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Abstract. Recent investigations have considered whether it is possible to achieve 
early detection of greenhouse-gas-induced climate change by observing changes in 
ocean variables. In this study we use model data to assess some of the uncertainties 
involved in estimating when we could expect to detect ocean greenhouse warming 
signals. We distinguish between detection periods and detection times. As defined here, 
detection period is the length of a climate time series required in order to detect, at 
some prescribed significance level, a given linear trend in the presence of the natural 
climate variability. Detection period is defined in model years and is independent of 
reference time and the real time evolution of the signal. Detection time is computed for 
an actual time-evolving signal from a greenhouse warming experiment and depends on 
the experiment's start date. Two sources of uncertainty are considered: those 
associated with the level of natural variability or noise, and those associated with the 
time-evolving signals. We analyze the ocean signal and noise for spatially averaged 
ocean circulation indices such as heat and fresh water fluxes, rate of deep water 
formation, salinity, temperature, transport of mass, and ice volume. The signals for 
these quantities are taken from recent time-dependent greenhouse warming 
experiments performed by the Max Planck Institute for Meteorology in Hamburg with 
a coupled ocean-atmosphere general circulation model. The time-dependent greenhouse 
gas increase in these experiments was specified in accordance with scenario A of the 
Intergovernmental Panel on Climate Change. The natural variability noise is derived 
from a 300-year control run performed with the same coupled atmosphere-ocean model 
and from two long (>3000 years) stochastic forcing experiments in which an uncoupled 
ocean model was forced by white noise surface flux variations. In the first experiment 
the stochastic forcing was restricted to the fresh water fluxes, while in the second 
experiment the ocean model was additionally forced by variations in wind stress and 
heat fluxes. The mean states and ocean variability are very different in the three 
natural variability integrations. A suite of greenhouse warming simulations with 
identical forcing but different initial conditions reveals that the signal estimated from 
these experiments may evolve in noticeably different ways for some ocean variables. 
The combined signal and noise uncertainties translate into large uncertainties in 
estimates of detection time. Nevertheless, we find that ocean variables that are highly 
sensitive indicators of surface conditions, such as convective overturning in the North 
Atlantic, have shorter signal detection times (35-65 years) than deep-ocean indicators 
(-> 100 years). We investigate also whether the use of a multivariate detection vector 
increases the probability of early detection. We find that this can yield detection times 
of 35-60 years (relative to a 1985 reference date) if signal and noise are projected onto a 
common "fingerprint" which describes the expected signal direction. Optimization of the 
signal-to-noise ratio by (spatial) rotation of the fingerprint in the direction of low-noise 
components of the stochastic forcing experiments noticeably reduces the detection time (to 
10-45 years). However, rotation in space alone does not guarantee an improvement of the 
signal-to-noise ratio for a time-dependent signal. This requires an "optimal fingerprint" 
strategy in which the detection pattern (fingerprint) is rotated in both space and time. 
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1. Introduction 

Until recently, most of our information concerning the 

response of the climate system to greenhouse gas (GHG) 

forcing has been obtained from experiments that have inves- 

tigated the equilibrium response to a step function doubling 

of CO: [e.g., Schlesinger and Mitchell, 1987; Mitchell et al., 

1990]. Most of these experiments were performed with an 

atmospheric general circulation model (GCM) coupled to a 

model of the oceanic mixed layer [Manabe and Stauffer, 

1980; Hansen et al., 1984; Washington and Meehl, 1984] and 

generally integrated for 2 or 3 decades. Given the rapid 

response time of the oceanic mixed layer (-< 10 years), such 

simulations can be integrated to a statistical equilibrium state 

in a relatively short time. Signal-to-noise properties of the 

experiment are then investigated for the equilibrium state, 

using stationary time samples from both control and pertur- 

bation experiments [e.g., Wigley and Jones, 1981; Barnett, 

1986; Santer et al., 1991]. 

With improved computer capabilities, it is now possible to 

use state-of-the-art coupled atmosphere-ocean models to 

examine the more relevant question of the climate response 

to time-dependent changes in greenhouse gases [Stauffer et 

al., 1989; Washington and Meehl, 1989; Manabe et al., 1991; 

Cubasch et al., 1992]. These models simulate the uptake and 

transport of heat by the deep ocean, which has characteristic 

timescales of centuries or longer [Mikalajewicz et al., 1990]. 

The time dependence of the forcing and the slow response of 
the deep ocean introduce a time dimension to the problem of 

estimating signal-to-noise properties. The problem is to 

determine whether the trend in the signal (or its anticipated 

time evolution) can be distinguished statistically from the 

internally generated noise of the coupled ocean-atmosphere 

system on the relevant decade to century timescales. Both 

paleoclimate data [e.g., Crawley and North, 1991] and model 

studies [Mikalajewicz and Maier-Reimer, 1990; Lorenz, 

1991; Wigley and Raper, 1991; Zebiak and Cane, 1991] 

indicate that the amplitude of temperature changes due to 

internally generated natural variability can be large on these 

timescales. In order to detect a time-evolving climate signal 

due to changes in GHG concentrations, it is therefore crucial 

to obtain reliable estimates of the low-frequency noise of 
natural climatic variability. Such estimates can be obtained 

from four sources, which we consider briefly below: instru- 

mental and paleoclimate data records, noise-forced energy 

balance models (EBMs), fully coupled atmosphere-ocean 

GCMs (A/OGCMs), and stochastically forced ocean GCMs 
(OGCMs). 

The first source, paleoclimate records with annual resolu- 

tion, is available from a number of different proxies, such as 

corals, laminated sediments, ice cores, and tree tings [e.g., 

Dansgaard et al., 1975; Bradley, 1985; Bradley and Jones, 

1992; Briffa et al., 1990, 1992; Crawley and North, 1991]. 

However, unraveling the history of climatic variability con- 

tained in such records is not a straightforward task. The 

spatial coverage is poor for paleoclimate data with annual 
resolution, and it is difficult to date and cross-check the 

climate information from different locations or different 

proxy sources, or to extract the climate signal from the noise 

introduced by other, nonclimatic factors. The reconstruction 

of a satisfactory, spatially coherent picture of climate vari- 

ability over the past 1000 years is not yet possible and 

remains a challenge for the future. 

Simple numerical models provide a second means of 

investigating the low-frequency noise properties of the cli- 

mate system. Some of the first studies of noise behavior on 
timescales of decades to centuries involved stochastic forc- 

ing of energy balance models [e.g., Hasselmann, 1976; 

Lemke, 1977] or idealized models of atmospheric flow 

[Lorenz, 1984]. More recently, Wigley and Raper [1990, 

1991] used an EBM with an upwelling-diffusive ocean and 

atmospheric stochastic forcing in order to examine the 

internally generated variability of globally averaged temper- 

ature, and Kim and North [1991] considered the temporal 

and spatial variability of surface temperature in a noise- 
forced zonal EBM. 

These models introduce strong physical simplifications in 

order to achieve sufficient computational efficiency, thus 

making it possible to perform long integrations and detailed 

studies of the sensitivity to varying parameterizations. While 

such models reproduce the principal characteristics of the 

red natural variability spectrum, they are not able to simu- 

late realistically processes such as the horizontal and vertical 

transport of heat, salt, and momentum in the global ocean, 

which probably govern the century timescale variability of 

the real climate system. Ideally (in the absence of real world 

data series of sufficient length), it would be desirable to 

determine the low-frequency natural variability by perform- 

ing long (>_ 1000 years) integrations with fully coupled atmo- 

sphere-ocean GCMs, the third method of estimating natural 

climate variability mentioned above. Owing to computational 

limitations, however, state-of-the-art coupled models generally 

have been integrated for periods of the order of 100-500 years 

only [Stauffer et al., 1989; Cubasch et al., 1992; Delwarth et 

al., 1993; Manabe and Stauffer, 1993], which are too short for 

reliable estimates of the century timescale natural variability. 

Only one coupled model control integration of length 1000 

years has been published [Stauffer et al., 1994]. Although 

coupled models may become the most reliable means of 

estimating natural climate variability once longer simulations 

are generally available, we have not used these data in our 

estimates of ocean variability. 

As a compromise we have used the fourth, intermediate 

method: the estimate of the low-frequency noise from long 

(> 1000 years) stochastically forced experiments with uncou- 

pled ocean GCMs. These results yield adequate statistics for 

determining the variability on the 10- to 100-year timescales 

relevant for time-dependent greenhouse warming experi- 

ments with fully coupled models. A shortcoming of such 

estimates of low-frequency noise, however, is that it is not 

clear whether the low-frequency variance information de- 

rived from the ocean model alone is a good approximation to 

the results that would have been obtained in a long integra- 

tion with a fully coupled ocean-atmosphere model. Although 

the important dynamics of the slow component of the 

climate system (the ocean) is correctly represented and the 

effective forcing by the atmosphere can be well simulated as 

white noise, ocean-only models do not include the potential 

feedback loops through the atmosphere. Another uncer- 

tainty arises through the spatial structure of the stochastic 

forcing, especially for the heat and net fresh water fluxes, 

since reliable observed data sets with global coverage and 

information on interannual variability do not exist for these 

quantities. A big advantage, however, over paleoclimate 

records is that data from stochastically forced ocean GCMs 
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are available for the entire global ocean, both over long 

periods and at high temporal resolution. 

In this study we use estimates of the century timescale 

noise from two long stochastic forcing experiments per- 

formed by Mikolajewicz and Maier-Reimer [1990, 1994] 

(hereinafter referred to as MM90 and MM94, respectively). 

The two integrations differ in terms of the applied forcing. In 

the first experiment, the Hamburg large-scale geostrophic 

(LSG) ocean GCM [Maier-Reimer et al., 1993] was forced 

for 3800 years by temporally white but spatially correlated 

anomalies of fresh water fluxes, superimposed on the pre- 

scribed climatological fresh water fluxes. We refer to this 

experiment hereinafter as SF (" stochastic freshwater flux"). 

In the second experiment, SALL ("stochastic forcing in all 

components"), the LSG ocean model was forced for 8000 

years with white noise variability in fresh water fluxes, heat 

fluxes, and wind stress. 

We use the noise information from these integrations to 

determine the significance of trends in ocean variables in 

several time-dependent greenhouse warming experiments 

recently performed with the ECHAM-1/LSG coupled atmo- 

sphere-ocean model. (The ECHAM-1 atmospheric GCM is a 

low-resolution version of the numerical weather-forecasting 

model developed at the European Centre for Medium-Range 

Weather Forecasts that was modified in Hamburg for climate 

applications.) The first experiment ("SCENA," for scenario 

A) starts with 1985 equivalent CO2 concentrations, and the 
model is then integrated for 100 years with the GHG forcing 

specified in scenario A ("business as usual") of the Inter- 

governmental Panel on Climate Change (IPCC) [Houghton 

et al., 1990]. The second, 150-year experiment ("EIN" for 

early industrialization) begins in 1935 and uses observed 

changes in equivalent CO2 from 1935-1985 and scenario A 
forcing after 1985. The two integrations provide some insight 

into the magnitude of the "cold start" error [Hasselmann et 

al., 1993] and its impact on detection time estimates (the cold 

start error is estimated by Hasselmann et al. [1993] but is not 

corrected in the SCENA run). We also consider a suite of 

three 50-year Monte Carlo experiments, each with identical 

scenario A forcing but starting from different initial condi- 

tions. This allows us to investigate uncertainties in our 

estimate of the signal that are related to imperfect knowledge 

of initial conditions. Details of these coupled-model experi- 

ments are given by Cubasch et al. [1992, 1994, 1995]. A 

pattern analysis of the atmospheric response in the SCENA 

integration and two further greenhouse warming experi- 

ments is presented by $anter et al. [1994]. 

The signal uncertainties illustrated by the SCENA, EIN, 

and Monte Carlo experiments show that there is a need for 

distinguishing between detection period and detection time. 

We can determine the particular date at which we will be 

able to detect some climate change signal only if we are 

confident that we have a reliable computation of the climate 

change signal in absolute time (i.e., in calendar years). This 

we do not have, neither for the cold-start-affected SCENA 

integration nor for the EIN integration, which does not have 

a true preindustrial start date. Furthermore, the lesson 

learned from the Monte Carlo experiments is that it is not 

enough to know one particular initial state and carry out one 

simulation. To define the statistical properties of the true 

time-evolving signal, we need to carry out an ensemble of 

long (-> 100 years) runs for different initial conditions in order 

to identify the model-generated internal variability that is 

superimposed on the climate change signal. Such ensembles 

are not presently available. In the following, we stress that 

the term "signal" is used to denote an estimate of the signal, 

with superimposed noise, rather than the true, underlying 

signal process. 

To factor out signal evolution uncertainties, we therefore 

distinguish between detection period and detection time. We 

define detection period as the length of the climate time 
series that must be available in order to detect a given linear 

trend (growth rate/3) in the presence of the natural climate 
variability (at a specified significance level). Detection pe- 

riod is expressed in model years and is independent of 
reference time and the real time evolution of the signal. It 

depends only on /3, the noise properties of the natural 
variability time series, and the stipulated significance level. 

Alternately, detection time is computed for an actual 

time-evolving signal from a greenhouse warming experi- 
ment. The time evolution of the signal need not be linear and 

can have any form. Thus it depends on both changes in the 

mean signal trend with time (which are specific to the 
assumed radiative forcing scenario) and the noise properties 

of the natural variability time series and is a function of the 

start date of the experiment (and the magnitude of the cold 
start error, if this has not been corrected). We will express 

detection times in model years relative to a reference time of 

1985. This enables us to compare ocean signals in the 

SCENA and EIN experiments on a common basis. We 

caution, however, against interpreting "1985" too literally 

as the true calendar date, which would place unwarranted 

confidence in the precise details of the predicted signal 
evolution. 

The present study should be viewed as an initial attempt to 

consider the time dimension of the signal-to-noise problem in 

a coupled ocean-atmosphere GCM with time-dependent 

GHG forcing. Previous investigations that addressed the 

time-dependent signal-to-noise problem in a greenhouse 

warming context have used signal information from a simple 

energy balance model [Briffa et al., 1990] or from pseudo- 
transient experiments performed with an ocean GCM [Miko- 
lajewicz et al., 1993]. The focus of our investigation is on 

methodological aspects. We stress that there are (and will 
continue to be) model-dependent uncertainties in defining an 

enhanced greenhouse effect signal and in determining the 
magnitude and spatial structure of the low-frequency inter- 

nally generated natural variability. The approach used here, 
to estimate the decade to century timescale noise from an 

idealized "ocean only" natural variability experiment, must 

be regarded as a temporary solution pending the availability 
of long (> 1000 years) control integrations using either ocean 
models with realistic linear atmospheric feedback or fully 

coupled atmosphere-ocean GCMs. 

Although the final section of this paper makes some 

attempt to follow the philosophy of Hasselmann [1979, 1993] 
in optimizing the signal-to-noise ratio, it does so only in a 
very simplified form. The correspondences with Hassel- 
mann's strategy are threefold. First, we have reduced the 
dimensionality of the multivariate problem. Instead of con- 

sidering the multivariate ocean signals and noise in the full 

grid point-time space, we have reduced the dimensionality 
to the order of 20 by using only a few characteristic integral 

properties of the ocean circulation. This enables us to obtain 
reliable estimates of the noise properties, since the effective 

number of independent time samples in the two long sto- 
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chastic forcing experiments examined here is at least several 

times larger than the reduced spatial dimension. Second, we 

have employed the concept of a "fingerprint." The finger- 

print defines the direction in which the GHG signal is 

expected to lie. In our case it is a multivariate vector, 

containing information on the equilibrium response to GHG 

forcing of different ocean variables at large spatial scales 

(global or individual ocean basins). The fingerprint used here 

can be thought of as a simple multivariate pattern filter that 

is applied to both the ocean GHG signal and the ocean 

natural variability noise data in order to enhance signal-to- 

noise ratios (see section 5.4). Third, we have attempted to 

enhance the signal-to-noise ratios still further by optimizing 

the fingerprint. Optimization involves filtering out (spatial) 
components of the signal that are similar to the dominant 

patterns of natural variability noise [Hasselmann, 1979]. 

Implementation of the full optimal detection strategy 

outlined by Hasselmann [1993] would involve optimization 

of the combined space-time structure of a four-dimensional 

multivariate fingerprint relative to the noise. In the present 

study the optimization of the fingerprint is in space only. In 

other words, in attempting to detect linear trend signals, we 

have not applied an optimized time filter which depresses 

frequency bands with a large relative noise contribution. The 

application of the full "optimal fingerprint" strategy will be 

considered in a future paper. 

In practice, it will be difficult to obtain observations for 

many of the spatially integrated ocean circulation indices 

that we use here. It is unlikely that measurement technology 

over the next several decades will significantly improve this 
situation. This is not a severe constraint here, since our 

focus is on methodological aspects of the signal-to-noise 

problem. We note also that the use of spatially integrated 

quantities facilitates a multivariate analysis of the model's 

ocean circulation and offers a rather simple way of examin- 

ing the covariant behavior of different characteristic ocean 
variables and different ocean basins. 

An important set of measurable integral properties of the 
ocean circulation is acoustic travel times for various combi- 

nations of transmitting and receiving stations [Munk and 

Forbes, 1989]. Although we have not explicitly considered 

travel times in this paper, our analysis should shed some 

light on the potential usefulness of these variables for 

detecting anthropogenic climate change [cf. Mikolajewicz et 
al., 1993]. 

This paper is organized as follows. Section 2 begins by 

introducing the integrated ocean diagnostics we shall be 

using: the spatial averages (ocean basin or global scale) of 

such quantities as heat and fresh water fluxes, rate of deep 

water formation, salinity, temperature, transport of mass, 

and ice volume. We then describe and compare salient 

features of the oceanic variability in the uncoupled SF and 
SALL experiments. 

Section 3 focuses on results from natural variability and 

greenhouse warming experiments performed with the fully 

coupled ECHAM-1/LSG atmosphere-ocean model [Cubasch 

et al., 1992]. We first consider a 300-year control simulation 

(hereinafter referred to as CTL) and compare its variability 

with the variability simulated in the uncoupled SF and SALL 

experiments. We then discuss the coupled model's ocean 

response to the time-dependent GHG forcing specified in the 
SCENA and EIN experiments. Section 3 concludes with an 

analysis of the ocean response in three Monte Carlo exper- 

iments, each with identical GHG forcing but starting from 
different initial conditions. 

In section 4 we compute detection periods and detection 

times for univariate data (individual spatially averaged ocean 

variables). This requires calculation of e, the standard error 

of linear trends on timescales of 10-100 years, i.e., the 

standard deviation of the sampling distribution of linear 

trends in the presence of natural variability. We use ocean 

data from the SF and SALL experiments in order to com- 

pute e, and we show how differences in ocean variability and 

signal uncertainties translate into different estimates of sig- 

nal detection period and time. 

Section 5 addresses the question of whether the use of a 

multivariate detection vector increases the probability of 

early detection of an ocean greenhouse warming signal. We 

first compute the empirical orthogonal functions (EOFs) of 

the spatially averaged, multivariate ocean time series in the 

two stochastic forcing experiments and then show how these 

modes provide information about the covariance between 

different circulation indices at different depths and spatial 

locations in the ocean. We next project the multivariate 

ocean greenhouse warming signal and natural variability 

noise onto a common fingerprint pattern, which defines the 

expected signal direction. Signal-to-noise ratios are then 

computed for the resulting EOF amplitude time series using 

the method outlined in section 4. Finally, we enhance the 

signal-to-noise ratio by rotating the fingerprint in the direc- 

tion of low-noise components of the SF and SALL experi- 

ments. A brief summary and conclusions are given in section 
6. 

2. OGCM Stochastic Forcing Experiments 

This section introduces the ocean diagnostics employed in 

the present study and the two stochastically forced ocean- 

only experiments used to derive the level of noise associated 

with natural variability in the models. Details and previous 

applications of the LSG OGCM used in these experiments 

are given by Maier-Reimer et al. [1993]. 

2.1. Ocean Diagnostics 

To reduce the spatial dimension of the signal-to-noise 

problem, we consider integral properties that characterize 

the state of the ocean general circulation. For the computa- 

tion of most of these quantities, the ocean is divided into four 
horizontal boxes. The first box covers the North Atlantic 

and the Arctic Ocean north of 30øN (including the Mediter- 

ranean), the second covers the North Pacific north of 30øN, 
and the third covers the Southern Ocean south of 30øS. The 

last box covers the tropical region of all oceans between 

30øN and 30øS (For computing stream function, an additional 

box was defined, consisting of all Indian Ocean grid points 

north of 30øS). Quantities integrated over these boxes are the 

heat and fresh water fluxes between ocean and atmosphere 

(positive values indicating net heat and fresh water flux gains 

by the ocean, corresponding to warming and freshening of 

the surface, respectively), sea ice volume (relevant only in 

the North Atlantic and Southern Ocean), and potential 

energy loss due to convection as an indicator of the forma- 

tion rate of North Atlantic Deep Water (NADW) and Ant- 

arctic Bottom Water (AABW). 

The thermohaline circulation is described by the net inflow 

or outflow at depths below 1.5 km between the Atlantic, 
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Table 1. Comparison of Oceanic Mean States and Variability in Three Model Experiments 

Model 

Ocean Variable Abbreviation SF SALL CTL 

Temperature at 4-km depth, globally averaged, øC 
Salinity at 4-km depth, globally averaged, ppt 
Mass transport through the Drake Passage, 106 m 3 s -1 
Ice volume (North Atlantic), 103 km 3 
Ice volume (Antarctic), 103 km 3 
Loss of potential energy by convection (North Atlantic), 1013 W 
Loss of potential energy by convection (Antarctic), 1013 W 
Heat fluxes (North Atlantic),? 1012 W 
Heat fluxes (North Pacific),? 1012 W 
Heat fluxes (30øN to 30øS),? 1012 W 
Heat fluxes (Antarctic),? 1012 W 
Stream function at 1.5-km depth (Atlantic),$ 106 m 3 s -1 
Stream function at 2.5-km depth (Atlantic),$ 106 m 3 s -1 
Stream function at 1.5-km depth (Pacific),• 106 m 3 s -1 
Stream function at 2.5-km depth (Pacific),• 106 m 3 s -1 
Stream function at 1.5-km depth (Indian Ocean),• 106 m 3 s -1 
Stream function at 2.5-km depth (Indian Ocean),• 106 m 3 s -1 
Fresh water fluxes (North Atlantic),õ 103 m 3 s -1 
Fresh water fluxes (North Pacific),õ 103 m 3 s -1 
Fresh water fluxes (30øN to 30øS),õ 103 m 3 s -1 
Fresh water fluxes (Antarctic),õ 103 m 3 s -1 

T4-MEA 

S4-MEA 

PSIDRA 

ICE-NA 

ICE-AA 

CEN-NA 

CEN-AA 

HFL-NA 

HFL-NP 

HFL-TR 

HFL-AA 

ME15-A 

ME25-A 

ME15-P 

ME25-P 

ME15-I 

ME25-I 

WFL-NA 

WFL-NP 

WFL-TR 

WFL-AA 

2.3 - 0.13 2.9* - 0.04 2.9* - 0.06 

34.8 - 0.006 34.8 - 0.004 34.7* - 0.007 

119.0 - 22.6 144.9 - 3.0 101.6 - 3.2 

20.7 - 0.3 16.7' - 1.0 35.5* - 8.5 

37.9 - 10.7 76.1' - 5.0 46.2 - 19.7 

80.9 - 6.0 97.0 --- 16.8 99.5* - 8.0 

228.3 ñ 102.1 365.3 ñ 25.3 249.6 ñ 10.3 

-632.5 - 42.6 -646.6 - 59.7 -882.4* - 47.5 

-142.9 - 51.2 -128.4 - 58.2 -239.9 - 43.9 

2175.6 - 58.8 2817.4' - 132.9 2682.1' - 89.1 

-1384.5 _ 523.5 -2042.0 _ 126.8 -1557.6 - 52.4 

-17.3 ñ 3.5 -18.2 _ 1.0 -22.6 _ 1.1 

-8.4 _ 4.9 -12.0 _ 1.3 -12.8 _ 1.1 

21.3 _ 6.2 37.0 _ 1.2 27.8 _ 2.6 

18.0 _ 8.8 39.7 _ 1.2 24.6 ñ 2.5 

13.5 ñ 1.9 17.1 ñ 0.6 22.4* ñ 0.7 

11.5 _ 2.3 13.5 ñ 0.7 19.2' _ 0.7 

120.4 _ 42.6 120.8 ñ 16.9 147.8 _ 16.8 

118.1 _ 51.2 118.2 _ 20.7 96.7 _ 17.0 

-779.3 _ 58.8 -781.5 _ 52.1 -901.4 _ 44.6 

543.8 _ 35.9 541.1 _ 21.5 625.8 _ 28.8 

Means and standard deviations are computed from time series of spatially and globally averaged ocean diagnostics. Results are taken from 
the 3800-year SF stochastic forcing experiment [Mikolajewicz and Maier-Reimer, 1990], the 8000-year SALL stochastic forcing experiment 
performed by Mikolajewicz and Maier-Reimer [1994], and the 300-year CTL integration performed by Cubasch et al. [1992]. The SF and 
SALL experiments were both conducted with the Hamburg LSG OGCM, while the CTL integration was carried out with the fully coupled 
ECHAM-1/LSG atmosphere-ocean model. 

*Mean state is more than 3 standard deviations larger or smaller than the corresponding mean state in the SF experiment (relative to the 
variability in the SF experiment). Note that the variability in the SF experiment is in many cases larger than in either the SALL or CTL 
experiments. 

?Negative values denote net heat flux from ocean to atmosphere. 
$Negative values denote net southward transport. All values computed at 30øS. 
õNegative values denote net fresh water flux from ocean to atmosphere. 

Pacific, and Indian Oceans and the Southern Ocean at 30øS. 
Positive values in the Pacific and Indian Oceans indicate a 

net northward inflow, whereas the negative values in the 
Atlantic describe the outflow of NADW to the Southern 

Ocean. To monitor changes in the depth of the outflow, the 

same quantities are also computed for the transport below 

2.5 km. Another important quantity characterizing the ther- 

mohaline circulation is the strength of the mass transport of 

the Antarctic Circumpolar Current (ACC). The properties of 

the deep water masses of the ocean are described by the 

globally averaged potential temperature and salinity at the 
4-km level of the model. 

These 21 integral quantities capture both the main features 

of the large-scale variations in the ocean circulation and of 

the thermohaline surface forcing. In this paper we present 

only the annual mean values, but all experiments described 

below were run with an annual cycle. A list of these integral 

quantities and their mean values for different natural vari- 

ability experiments is given in Table 1. 

2.2. SF Stochastic Forcing Experiment 

In this experiment the Hamburg LSG OGCM was forced 

for 3800 years by temporally white (but spatially correlated) 

monthly anomalies of fresh water fluxes, superimposed on 

prescribed climatological fresh water fluxes [see MM90]. 

The amplitude of the fresh water flux forcing was chosen as 

16 mm/month, approximately 20% of the observed global, 

annually averaged precipitation. The other surface forcing 

fields were taken from climatologies of monthly mean wind 

stress [Hellerman and Rosenstein, 1983] and monthly mean 

surface air temperature (Comprehensive Ocean-Atmosphere 

Data Set (COADS) [Woodruff et al., 1987]). A Newtonian 

relaxation procedure was used in order to couple the tem- 

peratures in the surface layer to the COADS temperatures. 

Further details are given in MM90. The aim of the experi- 

ment was to examine the low-frequency response of the LSG 
OGCM to white noise forcing and test whether short- 

timescale atmospheric variability could be the origin of 
natural climate variability, as was proposed by Hasselmann 

[1976]. 

The ocean model demonstrated complex variability on a 

wide range of space scales and timescales. The response 

variance spectra of ocean circulation indices were typically 

red, with power increasing toward low frequencies for 
timescales up to several centuries. In order to study this 
variability, MM90 used both composites and a statistical 
technique known as principal oscillation pattern (POP) anal- 
ysis [Hasselmann, 1988; yon Storch et al., 1988]. They found 

that the dominant eigenmode of the ocean circulation had a 

characteristic timescale of roughly 320 years. The signature 
of this mode was evident in the annual mean time series of a 

number of different spatially averaged ocean variables, such 

as mass transport through the Drake Passage, globally 

averaged deep-ocean temperature, and the formation rate of 
AABW (see Figure 1). The signals were strongest in the 
Southern Ocean. The eigenmode also affected circulation in 

the Pacific and Indian Oceans through interaction with the 

Antarctic Circumpolar Current (see also Mikolajewicz and 
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Figure 1. Time series of spatially averaged ocean variables from the 3800-year stochastic forcing 
experiment (SF) performed by Mikolajewicz and Maier-Reimer [1990]. All values are annual means. Note 
that the oceanic response to the fresh water flux forcing is characterized by variability on timescales of 
several centuries. This is the signature of the 320-year ocean circulation mode identified by Mikolajewicz 
and Maier-Reimer. 

Maier-Reimer [1991]). MM90 interpreted the timescale of 

this mode as being related to the OGCM's characteristic 
flushing time for the Atlantic (--•400 years). A subsequent 
study of the variability in the SF experiment by Weisse et al. 
[1994] revealed also the existence of a North Atlantic circu- 
lation mode with a characteristic timescale of 10-40 years. 

To investigate the sensitivity of the ocean response to the 

amplitude of the forcing, Mikolajewicz and Maier-Reimer 
[1991] performed two further experiments in which they 
increased and decreased the amplitude of the forcing anom- 

aly by a factor of 3 (from 16 mm month -• to 48 and 5 mm 
month -1 , respectively). In the experiment with increased 
forcing amplitude, the ocean circulation rapidly switched 
into a new stable state characterized by permanent suppres- 

sion of NADW formation. A reduction of the amplitude 

reduced the response significantly more than by the linear 
reduction factor of 3 and effectively eliminated the complex 

variability found in the original SF experiment. The 320-year 

eigenmode disappeared completely. This suggested the ex- 
istence of some threshold value necessary for the excitation 

of the eigenmode. A recent suite of experiments by Barnett 
et al. [1993] attempted to identify this threshold by varying 
the amplitude and space-time coherence of the fresh water 
flux forcing. They found that triggering of the 320-year 

MM90 mode was highly sensitive to the amplitude of the 

forcing but not to its spatial coherence and that monthly 
anomalies of 30 mm month -• were required to initiate the 
mode if no spatial correlation of the noise forcing was 
applied. These experiments also demonstrated that the pe- 
riod of the MM90 320-year mode was rather sensitive to the 
inclusion of a sea ice model. 

2.3. SALL Stochastic Forcing Experiment 

The original SF experiment was designed to look at the 
natural variability of the thermohaline circulation. Since 

preliminary experiments indicated that this was governed 
primarily by variations in the fresh water flux, variations in 
the heat flux and wind stress were omitted to establish a 

clear cause and effect relationship. Recently, MM94 inves- 

tigated the impact of these other forcings by performing a 
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similar but longer 8000-year stochastic forcing experiment 

(SALL) in which the forcing consisted of uncorrelated 

monthly mean anomalies of all surface flux terms: momen- 

tum (wind stress), heat, and fresh water. 

The forcing fields were taken from an experiment per- 

formed with the (T42 resolution) ECHAM-3 atmospheric 

GCM (AGCM), in which the atmospheric model was driven 

by the observed record of changes in sea surface tempera- 

ture (SST) and sea ice distribution over the period 1979- 

1988. The integration was part of the Atmospheric Model 

Intercomparison Project (AMIP), an intercomparison of 

over 30 AGCMs driven by a standard set of observed 

boundary conditions [Gates, 1992]. 

The forcing in the SALL integration was constructed by 

random selection of individual months from the 10-year 

AMIP experiment. Thus for each January of the SALL 

integration, one of the 10 different AMIP Januaries was 

selected at random; a similar procedure was used for all 

other months. The anomalies of wind stress, fresh water 
fluxes and heat fluxes for the selected month of the AMIP 

experiment were then added to their respective climatologies 

and used as forcing for the OGCM (further experiments that 
included some correlation between successive months 

yielded essentially the same results). 

An additional important difference between the two sto- 

chastically forced OGCM simulations was the treatment of 

the upper boundary condition for temperature. The SF 

experiment was run with relaxation of the model SST to 

observed near-surface air temperatures. Thus SST anoma- 

lies were damped out rather quickly with a time constant of 

2 months (corresponding to a damping coetficient of 40 W 

m -2 øC-I), whereas surface salinity anomalies tended to have 
a much longer lifetime and no direct damping owing to the 

prescription of climatological monthly mean fresh water fluxes. 

This type of mixed boundary condition qualitatively repro- 

duces the nature of the air-sea interaction (damping of SST 

anomalies due to anomalous heat fluxes, whereas fresh water 

fluxes are independent of the surface salinity) and has been 

frequently used in recent experiments [e.g., Bryan, 1986; 

MM90; Weaver and Sarachik, 1991; Power and Kleeman, 

1993]. However, simulations with this type of boundary con- 

dition generally underestimate SST variability. Recently, 

MM94 showed that a boundary condition for temperature 

consisting of prescribed climatological heat fluxes and subse- 

quent weak damping of the model's SST gave a more realistic 

behavior of the uncoupled OGCM for climate simulations. In 

the SALL experiment this type of boundary condition was 

used with a damping time constant of 5 months. 

The ocean variability simulated in the SF and SALL 

experiments shows considerable differences. Results for 

selected ocean circulation indices in the SALL experiment 

are given in Figure 2. In general, the SALL response is 

higher than the SF response in the 1- to 10-year timescale 

range, since variations on this timescale (e.g., E1 Nifio- 

Southern Oscillation, or ENSO) are known to be governed 

mainly by wind stress fluctuations, which were not included 

in the SF simulation. The variability in the 1- to 10 year range 

tends to be underestimated in both experiments, however, 

since the LSG model is designed for the study of longer-term 

variability. In particular, it uses an implicit integration which 

damps out fast traveling waves (such as equatorial Kelvin 

waves) which play an important role in ENSO development. 

We are more interested here in the longer-term variability. 

It is surprising that the SALL simulation, although driven by 

all three flux anomaly fields, generally exhibits a smaller 

response for longer periods. Thus the amplitude of the 

long-period variability in such circulation indices as mass 

transport through the Drake Passage and globally averaged 

deep-ocean temperature is much smaller than in the SF 

experiment (compare Figures 1 and 2) and their period is 

considerably longer than 300 years. In general, the SALL 

experiment exhibits a significantly lower level of ocean 

variability on the century timescale than the SF experiment, 
with the exception of ocean variables in the North Atlantic 

(ice volume, strength of NADW formation, and heat fluxes; 

see Table 1). 

Clearly, even if the space-time evolution of an ocean 

greenhouse warming signal were perfectly known, the dif- 

ferences in the century timescale oceanic variability simu- 

lated in the two stochastic forcing experiments imply large 

uncertainties in estimates of the time period needed to detect 

such a signal. 

Unfortunately, it is somewhat ditficult to identify the 

source of the differences in ocean variability between the SF 

and SALL experiments, since these may be due to the 

differences in the boundary conditions for surface tempera- 

ture and the associated difference in mean state, the ampli- 

tude and structure of the forcing patterns, and the fact that 

the stochasticity in the SALL experiment applies to all 

forcing terms, rather than to fresh water fluxes alone. 

However, the most likely cause for the reduced low- 

frequency response of the SALL experiment appears to be 

the weaker Newtonian coupling to the prescribed surface 

temperature, which increases the stability of the thermo- 

haline circulation [see MM94; Power and Kleeman, 1994]. 

It should be noted that not only the variability but also the 

mean states of ocean variables (e.g., deep-ocean tempera- 

ture, ice volume in the North Atlantic and Antarctic, and 

heat fluxes in the Antarctic) are different in the SF and 

SALL experiments (Table 1). Ice volume in the North 

Atlantic is much lower in the SALL experiment, while the 
reverse is true for ice volume in the Antarctic. The SALL 

integration also shows a more vigorous meridional circula- 

tion in the Pacific, larger heat fluxes from the atmosphere 

into the tropical ocean, and a 0.6øC warmer globally aver- 

aged deep-ocean temperature. 

3. A/OGCM Signal and Noise Experiments 

This section provides a brief summary of the experiments 

with the coupled A/OGCM (ECHAM-1/LSG) which are used 

in our signal-to-noise analysis of ocean data. Details are 

given by Cubasch et al. [1992, 1994, 1995], who also provide 

information relating to model validation and previous model 

applications. 

3.1. Coupled Control Run 

Both the SF and SALL experiments are idealized to the 

extent that they exclude atmospheric feedback loops, which 

can act to attenuate or amplify ocean circulation modes iden- 

tified in the stochastic forcing experiments [see MM90]. Such 

feedbacks are automatically included in the 300-year CTL 

experiment performed with the fully coupled ECHAM-1/LSG 

A/OGCM, an extension of the original 100-year control run 

performed by Cubasch et al. [1992]. The atmospheric CO2 

concentration in this experiment was fixed at the level ob- 
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Figure 2. Time series of spatially averaged ocean variables from the 8000-year stochastic forcing 
experiment (SALL) performed by Mikolajewicz and Maier-Reimer [1994]. Results are annual means for 
the same ocean variables displayed in Figure 1. For details of the forcing, refer to section 2.3. The ocean 
variability simulated in the SALL experiment is very different from that generated in the original SF 
experiment. Although there is some long-period variability in such quantities as mass transport through 
the Drake Passage and globally averaged deep-ocean temperature, the amplitude of these oscillations is 
much smaller than in the SF experiment (compare Figure 1) and their period is considerably longer than 
300 years. 

served in 1985. To avoid climate drift of the coupled system, a 

flux correction scheme was employed [Sausen et al., 1988]. 

The surface fluxes from the atmosphere into the ocean (heat, 

net fresh water flux, and wind stress) and the ocean surface 

data affecting the atmosphere (SST) were corrected both 
spatially and over the seasonal cycle. The correction terms can 
be regarded as constant anomaly fields which are added to the 
computed fluxes, enabling the atmosphere and ocean to re- 
ceive the fluxes that they need in order to maintain a stable 

reference climate. For small perturbations that can be linear- 

ized, the constant flux corrections have no influence on the 

model response characteristics. The procedure reduces but 
does not completely eliminate climate drift. 

The variability of near-surface air temperature in the first 100 

years of the coupled control run has been described by Cub- 
asch et al. [1992] and by Santer et al. [1994]. The latter 

investigation showed that while certain features of the variabil- 
ity in the control run could be interpreted as natural variability 

of the coupled model, other aspects of the variability were 
more consistent with residual climate drift caused by incom- 

plete compensation in the flux correction procedure. 
Results for selected ocean diagnostics from the CTL 

experiment are presented in Figure 3. The variables differ 
significantly in their temporal behavior. Surface quantities 
such as atmosphere-ocean heat exchange in the North At- 
lantic are relatively stationary, whereas Arctic ice volume 
and convection in the Southern Ocean show an initial drift. 

In the case of Southern Ocean convection, equilibration 

requires approximately 20 years. The equilibration time 
for Arctic ice volume is much longer, with ice volume 

increasing from an initial value of roughly 10 x 103 km 3 to 
an asymptotic value of approximately 40 x 103 km 3 after 
100 years. The globally averaged temperature and salinity 
at 4-km depth showed an almost linear increase through- 
out the integration. 

It is difficult to determine unambiguously whether the 
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Figure 3. Time series of spatially averaged ocean variables from the 300-year control run (CTL, solid 
lines) and the 100-year scenario A greenhouse warming experiment (SCENA, dotted lines) performed with 
the ECHAM-1/LSG coupled atmosphere-ocean model [Cubasch et al., 1992]. All values are annual 
means. In the control run, ice volume and globally averaged temperature show behavior consistent with 
a drift interpretation, while mass transport through the Drake Passage, ocean-atmosphere heat fluxes, and 
North Atlantic Deep Water (NADW) formation rate are quasi-stationary. 

nonstationarity of ice volume and deep-ocean temperature 
and salinity represents bona fide natural variability of the 
fully coupled system or residual climate drift. The behavior 

of Arctic ice volume favors a drift interpretation, with slow 
equilibration over the first 80-100 years of the CTL experi- 
ment. This may be due to the fact that the flux correction 

procedure is conceptually not fully consistent with the 

nonlinear behavior of the system at the ice edge [Cubasch et 
al., 1994]. The fact that incomplete flux compensation at the 
ice edge may also affect the properties of the newly formed 
deep and intermediate water provides one possible explana- 
tion for the almost linear increase in global mean deep-ocean 
temperature and salinity. We note, however, that the vari- 

ability of deep-ocean temperature and salinity is not incon- 
sistent with the amplitude of their fluctuations in the SF 
experiment (see Table 1), so that this behavior could also be 

due to natural variability rather than drift. 

As in the SF-SALL intercomparison, the mean states in 
the SF and CTL experiments are very different for most 

ocean diagnostics (Table 1). The globally averaged temper- 
ature at 4-km depth is approximately 0.6øC warmer in the 

CTL experiment than in the SF integration. There is a 
tendency toward a more vigorous meridional circulation in 

the Atlantic, Pacific, and Indian Oceans in the coupled 
model control run, with associated increases in heat transfer 

from the ocean to the atmosphere in the North Atlantic, 
North Pacific, and Antarctic, and a stronger heat transfer 
into the ocean in the tropics. 

3.2. Scenario A Experiment 

The ECHAM-1/LSG coupled atmosphere-ocean model 
has also been used to perform a number of greenhouse 
warming experiments. In the SCENA integration [Cubasch 
et al., 1992] the coupled model was forced by the time- 

dependent increases in equivalent atmospheric CO2 concen- 
tration specified in the IPCC scenario A [Houghton et al., 
1990], which assumes unrestricted future emissions of green- 
house gases. The model was integrated for 100 years, 
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Figure 4. Greenhouse warming signals for spatially averaged ocean variables from the 100-year SCENA 
experiment [Cubasch et al., 1992]. Results are for two different definitions of the signal. Definition 1 
expresses the greenhouse warming signal relative to the smoothed initial state of the coupled model 
control run. Under definition 2 the signal is computed relative to the instantaneous state of the control •n. 
All values are annual means. Because of the nonstationadty of ice volume and deep-ocean temperature 
(see Figure 3), the signals for these quantities are sensitive to the choice of definition. 

corresponding to an increase of the equivalent atmospheric 

CO2 concentration by a factor of 3 relative to the initial 
concentration in 1985. 

The SCENA results for selected ocean diagnostics are 

shown in Figure 3, together with the previously discussed 

results from the 300-year CTL experiment. Some indices 

show clearly evolving signals relative to quasi-stationary 

behavior of the CTL experiment. Examples include the 

decreased strength of NADW and AABW formation rates 

and the consequent decrease in heat fluxes from the ocean to 

the atmosphere in the North Atlantic and Antarctic due to 

the suppression of upward convective heat flux [see Miko- 

lajewicz and Maier-Reimer, 1991]. For other ocean diagnos- 

tics, such as deep-ocean temperature, the behavior of the 

coupled control run is nonstationary, and the precise defini- 

tion of the signal is more problematic. 

As was discussed by Cubasch et al. [1992] and $anter et 

al. [1994], the signal definition depends on assumptions 

regarding the correlation between the variability in the 

control run and the greenhouse warming experiment. If one 

assumes that the variability in the control run and response 

experiment are uncorrelated, it is appropriate to define the 

climate change signal by subtracting the initial state of the 

control experiment (definition 1). Alternately, one may as- 

sume that the control run changes represent a spurious 

residual drift or a long-term component of natural variability 

common to both experiments. In this case it is appropriate to 

subtract this common component and define the climate 

change signal as the instantaneous difference between the 

response experiment and control (definition 2). Subtraction 

of the long-term control run mean from a perturbation 

experiment [StouJfer et al., 1994] also assumes uncorrelated 

variability in the two experiments, as in definition 1. 

Figure 4 shows selected SCENA ocean signals according 

to the two definitions. The signals for indices which exhibit 

quasi-stationary behavior in the CTL experiment, such as 
NADW and AABW formation rates and heat fluxes in the 

North Atlantic and Antarctic, are relatively independent of 
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the choice of definition. In contrast, the signals for variables 

showing nonstationary behavior in the coupled control ex- 

periment are highly dependent on the way the signal is 

defined. For example, in both hemispheres the ice volume 
shows a large signal for one definition and zero signal for the 
other! 

In view of the slow equilibration of Arctic ice volume in 

the CTL experiment (section 3.1), we regard definition 2 as 
more appropriate for this quantity. The CTL and SCENA 

similarities in the time evolution of the globally averaged 

deep-ocean temperature (Figure 3) and salinity (not shown) 

suggest that definition 2 might also be preferable for these 
ocean circulation indices. Since most other ocean variables 

are relatively insensitive to the choice of definition, we will 

use definition 2 except where explicitly stated. 

3.3. Early Industrialization Experiment 

The SCENA integration, with a start date in 1985, ignores 

the pre-1985 history of GHG forcing and assumes that the 

atmosphere and ocean are initially at equilibrium with re- 

spect to 1985 equivalent CO 2 concentrations. In the real 
world, pre-1985 GHG forcing may have lead to sequestering 
of heat in the intermediate and deep ocean [Watts and 

Morantine, 1991; Kellogg, 1993]. This previous warming is 

ignored in experiments with present-day start dates, leading 

to a retardation in global mean temperature increase (the 
so-called "cold start" error [Cubasch et al., 1992; Hassel- 

mann et al., 1993]). 

To investigate this error, Cubasch et al. [1995] recently 

repeated the SCENA experiment with a starting date in 1935 

instead of 1985. This experiment (EIN) uses the observed 
GHG increases from 1935 to 1985 and GHG increases 

identical to those used in SCENA from 1985 to 2085. The 

experiment confirmed the linear cold start corrections of 

Hasselmann et al. [1993]. The earlier starting date of the 

EIN experiment reduces the impact of the cold start error 

but does not remove it completely. 
In sections 4 and 5 we use data from the SCENA and EIN 

integrations to investigate the impact of the cold start error 

on detection time estimates for ocean signals. A qualitative 

comparison of the signals in the two experiments is shown in 

Figure 5. To compare the experiments on a common basis, 
the signal anomalies were defined relative to the average 

over the decade 1985-1994 of the respective experiment 

(i.e., years 1-10 of SCENA and 51-60 of EIN). For certain 

indices, such as deep-ocean temperature and strength of the 

ACC, the signal trends are clearly larger in the EIN exper- 

iment. The earlier starting date and longer forcing period 

have little apparent impact on other quantities, such as the 

NADW formation rate and ocean-atmosphere heat fluxes in 
the North Atlantic, which show very similar signal evolution 

in the two experiments. We cannot evaluate the robustness 
of such SCENA versus EIN similarities and differences in 

the signal evolution without performing further integrations 

to investigate the sensitivity of these results to initial condi- 

tion uncertainties, as will be shown in the following section. 

3.4. Monte Carlo Experiments 

In order to investigate the statistical properties of a 

time-dependent greenhouse warming signal, Cubasch et al. 

[1994] recently performed an ensemble of three 50-year 
Monte Carlo experiments with the ECHAM-1/LSG coupled 
atmosphere-ocean model. These integrations used identical 

greenhouse gas forcing (the equivalent CO2 increase from 
1985 to 2034 specified in IPCC scenario A), but each started 
from different initial conditions of the Cubasch et al. [1992] 

CTL experiment, i.e., at years 30, 60, and 90. The Cubasch 
et al. [1994] study focused on atmospheric signals and 
showed that individual realizations exhibited substantial 

differences in the space-time structure of the 2-m tempera- 

ture signal. This was due to the fact that different manifes- 

tations of natural variability noise were superimposed on the 

true, underlying GHG signal. Here we consider the statisti- 

cal properties of the ocean signals in these Monte Carlo 
experiments. 

Plate 1 compares the changes in globally averaged temper- 

ature at 4-kin depth (top panel) and AABW formation rate 

(bottom panel) for the three Monte Carlo integrations 
(MC30, MC60, and MC90) and the SCENA integration. 

Deep-ocean temperature is an integral quantity which shows 
relatively small interannual variability, while the rate of 
AABW is strongly influenced by surface conditions and has 

much larger year-to-year variability. At the end of the 
SCENA integration, both variables exhibit clear signals. In 
the first 3-4 decades, however, the between-realization 

variability is as large as the ensemble average signal (MC- 

MEAN) after 40 years. The implication is that on these 

timescales, imperfect knowledge of initial conditions can 

translate into large uncertainties that make it difficult to 

define the signal unambiguously. 

4. Univariate Estimates of Detection Period 

and Detection Time 

In the preceding section we provided some preliminary 
comparison of the ocean variability in the SF, SALL, and 
CTL experiments. In this section we extend the comparison 
to the power spectra of selected ocean diagnostics and show 
how these differences in variability translate into different 
estimates of the standard error of a linear trend. Finally, we 

use univariate ocean data to estimate signal detection peri- 

ods and times, and we show how both are affected by signal 
and noise uncertainties. 

4.1. Spectra of Ocean Circulation Indices 
From SF, SALL, and CTL Experiments 

The power spectra for various ocean circulation indices 
from the SF, SALL, and CTL experiments are shown in 

Plates 2a, 2b, and 2c. For the SF and SALL experiments, 

spectra were chunk averaged using nonoverlapping chunks 
of 1000 years in length (corresponding to 6 and 16 real 
degrees of freedom, respectively). For the CTL integration 

three nonoverlapping chunks with length of 100 years were 

used (6 degrees of freedom). Spectra were not normalized by 
their respective standard deviations. 

Consider first the spectra for fresh water fluxes integrated 
over the entire North Atlantic and Arctic Ocean, which is 

representative of one of the forcing terms in the SF and 
SALL experiments (Plate 2a). In all three cases the spectra 
are almost white. For the stochastically forced OGCM 

experiments this is simply a reflection of the assumed lack of 
temporal correlation in the forcing. The coupled CTL exper- 

iment suggests that this is a valid assumption, at least in the 
North Atlantic. 

Plate 2b shows spectra for one of the SF response vari- 
ables, the atmosphere-ocean heat exchange in the North 
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Figure 5. Greenhouse warming signals for spatially averaged ocean circulation indices from the 100-year 
SCENA experiment [Cubasch et al., 1992] and from years 51-150 of the 150-year early industrialization 
experiment (EIN) [Cubasch et al., 1995]. The start dates of the SCENA and EIN experiments were 1985 
and 1935, respectively. The EIN experiment uses the observed greenhouse gas (GHG) increases from 1935 
to 1985 and GHG forcing identical to SCENA from 1985 to 2085. To compare the experiments on a 
common basis, the signal anomalies were defined relative to the average over the decade 1985-1994 of the 
respective experiment. Results are expressed in model years rather than calendar years because we do not 
have a reliable estimate of the climate change signal in absolute time. The earlier starting date reduces the 
cold start error for such indices as deep-ocean temperature and mass transport through the Drake Passage. 

Atlantic (in the SALL experiment, these fluxes are a mixed 

forcing-response term). This has a clear red response spec- 

trum with a maximum at a period of approximately 320 years 

(Plate 2b). The corresponding spectra of the SALL experi- 
ment and the CTL simulation are white for timescales below 

30 years, with some suggestion of reddening on timescales of 

30-100 years. In the SALL experiment the atmosphere- 

ocean heat fluxes are a mixed forcing-response term. From 

the formulation of the boundary condition, the total heat flux 

consists of a prescribed component and a diagnostic term 

obtained from restoring SST to its climatological values. 

Because fluctuations of the prescribed forcing are white, the 

reddish component must therefore originate from changes in 

ocean circulation and the subsequent changes in the advec- 
tion of heat. 

A different picture emerges from the spectra of the mass 

transport of the ACC (Plate 2c). All spectra are red. The SF 

experiment has a discrete peak at approximately 320 years, 

which represents the signature of the salinity oscillator 

identified by MM90. The SALL spectrum has a peak at 

approximately 500 years, while the CTL integration is too 

short to identify any century timescale variance maxima. 

In general, all ocean response terms involving deeper 

layers in the SF and SALL experiments show a monotonic 

increase in power as the period increases from 4 years to 

several hundred years, with discrete peaks at approximately 

320 years and 500 years, respectively. The noise on time- 

scales of less than 10-50 years is much larger in the SALL 

experiment than in the SF integration. The SF experiment in 

turn shows much greater variability on century timescales. 

The ocean spectra from the CTL experiment are generally 

more similar to the SALL spectra than to the SF spectra in 
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Plate 1. Changes in (top) globally averaged deep-ocean 

temperature and (bottom) Antarctic Bottom Water (AABW) 106_ 
formation rate in the original Cubasch ½t al. [1992] SCENA 
integration and in three "Monte Carlo" integrations (MC30, 

10 5 _. 
MC60, and MC90 [Cubasch et al., 1994]) starting from 
different initial conditions of the CTL experiment. The mean • 

,,z, 104• of the three Monte Carlo experiments and the first 50 years o 
of the scenario A integration is also shown (MCMEAN). At • 

the end of the SCENA integration, both variables exhibit • 1ø3- 
clear signals. In the first 3-4 decades, however, the between- • 
realization variability is as large as the ensemble average 1o2- 
signal after 40 years. 

the frequency range where the three integrations overlap. 
Some of the CTL spectra are red (see, for example, Plate 
2c), but as was noted in section 3.1, it is conceivable that 

part of this redness may be attributable to climate drift in the 
model. 

4.2. Standard Error Estimates 

In order to determine whether the linear trend in an ocean 

greenhouse warming signal/3 is statistically significant, we 
need to have information on •, the standard deviation of the 

sampling distribution of the parameter which describes the 

Plate 2. (Opposite) Nonnormalized power spectra for se- 
lected ocean variables from the CTL, SF, and SALL exper- 
iments. For the SF and SALL experiments, spectra were 
chunk averaged using three and eight nonoverlapping 
chunks of 1000 years in length, respectively. For the CTL 
integration three nonoverlapping chunks with length of 100 
years were used. Results are for (a) fresh water fluxes and (b) 
atmosphere-ocean heat fluxes integrated over the entire 
North Atlantic and Arctic Ocean, and for (c) mass transport 
through the Drake Passage. For ocean response terms, the 
noise on timescales of less than 10-50 years is much larger in 
the SALL experiment than in the SF integration, while the 
SF experiment shows much greater variability on century 
timescales. 

101 -- 

10 o 

, I,,,, .... I ..... , , [ I,,,,i I I I _ 

HEAT FLUXES N. ATLANTIC 
• CTL EXPT 

-'--•-._ • SF EXPT 

I""' ' ' ' I""' ' ' ' I""' ' ' " 
1 ooo 1 oo 1 o 

PERIOD (YEARS) 

NON-NORMALIZED SPECTRAL DENSITY:CTL, SF & SALL EXPTS 

10 5 

10 4 -- 

• 103-- 
z 

• 02_ ' 
03 101 _ 

10 0 -- 

10-1 

c 

CTL EXPT 

SF EXPT 

SALL EXPT 

MASS TRANSPORT THROUGH DRAKE PASSAGE 

1000 100 10 

PERIOD (YEARS) 



10,706 SANTER ET AL.' OCEAN VARIABILITY AND GREENHOUSE WARMING SIGNALS 

LINEAR FITS TO 100-YEAR CHUNKS OF SF DEEP-OCEAN TEMPERATURE DATA 
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Figure 6. Least squares linear trends fitted to nonoverlapping 100-year chunks of a time series of 
deep-ocean temperature anomalies. Results are from the SF experiment. 

linear trend. The standard error can be computed in either 

the time domain or the frequency domain [Bloomfield and 

Nychka, 1992]. Here we compute e in the time domain. 

Consider a time series y(t), where t = 1, ... , n, from the 

SF or SALL experiment, where y(t) is an integrated quan- 

tity such as deep-ocean temperature (because of the short 
integration length we do not use the CTL experiment to 

estimate e). For a given chunk length L we use least squares 

regression to fit linear trends to each of m nonoverlapping 

chunks of this time series (Figure 6). For the SF experiment, 

for example, L = 100 and m = n/L = 38. The least squares 

trend for each chunk has a slope parameter fl(c), where c = 
1, ..., m, and the standard error of the linear trend is then 

I • I 1/2 
rn 

s- (m- 1) -• fl(c) 2 (1) 
c=l 

In the following we show s as a function of chunk length 

L, with L varying in the range 10, 20, ß ß ß , 100 years. Since 

the sample size m is small if L is large (-> 100) and chunks are 

nonoverlapping, we increased the sample size by using 

chunks that overlap by 1 year, so that m = 3701 for L = 

100. The standard errors for nonoverlapping and overlap- 

ping chunks are very similar (Figure 7). The use of overlap- 

ping chunks provides little additional information but gives a 

much smoother picture of the decrease in s with increasing 

chunk length. All subsequent standard error results there- 

fore are based on overlapping chunks. 

Figure 8 shows examples of the standard errors in the SF 

and SALL experiments. While both integrations present the 

same qualitative picture of a decrease in s with increasing 

chunk length, the decay is generally more rapid for the 

SALL experiment. Quantitatively, the standard errors in the 
two experiments can differ in either direction by up to an 

order of magnitude. The difference is most pronounced for 

variables such as deep-ocean temperature, stream function 
in the Atlantic, and heat fluxes and ice volume in the 

Antarctic, for which standard errors are larger in the SF 

experiment. These results are consistent with the spectra of 
the SF and SALL ocean time series (section 4.1) and the 

generally higher variability of the ocean circulation in the SF 

experiment on timescales longer than approximately 10-30 
years. 

On shorter timescales, the standard errors in the SALL 

experiment are sometimes larger than those in the SF 
integration. This is seen most clearly in the atmosphere- 

ocean heat fluxes integrated over tropical oceans, which is a 

mixed forcing-response term in the SALL experiment. 

The values of s constitute the background noise level due 

to natural variability against which we must detect any ocean 

greenhouse warming signal. The large disparities between 

the SF and SALL standard errors translate into large uncer- 

tainties in estimates of the detection periods and detection 
times for ocean signals, as is discussed in the following 
sections. 

4.3. Univariate Detection Period Estimates 

In order to estimate detection periods, we first compute 

the SF and SALL standard errors si as in (1), but now for 
chunk lengths Li = 10i, where i = 1, 2, ß ß ß , 10. We then 
require a signal growth rate/3 for each ocean variable. This 
depends strongly on the ocean variable. An increase of 1% 
yr -• is typical for some surface indices, while deep-ocean 
variables change much more slowly. We therefore choose/3 
as the mean growth rate which yields the increase or 

decrease in a given ocean variable (according to our pre- 

ferred definition 2) in the final decade of the SCENA 

experiment. We consider also growth rates 0.5/3 and 2/3 to 
reflect the large uncertainty range in linear signal evolution 
estimates. 

The ratio fl/si is a measure of the signal strength relative 
to the natural variability noise. Assuming that the sampling 

distributions of linear trend parameters are normally distrib- 

uted in both the SF and SALL experiments, we define the 

detection period Tt, as the chunk length L i for which the 
dimensionless quantity fl/si exceeds 1.96, the critical normal 
curve value appropriate for a stipulated significance level of 
5% and a two-tailed test (we perform two-tailed tests be- 
cause for many ocean variables, such as mass transport 

through the Drake Passage, we have no a priori information 
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Figure 7. Standard error E i for four different spatially averaged ocean variables from the SF experiment. 
Standard errors are shown as a function of increasing chunk length L i for both nonoverlapping chunks and 
chunks which overlap by 1 year. The overlapping chunks provide a smoother picture of the decrease in ei 
with increasing chunk length. The standard errors are a measure of the variance of linear trends. 

on the direction of signal trends; i.e., we do not know 

whether they are likely to be positive or negative). In other 
words, the detection period is the chunk length for which the 
linear signal trend is nearly twice as large as the standard 
deviation of the sampling distribution of slope parameters for 
that chunk length. 

Detection periods are highly sensitive to the natural vari- 
ability noise differences in the SF and SALL experiments 
(Table 2). For the SF noise, less than one third (19 of 63) of 
the assumed growth rates were detectable within 100 years, 
while over two thirds (45 of 63) of the growth rates could be 
detected in the 10- to 100-year time frame relative to the 
SALL noise. These results are governed by the absolute 
differences in the standard errors (see Figure 10) and levels 

of ocean variability in the two stochastic integrations. Given 

the larger standard errors in the SF experiment, Tp is 
generally longer if noise is estimated from this integration. 
Exceptions are North Atlantic ice volume and NADW 
formation rate, where the SALL experiment has greater 

variability on timescales of 10-30 years. 

Certain aspects of our results appear to be independent of 
the SF versus SALL standard error differences. First, indi- 

ces that are highly sensitive to surface conditions, such as 

ice volume in the North Atlantic, ocean-atmosphere heat 

fluxes, and NADW formation rate, tend to have shorter 

detection periods than changes in deep-ocean temperature 

and salinity. Second, changes in mass transport in the Pacific 
and Indian Oceans have shorter detection periods than 

changes in transports from the Atlantic to the Southern 
Ocean. Third, detection periods can be long for the growth 

rates stipulated for fresh water flux terms, despite the fact 
that these quantities are white-noise-forcing terms in the SF 
and SALL experiments. This means that the changes in 
these indices at the end of SCENA (and hence the assumed 

growth rates) are relatively small. 
The short detection periods for growth rates of North 

Atlantic ice volume (10-25 years) require some comment. 

This result is probably due to the prescription of atmospheric 
temperature, which is highly constrained in the SF experi- 
ment but less constrained in the S ALL integration. This acts 

to suppress any variability directly associated with surface 
temperature. Of the ocean variables considered here, this 
will be manifested most clearly in the variability of sea ice. 

The detection periods and times for ice volume changes are 
therefore likely to be too optimistic. 
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Figure 8. Standard errors si for selected ocean diagnostics from the SF and SALL stochastic forcing 
experiments, shown as a function of increasing chunk length L i. All values were computed using 
overlapping chunks. The standard errors in the two experiments can differ in either direction by up to an 
order of magnitude. 

4.4. Univariate Detection Time Estimates 

To compute detection time, we use the same SF and 

SALL standard errors si employed in the calculation of 
detection period. Instead of assuming linear signal growth 

rates, we now use the real time-evolving signals in the 

SCENA and EIN experiments. The signals are described by 

the linear trend parameters/3i, with i = 1, 2, ... , 10, and 

are computed for intervals L i = 10i (i.e., for years 1-10, 
1-20, ß ß ß, 1-100 of a given signal time series). Unlike/3/si, 

the ratio [•i/Si now involves changes in both signal strength 
and noise levels as a function of increasing length of the time 
series. 

In order to compare the SCENA and EIN experiments on 

a common basis, we computed the signal anomalies relative 

to the average over the decade 1985-1994 of the respective 

experiments (see Figure 5). Assuming Gaussian distributions 

for the linear trend parameters in the SF and SALL exper- 

iments, we define detection time T• as the interval length L i 
for which [•i/Ei exceeds and remains above 1.96 (i.e., 5% 
significance for a two-tailed test). The qualification "remains 

above" is necessary because the signal trends are not 

constant with time (see Figure 5), so that [•i/Ei may exceed 
1.96 for a given interval but drop below this threshold for a 

longer interval. Because of the previously discussed prob- 
lems associated with ice volume changes and the white noise 

nature of the SF and SALL fresh water flux terms, we have 

not computed detection times for these indices. 
The detection times for the univariate SCENA and EIN 

signals show a behavior similar to the detection periods 

(Table 3). The SCENA and EIN signal trends could be 

detected within 100 years in only 7 of 45 cases for the SF 

noise, while the detection success, 31 out of 45 cases, was 

much higher for the SALL noise. 
The effect of the cold start error on detection time is also 

evident. For most indices the EIN signals are detectable 

earlier than the SCENA signals. The largest improvements 

in detection time are for mass transport through the Drake 

Passage (70 years earlier) and transports in the Pacific and 
Indian Oceans (35-40 years earlier; see Table 3 and Figure 

5). 
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Table 2. Detection Periods (in Years) for Univariate and Multivariate Ocean Data 

Ocean Variable Abbreviation fl/yr 

SF Noise SALL Noise 

0.5/3 1.0/3 2.0/3 0.5/3 1.0/3 2.0/3 

Temperature at 4-km depth, globally averaged 
Salinity at 4-km depth, globally averaged 
Mass transport through the Drake Passage 
Ice volume (North Atlantic) 
Ice volume (Antarctic) 
Potential energy loss by convection (North Atlantic) 
Potential energy loss by convection (Antarctic) 
Heat fluxes (North Atlantic) 
Heat fluxes (North Pacific) 
Heat fluxes (30øN to 30øS) 
Heat fluxes (Antarctic) 
Stream function at 1.5-km depth (Atlantic) 
Stream function at 2.5-km depth (Atlantic) 
Stream function at 1.5-km depth (Pacific) 
Stream function at 2.5-km depth (Pacific) 
Stream function at 1.5-km depth (Indian Ocean) 
Stream function at 2.5-km depth (Indian Ocean) 
Fresh water fluxes (North Atlantic) 
Fresh water fluxes (North Pacific) 
Fresh water fluxes (30øN to 30øS) 

Fresh water fluxes (Antarctic) 

Unrotated fingerprint pattern 
Rotated fingerprint pattern 

T4-MEA 5.73 x 10 -4 øC N.D. N.D. N.D. N.D. N.D. 10 

S4-MEA 3.73 x 10 -6 ppt N.D. N.D. N.D. N.D. N.D. N.D. 
PSIDRA -4.72 x 104 m 3 s -1 N.D. N.D. N.D. N.D. N.D. 50 
ICE-NA -0.28 x 103 km 3 10 10 10 25 15 10 
ICE-AA 1.13 x 101 km 3 N.D. N.D. N.D. N.D. N.D. N.D. 
CEN-NA -0.33 x 1013 W N.D. 55 25 100 65 40 
CEN-AA -0.72 x 1013 W N.D. N.D. N.D. N.D. 65 35 
HFL-NA 1.59 x 1012 W N.D. 80 25 85 50 30 
HFL-NP 1.02 x 1012 W N.D. N.D. 65 80 55 35 
HFL-TR 0.56 x 1012 W N.D. N.D. N.D. N.D. N.D. 70 
HFL-AA 4.91 x 1012W N.D. N.D. N.D. 65 35 20 
ME15-A 1.28 x 104 m 3 s -1 N.D. N.D. N.D. N.D. N.D. 100 
ME25-A 1.06 x 104 m3 s-1 N.D. N.D. N.D. N.D. N.D. N.D. 
ME15-P -6.35 x 104 m 3 s -1 N.D. N.D. N.D. 65 30 15 
ME25-P -6.00 x 104 m 3 s -1 N.D. N.D. N.D. 85 40 20 
ME15-I -3.73 x 104 m 3 s -1 N.D. N.D. 75 65 30 15 
ME25-I -4.24 x 104 m 3 s -1 N.D. N.D. 90 65 25 15 
WFL-NA 0.26 x 103 m 3 s -! N.D. 90 55 100 65 40 
WFL-NP 0.76 x 103 m 3 s -1 60 40 25 55 35 25 
WFL-TR -1.32 x 103 m 3 s -1 100 65 40 70 45 30 
WFL-AA 0.43 x 103 m 3 s -1 N.D. N.D. 65 80 50 35 

70 35 20 45 20 10 

45 20 10 55 20 10 

Results are given for different noise experiments and signal growth rates. The detection period T v is the length of a climate time 
series required until the ratio •/ei exceeds 1.96, indicating that the linear growth rate is significant at the 5% level or better. The growth 
rate 1.0• yields the increase or decrease in a given ocean circulation index (according to definition 2) at the end of the 100-year SCENA 
experiment, so that 0.5• and 2• are one-half and twice the linear rates of change in SCENA, respectively. The standard errors ei are 
computed from two different natural variability noise experiments (SF and SALL). Detection times are given to the nearest 5 years, and 
"N.D." indicates that the prescribed linear trend could not be detected in at least 100 years. The final two rows give results for the 
multivariate analysis (see sections 5.4 and 5.5). 

Table 3 also shows that the estimates of detection time Tel 

depend on the assumptions about the correlation between 
the SCENA and CTL variability, i.e., on the choice of 

definition 1 or 2 of the SCENA signal. This is not surprising 

in view of some of the results shown in Figure 4. 

Note that heat fluxes integrated over tropical oceans yield 

a very optimistic detection time under definition 1 of the 

SCENA signal relative to the SALL standard errors (10 

years; see Table 3). This is largely due to the strong drift in 

this quantity during the initial decade of the CTL integration 

(not shown). If the first 10 years of the CTL and SCENA 

experiment are excluded, the detection time for changes in 
tropical ocean-atmosphere heat fluxes increases from 10 to 
40 years. 

As was noted in section 3.4, a further source of signal 

uncertainty is related to our imperfect knowledge of initial 

conditions. Plate 3 illustrates this by showing i•i/Ei relative 
to the SF standard errors for all signals (SCENA, the 

individual Monte Carlo experiments and the MCMEAN) and 

13i/ei for the SALL standard errors and the SCENA signal 
only (to avoid complicating the diagrams, i•i/Ei results for 
the Monte Carlo signals relative to the SALL standard errors 

are not shown). Consider results for NADW formation rate 

(Plate 3a). The SCENA signal for this quantity is detectable 

within 35 years (under the preferred definition 2), whereas 

the signals in the MC60, MC90, and MCMEAN experiments 

are not detectable within 50 years. This shows that the 

conclusion Cubasch et al. [1994] obtained for atmospheric 

variables is equally valid in an oceanic context: a single 

greenhouse warming integration of limited duration cannot 

provide insights into the statistical properties of the signal 

and may yield a misleading estimate of detection time. The 

Monte Carlo experiments indicate that the large local max- 

ima and minima in i•i/Ei for individual signals are not 
deterministic and tend to be smoothed out in the MCMEAN 

signal (see, for example, the results for deep-ocean temper- 

ature and strength of AABW formation, Plate 3b). 

In summary, our results show that detection periods and 

detection times for univariate ocean greenhouse warming 

signals are highly sensitive to details of the decade to century 

timescale noise, which is in turn sensitive to the precise 

specification of the atmospheric forcing. Detection time 
estimates are also sensitive to signal uncertainties resulting 

from the cold start error, imperfect knowledge of initial 

conditions (and the possibly chaotic nature of the climate 

system), and assumptions regarding the relation between 
natural variability in the control and response experiments, 

which affect the definition of the signal. The implications of 
these results are discussed further in section 6. 

5. Multivariate Estimates of Detection Period 

and Detection Time 

In the preceding section we examined the greenhouse 

warming signals and associated detection periods and times 

for individual, spatially averaged ocean variables. We now 
consider whether we can achieve earlier detection of an 

ocean greenhouse warming signal by using a multivariate 
detection vector, rather than individual ocean variables 

only. This is the essence of the fingerprint approach to signal 
detection [Madden and Rarnanathan, 1980; MacCracken 
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Table 3. Detection Times for Univariate and Multivariate Ocean Data 

SCENA 

SF SALL EIN 

Ocean Variable Abbreviation Definition 1 Definition 2 Definition 1 Definition 2 SF SALL 

Temperature at 4-km depth, T4-MEA N.D. N.D. 60 N.D. N.D. (N.C.) 35 (-25) 
globally averaged 

Salinity at 4-km depth, globally S4-MEA N.D. N.D. 25 N.D. N.D. (N.C.) 30 (+5) 
averaged 

Mass transport through the PSIDRA N.D. N.D. N.D. N.D. N.D. (N.C.) 30 (-70) 
Drake Passage 

Potential energy loss by CEN-NA 50 35 65 60 50 (N.C.) 55 (-10) 
convection (North Atlantic) 

Potential energy loss by CEN-AA N.D. N.D. 60 55 N.D. (N.C.) 55 (-5) 
convection (Antarctic) 

Heat fluxes (North Atlantic) HFL-NA 65 N.D. 55 40 50 (-15) 45 (-10) 
Heat fluxes (North Pacific) HFL-NP 50 70 30 50 N.D. (+50) 45 (+ 15) 
Heat fluxes (30øN to 30øS) HFL-TR N.D. N.D. 10 N.D. N.D. (N.C.) N.D. (+90) 
Heat fluxes (Antarctic) HFL-AA N.D. N.D. 45 35 N.D. (N.C.) 30 (-15) 
Stream function at 1.5-km depth ME15-A N.D. N.D. N.D. N.D. N.D. (N.C.) N.D. (N.C.) 

(Atlantic) 
Stream function at 2.5-km depth ME25-A N.D. N.D. N.D. N.D. N.D. (N.C.) N.D. (N.C.) 

(Atlantic) 
Stream function at 1.5-km depth ME15-P N.D. N.D. N.D. 65 N.D. (N.C.) 60 (-40) 

(Pacific) 

Stream function at 2.5-km depth ME25-P N.D. N.D. N.D. 70 N.D. (N.C.) 65 (-35) 
(Pacific) 

Stream function at 1.5-km depth ME15-I N.D. N.D. 80 60 N.D. (N.C.) 40 (-40) 
(Indian Ocean) 

Stream function at 2.5-km depth ME25-I N.D. N.D. 80 65 N.D. (N.C.) 40 (-40) 
(Indian Ocean) 

Unrotated fingerprint pattern 35 35 60 55 30 (-5) 30 (-30) 
Rotated fingerprint pattern 10 10 45 10 25 (+ 15) 30 (-15) 

Results are expressed in years relative to a reference date of 1985, and are given for different signal and noise experiments and different 
signal definitions. The detection time Ta, is the length of a climate signal time series required until the ratio 13i/ei exceeds (and remains above) 
1.96, indicating that the linear signal trend is significant at the 5% level or better. The ocean linear trend signals /3i are taken from the 
100-year SCENA and 150-year EIN experiments, with start dates in 1985 and 1935, respectively. The standard errors ei are computed from 
two different natural variability noise experiments, SF and SALL. Detection times are given to the nearest 5 years, and "N.D." indicates 
that the time-evolving signal trend could not be detected in at least 100 years. The final two rows give results for the multivariate analysis 
(see sections 5.4 and 5.5). The EIN signal is defined relative to the decade 1985-1994 of the EIN experiment to facilitate comparison with 
the SCENA signal. The numbers in brackets in the final two columns indicate how much earlier (negative numbers) or later (positive 
numbers) the EIN signal can be detected relative to the SCENA signal; "N.C." denotes no change in detection time. 

and Moses, 1982; Barnett and Schlesinger, 1987; Wigley and 

Barnett, 1990; Hasselrnann, 1993]. 

5.1. Multivariate EOF Analysis 

Consider as an example the normalized anomalies •(x, t) 
from the 3800-year SF stochastic forcing experiment 

•(x, t)=[z(x, t)-•(x)]/s(x) x= 1, p; t= 1, n (2) 

where •(x) is the 3800-year time average and s(x) is the 
standard deviation of the time series. The discrete variable t 

denotes time in years, while x identifies the individual 

spatially averaged ocean variables in Table 1, excluding ice 
volume (because of the previously discussed drift problems) 
and the white noise forcing terms, so that p = 15 and n = 
3800. The x index therefore denotes both different variables 

as well as different spatial averages for the same variable 
(e.g., ocean-atmosphere heat fluxes in the North Atlantic 
and Antarctic). Note that normalization is necessary, since 
the dimensions differ between variables. 

The covariance matrix c(x, y) is then defined as 

n 

c(x, y)= (n- 1) -1 • •(x, t)•(y, t) 
t=l 

(3) 

x= 1, p; y= 1, p 

and represents the covariance between different ocean vari- 
ables and different regions of the ocean, at very large spatial 

scales. The eigenvectors (EOFs) are defined by 

p 

• c(x, y)ej(y) = ljej(x) 
y=l 

x= 1, p (4) 

Since n is much larger than p, and since n is at least an order 

of magnitude larger than the dominant timescales of variabil- 

ity in the SF and SALL experiments, the EOFs can be well 
estimated. EOFs are normalized to form an orthonormal 

basis, so that 
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Figure 9. Multivariate empirical orthogonal functions 
(EOFs) 1-4 from the SF experiment. EOFs were computed 
from the 3800-year time series for 15 spatially averaged 
ocean circulation indices and provide information about the 
covariance between different ocean variables and different 

regions of the ocean (at the scale of individual ocean basins). 
The x axis indicates the ocean variable (see Table 1 for an 

explanation of the abbreviations). (a) EOFs 1 and 2 capture 
features of the 320-year "salinity oscillator" identified by 
Mikolajewicz and Maier-Reimer [1990, 1991]. (b) EOFs 3 
and 4 may be related to "on" and "off" modes of the salinity 
oscillator (see section 5.2). 

p 

• ej(x)ej(y) = tixy 
j=l 

x=l,p; y=l,p (5) 

The EOF amplitudes aj(t) are defined by 

p 

aj(t) = • •(x, t)ej(x) 
x=l 

j=l,p; t=l,n (6) 

Most meteorological applications use the so-called S mode 

of EOF analysis [Preisendorfer, 1988], in which the first 

index of the input data set z is assumed to be spatial location 
and the second index runs over time. In this context, EOFs 

are spatial patterns and their amplitudes are time series that 

determine the relative importance of a particular pattern in a 

given year. In the mode of analysis used here, the EOFs 

carry some spatial information (at the scale of entire ocean 

basins) but also convey information about the relationships 
between different ocean variables. 

5.2. Multivariate EOF Analysis: Results 

SF experiment. Figure 9 shows EOFs 1-4 for 15 of the 

ocean time series from the SF stochastic forcing experiment. 

Consider first EOF 1. It has high positive or negative 

loadings on virtually all ocean variables, indicating that this 

mode is near-global in scale. The mode describes the anti- 

correlation between the strength of deep water formation: 

and that of atmosphere-ocean heat fluxes: increased NADW 

formation is linked with increased (i.e., larger negative) 

heat fluxes from the North Atlantic to the atmosphere 

(rCEN_NA:HFL_NA = -0.66 for the normalized CEN-NA and 

HFL-NA time series). The same inverse relationship 

between heat fluxes and deep water formation rate applies 

in the Antarctic, where reduced formation of AABW 

results in reduced (i.e. smaller negative; see Figure 1) 

heat fluxes from the Southern Ocean to the atmosphere 

due to the suppression of upward convective heat flux 

(t'CEN-AA:HFL-AA = --0.95). NADW and AABW formation 
rates themselves show an inverse relationship: this was a 

prominent feature of the 320-year ocean circulation mode 

found in MM90. Our results suggest that EOF 1 is closely 

linked to this mode. The EOF 1 amplitude time series lends 

support to this hypothesis (see Figure 10a). It shows oscil- 

lations on timescales of several centuries, with maximum 

power at a period of roughly 320 years. 

Other features of EOF 1 are also consistent with proper- 

ties of the dominant MM90 mode, such as the strong 

correlation between mass transport through the Drake Pas- 

sage and the AABW formation rate (t'PSIDRA:CEN-AA = 0.79 
[see Mikolajewicz and Maier-Reimer, 1991]) and the anticor- 

relation between the strength of NADW formation and 

outflow from the Atlantic (t'CEN_NA:ME15_ A = --0.58; see 
Figure 1). When NADW formation is increased, the outflow 

from the Atlantic at 30øS is also increased, as is indicated by 

the opposite signs of the loading on NADW formation rate 

and the loading on stream function at both 1.5- and 2.5-km 

depth in the Atlantic (note that negative values denote flow 

to the south in the sign convention used for stream function). 

EOF 1 also suggests that decreased mass transport through the 

Drake Passage is linked with decreased northward transport of 

mass in the Pacific and Indian Oceans (rpSiDRA:ME15_ P = 0.73 
and rpSiDRA:ME15_ I = 0.88). 

EOF 2 (Figure 9a) shows several features that are the 

inverse of EOF 1. It describes reduced NADW formation, 

with consequent reduction of outflow from the Atlantic (i.e., 

smaller negative values for stream function at 1.5- and 

2.5-km depth in the Atlantic), increased AABW formation 

(with attendant increases in net heat flux from the Southern 

Ocean to the atmosphere, i.e., larger net heat flux values; 

see Figure 1), and increased mass transport through the 
Drake Passage. However, EOF 2 differs in other respects 

from the mirrored EOF 1, otherwise it would not be a 

separate EOF. In particular, it shows no anticorrelation 
between heat fluxes and convection in the North Atlantic, 

and an out-of-phase relationship between AABW formation 

rate and deep inflow into the Pacific. 

EOFs 1 and 2 describe an oscillating pair of modes, as is 

evident from their corresponding amplitude time series (Fig- 

ure 10a). This system is very similar to the oscillator 

identified by Mikolajewicz and Maier-Reimer [1991, Figure 

7] in their POP analysis of vertical salinity profiles in the 

Atlantic. The present representation provides more informa- 
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Figure 10. EOF amplitude time series 1-4 from the multivariate EOF analysis of the SF experiment. The 
time series give the amplitude of the EOF 1-4 patterns (see Figure 9) in the normalized multivariate ocean 
data. (a) Time series for EOFs 1 and 2 oscillate on timescales of several centuries, with maximum power 
at approximately 320 years. (b) Time series for EOFs 3 and 4 show fluctuations on the 1000-year timescale. 

tion about the interrelationships between different integral 

ocean variables, while sacrificing spatial details. 

EOF 3 (Figure 9b) principally describes simultaneous 
increases in NADW and AABW formation, with attendant 

increases in heat fluxes from the Southern Ocean and North 

Atlantic to the atmosphere (i.e., larger negative values). This 

mode has a weak indication of a spectral peak at a period 

slightly larger than 1000 years (results not shown). The 

long-period part of the corresponding amplitude time series 
(Figure 10b) shows some relation to the time series of POP 

coetficient amplitude shown by Mikolajewicz and Maier- 

Reimer [1991] and may be related to "on" and "off" modes 

of the salinity oscillator. EOF 4 is a mode in which there are 

anticorrelations between convective activity in the North 

Atlantic and Antarctic and between meridional transport in 

the Pacific and Indian Oceans. As in EOF 3, there is some 

evidence of power on the 1000-year time scale. 

In summary, we conclude that EOFs 1 and 2 capture basic 

features of the salinity oscillator identified by MM90 and that 

some long-timescale variations of EOFs 3 and 4 may be 
related to the "on" and "off'' modes of this oscillator. 

SALL experiment. In order to compare the dominant 
modes of ocean variability in the two stochastic forcing 

experiments, we also computed the multivariate EOFs of the 

SALL integration (Figure 11). In both the SF and SALL 

experiments, the EOF 1 mode describes a reduction in the 

strength of the ACC, reduced flow from the North Atlantic 

into the Southern Ocean, and reduced flow from the South- 

ern Ocean into the Pacific and Indian Oceans (compare 

Figures 9 and 11). The SF and SALL EOF 1 loading patterns 

are highly similar (r = 0.84). In SALL, however, EOFs 1 
and 2 do not show an anticorrelation in NADW and AABW 

formation rates, which was a prominent characteristic of the 

salinity oscillator in the SF integration. EOFs 2-4 are quite 
different in the two runs. 

The first four SF and SALL amplitude time series shown 

in Figures 10 and 12 illustrate some of the differences in the 

timescales of ocean variability in the two experiments. 

Although in both cases the low-frequency parts of the EOF 

1 and 2 amplitude time series describe an oscillatory system, 

this is less clear in the SALL experiment than in the SF 

experiment. The spectra of the first four SALL amplitude 
time series (not shown) are red with discrete peaks at 

approximately 500 years, indicating that the dominant modes 
of the SALL experiment describe the long-period fluctua- 

tions in deep-ocean temperature and salinity, strength of the 

ACC, etc. (see Figure 2). This is some 50% longer than the 
timescale of the EOF 1 and 2 modes in the SF experiment. 

More detailed analyses, making full use of pattern infor- 

mation rather than only spatially integrated quantities, will 

be required in order to determine whether the dominant 

modes of variability in the two stochastic forcing experi- 

ments are related to the same or similar physical mecha- 
nisms. 

SCENA and 2 x COz experiments. We also computed 
EOFs from the 15 spatially averaged ocean time series in the 

100-year SCENA experiment and in a 100-year experiment 

with step function doubling of atmospheric CO2 (2 x CO2 
[see Cubasch et al., 1992]). Here we show results for the 2 x 

CO2 experiment only, but note that the SCENA results are 
very similar. Signal anomalies were defined according to 

definition 2 and were normalized by both the standard 

deviations of the SF and SALL time series (s(x) in (2)). This 

facilitates the direct comparison of signal and noise because 

it has the effect of reducing those components of the signal 

that are small relative to the variability in the SF or SALL 
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Figure 11. Multivariate EOFs 1-4 from the SALL experi- 
ment. EOFs were computed from the 8000-year time series 
for 15 spatially averaged ocean variables. The x axis indi- 
cates the ocean variable (see Table 1 for an explanation of 
the abbreviations). The dominant modes of variability are 
very different in the SF and SALL stochastic forcing exper- 
iments (compare Figure 9). 

experiments. EOFs were then computed as described in 
section 5.1. 

Since the variability in the SF and SALL experiments is 

very different, normalization of signal anomalies by the SF 

standard deviations series yields an EOF 1 pattern that is 

only weakly similar (r = 0.57) to the EOF 1 pattern obtained 

using SALL s(x) values (see results for "unrotated finger- 

print" in Figures 13a, b). In each case, however, the first 

mode is dominant, explaining ->70% of the variance. This 
mode basically describes the change in mean state. 

For the signal normalized with respect to the variability in 

the SF experiment (Figure 13a), the most pronounced fea- 

ture of EOF 1 is the high negative loading on NADW 

formation rate, with attendant positive loadings on the heat 

fluxes from the ocean to the atmosphere in the North 

Atlantic. Note that although there are large reductions in the 

rate of AABW formation in both the 2 x CO2 and SCENA 
experiments (by approximately 45 x 1013W and 70 x 1013W, 
reductions of nearly 20% and 30%, respectively, relative to 

the CTL mean state; see Figures 3 and 4 for SCENA 

results), these changes are not important in EOF 1 because 

they are small relative to the large variability of this quantity 

in the SF experiment (Table 1). 

Normalization by the standard deviations from the SALL 

experiment yields an EOF 1 pattern with a more uniform 

distribution of loadings over all indices (compare Figures 13a 
and 13b). This mode reflects the reduced formation rate of 

both NADW and AABW, with attendant increases in heat 

fluxes from the ocean to the atmosphere in the North 

Atlantic and Antarctic, reduction in the strength of the ACC, 
and a decrease in the outflow of NADW from the Atlantic 

into the Southern Ocean (recall that southward transport is 

negatively defined, so positive values of stream function at 

1.5- and 2.5-kin depth in the Atlantic indicate smaller nega- 

tive values and decreased southward transport). The stron- 

gest signature is the decreased transport from the Southern 
Ocean into the Pacific and Indian Oceans. 

Mikolajewicz et al. [1990] have also used the LSG OGCM 

in two uncoupled "pseudo-transient" greenhouse warming 

experiments. In these integrations the ocean model was 

forced by equilibrium patterns of surface temperature 

change resulting from 2 x CO2 runs performed with AGCMs 
with mixed-layer oceans. The time dependence was 

achieved by scaling these patterns using an exponential 

function and time constants of 40 and 80 years. The domi- 

nant EOF 1 modes computed from these experiments (not 

shown) are generally very similar to those obtained in the 

doubled-CO 2 and SCENA integrations. 

5.3. Projections in Two. Dimensional EOF Space 

Before proceeding to the calculation of detection periods 

and times for multivariate ocean data, it is useful to first 

visualize the evolution of the multivariate SCENA signal in 

the space of the SF and SALL EOFs (following Preisendor- 

fer [1988] and Santer et al. [1994]). For this purpose we 

compute anomalies (according to definition 2) of the SCENA 

ocean data, normalize with both the SF and SALL noise as 

in (2), and then project the normalized anomalies onto the 

EOFs of, the SF or SALL experiment, ej(x), to form the 
time series bj(t)' 

p 

bi(t) = • p(x, t)ei(x) 
x--1 

j= 1, p; t= 1, 100 (7) 

where p(x, t) are the normalized anomalies from the 

SCENA experiment. 

Plate 4a shows the projection of the normalized SF and 

SCENA anomaly data onto EOFs 1 and 2 of the SF 

experiment. This is a way of comparing the joint evolution of 

the multivariate signal and noise data in time and space [see 

Preisendorfer, 1988; Santer et al., 1994]. Each symbol on the 

figure represents 1 year of the SCENA or SF experiment, 

and the symbols in consecutive years are linked by lines. In 

the SF experiment, these lines define the trajectory of the 
320-year ocean circulation oscillator in the EOF 1-2 plane' 

the outer "loops" are traced when the oscillator is in "on" 

mode, and the trajectories collapse toward the center of the 

figure at times when the oscillator is in"off" mode. A similar 

picture was obtained by Mikolajewicz and Maier-Reimer 

[1991] in a scatterplot of the real and imaginary parts of the 
POP coefficients for their salinity oscillator. 

If the multivariate ocean signal in the SCENA experi- 

ment showed no evidence of the types of interrelation- 

ships (between different ocean variables and different 

ocean basins) found in EOFs 1 and 2 of the SF integration, 

its projections on these EOFs would be close to zero. 
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Figure 12. EOF amplitude time series 1-4 from the multivariate EOF analysis of the SALL experiment. 
The time series give the amplitude of the EOF 1-4 patterns (see Figure 11) in the normalized multivariate 
ocean data. Amplitudes for EOFs 1-4 oscillate on timescales of approximately 500 years. All time series 
have been low-pass filtered. 

Clearly, this is not the case' the SCENA data have small 

but nonzero projections on both EOFs 1 and 2 (Plate 4a). 

This is not surprising, since EOFs 1 and 2 describe 

fundamental features of the ocean circulation (such as the 

coupling between NADW and AABW formation rates and 

ocean-atmosphere heat fluxes) which exist also in the 

greenhouse warming experiment. We conclude therefore 

that the SCENA signal and the SF variability have some 

common components, although pattern correlations be- 
tween EOF 1 of SCENA and EOFs 1 and 2 of the SF 

experiment show that these common components are very 

small (rsFe,'SCEN^e, = 0.16; rSFe::SCEN^e, = 0.19). The fact 
that the signal does not emerge from the "noise cloud" is 

due to both the weakness of the similarity between the 

dominant signal and noise patterns and the fact that the 

amplitude of changes in common components is much 

larger in the SF experiment than in the SCENA integra- 
tion. 

When projected onto EOFs 3 and 4 of the SF experi- 

ment, the SCENA data show much less overlap with the 

natural variability noise cloud (Plate 4b). Most of the 

separation is in the plane of EOF 3, where the scenario A 

projections are generally larger than the projections of the 

SF data. This is principally due to the fact that the NADW 

and AABW changes are in the same direction and are 

important components of EOF 3 in the SF experiment (see 

Figure 9b) and are also a prominent feature of the ocean 

signal in the SCENA experiment (rsFe3:SCœ•^e, = 0.69). 
Thus the SCENA ocean signal should be easier to discrim- 

inate from the natural variability noise in the EOF 3 plane 
of the SF experiment, where the amplitude of the signal is 

larger than the amplitude of the noise. 
A rather different result is obtained when the SCENA 

ocean data (normalized by the SALL noise) are projected 

onto EOFs 1 and 2 of the SALL experiment (Plate 5). Both 

signal and noise amplitude time series were low-pass 

filtered in order to better display the oscillatory behavior 

of the SALL integration in the EOF 1-2 plane and the 

development of the SCENA signal. The signal clearly 

emerges from the natural variability noise cloud after 

50 years, with virtually all of the separation occurring 

in the EOF 1 plane. This suggests that unlike the SF 

case, the EOF 1 plane of the SALL integration is a 

direction in which the signal not only can be well repre- 

sented (rSALLe•:SCENAe• = 0.69), but also is considerably 
larger than the noise. 

If signal and noise are unfiltered (not shown) the high- 

frequency noise is large and completely obscures the 

oscillatory behavior of the SALL integration. Even in the 

unfiltered data, however, there is clear separation of signal 

and noise after roughly 55-60 years. 

5.4. Estimates of Detection Period and Time: 

Unrotated Fingerprint 

The detection periods and times given in section 4 were 

univariate estimates computed for individual ocean circula- 
tion indices. In this section we consider whether earlier 

detection of an ocean greenhouse warming signal can be 
achieved using a multivariate approach. 

In any multivariate approach one must generally attempt 

to filter out those signal components that are contaminated 

by natural variability noise. There are several sources of 

noise. First, for any individual climate variable, the "signal" 

in a single transient greenhouse warming experiment is not 

"pure" signal but rather signal plus some manifestation of 

the model's own natural variability noise. As was shown by 
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Figure 13. Unrotated and rotated finge•Hnt patterns, f( x) 
and f*(x), for multivariate ocean data from a step function 
CO2 doubling experiment. The x axis indicates the ocean 
variable (see Table 1 for an explanation of the abbrevia- 
tions). The unrotated finge•Hnt is EOF 1 of the 2 x CO2 
integration, with normalization of ocean anomaly time series 
by the (a) SF and (b) SALL standard deviations. The 
unrotated finge•Hnt provides information about the direc- 
tion of the expected ocean signal. The rotated finge•Hnts 
are skewed in the direction of the low-noise components of 
the SF and SALL experiments. Differences in the finge•fint 
structures in Figures 13a and 13b are attributable to differ- 
ences in the variability in the SF and SALL experiments. 
For more detailed definitions of unrotated and rotated fin- 

ge•Hnts, see sections 5.4 and 5.5, respectively. 

Cubasch et al. [1994] (see also section 4.4), this noise can be 

reduced by averaging (in space and time) over an ensemble 
of initial condition realizations but will not be removed 

entirely. Second, the addition of each new variable to a 
multivariate detection vector adds finite amounts of both 

signal and noise. Whether the overall signal-to-noise ratio is 
enhanced or reduced by each new variable included depends 
on the relative amounts of signal and noise added. To reduce 
the noise from both sources, it is therefore necessary to 

apply some form of filtering. Without filtering, the signal 
detection problem may be as difficult as finding a needle in a 
haystack. 

One way of improving signal detectability is by using a 
"fingerprint," which defines the direction in which the GHG 
signal is expected to lie. The fingerprint incorporates any a 
priori information that we may have about the multivariate 
GHG signal. This information may be derived from model 

results, physical intuition, or some combination of the two. 
The key point is that the fingerprint must be derived from an 
independent experiment or an independent model, i.e., an 
experiment different from the one for which we are trying to 
detect a signal. This means that in our study, which deals 
with model data only, we require three separate experiments 

in order to implement a fingerprint detection strategy: one 
for defining the fingerprint, one for defining the signal we 
wish to detect, and one for defining the natural variability 

noise properties. 

The fingerprint represents an intelligent guess as to the 
nature of the expected greenhouse warming signal in the 
ocean. We cannot know the exact direction of the signal, 

since so far we lack any independent information on the 

climatic changes induced in the ocean by an enhanced 

greenhouse effect. If our guess is a good guess and is closer 
to the pure signal than to the signal plus noise, then the 
fingerprint acts as a noise filter, and its application can 
enhance signal-to-noise ratios. Suitable model-derived 
choices for a GHG fingerprint might be the average (over 

space and time) of a number of realizations starting from 
different initial conditions [Cubasch et al., 1994], the time- 

averaged result from a single equilibrium response experi- 
ment (this study; also Santer et al. [1995]), or the spatial 

pattern of century timescale linear trends from a single 
transient experiment [Hegerl et al., 1995]. In all three cases 
the aim of averaging over time and/or space is to reduce 
noise and obtain a better fingerprint. 

This initial fingerprint may be optimized in various ways. 

For example, modification of the fingerprint by rotating it in 
a direction where the signal-to-noise ratio is maximized may 

improve signal detectability [Hasselmann, 1979, 1993]. Spa- 
tial rotation of the fingerprint is equivalent to optimizing a 

pattern filter in such a way as to reduce the contributions of 
those signal components that are similar to components of 
the dominant natural variability noise patterns. In this sec- 

tion we compute detection periods and times using an initial 
unrotated fingerprint, while the following section presents 
results for a rotated, optimized fingerprint. 

In our case the initial fingerprint is a (time-invariant) 

multivariate pattern filter that is applied to the time-evolving 
ocean response to transient GHG forcing and to the selected 
natural variability noise experiment. The pattern that we use 

is the multivariate EOF 1 pattern of the Cubasch et al. [ 1992] 

2 x CO2 experiment. There are several assumptions under- 
lying the selection of this particular fingerprint. First, we 
assume that the pseudo-equilibrium ocean response in the 

2 x CO2 experiment is similar to the response towards the 
end of the SCENA and EIN transient simulations (Santer et 

al. [1994] have showed that this assumption is justifiable for 
near-surface air temperature). Second, we assume that the 

2 x CO2 experiment, with no forcing changes as a function 
of time, yields the best (in the sense of least noisy) estimate 
of the expected signal direction. The third assumption is that 
EOF 1 of the 2 x CO2 experiment captures most of the 
information on the ocean GHG signal. 

Once the fingerprint has been decided upon, the multivari- 
ate detection problem can be reduced to a univariate prob- 
lem. The multivariate anomaly time series from the SF and 

SCENA experiments, normalized by the standard deviations 
of the SF time series, are projected onto the initial unrotated 
fingerprint pattern 
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SCENA MULTIVARIATE OCEAN DATA PROJECTED ON SF EOFS 1 & 2 SCENA MULTIVARIATE OCEAN DATA PROJECTED ON SF EOFS 3 & 4 
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Plate 4a, Projection of normalized multivariate anomaly 
data from the SF and SCENA experiments onto multivariate 
EOFs 1 and 2 of the SF experiment. Each symbol on the 
figure represents I year of the SF or SCENA experiment; 
symbols in consecutive years are joined by lines. The first 
and last 50 years of the SCENA signal have been plotted in 
different colors to indicate the time evolution of the signal. In 
the SF experiment the outer "loops" define the trajectory 
traced by the 320-year ocean circulation oscillator in the 
EOF 1-2 plane. The SCENA multivariate ocean data has 
nonzero loadings on SF EOFs ! and 2, indicating that both 
experiments have common components of variability in their 
overall general circulations. The fact that the signal does not 
emerge from the natural variability noise cloud indicates that 
the amplitude of changes in these common components is 
larger in the SF experiment than in the SCENA integration. 
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u(t) = • •(x, t) f(x) 
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v(t) = • p(x, t)f(x) 
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Plate 4b. As for Plate 4a, but for the projection onto 
multivariate EOFs 3 and 4 of the SF experiment. Note that 
the SCENA projections on EOF 3 are generally larger than 
the projections of the SF data. The signal clearly emerges 
from the natural variability noise cloud after 50 years. 

the univariate case. For all growth rates, detection periods 

are consistently shorter for the SALL noise (10-45 years) 

than for the SF noise (20-70 years; see Table 2). Detection 

periods for multivariate signals and noise are generally 

shorter than those obtained in the univariate analysis, at 

least for growth rates of 0.5/3 and 1.0/3 (and excluding again 
univariate results for North Atlantic ice volume because of 

drift problems). 

Differences in the detection periods are due solely to the 

SF versus SALL differences in variability and in the finger- 

print patterns onto which the multivariate noise is projected 
(Figure 13). SF versus SALL differences in detection time, 

however, are more difficult to interpret, since they incorpo- 

rate the additional effect of different signal evolution rates, 

i.e., the evolution rates for the multivariate signal are not 

SCENA MULTIVARIATE OCEAN DATA PROJECTED ON SALL EOFS 1 & 2 

where •(x, t) and p(x, t) are the normalized SF and SCENA 

anomalies, respectively, and f(x) is the multivariate unro- 

tated fingerprint pattern (EOF 1; see Figure 13a) derived 

from the 2 x CO2 experiment. Note that in the following we 
operate primarily in the coordinate space of the SF variabil- 

ity but consider also results for the normalization of •(x, t) 

and p(x, t) by the SALL standard deviations. 

As in the univariate case (sections 4.3 and 4.4), we can 

then compute the standard errors ei for u(t), the actual 
signal trends/3i for v(t), and a range of linear signal growth 
rates /3 based on the 100-year linear trend in v(t). The 

signal-to-noise ratios •/e i and •i/Ei are again a function of 
the length of the time chunk or interval considered, L i, with 
L i = 10i, and i = 1, 2,..., 10. Detection periods and 

times are then defined as in the univariate analysis. We also 

present detection time results for the EIN ocean signal 
(expressed relative to the decade 1985-1994) and for both 

definitions of the SCENA signal. 

The multivariate analysis with an unrotated fingerprint 
reveals a sensitivity of detection period to the SF versus 

SALL ocean variability differences similar to that found in 

2 , ß i ß , - , , ß , - l 

SALL EXPT 

: = SCENA (1-50) 

o 

LOADING ON EOF 1 

Plate 5. As for Plate 4a, but for the projection onto multi- 
variate EOFs 1 and 2 of the SALL experiment. Both signal 
and noise data were low-pass filtered in order to better 
display the oscillatory behavior of the SALL integration and 
the development of the SCENA signal. The signal emerges 
from the natural variability noise cloud after 50 years, with 
most of the separation in the EOF 1 plane. 
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SIGNAL-TO-NOISE RATIOS FOR MULTIVARIATE OCEAN DATA 
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Figure 14. Signal-to-noise ratios •i/Ei for multivariate ocean data. The multivariate ocean signal from 
the SCENA experiment and the multivariate noise from the SF and SALL experiments were projected 
onto unrotated and rotated fingerprint patterns derived from a CO2 doubling experiment (see Figure 13). 
The fingerprint patterns provide information about the direction of the expected greenhouse warming 
signal in the ocean. Rotation of the fingerprint leads to a substantial increase in 13i/ei in the case of the SF 
noise (Figure 14a) but produces only small changes in signal-to-noise ratio for the SALL noise (Figure 
14b). If we regard the first 100 years of the coupled CTL experiment as the "signal" and project this signal 
onto the unrotated 2 x CO2 fingerprint, the ocean circulation changes in the CTL would not be detectable 
relative to the SF noise (Figure 14c) but would be detectable after only 10 years relative to the SALL noise 
(Figure 14d). Linear trends in the second and third centuries of the CTL experiment are within the noise 
envelope defined by the SF and SALL experiments (Figures 14c and 14d). 

identical in the coordinate spaces of the SF and SALL 

variability. In contrast to the detection period, there is no 
evidence that detection times are shorter if noise estimates 

are based on the SALL experiment, a result that must be due 

to differences in signal evolution (Table 3). Signal-to-noise 

ratios, however, tend to be higher using noise data from the 

SALL experiment (compare Figures 14a and 14b). The 

longer detection times for the SCENA signal relative to the 

SALL noise are due to a small signal evolution rate after 50 

years, which causes the signal-to-noise ratio to dip just 

beneath the 5% significance threshold (Figure 14b). 

In most cases, the multivariate analysis yields detection 
times that are shorter than or close to those obtained in the 

univariate analysis (Table 3). The exception is the SCENA 

signal and SALL noise, with detection times of 55-60 years. 

This result is due in part to the fact that the projection of the 

multivariate signal onto the unrotated fingerprint pattern has 

smaller signal-to-noise ratios than some of the individual 

components of the signal vector. 

An interesting result is the reduction in detection time that 

is achieved by use of the EIN ocean signal rather than the 

SCENA signal. (It is appropriate to compare the EIN results 
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with the results for SCENA definition 1 in Table 3). For the 

unrotated fingerprint the reduction is from 35 to 30 years for 

the SF noise and from 60 years to 30 years for the SALL 

noise. One reason for the larger reduction in detection time 

for the SALL noise is that changes in Pacific and Indian 

Ocean transports are important components of the unrotated 

fingerprint (in the SALL coordinate space; see Figure 13b). 

The univariate analysis revealed that changes in these com- 

ponents are detectable 35-40 years earlier in the EIN exper- 

iment (Table 3). In contrast, the dominant component of the 

unrotated fingerprint in the SF coordinate space is the 

change in NADW formation (Figure 13a), which is not 

detectable earlier in the EIN experiment. 

We can also ask whether the drift and/or low-frequency 

natural variability that characterizes the first 100 years of the 

CTL experiment would have been detectable relative to the 

SF and SALL natural variability noise. To address this 

question, we defined CTL anomalies according to definition 
1. Anomalies were then normalized relative to the SF and 

SALL standard deviations and projected onto the 2 x CO2 
fingerprint patterns, as in (9). Detection times were then 

computed in the usual way. The ocean changes in the first 

100 years of the CTL experiment (Figure 14c) are clearly 

below the threshold of detectability relative to the SF noise 

but would be detectable after only 10 years relative to the 

SALL standard errors (Figure 14d). The ocean changes in 

the second and third centuries of the CTL experiment are 

not significant, independent of the experiment chosen to 
estimate the noise. 

5.5. Estimates of Detection Period and Time: 

Rotated Fingerprint 

Finally, we consider whether we can further improve 

signal-to-noise ratios and achieve earlier detection by rotat- 

ing the fingerprint in the direction of low-noise components 

of the two stochastic forcing experiments. We stress that the 

rotation takes into account only the spatial and not the 

temporal properties of the noise: we are not rotating the 

fingerprint in the direction of frequency bands where the 

noise has low energy [see Hasselmann, 1993]. 

The rotated fingerprint f*(x) is obtained by weighting the 
coefficients 

p 

aj: ]• f(x)ej(x) 
x=l 

j= 1, ''',p (10) 

for the representation of the 2 x CO 2 multivariate fingerprint 

f(x) in the space of the EOFs e•(x) of the SF stochastic 
forcing experiment by the inverse of the noise eigenvalues I•. 

p 

f*(x) = Z "jej(x)lj -1 
j=l 

x-- 1,...,p (11) 

As in (8) and (9), we then project the multivariate anomaly 

time series from the SF and SCENA (or EIN) experiments 

onto the rotated fingerprint and use the resulting coefficient 

time series u*(t) and v*(t) to compute the standard errors 

and linear trends required to obtain the signal-to-noise ratio 

il•i/E i and detection time. We can also use v*(t) to derive the 
range of linear signal growth rates required for computing 

13/Ei and detection period. We similarly compute 13/ei and 

[Ji/e i for signals, fingerprint, and noise expressed in the 
coordinate space of SALL variability. 

The unrotated and rotated fingerprint patterns for the SF 

and SALL stochastic forcing experiments are shown in 

Figure 13. For the SF experiment the rotated and unrotated 

fingerprints are dissimilar (rSFf:f. = 0.24). The rotation is 
away from the direction of simultaneous changes in NADW 

formation and ocean-atmosphere heat fluxes in the North 
Atlantic (a high noise component) and toward changes in 
stream function in the Pacific and Indian Oceans. The most 

significant feature of the rotation is the change in sign of the 

deep Pacific and Indian inflow. The rotated fingerprint shows 

different signs for the inflows below 1500- and 2500-m depth. 

Thus the rotation leads to a detection pattern that monitors 

changes in the depth of the inflow (toward a deeper inflow) 

rather than changes in the absolute amount of the inflow. 

In the SALL experiment (Figure 13b) the rotated and 

unrotated fingerprints show some similarity (rSALLf:f. = 
0.55), suggesting that the fingerprint is already in a low- 

noise direction. The principal modification to the fingerprint 

is the higher weighting given to mass transport below 2.5 km 
in the Atlantic, again monitoring changes in the depth of the 

outflow. In the Pacific and Indian Oceans the weighting 

reduces the impact of deep inflow. 

The detection periods for the optimized case are given in 
Table 2. Rotation of the fingerprint pattern yields significant 

decreases in detection period for the SF noise (from 20-70 

years to 10-45 years) but no change or even a slight increase 

for the SALL noise (from 10-45 years to 10-55 years). This 

supports our result that in the coordinate space of the SALL 

variance, the unrotated fingerprint from the 2 x CO2 exper- 

iment (see Plate 5 and Figure 13b) is already in a low-noise 

direction relative to the SALL noise. The large decreases in 

detection period for the SF noise are in part related to the 

differences in the eigenvalue spectra of the two experiments 

(Figure 15). Relative to the SALL experiment, the SF 
integration concentrates more of the total space-time vari- 
ance in the first two modes and has much lower variance in 

the highest-numbered modes. The SALL integration has a 

much flatter eigenvalue spectrum. Rotation therefore has a 

greater effect in SF because of its larger range in lj values as 
j increases. The fact that rotation of the fingerprint actually 

increases the detection period for one particular case (0.5/3, 

SALL noise) shows that rotation in space alone does not 

guarantee an improvement of the signal-to-noise ratio for a 

time-dependent signal. 

Detection times for the rotated case are given in Table 3. 

For the SCENA signal, rotation substantially decreases 

detection times, both for the SF noise (from 35 years to 10 

years) and for the SALL noise (from 55-60 years to 10-45 

years). In the case of the SF noise this result is due to 

increases in 13i/ei at all chunk lengths (Figure 14a). For the 
SALL noise, rotation does not increase •i/Ei at all chunk 
lengths (Figure 14b), and the reduction in detection time is 

due to an increase of [•i/Ei at a chunk length of 50 years. 
These results substantiate the conclusions from our analysis 

of detection period: rotation of the fingerprint tends to 

produce larger increases in signal-to-noise ratio for the SF 
noise than for the SALL noise. 

For the EIN signal, optimization yields only a slight 
reduction in detection time for the case of SF noise (from 30 

to 25 years) and has no impact in the case of SALL noise (30 

years; Table 3). This illustrates again that for a time-evolving 



10,720 SANTER ET AL.' OCEAN VARIABILITY AND GREENHOUSE WARMING SIGNALS 

EIGENVALUE SPECTRA FOR SF AND SALL EXPERIMENTS 
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Figure 15. Eigenvalue spectra for multivariate EOFs from the SF and SALL experiments. EOFs were 
computed using normalized ocean data from the 3800-year SF integration and the 8000-year SALL 
integration. Note that the SF experiment concentrates more of the variance in the first two modes, while 
the SALL eigenvalue spectrum is much flatter. 

signal, full space-time optimization will generally be needed 

to enhance the signal-to-noise ratios. The "optimized" de- 

tection time is longer for the EIN signal than for the SCENA 

signal in the case of the SF noise (25 years versus 10 years), 

but the reverse is true for the SALL noise (30 years versus 

45 years; recall that the EIN results should be compared 

with definition 1 of the SCENA signal). As was noted in the 

preceding section, we suspect that the explanation for this 

result lies in the comparatively larger signals in the Pacific 

and Indian Ocean transport decreases in the EIN experi- 

ment. These components are all of the same sign in the 

rotated, SALL-normalized fingerprint (Figure 13b), and 

hence the EIN signal projects well onto this pattern, but they 

have different signs in the rotated, SF-normalized finger- 

print, so that the EIN signal is distorted in this representa- 

tion (Figure 13a). 

5.6. Summary of Multivariate Detection Aspects 

Our results suggest that a multivariate description of signal 

and noise and the use of a fingerprint pattern generally yields 

higher signal-to-noise ratios and shorter detection periods 

and times than a univariate approach, even when the finger- 

print pattern is not optimized by rotation in the direction of 

low-noise components. Optimization of the signal-to-noise 

ratio by simple spatial rotation yields significant further 

improvements in detection period and time for the SF noise 

and SCENA signal but does not substantially improve the 

signal-to-noise ratios of the SCENA or EIN signals in the 

EOF coordinate space of the SALL noise. This implies that 

the unrotated fingerprint (when normalized by the SALL 

variability) is already in a low-noise direction. The EIN 

signal can be detected earlier than the SCENA signal in the 

unrotated case (independent of the experiment used to 
estimate the noise), but the benefit of the earlier start date is 

less clear in the rotated case. Finally, our results show that 

spatial rotation alone does not guarantee an improvement of 

the signal-to-noise ratio for a time-evolving signal. This can 

be achieved only with an optimization strategy that accounts 

for the full space-time characteristics of the signal, noise, 

and fingerprint. 

6. Summary and Conclusions 
In this study we have been concerned with the detection of 

oceanic greenhouse warming signals. The ocean responses 

we examined were the spatially averaged changes in such 

circulation indices as temperature, salinity, ice volume, 

heat, and fresh water fluxes; loss of potential energy by 

convection; and transports of mass. We currently lack the 

technology to obtain reliable measurements of these large- 

scale averages in the real world, so that the focus of this 

study was necessarily on methodology and the identification 

of sources of uncertainty in model estimates of ocean 

greenhouse warming signals and the noise levels of natural 

variability. However, the approach outlined here could have 

important practical applications for the proposed measure- 
ment of ocean basin acoustic travel times as indicators of 

climate change. 

The analyzed ocean signals were taken from recent time- 

dependent greenhouse warming experiments [Cubasch et 

al., 1992, 1994, 1995] with the Hamburg ECHAM-1/LSG 

coupled atmosphere-ocean GCM, in which the response of 

the climate system to the time-varying greenhouse gas 

increases specified in scenario A of the IPCC [Houghton et 

al., 1990] was simulated. Two long simulations were carried 

out: SCENA, with greenhouse gas forcing from 1985 to 2085, 

and EIN, with forcing from 1935 to 2085. In addition, three 

50-year so-called Monte Carlo simulations were made to 

study the impact of natural variability on the signal. 
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We first considered the signal-to-noise ratio of the linear 

trend /3 in an ocean signal from the greenhouse warming 
experiment to the standard error e of the sampling distribu- 

tion of linear trends due solely to internally generated 

variability of the coupled atmosphere-ocean system. To 

estimate e, we used results from two long stochastic forcing 

experiments in which the uncoupled LSG ocean model was 

forced by noise superimposed on climatological boundary 
conditions. 

In the first experiment, SF [Mikolajewicz and Maier- 

Reirner, 1990], the ocean model was forced by temporally 

white but spatially correlated monthly anomalies of fresh 

water fluxes, superimposed on prescribed climatological 

fresh water fluxes. In the second experiment, SALL [Miko- 

lajewicz and Maier-Reirner, 1994], the stochastic component 
included heat fluxes and wind stress as well as fresh water 

fluxes. Another important difference was a reduction of the 

temperature feedback factor in this experiment by 2/5 (by 
use of a 5-month relaxation time constant instead of a 

2-month constant for SF). 

The ocean variability was significantly lower in the SALL 

experiment than in the SF experiment. For example, the 

variability in a key diagnostic of the ocean circulation, the 

transport of mass through the Drake Passage, was roughly a 

factor of 7 lower in the SALL experiment. There were also 

other qualitative differences between the two experiments. 

Variance spectra from the SF experiment were typically red 

for most circulation indices, with power increasing toward 

low frequencies for timescales up to several centuries, and a 

pronounced spectral peak at approximately 320 years, cor- 

responding to the salinity oscillator identified by Mikolaje- 

wicz and Maier-Reimer [1990, 1991]. In the SALL experi- 

ment a discrete peak was found at 500 years for only a few 

circulation indices, and the spectra tended to be whiter: the 

noise on timescales less than 10-50 years was much larger in 

the SALL experiment than in the SF integration, while the 

reverse was true for variability on century time scales. The 

spectra for ocean diagnostics from a 300-year control run 

performed with a fully coupled atmosphere-ocean model 

[Cubasch et al., 1992] were generally more similar to those 

of the SALL experiment in the frequency range where the 

integrations overlapped. 

The differences in ocean variability in the SF and SALL 

experiments translate into large uncertainties in values of the 
standard error e on timescales of 10-100 years. Values of e 

for individual ocean indices in the two stochastic forcing 

experiments differ in either direction by up to an order of 
magnitude. Thus even if the space-time evolution of an 

ocean greenhouse warming signal were perfectly known, the 

uncertainties in standard error estimates result in large 

uncertainties in signal detectability. 

To study the impact of such uncertainties on signal detect- 

ability, we introduced the concepts of detection period Tp 
and detection time Ta. The detection period Tp is defined as 
the length of a climate time series (a "chunk length") that 

must be available in order to detect a given linear trend in the 

presence of the model's natural climate variability (at some 

stipulated significance level). The detection period is defined 
in model years and is independent of reference time and the 
real time evolution of the signal. It is determined by the 

signal-to-noise ratio/3/e for some prescribed, time-invariant 

signal trend/3. We selected/3 to be the mean growth rate that 

yields the change in a given ocean variable at the end of the 
SCENA experiment. 

In contrast, detection time Ta represents the actual time at 
which a particular time-dependent signal, with changing 
growth rate/3, is detectable (again at some stipulated signif- 
icance level). In the present case of simulated data, it 
depends on the experiment's start date. Since both the trend 
noise e and the signal growth rate/3 are changing with time 
for a given global warming scenario, it is useful to first 
characterize the noise properties in terms of the detection 

period T• for given • before considering the impact of 
changes in both on T a. This enables one to determine 
whether an increase in signal-to-noise ratio is due primarily 

to changing noise properties or changes in the signal trend 
with increasing time. 

We computed detection periods and times both for 
univariate data (individual circulation indices) and for mul- 

tivariate signals and noise. For the univariate analysis we 

found strong sensitivity of T• and Ta to the stochastic 
forcing experiment used to estimate the natural variability 
noise. The univariate detection period results indicate that 
for the SF noise, less than one third (19 of 63) of the assumed 

mean growth rates • were detectable at the 5% level within 
100 years, while over two thirds (45 of 63) of the growth rates 

could be detected within 100 years for the SALL noise. 

Detection periods were consistently longer if the noise was 
estimated from the SF integration, with the exceptions of 
North Atlantic ice volume and strength of NADW formation 

(where the SALL experiment had greater variability on the 

10- to 30-year timescale). Similarly, the univariate detection 
time results showed that the SCENA and EIN signals could 

be detected within 100 years in only 7 of 45 cases for the SF 
noise but in 31 of 45 cases for the SALL noise. In general, 

circulation indices that are highly sensitive to surface con- 

ditions, such as strength of NADW formation and ocean- 

atmosphere heat fluxes, tended to have shorter detection 
periods and times than changes in deep-ocean temperature 

and salinity. 
We also showed that detection times are sensitive to 

uncertainties in the time evolution of a greenhouse warming 

signal. We illustrated signal uncertainties in three ways. 

First, we found that two alternative choices of the climate 

response signal, depending on different assumptions regard- 
ing the correlation of the variability in the coupled control 
run and the greenhouse warming experiment, had a large 
impact on univariate detection times. Second, by consider- 
ing both the EIN and SCENA experiments (with start dates 
in 1935 and 1985, respectively), we were able to study the 
effect of the cold start error on univariate detection times. 

For most ocean variables, the EIN signals were detectable 

earlier than the SCENA signals, as expected, with the 

largest improvements for mass transport through the Drake 
Passage (70 years earlier) and transports in the Pacific and 
Indian Oceans (35-40 years earlier). Third, we examined the 
ocean signals in a suite of three 50-year greenhouse warming 
experiments with identical greenhouse gas forcing, but each 
starting from different initial conditions of the CTL integra- 
tion, and thus with different manifestations of broadband 
natural variability superimposed on the true, underlying 
signal. Our results indicate that the "between realization" 
signal variability can be large for certain ocean circulation 
indices, so that a single greenhouse warming integration of 
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limited duration may yield a misleading estimate of detection 
time. 

We also investigated whether it was possible to achieve 

shorter detection times for an ocean greenhouse warming 

signal by considering the time evolution of a multivariate 
detection vector rather than of individual variables. The 

multivariate analysis was carried out in the EOF space of the 

spatially averaged ocean circulation indices in the two 

stochastic forcing experiments. The EOFs carry some spa- 

tial information (at the scale of entire ocean basins), but, 

more importantly, convey information about the relation- 

ships between different ocean variables. The first two SF 

EOFs capture basic features of the "salinity oscillator" 

identified by Mikolajewicz and Maier-Reimer [1990] and 

clearly show that this mode is multivariate and global in 

scale. The dominant modes of variability of the SALL 

experiment have a somewhat different structure. In particu- 

lar, the SALL EOF 1 vector is in a direction in which the 

multivariate ocean signal from SCENA can be reasonably 

well represented and is large relative to the low-frequency 

noise (see Plate 5). 

Projection of the multivariate ocean data from the 

SCENA, SF, and SALL experiments onto an unrotated 

"fingerprint" pattern (obtained from an independent CO2- 
doubling experiment) yielded detection times as short as 

35-60 years for the SCENA and EIN signals. Our results 

suggest that a multivariate approach can yield higher signal- 

to-noise ratios and shorter detection periods and times than 

a univariate approach. 

The signal-to-noise ratio can be further enhanced by 

rotating the fingerprint in the direction of low-noise compo- 

nents. With spatial rotation of the fingerprint, which is 

equivalent to a form of pattern filtering, we achieved detec- 

tion times of only 10 years for the SCENA signal (according 

to our preferred definition 2), independent of the experiment 

used to estimate the noise. However, rotation of the finger- 

print did not substantially improve signal-to-noise ratios for 

the SCENA or EIN signals in the coordinate space of the 

SALL noise. This suggests that the unrotated fingerprint 

(when normalized by the SALL variability) is already in a 

low-noise direction (see Plate 5). The EIN signal can be 

detected earlier than the SCENA signal in the nonoptimized 

case, independent of the experiment used to estimate the 
noise, but the benefit of the earlier start date is less clear in 

the optimized case. 

A few examples in which spatial rotation of the fingerprint 

actually slightly increased the detection time demonstrate 

that spatial rotation alone does not guarantee an improve- 

ment of the signal-to-noise ratio for a time-evolving signal. A 

fully consistent optimization strategy requires rotation in 

space and time [Hasselmann, 1993]. Work on this general 

approach is currently in progress. 

Our analysis highlights the need for improved estimates of 

long-term ocean variability. At present, it is difficult to 

obtain reliable estimates of century timescale ocean noise 

from paleoclimatic data [Santer et al., 1993]. We must 

therefore rely on model simulations for such information. 

The SF and SALL stochastic forcing experiments indicate 

that the model-derived estimates of decade to century times- 

cale noise are highly sensitive to the precise specification of 

the forcing. It is not clear at this time whether this sensitivity 

is due primarily to changes in the mean circulation, the 

mixed boundary condition, the amplitude, temporal coher- 

ence, or spatial pattern of the forcing, or whether it is due to 

the fact that the stochasticity in the SALL experiment 

applies to all forcing terms rather than fresh water fluxes 

alone. Further experiments, covering a range of amplitude 

values and space-time correlation scales for the forcing 

terms and including different flux feedback parameteriza- 

tions, are required in order to better understand such sensi- 

tivity [Mikolajewicz and Maier-Reimer, 1991, 1994; Barnett 

et al., 1993; Power and Kleeman, 1994]. 

Differences between the variability in fully coupled and 

uncoupled integrations constitute another source of uncer- 

tainty in model-based estimates of low-frequency noise. It is 

evident from the spectra of the coupled model control run 

(CTL) that the incorporation of full atmospheric feedback 

may significantly modify the spatiotemporal ocean variabil- 

ity simulated in idealized stochastic forcing experiments 

which neglect such feedback. Further sources of "noise 

uncertainty," which we have not discussed here, include 

possible model dependence of results, specifically the sensi- 

tivity to different resolutions [Covey, 1992] or parameteriza- 

tions [Zebiak and Cane, 1991]. 

The reduction of such noise uncertainties will require a full 

program of numerical experimentation, as well as a con- 

certed effort to construct a better paleoclimatic data base for 

"constraining" model noise estimates. The stochastic forc- 

ing experiments imply phase relationships between the vari- 

ability displayed in different ocean basins, the North Atlantic 

and Antarctic, etc. Potentially, these relationships should be 

testable given appropriate paleoclimate data [Crowley and 

Kim, 1993]. 

Such noise validation studies will face a number of prac- 

tical problems. One problem relates to deficiencies in the 

paleodata themselves. These include poor spatial coverage, 

dating uncertainties, possible modification of the low- 

frequency characteristics of the reconstructed climate vari- 

able by statistical manipulation of the data, and difficulties in 

extracting a climate signal from the noise introduced by 

nonclimatic factors. A further problem might be termed 

"scale incompatibility." Current global climate models per- 

form poorly at detailed regional scales (i.e., 500 km or less); 

yet it is precisely these scales that paleodata represent best. 

Finally, validation exercises must at present compare apples 

and oranges: model noise represents unforced variability 

only, whereas low-frequency variability reconstructed from 

paleodata reflects the variance associated with a complex 

mixture of external forcing factors (solar, volcanic aerosols, 

etc.) and the internally generated variability of the coupled 

atmosphere-ocean system. A null result (little or no similar- 

ity between simulated and "observed" variability) is thus 

difficult to interpret unambiguously. Despite these formida- 

ble difficulties, we have no other choice but to use quality- 

controlled paleodata sets in order to build confidence in the 

low-frequency noise simulated by climate models. 

In conclusion, we note that for an optimally rotated 

fingerprint pattern we estimated a detection time of 10 years 

for the SCENA ocean signal (at a 5% confidence level) 

relative to a starting date of 1985. If our SCENA experiment 

were taken literally, this would be today. Although the ocean 
circulation indices we considered have not been monitored 

in the past and cannot be readily monitored in the future, our 

results may have relevance for ocean acoustic travel times, 

which can be monitored [Munk and Forbes, 1989]. Our own 

findings, and those of Mikolajewicz et al. [1993], suggest that 
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a monitoring time of 1 or 2 decades may be sufficient to 

detect an enhanced greenhouse effect signal in acoustic 
travel times. The results of these studies are based on model 

signals and model noise. Their conclusions are burdened by 

very severe caveats regarding the realism of both the model- 

estimated decade to century timescale natural oceanic vari- 

ability and the estimate of the true ocean signal from a 
limited number of realizations. 

One further point should be mentioned in discussing the 

relevance of our purely model-based results for detection 

studies involving observed data. Our work has dealt with 

model signals in response to radiative forcing by CO2 alone. 

The radiative effects of greenhouse gases other than CO2 

were considered together as equivalent CO2 rather than 
being explicitly resolved. However, some recent evidence 

suggests that these gases may have climate signatures differ- 

ent from that of CO2 [Wang et al., 1991]. Furthermore, it is 
likely that emissions of anthropogenic sulfate aerosols have 

influenced regional or even global climate during this century 

[e.g., Wigley, 1989; Charlson et al., 1992; Karl et al., 1995]. 

For example, recent AGCM experiments show that the 

surface temperature response to combined forcing by CO2 

and sulfate aerosols is very different from the response to 

changes in CO2 only [Taylor and Penner, 1994; Roeckner et 
al., 1995; Mitchell et al., 1995]. Thus it is likely that we have 

been searching for a "suboptimal" model-predicted signal, 

i.e., a signal that lacks important anthropogenic forcing 

components. This provides yet another reason for exercising 

caution in transferring the detection times estimated here to 
the real world. 

We note, however, that model experiments that incorpo- 

rate sulfate aerosols and greenhouse gases other than CO2 
would not necessarily yield signals with longer detection 

times in the observed data than "CO2-only" signals. While 
longer detection times would be the likely result in univariate 

approaches dealing with changes in global averages (since 

sulfate-induced cooling compensates some of the CO2- 
induced warming, yielding a smaller net temperature in- 

crease), shorter detection times are possible in multivariate 

approaches. This has been shown for surface air temperature 

data by Santer et al. [1995], who compared model-predicted 

CO2-only and combined CO2-sulfate aerosol signal patterns 
with observed data and found consistently higher signal-to- 

noise ratios for the latter case. By including other, non-CO2 
anthropogenic forcings, we may be able to reduce some of 

the regional-scale background noise against which we are 

attempting to detect a CO2-0nly signal, thereby enhancing 
signal-to-noise ratios and achieving shorter detection times. 

Incorporating the effects of other anthropogenic forcing 

factors in a physically realistic way, and in a way that 

accounts for uncertainties in their space-time evolution, 

remains a challenge for the future. 
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