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ABSTRACT

Providing ACID transactions under conflicts across glob-
ally distributed data is the Everest of transaction processing
protocols. Transaction processing in this scenario is par-
ticularly costly due to the high latency of cross-continent
network links, which inflates concurrency control and data
replication overheads. To mitigate the problem, we intro-
duce Ocean Vista – a novel distributed protocol that guar-
antees strict serializability. We observe that concurrency
control and replication address different aspects of resolv-
ing the visibility of transactions, and we address both con-
cerns using a multi-version protocol that tracks visibility
using version watermarks and arrives at correct visibility
decisions using efficient gossip. Gossiping the watermarks
enables asynchronous transaction processing and acknowl-
edging transaction visibility in batches in the concurrency
control and replication protocols, which improves efficiency
under high cross-datacenter network delays. In particular,
Ocean Vista can process conflicting transactions in parallel,
and supports efficient write-quorum / read-one access using
one round trip in the common case. We demonstrate exper-
imentally in a multi-data-center cloud environment that our
design outperforms a leading distributed transaction pro-
cessing engine (TAPIR) more than 10-fold in terms of peak
throughput, albeit at the cost of additional latency for gos-
sip. The latency penalty is generally bounded by one wide
area network (WAN) round trip time (RTT), and in the
best case (i.e., under light load) our system nearly breaks
even with TAPIR by committing transactions in around one
WAN RTT.
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1. INTRODUCTION
Cloud providers make it easier to deploy applications and

data across geographically distributed datacenters for fault-
tolerance, elastic scalability, service localization, and cost
efficiency. With such infrastructures, medium and small en-
terprises can also build globally distributed storage systems
to serve customers around the world. Distributed transac-
tions in geographically distributed database systems, while
being convenient to applications thanks to ACID semantics,
are notorious for their high overhead, especially for high con-
tention workloads and globally distributed data.
The overhead of geo-distributed transactions arises not

only from the transaction commitment and concurrency con-
trol protocols that coordinate different shards for atomicity
and isolation, but also from the replication protocol (e.g.,
Paxos [19]) that coordinates the states of different replicas
within a shard. Increased network latency in geo-distributed
transactions leads to much higher contention than in local
processing. For example, a distributed database benchmark
workload (e.g., fix keyspace and fix target throughput) that
creates low contention for a database distributed over many
servers in a single region may exhibit high contention when
the data set is distributed globally.

Conventional concurrency control mechanisms (e.g., OCC,
2PL) processes distributed transactions synchronously. They
resolve transaction ordering in the course of executing the
transaction logic, and so they update the data objects only
within the period of time when the transaction can exclu-
sively access the objects for the latest version. Such exclu-
sive access is assured using pessimistic locking or optimistic
backward validation, which commonly entails at least one
wide area network (WAN) round trip time (RTT) for any
read-write transaction. We refer to this period of exclusive
access as the serialization window of a transaction. Long se-
rialization windows hinder parallel execution of conflicting
transactions, which makes the design of high performance
concurrency control protocols challenging.

The design of replication protocols for systems connected
by a WAN is particularly difficult, because the network join-
ing geographically diverse datacenters is both slow (delays
in the hundreds of milliseconds) and unpredictable. As a
result, the Write-All (WA) approach [4] suffers from strag-
glers delaying writes. On the other hand, the Write-Quorum
(WQ) approach commonly reads from a dedicated leader or
from a quorum, which leads to other problems. The leader
potentially becomes the performance bottleneck, and read-
ing quorum (RQ) requires much more work than reading
one (RO) in common read-dominated workloads.
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Some previous works, such as TAPIR [35] and MDCC [18],
combine concurrency control and replication into a single
protocol for efficiency. TAPIR allows WQRO for inconsis-
tent reads, but uses an “application level validation” against
a quorum of replicas for both concurrency control and repli-
cation. As a result, the validated read is basically equivalent
to RQ, though its overhead is partly hidden in the concur-
rency control protocol in the special case when there are no
conflicts. Furthermore, conflicts divert execution away from
the fast path in the TAPIR and MDCC protocols, and the
alternative slow path incurs additional rounds of messages.

This paper proposes a novel protocol, called Ocean Vista
(OV), for high performance geo-distributed transaction pro-
cessing with strictly serializable (linearizable) isolation. OV

combines concurrency control, transaction commitment, and
replication in a single protocol whose function can be viewed
as visibility control. Our insight is that the core mission of
a consistent distributed transaction protocol is maintaining
the visibility of transactions with respect to other transac-
tions. Based on multi-versioning (MV), OV tracks visibility
using version watermarks and arrives at correct visibility de-
cisions using efficient gossip. The watermark is a visibility
boundary: transactions with versions below the water-
mark are visible, otherwise they are above the water-
mark and invisible. OV generates and gossips the water-
marks asynchronously and in a distributed manner without
any centralized leader node. Specifically, each server has its
own view of the watermarks, which are updated via gossip.

Visibility control using watermarks enables a novel asyn-
chronous concurrency control (ACC) scheme that can pro-
cess conflicting transactions in parallel. ACC decouples trans-
action ordering from execution of transaction logic: transac-
tions are totally ordered by global versions generated based
on synchronized clocks, and OV processes the transactions
asynchronously according this order. To optimize paral-
lelism, ACC transforms a read-write transaction to three
operations: write-only operations to write placeholders (i.e.,
functors [12]) to the MV storage, read-only operations, and
asynchronous writes of a specific version. The visibility wa-
termark (Vwatermark) is a special version number, be-
low which all transactions must have completed their write-
only operations (S-phase). The visibility control and MV in
OV allow most of the above operations to run in parallel
even if they come from conflicting transactions. In addition,
the gossip of watermarks enables batch acknowledgment of
transaction visibility, leading to efficient atomic multi-key
writes for the write-only operations, because all versions be-
low Vwatermark become visible for all keys.

The replica watermark (Rwatermark), below which all
versions of transactions have been fully replicated on all cor-
responding replicas, also enables efficient quorum replica-
tion. In OV, a write uses WQ (then asynchronously WA)
to automatically avoid stragglers and failed nodes. Writes
can succeed in one round trip in the fast path regardless of
conflicts, and require two round trips in the slow path when
too many failed nodes are present. OV can provide con-
sistent reads using RO (i.e., read from any replica) in the
common case for transaction below the Rwatermark. Read-
ing versions that have been made visible but are not fully
replicated is the only case that requires RQ.

The OV protocol assumes a common case of distributed
transactions, which are processed by stored procedures and
have a known write-set of keys. This transaction model is

DC1 DC2

DC3

Gossiper

All-to-all

gossip

DB Server

Partition1 Partition2 Partition2 Partitio3

Partition1 Partition2 Partition3

Figure 1: Architecture: each DC has at least one
gossiper, which aggregates and publishes water-
marks within its datacenter and exchanges the wa-
termarks with other gossipers.

used in several previous works [16, 24, 29]. Additionally,
OV supports transactions without pre-declared write-sets
using a known technique, the reconnaissance query (see Sec-
tion 3.4). We implement the OV protocol in a transactional
storage system called OV-DB, and evaluate it for globally
distributed transactions in AWS EC2. We compare OV-

DB to the geo-distributed transaction protocol TAPIR [35].
The experimental results show that OV-DB outperforms
TAPIR in terms of throughput for medium to high concur-
rency/contention cases, while incurring higher latency for
the gossip of watermarks. In particular, OV-DB achieves
one order of magnitude higher peak throughput even under
a low pairwise conflict rate, and the gossip protocol generally
costs one additional WAN RTT of latency. The experimen-
tal results also show that OV can achieve a best-case latency
of one WAN RTT, which is equivalent to TAPIR.

2. ARCHITECTURE
Figure 1 shows the architecture of OV-DB, in which each

datacenter (DC) includes at least one gossiper. Multiple gos-
sipers within the same DC are used only for fault tolerance,
as they work independently and redundantly.

Gossipers. A gossiper aggregates visibility information
within the DC in the form of watermarks, and exchanges
the watermarks with other gossipers. With a view of the
global visibility status, a gossiper generates and publishes
the watermarks within its DC.

DB Servers. OV-DB partitions the database into shards.
Each shard is managed by a group of DB server replicas. DB
servers are in charge of three functionalities.
(1) Transaction coordinator. A server receives a transac-
tion request from clients, and assigns it a globally unique
version ts based on its local clock (e.g., combination of times-
tamp, server ID, and monotonically increasing counter). The
server replicates the transaction with ts to the participant
servers, and acknowledges to the client when the first server
replies with the transaction decision and return values.
(2) Multi-version (MV) storage. Each server maintains the
data of a shard in multi-version storage. Each shard is repli-
cated and accessed using consistent hashing [17].
(3) Transaction execution. Transaction logic is executed via
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stored procedures in DB servers, when the transaction ver-
sion number ts is below the Vwatermark.

The OV protocol enforces the following principles:
P1: Transactions take effect in order of their versions.
P2: Each coordinator assigns a monotonically increasing
version number ts to each transaction, and tracks the lowest
assigned version number that should not be visible (a.k.a.
Svw, see Section 3.3).
P3: The Vwatermark is no larger than the minimum Svw
of all DB servers.

Given the above properties, all transactions with versions
below Vwatermark can be made visible safely, and the trans-
action order is fixed because no transaction with a lower ver-
sion may be created. Thus, OV is able to efficiently control
the visibility of many transactions using the Vwatermark.

We assume the clocks of servers synchronized, e.g., us-
ing Network Time Protocol (NTP). Skewed clocks may only
affect the performance of OV, and never compromise the
consistency guarantee, in contrast to the TrueTime service
in Spanner [6]. The network may lose, reorder or delay any
messages, but a message must be delivered eventually to
a non-failed machine if the sender re-tries repeatedly. The
OV protocol does not require full replication of the entire
database within any datacenter, but this paper assumes full
replication for simplicity of analysis.

3. CONCURRENCY CONTROL AND

TRANSACTION COMMITMENT
Transaction visibility control in OV enables processing

transactions asynchronously and in batches. ACC can pro-
cess conflicting transactions in parallel, thus enabling greater
parallelism than in conventional systems, which resolve con-
flicting transactions by aborting or blocking. The trans-
action commitment is integrated into the visibility control
of the OV protocol, and so two-phase commitment (2PC) is
not needed. OV can batch the visibility information of many
transactions into one watermark, enabling higher efficiency
than protocols that control transaction visibility individu-
ally (e.g., 2PC). On closer inspection of the protocol, we
observe that the best latency for a read-write transaction
in OV is the same as in TAPIR: one WAN RTT. We also
sketch out a proof that OV provides strict serializability.

3.1 Asynchronous Concurrency Control
We first present the asynchronous concurrency control

(ACC) technique for read-write transactions with a known
write-set; other transaction types are detailed in Section 3.4.
OV processes transactions in an asynchronous way: it trans-
forms the processing of a read-write transaction to a se-
quence of write-only operations, read-only operations, and
asynchronous writes. ACC decouples transaction ordering,
accomplished by recording the keys in the write-set for a
global version, from executing the transaction logic, which
entails read-only operations and asynchronous writes only.
Write-only operations. ACC records the keys in the
write-set for transaction version ts using a placeholder for
the value of the version in the Store-phase (S-phase). The
placeholder is a functor [12], which has all the information
required to process the whole transaction (e.g., includes the
whole read-set, write-set, parameters). Such functors sup-
port general multi-partition transactions in which the value
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Figure 2: A transaction life cycle example using
ACC. The transaction logic is executed by the first
scheduled functor in DC1 partition A (dashed box).
Red dashed lines denote the watermark messages.

Algorithm 1: ACC procedures on DB server.

Data: vwm: Vwatermark of this server.
1 Procedure Coordinate(transaction T)
2 ts = TidMgr.createTS()
3 parallel-for ∀k ∈ T.writeSet do
4 Write(k, ts, T) 1
5 if any call to Write fails then
6 AbortTxn(ts, T)

7 return

8 TidMgr.stored(ts)
9 asyncRun

10 when all replica succ. write-only then
11 TidMgr.fullyReplicated(ts)

12 wait for execution results from ∀T of line 4
13 return

14 Procedure Execute(transaction T , version ts)
15 parallel-for ∀k ∈ T.readSet do
16 input[k] = Read(k, ts− 1) 2
17 output = T.execute(input)

18 reply with output to coordinator 3
19 parallel-for ∀k ∈ T.writeSet, ∀replica has k do
20 replica.Put(ts, k, output[k]) 4

21 Procedure Publish(Vwatermark vm)

22 vwm = max(vwm, vm)
23 asyncRun
24 parallel-for stored txn ∀〈T, ts〉, ts < vwm do
25 Execute(T, ts)

26 return TidMgr.Svw()

S-phase

E-phase

read from one partition may impact the value written in an-
other partition. Transactions in S-phase are not yet visible
and they write different versions, which simplifies concur-
rency control for atomic multi-key writes. Using MV, each
transaction writes a unique version, and is made visible by
gossiping Vwatermark, which has a similar effect to a batch
of second round messages in 2PC.
Read-only operations and asynchronous writes. ACC
begins executing a transaction only when its version is below
Vwatermark. This is accomplished by executing any of the
recorded functors in the Execution-phase (E-phase), after
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Algorithm 2: Procedures on a gossiper of DCk.

Data: vwm: Vwatermark of this gossiper.
Sw[Si]: Svw of server Si ∈ S (DC-wide server set).
Dw[Di]: Dvw of DC Di ∈ D (set of all DCs).

1 Procedure Aggregate()

2 parallel-for ∀s∈ S do
3 Sw[s] = max(Sw[s], s.Publish(vwm))
4 Dw[DCk] = min s∈S Sw[s]

5 Procedure XCHG(DC Di, Dvw wm)

6 Dw[Di] = max(Dw[Di], wm)
7 return Dw[DCk]

8 Procedure Gossip()

9 parallel-for ∀d∈ D do
10 Dw[d] = max(Dw[d], d.XCHG(DCk, Dw[DCk]))
11 vwm = min d∈D Dw[d]

the transaction order for versions below ts is fixed. To ex-
ecute a functor with version ts, read-only operations read
the keys in the read-set for the version immediately before
ts; then compute the transaction decision, return values (to
the client) and compute final values for keys in the write-set;
lastly, the asynchronous writes replace all functors stored in
the S-phase by their final values. If the version read is a func-
tor (i.e., not a final value), the DB servers will recursively
compute that functor first, and then resolve the read-only
operation using the computed final value.

Figure 2 illustrates the message flow of transaction pro-
cessing in ACC, and Algorithm 1 presents the procedures.
We use the circled numbers (e.g., 1 ) to link some of the cru-
cial messages presented in both the graph and the pseudo-
code. First, the transaction is submitted by a client to any
DB server (at the local DC, if available), which will act
as the transaction coordinator. The coordinator uses Tid-
Mgr (TxnIdManager) to assign the transaction a globally
unique version number ts based on its local clock. 1 the
coordinator Writes (see Section 4.1) the transaction to all
participant shards of the transaction.The receiving replicas
save the entire transaction as the placeholder (functor) for
the values of version ts, which will be replaced by the fi-
nal values of the write set in the E-phase. DB servers that
store the ts use MV (see Section 3.2), and S-phase never en-
forces ordering among transactions, thus the S-phase never
aborts a transaction due to conflicts. When ts is stored on
all shards, the coordinator marks the transaction stored in
its TidMgr, otherwise it aborts the transaction (AbortTxn is
detailed in Section 4.1). Algorithm 1 lines 9-11 constitute an
asynchronous procedure for the replication protocol, which
is non-blocking (see Section 4.2).

Each DB server continuously receives the latest Vwater-
mark from gossipers, and all transactions with version lower
than Vwatermark are ready for execution. Transactions are
ordered by their version number.Execution of a functor be-
gins with 2 reading the keys in the read set for the version
immediately before its version number ts, then executing the
transaction based on the values read. The read may contact
the closest replica exclusively when ts is below the Rwa-
termark (see Section 4.3). 3 the execution output is sent
to the coordinator, then 4 the values are asynchronously
written to all replicas in the write set. OV assumes the
transaction logic in the stored procedure is deterministic:
functor execution outputs the same result with the same

Table 1: Conflict matrix for ACC. Table entries in-
dicate whether steps of two transactions can run in
parallel when operating on common keys.

Write-Only Read-Only Async Write
Write-Only X X X

Read-Only X X partially
Async Write X partially X

values read. Functors for version ts can be executed inde-
pendently and in parallel. The first execution replaces each
functor of version ts by its final value to avoid redundant ex-
ecution of the replaced functor. Determinism ensures that
concurrent functor executions of the same transaction yield
the same output, and so the coordinator can acknowledge
completion to the client as soon as it receives the first re-
sponse of functor executions.

Discussion: parallelism. Whenever a read-write or
write-write conflict occurs between concurrent transactions,
conventional synchronous concurrency controls (e.g., 2PL,
OCC) cannot execute them concurrently. This leads to ex-
clusive “serialize windows” of at least 1 WAN RTT for ac-
cessing conflicting data. In contrast, ACC makes it pos-
sible to execute most operations of conflicting transactions
in parallel. Table 1 summaries the behavior for combina-
tions of ACC steps in two concurrent transactions, indicat-
ing whether two steps can run in parallel when operating on
common keys. ACC steps of writes (i.e., write-only opera-
tions and async-write operations) from two transactions can
run in parallel, even if they have overlapping write-sets, be-
cause they write for different versions. Similarly, concurrent
write-only and read-only operations must access different
versions: one above the Vwatermark and the other below.

The only case when two steps of ACC cannot fully run in
parallel is when a read-only operation has conflicts (“read-
dependent”) for a specific version with another transaction’s
asynchronous write. However, this case likely has smaller
“contention footprint” than a read-write conflict in syn-
chronous concurrency controls, which lasts at least one 1
WAN RTT. This is because (1) the read operation can suc-
ceed once the first replica has been replaced by the final
value via the asynchronous write, e.g., read from the local
DC replica; and (2) this conflicting version does not hinder
execution of other versions. For example, ACC can concur-
rently resolve multiple such read-dependent conflicts on the
same key for different versions.

Discussion: latency. TAPIR uses a combined proto-
col to streamline coordination across a WAN. As a result,
TAPIR at best incurs a latency of one WAN RTT (ignor-
ing local message RTT), when there is a DC-local replica
for reading and neither reads nor writes have conflicts. The
latency increases further due to retries from conflicts as con-
tention increases. Besides, the latency does not include the
asynchronous commit message that makes the writes visi-
ble. The OV protocol can also achieve best-case latency at
one WAN RTT. From Figure 2, we can see that the S-phase
can take only one WAN, and if the replicas are available
in the DC then all E-phase messages may be DC-local ex-
cept for the asynchronous writes, which are not included in
latency. Gossip messages among gossipers are across DCs.
However, a gossiper G need not wait for a message from re-
mote gossipers if G has already received a higher watermark
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than ts. In the example of Figure 2, let’s assume the clocks
are synchronized and the WAN RTT is Twan. At time t,
DC2 has infrequent coordination, and Gossiperdc2 sends to
Gossiperdc1 a Dvw (see Section 3.3) equal to t; Gossiperdc1
receives the gossip message at time t+Twan/2. Also at time
t, Gossiperdc1 assigns t to a transaction txn, which com-
pletes the S-phase at time t+ Twan. Thus at time t+ Twan,
Gossiperdc1 has already received the Dvw of DC2, which
is greater than t; then, Gossiperdc1 can immediately make
the decision that version t is visible without any round-trip
message exchange with Gossiperdc2.

3.2 Multiversion Storage
A DB server stores the database data using MV. The

APIs are similar to other MV systems: Put(key, version,
value) stores the value to the version; Get(key, version)
returns the value and version number of the latest version
not greater than version; Abort(key, version) removes the
version and promises never to accept the same version again.

To be used in ACC, our MV storage offers two additional
features. First, the value to Put could be either a functor or
a final value; the stored final values are immutable, while the
stored functor will be replaced by the final value later. The
Get operation always returns the final value, because when
the version accessed is a functor other than a final value, the
DB server will resolve the functor first before returning the
value. Second, ACC Get only targets versions below Vwa-
termark and version insertion only targets versions above
Vwatermark. Our MV storage sorts data by version for fast
version retrieval in Get, and for garbage collecting obsolete
versions that are older than a threshold of time.

3.3 Gossip of Visibility Watermarks
Naively, to satisfy the property P3, the Vwatermark can

be obtained by contacting all DB servers for the minimum
version in the S-phase. However, Algorithm 2 presents a
more efficient and distributed Vwatermark generation pro-
tocol using server-gossiper DC-wide message exchanges and
gossiper-gossiper cross-DC message exchanges.

Server visibility watermark (Svw) is the minimum
version number in the S-phase on a DB server. Each DB
server maintains its Svw by tracking all versions in the S-
phase in a set in the TidMgr, referred to as TSset. When
TidMgr.createTS() generates a monotonically increasing ver-
sion number ts (Algo. 1 line 2), TidMgr adds ts to the TS-
set. When transaction ts completes its S-phase by calling
TidMgr.stored(ts) (Algo. 1 line 8), TidMgr removes ts from
the TSset. If the TSset is not empty, the minimum ver-
sion within the set is the Svw, otherwise the TidMgr calls
TidMgr.createTS() to generate a ts as the Svw because any
version number generated in the future must be higher.

DC visibility watermark (Dvw) is the version number
equal to the minimum Svw in this DC, thus any version be-
lowDvw has completed the S-phase in the DC. Each gossiper
generates the Dvw by maintaining a snapshot of the latest
Svw of all DB servers within the DC. A gossiper continu-
ously polls the DB servers for Svw, meanwhile, publishing
the latest Vwatermark to every DB server in the DC. Each
DB sever maintains a non-deceasing Vwatermark, and it al-
ways adopts the highest watermark if it receives different
watermarks published by different gossipers.

Similarly, each gossiper also maintains a snapshot of the
latest Dvw of each DC by exchanging its Dvw with other

gossipers periodically. The gossipers always keep the highest
Dvw for each DC, because the Svw and Dvw must be non-
decreasing. The Vwatermark is simply generated as the
minimum Dvw snapshot across all DCs.

3.4 Other Transactions
Read-only transactions and write-only transactions can

skip some of the ACC steps required for more general read-
write transactions, which boosts their performance. We also
explain in this subsection how to execute dependent trans-
actions, which do not have pre-known write-set.

Read-only transactions. ACC can achieve strictly se-
rializable read-only transactions in one round of messages
regardless of contention. The overhead is similar to a snap-
shot read. The protocol for a read-only transaction is similar
to that of a read-write transaction, except that the S-phase
only stores a functor on the coordinator DB server. Hence,
the entire S-phase and the functor-to-coordinator acknowl-
edgment are all local operations on the coordinator server.
The E-phase only needs to execute the read-only operations
for the ts assigned to the transaction. In particular, when
ts < Rwatermark, the read-only operations can be applied
to the closest replica (see Section 4.3).

Write-only transactions. The protocol for write-only
transactions only needs the S-phase, which writes the final
values directly to the MV storage. The coordinator can ac-
knowledge to the client as long as the Vwatermark is greater
than the transaction version.

Dependent transactions. Dependent transactions [29],
which need to read the values of the database to determine
the full read-set and write-set, are not supported in the ba-
sic protocol. However, a known technique, reconnaissance
query [29], can support this category of transactions. A re-
connaissance query is a read-only transaction that is used to
find the tentative read-set and write-set for the dependent
transaction. The dependent transaction is executed based
on the tentative sets, but the E-phase first verifies whether
the tentative read-set and write-set generated by the recon-
naissance query are still valid be re-reading the values. If the
verification fails, the transaction execution output is “abort
the transaction”, otherwise the transaction is executed in
the same way as in the basic protocol.

3.5 Strict Serializability
In this subsection, we present a sketch on the proof that

OV provides strict serializability for all committed transac-
tions. Informally speaking, a schedule of such transactions
is serializable when it is equivalent to some serial schedule.
Strict serializability [5, 26] further requires that the serial-
ization order be compatible with the “real-time” precedence
order over non-overlapping transactions. The latter prop-
erty is referred to as linearizability in the context of con-
current data structures [14]. Informally, a schedule of com-
mitted transactions is strictly serializable if each transaction
appears to take effect at some time point between its invo-
cation and response. We will refer to this point in time in
our analysis as the serialization point (SP) of a transaction.

Serializability. Transactions executed by OV appear to
take effect in order of their version numbers by principle P1.
A transaction always reads keys for the version immediately
before its own version (Algo. 1 line 16), and its updates are
also visible only to transactions with higher versions.
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Strict ordering. We construct the SP for each transac-
tion as follows: for a transaction Ti with version number tsi,
its SP (denoted spi) is the time point when the first replica
server within the system receives a Vwatermark > tsi. In
other words, spi is the earliest point in time when Ti is vis-
ible to any server. We assume that at one time point only
one transaction can be made visible, thus the SPs are never
equal for two transactions. It also follows easily that spi
is between the transaction Ti invocation and response, be-
cause spi must be within the E-phase of Ti. Furthermore,
the execution of Ti in OV is as if the transaction takes effect
at spi because of the following:

1. Updates of Ti are not visible before spi. This is because
prior to spi, no server has Vwatermark greater than
tsi, otherwise it conflicts with the definition of spi.

2. Updates of Ti are visible to other transactions after
spi. According to Algo. 1, after spi, only a higher ver-
sioned transaction Tj (i.e., having tsj > tsi) may read
the updates of Ti in the E-phase of Tj when Vwater-
mark > tsj . Thus, the same Vwatermark > tsi, which
implies Ti is visible.

Serializable order matches strict order. We sketch
out a proof that for any two committed transactions Tj and
Ti in a schedule of OV, if their version numbers satisfy tsj >
tsi (serializable order), then spj > spi (strict order). This
means that transactions are ordered the same way by their
version number as by their SPs. This point is proved by
contradiction. At time point spj , a replica R must have
Vwatermark > tsj (by definition of spj), and we assume for
the sake of argument that spi > spj , as otherwise spj > spi
and the strict order matches the serializable order. That
means Ti is not visible on replica R, and so Vwatermark
6 tsi. Thus, tsi > Vwatermark > tsj , which contradicts the
assumption that tsj > tsi.

In summary, OV provides strict serializability.

3.6 On Clock Skew
The coordinator uses the timestamp from synchronized

(e.g., by NTP) local clocks to generate global unique trans-
action versions. Skewed clocks do not impact the correctness
of ACC, because our protocol has no requirement regarding
the difference between the timestamp and “real-time”, as
long as the Svw and Dvw are monotonically increasing.

To enforce the monotonicity property of watermarks re-
gardless of clock skew, we apply the following rules in the
protocol. First, the coordinator records the highest assigned
timestamp lastTS, and retries whenever a generated times-
tamp is lower than the lastTS. Second, during initialization,
the coordinator will not accept client requests until the new
coordinator is accepted (described later) by all gossipers of
the DC. Third, a gossiper will accept a new coordinator only
if the Svw from the coordinator is higher than the Dvw, in
order to enforce the monotonicity property for Dvw.

Skewed clocks may, however, impact the performance of
the system. Because the transactions are ordered by their
version number, a transaction number assigned by a “fast
clock” may cause transaction processing to be delayed un-
fairly, leading to a latency penalty. This side-effect can be
mitigated using the following strategies. First, the servers
within the same DC use the same local time source con-
nected by a LAN, thus the clock skew is small within a sin-
gle DC. Second, the coordinator will not accept new client

requests when it has an abnormal clock. Abnormality can
be detected by several methods, such as detecting a large
time offset from the time source or from peers (i.e., other
DB servers or gossipers) within the DC, or detecting a large
time gap between its local clock and the Vwatermark.

4. REPLICATION PROTOCOL
OV combines concurrency control and replication in a

single gossip-based visibility control protocol. The idea of
combining protocols is borrowed from previous works [18,
24, 35], though our gossip-based approach with visibility in-
formation represented compactly using watermarks enables
more efficient replication for geo-distributed data. In our
replication scheme, writes succeed in one RTT regardless
of conflicts as long as a super quorum1 of replicas is avail-
able, or in two RTTs once a majority quorum is available,
whichever comes first. As for read-only operations, in ACC
these are always tagged with target versions. With the gos-
sip of watermarks, reads can always retrieve data from any
replica when the target version is below the Rwatermark.
This achieves WQRO (write-quorum read-one) for com-
mon requests. When the target version is between Rwa-
termark and Vwatermark, the reader needs to contact addi-
tional replicas to find a quorum with matching versions.

4.1 WriteOnly Operations
Transactions in the S-phase perform write-only opera-

tions exclusively: Write and AbortTxn. Inspired by Fast-
Paxos [20] and the consensus operation in TAPIR [35], Write
reaches consensus on whether a specific version is stored.
This requires one RTT in the fast path, and two RTTs in
the slow path. Unlike FastPaxos and TAPIR, which suffer a
performance penalty via the slow path when a conflict is de-
tected, Write in OV is nearly conflict-free because it merely
inserts a globally unique version using MV (recall no read-
ing in S-phase). Our slow path is needed only for failures
and stragglers. To tolerate f replica failures using a total
of 2f + 1 replicas, similarly to FastPaxos [20], the fast path
needs a super quorum (⌈ 3

2
f⌉+1) of replicas to be available;2

the slow path needs only a majority quorum (f+1) of repli-
cas to be available. For easy comparison, we describe the
protocol using the same terminology as TAPIR:

1. The coordinator sends 〈key, ts, value〉 to all replicas
within the shard, and each replica stores the record as ten-
tative. The replica responds upon success.

2. Fast path. If a super quorum of replicas replies
(within a timeout), the coordinator takes the fast path and
acknowledges the success to the caller, then sends
〈finalize, ts〉 asynchronously to all replicas.

3. Otherwise, once the coordinator receives a majority
quorum response, it takes the slow path. The coordinator
sends 〈finalize, ts〉 to all replicas.

4. On receiving finalize, each replica marks the version
recorded as finalized, and responds confirm to the coor-
dinator.

5. Slow path. The coordinator acknowledges the suc-
cess to the caller when it receives f +1 confirm responses.
Otherwise, it returns fail if a majority of replicas are not
available.

1Super quorums are defined as in FastPaxos [20].
2An alternative expression is using a super quorum size 2f+
1 out of 3f + 1 replicas.
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AbortTxn succeeds when the decision is replicated in a
fault-tolerant manner on each shard. Each shard succeeds as
long as majority quorum of replicas respond because, unlike
the tentative status in Write, the abort decision may never
be revoked. The protocol for AbortTxn is as follows:

1. The coordinator sends 〈abort, key, ts〉 to all replicas
of all participant shards; it acknowledges to the caller once
a majority quorum of replicas respond from each shard.

2. Upon receiving the request, each replica calls Abort(key,
ts), and replies success to the coordinator.
AbortTxn also needs to run the asynchronous procedure in

Algorithm 1 line 9-11, which is used to indicate all replicas
have succeeded Abort.

4.2 Replica Watermarks: Rwatermark
The replica watermark (Rwatermark) is a special ver-

sion number, transactions below which must have replicated
their write-only operations on all participant replicas. Read-
only operations for versions below Rwatermark can access
the value directly from any replica (e.g., in the local DC).
The gossip protocol for Rwatermark can be simply extended
from the protocol of Vwatermark generation in Section 3.3
by adding extra fields: server replica watermark (Srw), DC
replica watermark (Drw) and Rwatermark.

The gossiped information is leveraged as follows. The
Vwatermark is used for concurrency control and commit-
ment to decide if a transaction version is visible to other
transactions, while Rwatermark is designed for reading any
replica (e.g., the closest replica) in the replication protocol.
Specifically, gossipers generate the Drw using the minimum
of the DC-wide Srw, and generate the Rwatermark using the
minimum of all DCs’ Drw. On each DB server, the TidMgr
maintains the Srw by tracking all version numbers for which
the write-only operations are not yet fully replicated. Fur-
thermore, the DB servers automatically set all versions be-
low Rwatermark as finalized. Note that Algorithm 1 line 9
starts an asynchronous procedure that notifies the TidMgr
regarding the full replication of ts. The procedure is exe-
cuted when all responses of write-only operations (Write,
AbortTxn) are received, which may be during or even after
the E-phase of the transaction. We skip the detailed proto-
col for the gossip of Rwatermarks as it is similar to that of
Vwatermark.
We can extend the protocol of Rwatermark further to per

shard Rwatermark or per host Rwatermark. In other words,
the gossipers and DB servers maintain a separate collection
of Srw, Drw and Rwatermark for each shard or host.

4.3 The ReadOnly Operation
The read-only operation Read(key, ts) (ts < Vwatermark)

retrieves the latest version no greater than ts for key. When
ts < Rwatermark, the Read can call Get(key, ts) directly
on any replica. Thus, this sub-section focuses on reading
versions between Rwatermark and Vwatermark.

The Get(key, ts) operation presented in Section 3.2 not
only returns the version and value, but also the replication
tag tentative or finalized (see Section 4.1). Assuming
2f +1 replicas in a shard, a transaction with version ts that
is below Vwatermark must be in one of the two following
cases, otherwise it should not be visible: (1) Write succeeded
for ts, thus there are at least f + 1 finalized replicas or
⌈ 3

2
f⌉+1 tentative-or-finalized replicas; or (2) AbortTxn

succeeded for ts, thus there are at most f tentative repli-

Algorithm 3: Read-only operation for versions be-
tween Rwatermark and Vwatermark.

1 Procedure Read(key k, version ts)
2 target = ts
3 while true do
4 parallel-for ∀R∈ Replicas do
5 R.Get(k, target)
6 if match condition found then
7 return matched version

8 target = max{versions received at line 5} − 1

cas and there is no finalized replica. The tentative-or-
finalized case may happen when the Write succeeds in the
fast path, and some of the tentative replicas adopt the
finalized tag in the asynchronous confirmation.

Thus, the Read(key, ts) operation sends requests to all
replicas but waits for the fastest super quorum to respond
(with retry on timeout), and find the highest version ver 6

ts for which at least one replica is finalized or at least f+1
replicas are tentative. We call this the match condition

for Read, and the highest version is called the matched ver-

sion. An aborted version cannot satisfy the match condi-

tion, and the highest committed ver must satisfy the match
condition within a super quorum of replicas. The protocol
for Read(key, ts) is presented in Algorithm 3.

5. FAULT TOLERANCE
Replication protects the data stored in OV from perma-

nent loss. However, failures of the coordinators and gos-
sipers may stall the dissemination of watermarks in the
gossip-based visibility control protocol, leading to a loss of
availability. This section presents the protocols for recov-
ering from server, gossiper, and datacenter-wide failures.
These protocols assume the database state is recoverable,
meaning that to tolerate f failure among 2f +1 replicas, at
least a super quorum of replicas is available for each shard.
Under this assumption, our recovery protocol can leverage
the Read operation from Section 4.3 to decide if a version
should be recovered or discarded.

5.1 Membership Representation
To track the shards and server locations, OV uses a co-

ordination service such as Raft [25] or Zookeeper [15]. Each
shard maintains its own membership state, and views over
this state are distinguished using monotonically increasing
numbers. Each server caches the latest view of all shards,
and includes the view number of the target shard in any
cross-server communication. A server updates its own view
when it learns from the communication response that its
view is stale. Similarly to TAPIR, when a server is in view-

changing status, it will not process new requests except for
recovery.

Inspired by Corfu [1], the view can have different mem-
berships for different ranges of transaction versions. For
example, a shard with membership 〈A,B,C〉 serving ver-
sion [0,∞] may replace a failed server C by a new server D
starting from version 1000. Thus, the new view of member-
ship may be 〈A,B〉 serving version [0, 1000] AND 〈A,B,D〉
serving version [1001,∞], while D is recovering the versions
below 1000.
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5.2 Coordinator Failure
Visibility control relies on collection of watermarks from

coordinators. Thus, it is important to have quick coordina-
tor failure detection and fast recovery. The failure detection
of coordinators is integrated with the gossiper-coordinator
communication, as they already publish and aggregate wa-
termarks frequently. Furthermore, the gossiper and the co-
ordinators are always in the same DC, where the network
is much more predictable than the WAN. In addition, the
coordinators try to avoid slow responses due to overload,
using methods such as load shedding (e.g., reject new client
requests when the load is high) and resource isolation (e.g.,
exclusive access some CPU cores).

Each coordinator has a backup coordinator within the lo-
cal DC, which will serve as the substitute for completing the
in-flight transactions when the coordinator fails. Note that
only the execution of the write-only operations (Write and
AbortTxn) may impact the visibility control to the gossipers.
Thus, the coordinator will synchronously replicate its write-
only operation log (before execution) and the operation de-
cisions (after execution) to the backup coordinator. This en-
sures that the backup coordinator has all the in-flight trans-
actions. When the gossiper suspects a failed coordinator and
decides to replace it, it sends a message to the backup coordi-
nator. The gossiper then uses the state of the backup coordi-
nator to generate watermarks. During fail-over, the backup
coordinator stops accepting replication requests from the
original coordinator, which disables the original coordinator
in case it has not really failed. The backup coordinator sim-
ply re-executes all the in-flight write-only operations, and
any transactions that have already been aborted must fail
during re-execution as a majority of replicas have promised
not to accept the aborted version (see Section 3.2). In the
event that both the coordinator and its backup fail, none
of the committed transactions are lost because each such
transaction must have been replicated cross-datacenter; any
unresolved functors will be replaced by final values the next
time they are accessed.

5.3 Replica Node Failure
A replica node failure does not hinder the functionality of

a shard as long as a quorum remains available, because the
replication protocol already provides fault tolerance. Thus,
the replica node failure detection and recovery can tolerate
longer communication delays. The protocol for membership
reconfiguration that replaces a failed replica node by a new
node is described next.

We assume that a leader within a shard is elected us-
ing Raft or Zookeeper to execute the reconfiguration proce-
dure. First, the leader sends a view-changing message to
all members, and the live members reply with their highest
recorded transaction versions. Second, the leader chooses
the starting version newTs for the new membership, which
is the highest recorded transaction version returned by the
live members. The new membership is represented as two
ranges: versions [0, newTs] are served by the live members
without changing the quorum size, and versions (newTs,∞)
are served by the live members plus the new node. The
leader increments the view tag of the membership, and sends
out the new membership. Third, the new node begins to
serve versions above newTS immediately, and recovers the
versions below newTS when newTS is below Vwatermark.
The missing range of versions is recovered by pulling from

the live members in bulk; similarly to Read in Section 4.3,
versions that satisfy the match condition should be kept
as finalized, otherwise they should be discarded. Last,
when the new node has caught up to newTS, the leader up-
dates the membership again to merge the two version ranges
(≤ newTS and > newTS) into one.

5.4 Gossiper Failure and Datacenter Failure
The failure of a single gossiper will not impact the progress

of watermarks because each DC has multiple gossipers that
work independently and redundantly. However, missing the
updates from one DC entirely will prevent the watermark
from advancing, because the DC-wide watermarks will not
be refreshed for the failed DC. This may happen when all
gossipers of a DC are unavailable due to DC-wide disaster.
This subsection presents how our gossip protocol can recover
from losing all the gossipers of a single DC.

The protocol assumes that servers cache a view of the
membership of each DC. First, the new membership, with
the failed DC removed, is sent to the failure recovery leader
of each shard (see para. 2 of Section 5.3). Second, each leader
forwards the new membership to the shard replicas, and the
replicas reply with the highest recorded transaction version
and promise never to accept transactions coordinated from
the failed DC. Third, the recovery process aggregates the
highest recorded version number maxRecordedTS across all
the leaders of the shards. Note that the failed DC only
impacts the visibility control for versions between Vwater-
mark and maxRecordedTS, because versions below Vwater-
mark have already been confirmed visible and all versions
above maxRecordedTS are not coordinated from the failed
DC. Then, the recovery process pulls the status of transac-
tions between Vwatermark and maxRecordedTS and com-
putes the transaction decisions following the Coordinate

procedure in Algorithm 1. Last, after the status of the ver-
sions below maxRecordedTS has been resolved, the recovery
process sends the new DC membership and maxRecordedTS
as the new Vwatermark to all remaining gossipers.

6. EVALUATION
This section presents the experimental evaluation of OV-

DB for geo-distributed transactions and compares against
TAPIR [35]. TAPIR combines concurrency control and repli-
cation in one coordination protocol, and outperforms several
conventional designs in terms of both throughput and la-
tency [35]. OV is also a combined protocol, and its best-case
latency is equivalent to TAPIR – one WAN RTT – when the
system is lightly loaded. All the experiments presented in
this section distribute data globally across US, Asia and EU
regions using AWS EC2 virtual machines, where the wide-
area latency inherently leads to higher contention. The ex-
perimental results show that OV-DB outperforms TAPIR
for throughput under medium to high contention, at the cost
of higher latency for the watermark gossips, which usually
takes one WAN RTT in common cases. Under a distributed
load with Zipf coefficient 0.5, OV-DB achieves more than
10-fold higher peak throughput than TAPIR, reaching 43k
read-write transactions per second.

6.1 Experimental Setup
Environment. All the experiments are run in AWS EC2

using c4.4xlarge instances. Each instance has 8 cores (hyper-
threading disabled). We use three EC2 regions: US East
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Table 2: Ping RTT between used EC2 regions (ms).

N. Virginia Frankfurt Soul
N. Virginia < 1 91 188
Frankfurt - < 1 253

Soul - - < 1

(N. Virginia), EU (Frankfurt) and Asia (Soul), with ping la-
tencies as shown in Table 2. All the virtual machines enable
the NTP service for clock synchronization. We adopt the
TAPIR [35] configuration where each shard of data is han-
dled by a separate replication group. The database is par-
titioned into three shards and each shard has three replicas
placed across the three geographic regions. In this setting,
at least two out of three replicas form a majority quorum
and all three replicas form a super quorum.

Experimental Systems. We implemented OV-DB us-
ing the C++ RPC framework fbthrift [9] open-sourced by
Facebook. In OV-DB, gossipers are co-located on the server
hosts without using more machines than TAPIR, and send
gossip messages to remote gossipers at 25ms intervals. We
deploy one gossiper per DC. In each EC2 region, we use ten
separate client machines, which is sufficient to generate our
experimental workloads. The clients in OV-DB can send a
request to any server in the DC, and that sever is the trans-
action coordinator. In contrast, the transaction coordinator
in TAPIR is on the client side, which offloads work from the
TAPIR server.

To measure the performance of TAPIR, we use its open-
source implementation [30] created by the authors of TAPIR.
We include the modification of the implementation to allow
TAPIR to issue multiple independent read requests from
the same transaction in parallel, and to run multiple server
threads concurrently on each server host. Both systems use
in-memory storage to store the data, and neither implemen-
tation includes failure recovery. OV-DB simply assumes
that obsolete versions can be garbage collected safety when
they are 10 seconds older than the Vwatermark, which is suf-
ficient for our settings. However, a more general solution can
be developed by tracking the minimum uncomputed functor
watermark, which we leave as future work.

We estimate the overhead of multi-version storage as less
than 1GB per host in our experiments given a 10s reten-
tion period for old versions. Furthermore, we ran a micro-
benchmark of random read/write operations (50% read) to
measure the impact of MV on performance, and observed
that the storage layers of TAPIR and OV-DB can perform
368k ops/s and 424k ops/s, respectively, in a single thread.
These results show that MV storage is far from becoming
the system bottleneck with respect to aggregate throughput.

We use closed-loop synchronous clients, each of which is-
sues one transaction at a time, back-to-back. The clients do
not retry any aborted transaction, which benefits TAPIR’s
throughput and latency, especially for high contention cases
where conflicts lead to frequent aborts. We present the end-
to-end latency measured from the clients and the aggregated
throughput across all servers. All experiments run 60 sec-
onds, and the results exclude the first and last 10 seconds.

Workloads. We evaluate the systems using two work-
loads: YCSB+T [7], which extends the key-value store bench-
mark YCSB with transactional support, and the Twitter-
like workload Retwis [21]. Both YCSB+T and Retwis are
used for evaluating TAPIR [35]. We take the same config-

Table 3: The transaction type distribution of
Retwis, reproduced from TAPIR paper [35].

Transaction Type # gets # puts Percentage
Add Users 1 3 5%
Follow 2 2 15%

Post Tweet 3 5 30%
Get Timeline rand(1,10) 0 50%

uration as the published paper. Specially, a transaction in
YCSB+T comprises four read-modify-write operations on
distinct keys. Retwis simulates four kinds of transactions
(add user, post tweet, get timeline, follow user) that apply
gets and puts over the key-value store. Table 3 reproduces
the transaction profile of Retwis from TAPIR [35].

All experiments run with 1M keys, where both keys and
values are 64 bytes long. We use two different key distri-
butions for tuning various contention scenarios. The first
distribution is Zipfian with the coefficient varying from 0.5
to 0.95 (extremely skewed distribution). The second dis-
tribution is contention index (CI), used in benchmarking
distributed transacions in previous works [12, 27, 29] as the
tuning knob for the contention among two concurrent trans-
actions. In the CI distribution, the key set is divided into
“hot keys” and “cold keys”. Each transaction random ac-
cesses exactly one hot key and three distinct cold keys. The
CI is the fraction of hot keys over the size of the entire
key space. For example, if there are 1000 hot keys among
1 million keys, the CI is 0.001. In that case, for systems
that cannot commit conflicting transactions in parallel (e.g.,
TAPIR), at most 1000 concurrent transactions can be com-
mitted successfully in parallel.

6.2 YCSB+T Experiments

6.2.1 Low Pairwise Conflict Rate

Figure 3 presents the throughput, latency and commit
rate results for various numbers of clients using the Zipf
coefficient 0.5 distribution. A close-up view is included in
the bottom corner of each graph for client number less than
4000, and uses the same axis units as the standard view.

Throughput. In the terms of peak throughput, OV-

DB outperforms TAPIR more than 10-fold, achieving around
43k txn/s. TAPIR achieves higher throughput when the
number of clients is less than around 1600, because it main-
tains a high commit rate and lower latency. As concur-
rency increases with the number of clients, contention grows
and the commit rate of TAPIR drops sharply beyond 1500
clients. TAPIR reaches its peak throughput when the in-
creased parallelism from adding clients is counteracted by a
dropping commit rate due to rising contention. In compar-
ison, OV-DB keeps the commit rate steady at 100% as it
never aborts a transaction due to conflicts.

Latency. In the figure, the average latency of TAPIR is
around 300–400ms in most cases, because there is no retry
for the aborted transactions in the experiments. When there
are fewer than 10000 clients, OV-DB’s average latency is
generally higher than TAPIR by roughly one WAN RTT.
This indicates that, on average, each transaction in OV-

DB waits roughly one WAN RTT to receive a gossiped wa-
termark that makes the transaction visible. This latency
overhead is the main cost of OV as compared with other
distributed transaction protocols. We observe that the av-
erage latency of OV-DB declines slightly for 2000–10000
clients, where requests fill up the processing pipelines in the
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Figure 3: YCSB+T results for Zipf coefficient 0.5
workload and various numbers of clients, with close-
up on the right.

servers and schedulers more easily find a transaction that is
ready for processing. With more than 10000 clients, OV-

DB’s latency increases linearly as the servers’ queue length
grows. Note that in the latency result, OV-DB and TAPIR
achieve the best latency of around 300ms (roughly one WAN
RTT) when the client number is close to 0, as explained in
Section 3.1. We also measured the latency percentiles in the
experiment, and observed that 50%-ile results are similar
to average latency. However, when client number exceeds
roughly 2000, the 90%, 95% and 99%-ile latencies of TAPIR
are higher than those of OV-DB when the contention is in-
creased. Specifically, even with 40000 clients, OV has 99%-
ile latency less than 1386ms, while TAPIR reaches 1341ms
with only 4000 clients. We observe similar latency trends
in the other experiments, and so we continue to focus on
average latency in the remainder of this section.

6.2.2 High Pairwise Conflict Rate

The performance impact of conflicts varies with the con-
currency control mechanism. We are therefore interested in
examining the performance of the two systems in high con-
tention workloads. We use various numbers of clients with
the CI distribution, using a CI of 0.001 (1000 hot keys).

Throughput. In Figure 4, OV-DB achieves 100% com-
mit rate in all experiments, while TAPIR exhibits a much
lower commit rate as the number of clients increases. As a
result, OV-DB outperforms TAPIR for throughput under
various number of clients, albeit at the cost of higher la-
tency. The peak throughput of OV-DB is 30x higher than
of TAPIR. The spread is higher than observed in Figure 3,
indicating the performance of OV-DB is less sensitive to
contention than TAPIR, which is unable to commit conflict-
ing transaction in parallel. ACC allows many operations of
conflicting transactions to run concurrently in OV-DB (re-
call Table 1), but the read-only operations still need to wait
for the first available asynchronous write value if there is
a read-dependency. Thus, we observe that the throughput
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Figure 4: YCSB+T results for CI 0.001 and various
numbers of clients, with close-up of the right.

Table 4: Peak throughput (unit: txn/s) comparison
of OV-DB and TAPIR under no aborting workload
(CI-fix) and high pairwise conflict rate workload (CI
0.001 from Figure 4).

OV-DB TAPIR Speedup
CI-fix 39247 2781 14x
CI 29580 465 64x

Speedup 1.3x 6x

does not increase when there are more than 20000 clients
in OV-DB, as the additional request concurrency tends to
lengthen the E-phase and increase latency.

Latency. We observe similar trends to that of Zipf co-
efficient 0.5 distribution in latency. However, comparing
with the latency results in Figure 3, TAPIR has slightly
increased latency under the same number of clients, while
OV-DB keeps nearly the same latency in the close-up figure.

6.2.3 NonAborting Workload

This subsection studies a special case of workloads where
no pair of concurrent transactions ever conflicts (i.e., commit
rate 100% is guaranteed). The two systems are subjected
to two different workloads, each of which is considered an
“ideal” workload for the system’s throughput. For TAPIR,
based on the CI 0.001 distribution, we fixed the number
of clients to 1000 and each client accesses a distinct fixed
hot key and a disjoint range of cold keys. Thus, concurrent
transactions never have conflicts because their key sets have
an empty intersection. We refer to this method of generating
keys as CI-fix in the remainder of this subsection. We use
this workload to simulate the best throughput TAPIR may
achieve for a CI of 0.001. At any time, the system is run-
ning approximately 1000 concurrent transactions, and any
additional client/transaction would introduce conflicts and
cause aborting. For OV-DB, we also use CI-fix, but we do
not limit the number of clients to 1000 because conflicting
transactions in OV-DB never abort. Although the numbers
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Figure 5: Throughput and commit rate comparison
of OV-DB and TAPIR for Zipfian workload.
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Figure 6: Retwis results for Zipf coefficient 0.5 work-
load and various numbers of clients, with close-up on
the right.

of clients used for TAPIR and OV-DB are not identical, we
believe that 1000 is roughly the optimal number for TAPIR
as adding more clients only hurts throughput.

In the results summarized in Table 4, the throughput of
TAPIR under the non-aborting workload CI-fix is close to
the throughput limits observed in previous experiments with
1000 concurrent clients. Thus, TAPIR for the CI-fix work-
load exhibits a 6x throughput speedup as compared with
standard CI workload. The speedup is closer to 1x for
OV-DB, though our system still outperforms TAPIR for
throughput under CI-fix by 14x, despite the lack of aborting.
Interestingly, the outcome is loosely comparable to running
both systems with a workload where 14 conflicting trans-
actions are issued in parallel, even though neither system
aborts any transactions in the CI-fix workload.

6.2.4 Various Zipf Coefficients

To evaluate further the relative merits of OV-DB and
TAPIR, we measure the throughput of the two systems un-
der various Zipf coefficients. We use 1500 clients for TAPIR,
where it achieves the highest throughput in the previous ex-
periments, and 40000 clients for OV-DB. With a fixed num-
ber of clients, Zipf coefficients 0.5 and 0.95 represent a low
and high pairwise conflict rate, respectively.
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Figure 7: Retwis throughput and commit rate com-
parison for various Zipf coefficients.

In Figure 5, under various values of the Zipf coefficient,
throughput drops for both systems as conflicts increase, but
OV-DB outperforms TAPIR in throughput by 6-11x. OV-

DB maintains the commit rate at 100%, while the commit
rate of TAPIR drops as conflicts increase.

6.3 Retwis Experiments

6.3.1 Various numbers of clients

We present the throughput, latency and commit rate in
Figure 6 for Retwis experiments under various numbers of
clients for the Zipf coefficient 0.5 distribution. OV-DB

achieves a peak throughput of 68k txn/s, which outper-
forms TAPIR roughly 16-fold. The performance in terms
of throughput and latency is better for both systems in
this experiment than in the YCSB+T experiments because
there are 50% read-only transactions in the Retwis work-
load profile. On the other hand, we observe similar trends
in the both Retwis and YCSB+T results: when the num-
ber of clients is less than 1600, TAPIR throughput is higher
than OV-DB, but OV-DB outperforms in terms of through-
put when more clients are present. OV-DB achieves much
higher peak throughput at the cost of higher latency.

6.3.2 Various Zipf Coefficients

Figure 7 shows the throughput and commit rate compar-
ison between OV-DB and TAPIR for various Zipf coeffi-
cients. We see that OV-DB has more than one order of
magnitude higher throughput than TAPIR under various
Zipf coefficients. The commit rate of TAPIR drops from
90% to 13%, while OV-DB keeps the commit rate at 100%
when the Zipf coefficient increases from 0.5 to 0.95. Com-
paring these variations for the Retwis workload with the
YCSB+T results, we observe that the OV-DB throughput
drops less sharply under the Retwis workload, where 50% of
transactions are read-only. When conflicts are rare, TAPIR
can process read-only transactions in one round trip if there
is an up-to-date “validated version,” but needs additional
round trips, or even suffers aborts, in cases where such a
“validated version” is not found. In comparison, the read-
only transaction in OV-DB always reads a specific version,
and it never aborts due to conflicts.

7. RELATED WORK
Distributed transactions are notoriously costly, especially

for high-contention and geo-distributed workloads. Thus,
many existing works focus on weak consistency [22, 23, 28]
or avoid geo-distributed deployments [2, 3, 13, 31]. This
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section reviews techniques for high performance distributed
transactions under strong consistency guarantees.

Combination of concurrency control and replica-
tion. TAPIR [35] is the state-of-the-art high performance
geo-distributed transaction protocol. TAPIR can save one
round trip compared to a classic layered protocol if conflicts
are not present, combining concurrency control and replica-
tion in the same round of coordination. However, conflicts
from both concurrency control and replication are detected
and resolved using validation and retry in OCC, and perfor-
mance may suffer from contention. OV also uses a combined
protocol to reduce coordination overhead, but uses visibil-
ity control via ACC to resolve conflicts. Compared with
TAPIR, OV incurs additional overhead for watermark gos-
sip, which adds latency, but each gossip message can pro-
vide visibility control for many transactions regardless of
contention.

Deterministic databases. Calvin [29] is a determin-
istic database that resolves conflicts by executing transac-
tions in a deterministic ordering. Calvin orders the input
transactions using a centralized sequencer into a determin-
istic order, then replicates the ordered transactions via a
consensus protocol such as Paxos [19] or Zookeeper [15].
Even though Calvin is designed for distributed transactions,
it faces several practical difficulties for globally-distributed
transactions: (1) the centralized sequencer could potentially
be a performance bottleneck and single point of failure when
considering client requests and failure detection over aWAN;
(2) the layered concurrency control and replication proto-
cols need more rounds trips than a combined protocol (e.g.,
TAPIR, OV), which results in increased latency; (3) Calvin
only replicates the transaction input to different replication
groups, and there is no coordination within a replication
group in execution. This means that transactions cannot
read from remote DC’s replicas for fault tolerance when the
local replica fails or is overloaded. InOV, the S-phase is non-
deterministic, as any transaction can be aborted if any shard
votes to do so, but the E-phase executes transactions in the
global version order, which resembles deterministic order-
ing. Unlike Calvin, OV orders the transactions via version
numbers assigned using synchronized clocks, and does not
require additional centralized coordination. BOHM [10] and
PWV [11] also use deterministic execution and multi-version
storage to increase transaction processing parallelism, but
they are designed for a single multi-core machine.

Re-ordering conflicting transactions. Similarly to
TAPIR, Janus [24] is a combined concurrency control and
replication protocol, but for a more restrictive transaction
model. Instead of aborting a transaction on conflicts, Janus
transforms transaction execution to a deterministic order
to resolve the conflict. As a result, Janus cannot run con-
flicting transactions in parallel. For example, in Janus, two
conflicting write-only transactions need one RTT to detect
the conflicts and another RTT to re-order, then the transac-
tions are executed serially. In comparison, our ACC scheme
allows both transactions to run in parallel with nearly no
coordination in one WAN RTT. Furthermore, Janus’ fast
path requires all servers in the replication group (Write-
All), which is vulnerable to stragglers in a geo-distributed
setting; OV only needs a super quorum of replicas (Write-
Quorum). In terms of transaction model, Janus executes
a “transaction piece” on each server, whose input and out-
put are limited to the local server, whereas OV executes

transactions in a more flexible manner using functors. The
Janus paper presents an extension to handle the case of one
piece’s input depending on the output of another piece, but
it does not support the case when two pieces are mutually
dependent on each other. For instance, a money transfer
transaction that checks the status of both accounts (located
on different servers) prior to the transfer cannot be handled.

Low-latency distributed transactions. Lynx [36] ex-
ecutes a limited category of transactions with serializability
and low-latency. Lynx assumes that transactions can be ex-
ecuted piece-wise as a chain (one piece per hop), and that
only the first hop contains user-initiated aborts. Lynx can
acknowledge transaction commitment as soon as the first
hop completes. Carousel [34] is a combined protocol target-
ing low-latency geo-distributed transaction processing. It
uses OCC, similarly to TAPIR, and therefore exhibits seri-
alization windows of at least one WAN RTT. As a result, its
throughput suffers under conflicts. Contrarian protocol [8]
is designed for key-value stores supporting latency-optimal
read-only transactions, which require two round trips of
client-server messages. It only provides weak (i.e., causal)
consistency. Amazon Aurora [32, 33] uses a “storage and
computing independent” architecture, where storage follows
the “log as database” paradigm. The log sequence numbers
(LSNs) can be used for batch acknowledgment [33], simi-
larly to the watermarks in OV. Nevertheless, Aurora solves
a simpler problem than OV in several aspects: Aurora tar-
gets a cluster in a single geographical region (e.g., us-east-
1) with multiple availability zones (AZs), while OV targets
geo-distributed data; Aurora assumes there is only a single
writer (the DB instance) which assigns consecutive LSNs
and is able to coordinate transaction concurrency control
locally; Aurora uses traditional concurrency control (e.g.,
locking) and hence cannot execute conflicting transactions
in parallel.

8. CONCLUSION
This paper proposes Ocean Vista, a high performance geo-

distributed strictly serializable transaction processing pro-
tocol. OV combines concurrency control, transaction com-
mitment, and replication in a single transaction visibility
control protocol that uses version watermarks. Our Asyn-
chronous Concurrency Control scheme is based on water-
mark gossip, and is able to process conflicting transactions
in parallel. Furthermore, our replication scheme makes it
possible to use an efficient Write-Quorum / Read-One access
pattern in the common case. OV provides high throughput
even under high contention for globally distributed transac-
tions, though pays a latency cost for gossiping the water-
marks. The best-case latency to commit a transaction in
OV is only one WAN RTT, which is equivalent to the best
latency of TAPIR [35] – a state-of-the-art geo-distributed
transaction protocol. Our experimental evaluation shows
that our system, called OV-DB, outperforms TAPIR in
terms of throughput in conflict-prone workloads. In partic-
ular, OV-DB achieves one order of magnitude higher peak
throughput even under a workload with Zipf coefficient 0.5.
When conflicts are rare, OV-DB generally pays a latency
penalty of one WAN RTT.
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