimilating ocean data (lower panel).

The uncertainty induced in the ocean state can be measured by using a different wind product to force the
same ocean model. Figure 1a shows the evolution of the upper heat content anomalies, as measured by
the averaged temperature in the upper 300m (T300) in the equatorial Atlantic (5N-5S) from two different
CNTL integrations using the ECMWF ocean model. The red line shows the results from the run forced by
ERA15/OPS winds, while the red line shows results from the run that uses ERA40 winds. The differences
in upper ocean heat content are of the same order as the interannual variability. Figure 1b shows the same

Equatorial Atlantic: T300 anomalies. No assimilation

Equatorial Atlantic: T300 anomalies. Assimilation

http://gmao.gsfc.nasa.gov/research/oceanassim/ODA_vis.php


diagnostics when data assimilation is included. These results demonstrate that in order to constrain the
interannual variability of the ocean it is necessary to use some data assimilation.

A different question is whether the data assimilation not only constrains the solution, but improves the
estimation of the ocean, both mean state and variability. A first test is to verify that the assimilation
improves the fit to the observations used. A more stringent test is to verify against independent data, such
as velocity, which is usually not assimilated. As an example, figure 2 shows how different ocean analyses
fit the TAO temperature, salinity and zonal current , in terms of the root mean square (RMS) error of
inter-annual anomalies for the full period that the measurements were available (different for each
variable). Shown are the PEODAS analysis (black line), the ECMWF ORA-S3 (red line), and a control
integration, a re-analysis using the PEODAS configuration but without assimilating any sub-surface data
(blue line). Also shown is the old POAMA ocean analysis, a predecessor of PEODAS. Both temperature
and salinity data from TAO moorings were assimilated in PEODAS and ECMWF ORA-S3. No current
data was used in any case, so comparison with the TAO mooring measures how well a balanced state is

Figure 2. RMS error of interannual
anomalies of (a) temperature, (b) salinity and
(c) zonal current. Shown are the PEODAS
reanalysis (black), the old POAMA re-
analysis (green), the ECMWF ORA-S3 (red)
and the Control simulation (blue). The
verifying observations are from the TAO
mooring at location 165E.



being produced by the assimilation. The control integration has the same relaxation to sub-surface T and
S as PEODAS, which helps to maintain a reasonable mean state (in other studies the integrations used as
controls that did not have this relaxation). The old POAMA ocean data assimilation system is a univariate
2-dimensional OI, which assimilate temperature observations only using static Gaussian covariances as in
Smith et al. (1991). There are other differences between POAMA and PEODAS: the relaxation to
subsurface climatology (none in POAMA), the forcing fluxes (NCEP-1 in POAMA and ERA40 in
PEODAS), and different physics in the ocean model.

The differences between the PEODAS and POAMA in figure 2 illustrate the advances in data
assimilation in recent years. POAMA exhibits the typical behaviour of the first generation of ocean
analysis: improved fit to the assimilated observations (temperature in figure 2a) compared to CNTL, but
degraded fit to the salinity and velocity data (figures 2b and c). More recent assimilation systems (all
those described in section 2, although in the figure 2 only PEODAS and ECMWF are shown) use
physical constraints between temperature and salinity, and between density and currents. Most of the
current analysis systems also assimilate salinity, which leads to considerable improvements in the salinity
field (figure 2b). The importance of the balance relationship between temperature and salinity for the
representation of the barrier layer is discussed below. In the new assimilation systems, the equatorial
currents are not particularly degraded, being comparable to the CNTL integration. This is probably the
result of several contributions: multivariate constraints, improvement in ocean models and in forcing
fluxes.

3.1 Impact of assimilation in representation of the barrier layer

The impact of the assimilation scheme on the representation of the barrier layer has been discussed by
Fujii et al. (2008b), using the MOVE assimilation system. MOVE applies vertical coupled T-S EOF
modes as the control variables, which allows consistent correction of the model temperature and salinity
fields. In particular, the model salinity field is properly modified with the information from the
temperature correction through the T-S relation even if few salinity observations are available. In order to
examine the effect of the salinity corrections, two types of data assimilation experiments (T+S and NOS)
have been performed with MOVE/MRI.COM-G. Temperature and salinity corrections are applied in T+S,
while in experiment NOS only the temperature increments are applied.

There is a large difference in the subsurface salinity field in the equatorial Pacific between T+S and
NOS (figure 3). High salinity associated with the South Pacific Tropical Water (SPTW) is estimated

Figure 3: Vertical sections of climatological salinity fields along 160ºE (left) and 110ºW (right)
between 20ºS and 20ºN in T+S (top) and NOS (bottom). Units are psu.



inadequately low in NOS. The moderate vertical contrast of the salinity fields in NOS implies that density
instability is induced by forced temperature modification without proper salinity adjustment. This is the
common feature of the conventional assimilation system where temperature field alone is modified
without salinity correction (e.g., Troccoli et al. 2002). The salinity field is however properly reproduced
in T+S.

The salinity bias in NOS can degrade the temperature field. Figure 4 shows the variation of the barrier
layer thickness and the difference of the warm water heat content between T+S and NOS at the equator.
The warm water heat content is defined as the heat content in the water exceeding 28ºC. The thick barrier
layer is displaced according to the ENSO cycle. It moves to the eastern equatorial Pacific in the large El
Niño period (1997) and temporally disappears after that. The position of large positive difference of warm
water heat content has a good correspondence with the position of thick barrier layer. The barrier layer
tends to increase the heat content in the warm water by avoiding vertical mixing in T+S. The low salinity
bias of SPTW, however, weakens the density stratification caused by vertical salinity gradient, and
prevents the formation of a substantial barrier layer, which results in the reduction of warm water heat
content in NOS. Thus, salinity correction improves the subsurface temperature field by estimating the
vertical density stratification properly.

4 Impact of initialization on seasonal forecasts

4.1. Impact of initialization in the ECMWF seasonal forecasting system.
Alves et al. (2003) found that data assimilation improved the skill of the seasonal forecasts using one
version of the ECMWF coupled model. Since the impact of data assimilation is likely to be model
dependent, the same question is revisited in this paper using the results from other seasonal forecasting
systems. The impact of initialization on the mean state, variability and skill of coupled forecasts at

Figure 4: Left: longitude-time section of the barrier layer thickness (m) at the equator in T+S.
Right: longitude-time section of the difference of the warm water heat content (kcal·cm2) between
T+S and NOS (T+S minus NOS) at the equator.



seasonal time scale has been revisited by Balmaseda et al. (2008b), using the latest ECMWF seasonal
forecasting system (S3) (Anderson et al. 2007).

There are three experiments where the initial conditions have been produced by (i) the ORA-S3 ocean
reanalysis system, (ii) the ocean model forced by the same atmospheric fluxes from reanalysis winds but
without data assimilation, and (iii) the ocean model forced by atmospheric fluxes produced by the
atmospheric model forced by observed SST, as in Luo et al. (2005). In the three cases, SST analyses are
used to constrain the ocean initial conditions. In method (i), the coupled system thus starts close to the
observed state but it is not obvious that this leads to the most skillful forecasts as the method can have
undesirable initialization shocks. Method (iii) can reduce the initialization shock since the atmosphere and
ocean models will be in closer balance at the start of the coupled integrations. The three experiments can
also be seen as observing system experiments. Differences between (i) and (ii) are indicative of the
impact of ocean observations, and comparison of (ii) and (iii) are indicative of the impact of the
atmospheric observation that were used to produce the atmospheric reanalysis. In what follows we refer to
these methods as ALL, NO-OCOBS and SST-ONLY experiments.

A series of 7-month, 5-member ensemble coupled hindcasts spanning the period 1987-2000, 3 months
apart, was performed with initial conditions from each method. Figure 5 shows that both the mean state
and the interannual variability are sensitive to the initialization method. In the Eastern Pacific (NINO3,
left panel), ALL shows the strongest warm bias, which is symptomatic of the existence of initialization
shock: the coupled model is not able to maintain the slope of the thermocline in the initial conditions, and
fast dynamic adjustment takes place through a downwelling Kelvin wave. In experiment SST-ONLY the
model drifts into a cold state, likely related to a too shallow thermocline in the initial conditions. The bias
is close to zero in experiment NO-OCOBS. In the Central and Western Pacific (NINO4, right panel) the
smallest bias is obtained with experiment ALL, and the worst with experiment SST-ONLY. The
amplitude of the interannual variability seems to be related to the magnitude of the bias. In NINO3, the
least activity occurs in the presence of warm bias, suggestive of convective processes setting an upper
limit to the amplitude of SST. In NINO4 the experiment cold bias is accompanied by too much
variability, consistent with the upwelling being overestimated in this region.

Figure 6 shows the impact on forecast skill for various regions in table 2. The relative reduction in
the monthly mean absolute error (MAE) resulting from adding information from the ocean and/or
atmosphere observations for forecast range 1-3 months (left) and 4-7 months (right). The Western
Pacific (EQ3) is the region where the observational information has largest impact: the combined

Figure 5. Top: forecast
drift as a function of
forecast lead time for 4
start months in regions
NINO3 (left) and NINO4
(right) for experiments
ALL (red), NO-OCOBS
(blue) and SST-ONLY
(green).
Bottom: variance ratio as
a function of lead time
for the same experiments
averaged over all start
months.



the information of ocean and atmospheric observations can reduce the MAE more than 50% in the
first 3 moths. With the exception of the Equatorial Atlantic (EQATL), the best scores are achieved
by experiment ALL. This means that for the ECMWF system, the benefits of the ocean data
assimilation and the use of fluxes from atmospheric (re)analyses more than offset problems arising
from initialization shock.

Figure 6: Impact of initialization in forecast skill for different regions, as measured by the reduction in mean
absolute error for the forecast range 1-3 months (left) and 4-7 months (right). Solid bars indicate differences are
above the 80% significance level. The comparison is done for the period 1987-2000. Blue indicates the differences
between strategy i and ii which differ in the use of ocean observations. Red (ATOBS) indicates differences between
ii and iii, which differ in the use of atmospheric data, while grey (OC+AT) gives differences between i and iii and
represents the combined impact of atmospheric and oceanic data.

Table 2: Definition of area average indices

NINO12: 10-0ºS, 90-80ºW
NINO3 5ºS-5ºN, 90-150ºW
NINO34 5ºS-5ºN, 170-120ºW
NINO4 5ºS-5ºN, 160ºE-150ºW
EQ3 5ºS-5ºN, 150ºE-170ºW
NINO-W 0º-15ºN, 130º-150ºE

EQPAC 5ºS-5ºN, 130ºE-80ºW
EQIND 5ºS-5ºN, 40º-120ºE
WTIO 10ºS-10ºN, 50º-70ºW
STIO 10ºS-0ºN, 90º-110ºE
EQATL 5ºS-5ºN, 70ºW-30ºE
NSTRATL 5ºN-28ºN, 80ºW-20ºE

4.2. Impact of initialization in the POAMA seasonal forecasting system.

In the previous section it was shown that the PEODAS ocean re-analysis is an improvement with respect
to the previous POAMA version and with respect to the Control (no data assimilation). This section
shows that these improvements lead to better forecast skill of SST at seasonal time scales. For each re-
analysis a set of hindcasts starting each month from 1980 to 2001 were produced, the individual hindcasts
consisting of three ensemble members each. For the PEODAS re-analysis a 3-member ensemble was
generated using the main PEODAS re-analysis and two other perturbed members. For the Control a 3-
member ensemble was also generated, however this time by using the same ocean initial conditions (since
perturbed states were not available) and taking atmospheric initial conditions six hours apart. For the old
POAMA re-analysis a 3-member ensemble was generated by taking atmospheric initial conditions six
hours apart.

Forecast Range: 1-3 months. Period 1987-2000
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Figure 7 shows the NINO3 forecast skill with lead time for forecasts from each set of re-analysis. The
skill curves are base on 3-member ensemble means. Forecasts using PEODAS initial conditions shows
significantly more skill than those using the control or the old POAMA assimilation initial conditions..
Forecasts using the control initial conditions show skill at least comparable, if not slightly better, than
forecasts using the old POAMA assimilation, which could be related to the results shown in figure 2,
comparing the analysis with the TAO observations. While the old re-analysis had a similar fit to observed
temperature as the new re-analysis and control, the old re-analysis showed a considerably worse fit for
salinity and zonal current. This result can be taken as an indication that, for the assimilation to improve
forecast skill, it is important to keep the dynamical and physical balance among variables, and therefore
all variables, not just those directly constrained by observations, should show consistent improvement.

4.3 Observing System Evaluation in MRI-JMA
Observing System Evaluation (OSE) is essential to demonstrate the necessity for sustaining the

observing system. The effect of assimilating TAO/TRITON array and Argo float data in
MOVE/MRI.COM-G and its impact on the JMA seasonal forecasting system has been evaluated by Fujii
et al. (2008). Three assimilation runs (ALL, NTT, NAF) were performed first. All available observation
data is assimilated in ALL. Data from the TAO/TRITON array is excluded in NTT. Data from Argo is
excluded in NAF. Sets of 11-member ensemble forecasts were then started from January 31st, April 26th,
July 30th, and October 28th in 2004-2006. The ensemble is generated by adding perturbation to the
gridded SST data (COBE-SST) in the last 10-day data assimilation cycle. Figure 8 shows Root Mean
Square Errors (RMSEs) of the 0-6 month forecasts of monthly SST anomalies averaged in different
regions (defined in Table 2). Here, the 0-month forecast refers to the average in the first month of the
forecast, and the RMSEs are normalized by the equivalent RMSEs for persistence forecasts. It should be
noted that the forecast bias is estimated for each initial month, each lead time, and each experiment, and
removed before calculating RMSEs. The differences of RMSEs between ALL and NTT show that
TAO/TRITON data has relatively large impact on the forecast of NINO3 and NINO34 regions. The
significance levels for the hypothesis that ALL has smaller RMSEs are about 90% for both regions. Thus,
TAO/TRITON data has a potential for improving the forecast of SST in the eastern equatorial Pacific. On
the other hand, RMSEs for CTL is smaller than those for NAF in the all regions. The significance level is
more than 70% in all areas other than WTIO, demonstrating that Argo floats are effective and
indispensable observations for the prediction of the SST in the tropical Pacific and Indian Oceans. Similar
results have been obtained with the ECMWF seasonal forecasting system (Balmaseda et al. 2008).

Figure 7: Skill in NINO3 SST
forecasts. The red curves are
from forecasts initialized by the
old POAMA assimilation system
(different realizations of 3-
member ensembles taken from
the full 10 member ensemble),
navy blue uses the PEODAS re-
analysis, green uses the control
re-analysis (with no assimilation
of sub-surface data).



4.4 MERCATOR-OCEAN & Météo-France

The improvement in seasonal forecast skill is also exemplified by
Figure 9 shows the anomaly correlation coefficient of the SST fo
Mercator-Ocean/Météo-France coupled system version 2 and the
improvement between version 2 and 3 is the assimilation of in situ
It should also be noted that the model SST is more realistically co
with a realistic error and not simply strongly nudged towards the o
atmospheric model can also be responsible for the differences.
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4.5 Impact of ECCO Ocean State Estimation on ENSO Forecast

In an early attempt, Dommenget and Stammer (2004) investigated the impact of ocean state estimates
produced by the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) on
seasonal forecast of tropical Pacific SST and subsurface fields. For that purpose the MIT model was used
in two distinct settings for ENSO simulation and prediction studies. The first setup served as a control run
and was a traditional but simple approach to assimilate SST and wind stress fields into a model, which
was used subsequently for seasonal ENSO forecasts (Barnett et al. 1993). Results from this simple control
run were compared to similar results that were obtained in a second approach by using a full ocean state
estimation procedure. This procedure used the MIT adjoint model (Marotzke et al. 1999) to obtain a
solution of the time-varying ocean on a 2x2 degree grid over the period 1992 through 2000 that is
consistent with WOCE and remote-sensing datasets. As compared to similar results from a traditional
ENSO simulation and forecast procedure, the hindcast of the constrained ocean state is significantly
closer to observed surface and subsurface conditions. The skill of the 12-month lead SST forecast in the
equatorial Pacific is comparable in both approaches. The optimization appears to have better skill in the
SST anomaly correlations, suggesting that the initial ocean conditions and forcing corrections calculated
by the ocean-state estimation do have a positive impact on the predictive skill. However, the optimized
forecast skill is currently limited by the low quality of the statistical atmosphere. Progress is expected
from optimizing a coupled model over a longer time interval with the coupling statistics being part of the
control vector.

More recently ECCO-JPL results were used to initialize a fully coupled ocean-atmosphere model. The
ECCO-JPL system uses the MIT Ocean General Circulation with a near global domain (75°N-75°S). The
resolution is 1° zonally, 0.3° meridionally in the tropics, telescoped to 1° in the extratropics. There are 46
vertical levels with a 10-m thickness in the upper 150 m. The model uses Gent and McWilliams and KPP
mixing schemes. A Kalman filter and smoother method is used to assimilate sea level anomaly and in-situ
temperature profiles into the model. More details of the model configuration and assimilation method can
be found in Lee et al. (2002) and Fukumori (2002). The UCLA atmosphere model has a resolution of
4°x5° with 15 vertical layers. It is coupled to the ECCO-JPL version of the MITGCM using UCLA Earth
System Model (ESM) and the Earth System Modeling Framework (ESMF) couplers. No flux correction is
involved. Additional description of the coupled model and its behavior can be found in Cazes-Boezio et
al. (2008). The ECCO-JPL Kalman-filter based analysis has also been used to initialize SI prediction
routinely by the Experimental Climate Prediction Center in Scripps Institution of Oceanography
(http://ecpc.ucsd.edu/) where the NCEP spectral atmospheric model is coupled to the MIT OGCM
(Yulaeva et al. 2008).

The impact of the ocean data assimilation on ENSO forecast is tested using the ECCO-UCLA coupled
system (Cazes-Boezio et al. 2008) by initializing ENSO hindcasts with the states obtained from ECCO-
JPL ocean model simulation and assimilation, respectively. The hindcasts initialized from the assimilation
have better skill than those initialized from the simulation in terms of RMS deviation and correlation from
observed SST as well as persistence (example shown in Figure 10).

http://ecpc.ucsd.edu/


5 New developments on coupled model initialization
In theory, any initialization strategy for seasonal forecast should provide initial conditions which are a
reliable representation of the real world conditions relevant for the seasonal predictions, and which the
coupled model is able to evolve to produce as accurate forecasts as possible. In practice, due to model and
initialization deficiencies, this is difficult to achieve. For instance, depending of the sort of model errors,
it is possible for an improved ocean analysis to adversely impact the forecast skill: this can happen if the
so called initialization shock, due to imbalanced initial conditions, plays a role in the skill of the forecast.
The a-posteriori drift correction mentioned above will work provided that the initialization shock does not
project onto the system’s non-linear regime. Alternative initialization strategies aimed at avoiding the
initialization shock are currently being explored in different institutions, and a brief discussion of their
potential will be offered in this section.

5.1.Coupled 4D-var

Fig 10 : Improvement of seasonal climate
forecast by using ECCO-JPL product as initial
state in a coupled model (UCLA atmos. Coupled
to MITOGCM). Baseline is the forecast
initialized from an oceanic initial state derived
from the MITGCM forced by NCEP forcing.
ECCO is the ECCO JPL Kalman-filter smoother
assimilation product based on MITOGCM.

From Cazes-Boezio, Menemenlis, and Mechoso,
2008

Figure 11. Time series of the Dipole Mode
Index of the observation (black solid curve)
and the ensemble means of the model runs
(black dotted: the first guess field, red: ANL,
blue: IC, purple: PRM, green: IC+PRM).
Hatched regions indicate ensemble spreads.
From Sugiura et al. (2008).



Sugiura et al. (2008) report results from a coupled four-dimensional variational (4D-VAR) data
assimilation system for a global coupled ocean-atmosphere model. Both initial conditions, and parameters
controlling the air-sea interaction, can be modified by the analysis system. They demonstrate the
feasibility of the 4D-VAR coupled data assimilation (CDA), and its positive impact on the estimation of
climate processes during the 1996-1998 period. Several key events in the tropical Pacific and Indian
ocean sector (such as the El Nino, the Indian ocean dipole and the Asian summer monsoon) are
successfully represented by the CDA. Results suggest that the 4D-VAR CDA approach has the potential
to correct the initial location of the model climate attractor based on observational data. Seasonal
forecasts for the period 1997-98, using initial conditions produced by the 4D-VAR CDA were successful,
suggesting that the system has the potential for initialization of coupled ocean-atmosphere models for
seasonal and interannual predictions.

Figure 11 shows the results of 11-member coupled experiments conducted to investigate the relative
importance of controlling the initial conditions (IC) versus the bulk formula parameters (PRM) in the
representation of the Indian Ocean Dipole Mode Index (DMI) during 1996-1998. In experiment IC+PRM
both the oceanic initial condition and climatological monthly mean bulk adjustment factors averaged over
the entire 1996-1998 period are optimized. The figure also shows the results from the coupled 4D-Var
analysis (ANL) and observations. The IC run (blue curve) reproduces the growth process during positive
DMI, while the PRM run (purple curve) captures the development reasonably well. However, the
magnitude of the DMI in the PRM run is considerably smaller than that in the observation and in the ANL
case. This is likely the result of poor initialization. The best results are from experiment IC+PRM, where
most of the features of the DMI time series are within the ensemble members. However, the peak values
of the DMI in the IC+PRM run (the green curve) are somewhat smaller than the observed values (the
black curve).

5.2 GMAO
The GMAO is pursuing two approaches to improving the initialization of coupled seasonal forecasts. The
first uses coupled bred vectors to improve the ensemble suite by generating perturbations that are coupled,
rather than using perturbations in the separate uncoupled components. The aim of bred vectors (BVs) is
to capture the uncertainties related to the slowly varying coupled instabilities, especially ENSO
variability. Yang et al. (2008) shows that the BVs improve the ensemble mean SST forecasts (Figure 12)
and are generally better than the set of ensembles generated in an uncoupled fashion in the current
operational system. The study shows that these BVs also capture information on flow-dependent
uncertainty that can be used for background error covariances in the ocean assimilation and improves the
water mass distribution in the analyses. One case study shows that the multivariate assimilation using
BVs improves the salinity representation in 2006 and has a positive impact of the forecasts initialized in
June 2006 when there is a saline intrusion across the equator in the eastern equatorial Pacific (not shown).
The primary issue with the current implementation of BVs is that the rescaling norm is focused on the
equatorial Pacific structures and this can be detrimental to the forecast SST outside the equatorial Pacific
band (see Figure 12). The second thrust is to undertake the ocean assimilation within the GEOS-5 coupled
model that will be used for the next seasonal forecast implementation. This assimilation system, ODAS-2,
has been tested with MOM4 using pre-computed multivariate background error statistics and a replay of
the GMAO atmospheric analysis at 2° resolution. The goal for the next system is to merge these two
developments under an EnKF framework with GEOS-5.



Figure 12: Forecast SST anomaly correlations with observations at the 9th-month lead time for forecasts
initialized from May (upper row) and November (lower row). The left-hand column shows the result for
a 4-member BV ensemble; the middle column shows the single member control; and the right-hand
column shows the difference (BV-control).

5.3. Coupled EKF at GFDL
A fully coupled data assimilation (CDA) system, consisting of an Ensemble Kalman Filter (EKF) applied
to the GFDL global coupled climate model (CM2.1), has been developed to facilitate the detection and
prediction of seasonal-to-multidecadal climate variability and climate trends (Zhang et al. 2007). The
assimilation provides a self-consistent, temporally continuous estimate of the coupled model state and its
uncertainty, in the form of discrete ensemble members, which can be used directly to initialize
probabilistic climate forecasts. Because all components of the CDA-estimated coupled model state are
expected to be in a dynamical balance at any instant in time, the initial shock of coupled model forecasts
initialized from CDA products is expected to be minimized. The CDA solves for a temporally varying
probability density function (PDF) of climate state variables by combining the PDF of observations and a
prior PDF derived from the dynamic coupled model. The resulting temporally varying PDF is a complete
solution for the coupled data assimilation problem. Using the covariances evaluated by the ensemble
coupled integrations, the system is able to maintain the physical balance between different state variables.
The system is currently configured for assimilating both atmospheric and oceanic observations although,
other components (e.g., land and sea ice) can be added. The atmosphere model with a finite volume
dynamical core has 24 vertical levels and 20 latitude by 2.50 longitude horizontal resolution. The ocean
component is MOM4 configured with 50 vertical levels (22 levels of 10m thickness each in the top 220m)
and 10 X 10 horizontal B-grid resolution, telescoping to 1/30 meridional spacing near the equator.
An ocean analysis from 1979 – 2008 using the CDA system has been completed and may be found at
http://data1.gfdl.gov/nomads/forms/assimilation.html. Since the purpose here is to produce an ocean
analysis the atmospheric data that was assimilated was taken from the NCEP reanalysis 2. The ocean
assimilates temperature and salinity data from XBT, CTD, MBT, and Argo as well as SST from the
Reynolds SST product.

Retrospective one year forecasts initialized from the CDA system have been run starting every month
with 10 member ensembles from 1980-2008. A nice feature of the EKF CDA is that the initial conditions

http://data1.gfdl.gov/nomads/forms/assimilation.html
http://data1.gfdl.gov/nomads/forms/assimilation.html


for the coupled model forecasts come naturally from the ensemble members of the CDA. Comparing the
seasonal forecast results initialized from the CDA to the forecasts initialized with our 3D-VAR ocean
analysis, it was found that there was a significant improvement in our ENSO forecast skill. Experimental
seasonal forecasts are run every month and the results are posted on our web site along with the historical
and current ocean analysis.

Some new and exciting work has begun on a multi-model ensemble assimilation scheme. Both GFDL
CM2.0 and CM2.1 coupled models are used in a unified ensemble system in which the filtering process is
based on the error statistics from both models’ ensemble integrations. The system construction is
complete but the analysis is ongoing. The idea here is that often the ensemble forecasts tend to look more
like each other than reality. The goal is that the ensemble spread should span the possible solution space
and to include the true solution. Some initial OSSE imperfect twin studies using this system uncovered
some inconsistent constraints in the upper and deep ocean due to model biases and the nature of the low
frequency of the deep ocean circulation. Although this issue may not be important for seasonal
initialization it will most likely be for decadal initialization.

5 Summary and conclusions

The use of data assimilation for the ocean initialization in seasonal forecasts has reached a mature state,
with several institutions around the world producing routine ocean (re-)analysis to initialise their
operational seasonal forecasts. To this end, not only ocean analyses for the real time seasonal forecasts,
but historically consistent ocean re-analyses are also needed for the forecast calibration and skill
assessment. These ocean reanalyses are a valuable data resource for climate variability studies and have
the advantage of being continuously brought up to real time.

In contrast to atmospheric initialization where data assimilation is needed to constrain the uncertainty due
to the chaotic nature of the system, in the ocean initialization data assimilation is needed to reduce the
large uncertainty in the forcing fluxes and ocean model formulation. In fact, ocean data assimilation has a
strong impact on the representation of the ocean mean state and interannual variability. The first
generation of ocean initialization systems were univariate and assimilated only temperature data. These
systems were able to reduce the uncertainty in the thermal structure, and sometimes would improve the
forecast skill. However the resultant velocity and salinity fields were often degraded. Nowadays most of
the ocean initialization systems are second generation: they assimilate temperature, salinity and sea level
via multivariate schemes, imposing physical and dynamical constraints among different variables. Results
from several of these “second generation initialization systems” show that the assimilation of ocean data
in the ocean initialization improves seasonal forecast skill. Ultimately, the impact of initialization in a
seasonal forecasting system will depend on the quality of the coupled model. It can be argued that the
beneficial impact of ocean initialization on the forecast skill also demonstrates the improved quality of the
coupled models, which now are discerning enough to be sensitive to the quality of the initial conditions.

In most of the existing operational systems, the initialization of the ocean is still done in uncoupled mode,
and there is no attempt to obtain ocean initial conditions that are balanced within the coupled model. By
using forcing fluxes from atmospheric (re-)analysis, the uncoupled initialization has the advantage of
incorporating relevant atmospheric variability, such as westerly wind bursts, at intraseasonal time scales,
which could be relevant for ENSO initialization. However, the unbalanced initialization can lead to
initialization shock, which is likely to be larger in those regions where model and the observed climate are
far apart. For instance, experiments carried out with the ECMWF seasonal forecasting system suggest that
the initialization shock is damaging the seasonal forecast skill in the Equatorial Atlantic. A third
generation of initialization systems is on its way, where the oceanic and atmospheric initial conditions are
generated simultaneously using a coupled model and so have the potential of retaining the balances
relevant for the coupled system. To cope with the different time scales in the ocean and atmosphere, these
coupled data assimilation systems use a previous atmospheric analysis to constrain the atmospheric



component of the coupled model, while assimilating ocean data in assimilation windows appropriate for
the ocean time scales. Recent work has demonstrated the feasibility of coupled 4D-var and EnKF
systems. Knowledge of the error growth of the coupled model can also be exploited in the initialization
and ensemble generation of the coupled forecasts. Experiments with the GMAO system show that the use
of coupled breeding vectors to generate initial perturbations for the ensemble results in better seasonal
forecast skill.
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