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ABSTRACT

Understanding long-term, ocean wave climate variability is important to assess climate change impacts on

coastal and ocean physics and engineering. Teleconnection patterns can represent wave climate variability in

the context of climate change. The objective of this study is to identify how large-scale spatial distributions of

wave heights vary on a monthly basis and how they are influenced by various teleconnection patterns using

reanalysis datasets. The wave height climate responses to teleconnection patterns in the eastern part of the

North Pacific and North Atlantic are more sensible than in the corresponding western parts. The dominant

spatial patterns of monthly averaged wave height variability in winter were obtained by empirical orthogonal

function analysis. The three dominant patterns in the North Pacific and North Atlantic are similar. It is

remarkable that one of the three dominant patterns, a band-shaped pattern, exhibits a strong relation to the

teleconnection pattern in each ocean. The band-shaped pattern for theNorth Pacific was investigated in detail

and found to be related to the west Pacific (WP) pattern. Where and how each teleconnection pattern in-

fluences wave climate becomes apparent especially during winter.

1. Introduction

Impacts and adaptations of climate change have been

studied in various fields. Sea level rise greatly impacts

human activity near coastal zones (Bindoff et al. 2007)

and amplifies the vulnerability of coastal regions. Ocean

surface gravity waves (simply waves hereafter) produce

more complex impacts than sea level rise on coastal and

ocean structures, beach morphology, and other ecosys-

tems. To assess the impacts of climate change on coastal

areas, it is necessary to evaluate how wave climate

changes as a result of climate change. The wave climate

variability exhibits both long-term trends and oscillations

depending on the location. Clarifying characteristics in

wave climate variability such as trends and oscillations is

important to understand past and future wave climate

changes.

The global climate has preferred patterns of variability,

which are called teleconnection patterns or large-scale at-

mospheric circulation patterns. Basically, a teleconnection

is made up of a fixed spatial pattern with an associated

index time series showing the evolution of its amplitude

and phase (Trenberth et al. 2007), which is defined by

sea surface temperature (SST), 500-hPa geopotential

height (Z500), and so on. The teleconnection patterns,

such as the El Ni~no–Southern Oscillation (ENSO), the

North Atlantic Oscillation (NAO), and the Arctic Os-

cillation (AO), are widely considered to be associated

with typical climate variability (Trenberth et al. 2002;

Hurrell et al. 2003; Thompson and Wallace 1998). It is

well known that ENSO has a periodic fluctuation of 2–

7 yr (McPhaden et al. 2006) and a profound worldwide

effect on the annual climate. Although teleconnection

patterns originally, and literally, indicate simultaneous

fluctuations of climate values at widely separated points

and spatial patterns (Walker and Bliss 1932; Wallace and

Gutzler 1981), the discussion about the relationships be-

tween the occurrence trends of teleconnection patterns

and multidecadal change in the climate state started in

the 1990s (e.g., Trenberth 1990; Trenberth and Hurrell

1994; Hurrell 1996; Thompson and Wallace 1998).

For instance, local increases in surface temperature

were explained by teleconnection patterns. Hurrell (1996)

reported that increasing trends in surface temperatures
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in Europe and decreasing trends in the northeast At-

lantic from the 1970s corresponded to a positive trend

of the NAO. Similarly, an increasing trend in surface

temperatures in Alaska and a decreasing trend in the

North Pacific corresponded to a positive trend of the

Pacific–North America pattern (PNA). Trenberth et al.

(2002) explained that a 0.068C increase in globally av-

eraged atmospheric surface temperature from 1950 to

1998was related to a change in ENSO. The teleconnection

pattern indices are useful for climate study as macroscopic

indicators of climate variability and multidecadal change

in the climate state, rather than the phenomena of tele-

connection itself.

As pointed out by several studies (Deser et al. 2012;

Hawkins and Sutton 2009; Tebaldi et al. 2011), a major

source of uncertainty accompanied with climate pro-

jections is the internal natural variability such as decadal

or multidecadal oscillations in the system. Therefore, it

is important to understand the natural variability, ex-

pressed as a teleconnection pattern.

In coastal and ocean engineering, the relationship

between wave climate variability and teleconnection

patterns has been discussed. The wave climate of the

North Atlantic has been more studied than that in the

North Pacific. It is well known that the long-term vari-

ability of wave heights in the North Atlantic has a strong

connection to the NAO (Bauer 2001; Wang and Swail

2001; Woolf et al. 2002; Gulev and Grigorieva 2006;

Izaguirre et al. 2010). There are also several studies

analyzing the relationship between wave climate in the

North Atlantic and teleconnection patterns such as the

east Atlantic pattern (EA) (Woolf et al. 2002; Izaguirre

et al. 2010), the east Atlantic–western Russia pattern

(EAWR), and the Scandinavian pattern (SCA) (Izaguirre

et al. 2010).

On the other hand, wave climate in theNorth Pacific is

likely to be associated with the Aleutian low and

southern phenomena (e.g., ENSO) (Graham and Diaz

2001; Wang and Swail 2001; Semedo et al. 2011;

Izaguirre et al. 2011). The Aleutian low shows a high

correlation with the PNA. Thus, the PNA can be a proxy

of the wave climate in the North Pacific. The correlation

coefficient between the North Pacific index (NPI) and

the PNA index is 20.91 in the winter season when the

Aleutian low is the deepest (Trenberth and Hurrell

1994).The NPI indicates the magnitude of the Aleutian

low. The decadal upward trend of both averaged and

extreme wave heights is detected in the midlatitudes of

the North Pacific (Graham and Diaz 2001; Wang and

Swail 2001; Gulev and Grigorieva 2006; Izaguirre et al.

2011; Semedo et al. 2011), which corresponds to the

change due to the climatology of the Aleutian low (Wang

and Swail 2001). Men�endez et al. (2008) showed that the

PNA index denotes a rather serious impact on extreme

wave climate in the eastern North Pacific based on long-

term buoy observations. The significant correlations of

wave heights in the northeast Pacific with El Ni~no

(Men�endez et al. 2008; Seymour 2011) and the Pacific

decadal oscillation (PDO) (Seymour 2011) were reported.

From the global point of view, Semedo et al. (2011)

analyzed the connection betweenwave and teleconnection

pattern indices (denoted by large-scale atmospheric

circulation indices in their work) based on the 40-yr

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Re-Analysis ERA-40 dataset. They

obtained main patterns of the interannual variability of

the swell fields by empirical orthogonal function analy-

sis, and reported a strong relationship between swells

and teleconnection patterns. Fan et al. (2012) computed

pastwave climate using thewavemodelWAVEWATCH3

coupled with atmosphere model and showed that wave

climate exhibits clear relations to the NAO in the North

Atlantic and the Southern Oscillation index (SOI) in the

Pacific Ocean, respectively. In addition, wave climate and

teleconnection patterns in the Southern Hemisphere have

been analyzed. Hemer et al. (2010) showed a strong posi-

tive correlation between wave climate (wave height) and

the southern annular mode (SAM) in the Southern

Hemisphere.

Teleconnection patterns are useful indicators of how

climate change can impact wave climate variability,

and evaluating climate natural variability, which can be

expressed as teleconnection patterns, is important for

climate projections. This study makes clear the re-

lationship between regional wave climate variability

and teleconnection patterns so that wave climate will

be addressed in context of natural variability and cli-

mate change through teleconnection patterns. Most of

the previous studies mentioned so far have focused on

how wave climate variability observed at certain loca-

tions can be explained by teleconnection patterns, or on

how spatial patterns of wave climate variability derived

from satellites, hindcasts, or reanalysis data correlate

with teleconnection patterns. In other words, previous

studies have focused on how given wave climate vari-

ability can be explained by limited teleconnection patterns.

Therefore, spatial scopes of influence by teleconnection

patterns and how the influences overlap spatially are not

well known, especially in the North Pacific. In this study,

we start with a given and general teleconnection pattern

to see how it affects wave climate variability in the

Northern Hemisphere. The spatial distributions of wave

climate variability influenced by teleconnection patterns

are addressed. We use not only teleconnection patterns

that are known to be related with wave climate but also

teleconnection patterns that have been rarely used in
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wave climate study because the target area is the entire

Northern Hemisphere; there is no reason to use limited

teleconnection patterns. This analysis will also examine

whether wave climate variability can be estimated from

teleconnection patterns using a linear multiple regres-

sion model, without the use of a dynamic model. In

addition, the winter wave climate in the North Pacific

and the North Atlantic is statistically analyzed in detail

by using an empirical orthogonal function (EOF) anal-

ysis. Deeper analyses are conducted with the winter

wave climate in the North Pacific since there is less ev-

idence based on previous studies for the North Atlantic.

For this paper, only the Northern Hemisphere is ana-

lyzed, and the analysis for the SouthernHemisphere will

be conducted in a subsequent paper.

This paper is organized as follows. In section 2, datasets

and procedures for making teleconnection pattern in-

dices are described. Results are shown in section 3, which

consists of five subsections: (a) seasonal differences, (b)

spatial characteristics of teleconnection pattern influences

on winter wave climate variability, (c) wave height pre-

dictability by index, (d) the relationship between main

spatial patterns of wave climate variability and tele-

connection patterns, and (e) detailed analysis of winter

wave climate variability in the North Pacific. This paper

concludes with section 4.

2. Analyzed data and teleconnection pattern

indices

a. Datasets

Two different analytical datasets were used in this

study. One is the National Centers for Environmental

Prediction (NCEP)–National Center for Atmospheric

Research (NCAR) reanalysis dataset (Kalnay et al.

1996). The spatial resolution is 2.58 latitude and longi-

tude.Monthly averaged data from 1950–2000 were used:

500-hPa geopotential height, sea level pressure (SLP),

and SST. In section 3e only, Z500 data to 2009 were

used. The NCEP–NCAR reanalysis dataset was used to

develop reference teleconnection patterns following

the method of the Climate Prediction Center (CPC) of

the National Oceanic andAtmospheric Administration

(NOAA), which is described in detail in section 2b.

The other dataset is the ERA-40 reanalysis data

(Uppala et al. 2005) supplied by the European Center

for Medium-Range Weather Forecasts. Spatial resolu-

tion is 2.58 latitude and longitude. Monthly averaged

data for Z500, SLP, SST, and significant wave height

(SWH) covering 1960–90 were used. In section 3e only,

monthly averaged data for Z500 and 6-hourly SLP up to

2001 were used. The reason the period 1960–90 was

adopted in this analysis is that although ERA-40 re-

analysis is provided to August 2002, the SWH data of

ERA-40 are inhomogeneous before and after the assim-

ilation of altimeter wave height data in the 1990s (Sterl

and Caires 2005). Sterl and Caires (2005) showed that

although ERA-40 underestimates wave heights, particu-

larly the highwave heights, themonthlymean wave fields

compare well with observations. The Z500, SLP, and SST

data were used to make teleconnection pattern indices in

ERA-40 based on reference teleconnection patterns de-

rived from the NCEP–NCAR reanalysis, described in

detail in section 2b. The relationships between the in-

dices and the monthly averaged SWH were analyzed.

We used a coarser version of ERA-40 (2.58 resolution)

but the spatial resolution of the ERA-40 original version

is 1.58. Furthermore, Sterl and Caires (2005) have pro-

duced the corrected ERA-40 wave data, showing the

clear improvement of the quality as well as the removal

of the inhomogeneities due to changes in altimeter wave

height assimilation. Therefore, the use of the coarser

version of ERA-40 during 1960–90 is not considered

optimal. However, we conducted the same analysis

using the ERA-40 original version during 1960–90 and

corrected ERA-40 data (Sterl and Caires 2005) during

1960–90 and 1958–2001, and we got almost the same

results as with the coarser version of ERA-40 during

1960–90.

b. Teleconnection pattern indices

We selected nine teleconnection patterns defined by

the Z500 data for analysis: 1) the North Atlantic Oscil-

lation, 2) the East Atlantic pattern, 3) the east Atlantic–

western Russia pattern, 4) the Scandinavian pattern, 5)

the polar–Eurasian pattern (POL), 6) the west Pacific

pattern (WP), 7) the east Pacific/North Pacific pattern

(EPNP), 8) the Pacific–North American pattern, and 9)

the tropical–Northern Hemisphere pattern (TNH).

These patterns are well reviewed in Panagiotopoulos

et al. (2002) and have been monitored by the CPC (http://

www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml).

As described in the introduction, the NAO and PNA

are considered to be well associated with wave climate

variability in previous studies (Wang and Swail 2001;

Woolf et al. 2002; Gulev and Grigorieva 2006; Izaguirre

et al. 2010). There are no universally accepted criteria

and procedures to define the NAO, PNA, and other tele-

connection patterns (Panagiotopoulos et al. 2002). The

CPCmonitors the behavior of teleconnection patterns and

defines these patterns based on the method of Barnston

and Livezey (1987), applying one of the EOF analyses,

rotated empirical orthogonal function (REOF) analysis, to

the Z500 data. As a result of REOF analysis, nine com-

ponents of Z500 variability are defined simultaneously
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as teleconnection patterns mentioned above, including

the NAO and the PNA.

The relationships between the spatial patterns of the

wave climate and teleconnection patterns are not well

understood at present. Therefore it is not reasonable to

use only the PNA, NAO, or limited patterns as tele-

connection patterns for a wave climate study despite the

fact that the other patterns mentioned above can be

defined as components of Z500 variability, in the same

way that NAO and PNA can be defined by REOF

analysis. In this study, all of the teleconnection patterns

that are introduced as prominent teleconnection patterns

over the Northern Hemisphere on the CPC web site

were considered. However, the Pacific transient pat-

tern (PT) was eliminated because the PT covers August

to September, and the analysis in this paper mainly fo-

cuses on the winter season.

The numerical procedures to define teleconnection

patterns are described as follows. The reference tele-

connection patterns were developed from the NCEP–

NCAR reanalysis following the method of CPC, before

teleconnection pattern indices were made from the

ERA-40 reanalysis. First, the NCEP–NCAR reanalysis

monthly averaged Z500 values for the Northern Hemi-

sphere (northward from 208N) for years 1950 to 2000

were normalized using the corresponding monthly av-

erage values and their standard deviations. Second, the

spatial differences in latitudes (f) were considered.

On the equator, where f equals zero, the number of

grid points per distance is n/(2pR), where R is the

earth’s radius and n is the number of grid points in

longitude. On a given latitude f, the number of points is

n/(2pR cosf). To equalize the contribution of each grid

point with the total variance in the whole domain, data

at each grid point are multiplied by
ffiffiffiffiffiffiffiffiffiffi

cosf
p

. This pro-

cedure is described as the latitudinal correction hereaf-

ter. Finally, REOF analysis (von Storch and Zwiers

2002, 305–309) was applied to the covariance matrix (V)

of the normalized and latitudinal corrected Z500 data.

The eigenvalue equation forV can be expressed as Vzi5

lizi with the ith largest eigenvalue li and the associated

ith eigenvector zi. Here, jzij5 1. Then, the REOFmodes

matrix (Q) can be expressed as Q 5 (q1 . . . qk) 5 ZR,

where qi is the ith REOF mode, Z consists of k

eigenvectors (z1 . . . zk) and R is an orthonormal rotation

matrix defined by the varimax method (Kaiser 1958). In

this case, k 5 10. These nine REOF modes (out of 10)

were defined as teleconnection patternsmentioned above

by comparing the spatial distributions of the REOF

modes with teleconnection patterns shown by the CPC.

These nine REOF modes were stored as reference tele-

connection patterns. The time coefficient at of REOF

mode (qi) at a given time (t) was calculated by projecting

the normalized and latitude-correctedZ500 data at t (wt)

onto qi, such that at5wtqi. Coefficient at for the ERA-40

reanalysis was calculated by projecting the ERA-40

Z500 data onto the reference teleconnection patterns.

The coefficient at was defined as a teleconnection pat-

tern index. The time series of indices derived from

ERA-40 is, in hindsight, almost the same as that from

the NCEP–NCAR reanalysis (Table 1).

The procedures to calculate the teleconnection pat-

tern indices described above can invite the following two

questions. Why use two reanalyses? Why not apply the

REOF analysis directly to the ERA-40 data? The an-

swers are addressed below.

1) The NCEP–NCAR reanalysis covers a longer period

than the ERA-40.

2) The definition of teleconnection patterns is based on

that of the CPC using NCEP–NCAR reanalysis.

3) It is useful to store reference teleconnection patterns

when you want to obtain teleconnection pattern

indices from a global climate model (GCM); you

can get the index easily and consistently by projecting

theGCMZ500 data onto the reference teleconnection

pattern instead of applying REOF analysis. Consis-

tently means that indices derived from GCMs are

associatedwith an identical spatial pattern, a reference

pattern. If REOF analysis is applied to certain GCM

data, it cannot be guaranteed to derive an identical

pattern in reanalysis. Wewill examine the relationship

between wave climate variability and teleconnection

patterns derived from a GCM in future research.

In addition to nine teleconnection patterns, two other

teleconnection patterns that are widely associated with

climate variability were used. One is the Arctic Oscil-

lation, which is the first mode of the EOF for SLP in the

TABLE 1. Correlation coefficients between indices derived from ERA-40 and NCEP–NCAR reanalysis. The period is 1960 to 1990. TNH

is only for winter.

NAO EA WP EPNP PNA EAWR SCA TNH POL Ni~no-3.4 AO

Winter (DJF) 0.995 0.982 0.992 0.993 0.996 0.993 0.995 0.998 0.986 0.990 0.996

Spring (MAM) 0.995 0.962 0.995 0.996 0.996 0.971 0.974 — 0.984 0.980 0.988

Summer (JJA) 0.990 0.935 0.990 0.992 0.908 0.957 0.965 — 0.993 0.986 0.954

Autumn (SON) 0.994 0.983 0.989 0.996 0.996 0.932 0.995 — 0.994 0.991 0.958
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Northern Hemisphere north of 208N (Thompson and

Wallace 1998). Indices of the AO in the ERA-40 data

were calculated by projecting the ERA-40 SLP data

onto the reference pattern derived from the NCEP–

NCAR reanalysis. The second is El Ni~no, which is de-

fined as the anomalies of SST in theNi~no 3.4 region from

58N to 58S and from 1708 to 1208W.This index is denoted

Ni~no-3.4.

3. Results and discussions

a. Seasonal differences

It is well known that wave climate has seasonal vari-

ations depending on the hemisphere. Both the wave

climate and teleconnection patterns are sensitive to the

season, which is discussed first. Here, winter is defined as

the months December–February (DJF). Following the

samemanner spring, summer and autumn are defined as

the months March–May (MAM), June–August (JJA),

and September–November (SON), respectively. As an

example, the spatial distributions of the correlation co-

efficients between the NAO index and the monthly av-

eraged SWH in winter and summer are shown in Fig. 1.

Although these two distributions from different seasons

in the North Atlantic are similar to each other, the ab-

solute values of the correlation coefficients in winter are

generally greater than in summer (Fig. 1). We examined

similar analyses for other teleconnection patterns. The

absolute values of the correlation coefficients in the

Northern Hemisphere during the winter are the highest,

and those during the summer become the lowest, with

some exceptions in a few regions and a few indices.

The reason why teleconnection patterns are more

related to wave climate variability in the winter is

addressed below. Atmospheric pressure in the Northern

Hemisphere varies more during the winter compared

with other seasons, generally. The total variances of

monthly averaged Z500 in the Northern Hemisphere

(poleward from 208N) from the ERA-40 data from

1960–90 for the months January through December are

1.00, 1.00, 0.79, 0.52. 0.37, 0.31, 0.25, 0.28, 0.37, 0.48, 0.65,

and 0.85, respectively. Here, latitudinal correction is

applied, and the values are normalized with the January

value. For SLP, the values are 1.00, 0.75, 0.42, 0.24, 0.19,

0.16, 0.21, 0.27, 0.39, 0.55, and 0.73. Furthermore, for

winter, teleconnection patterns can explain the variance

to a greater extent than for the other seasons. The per-

cent variances for all seasons are shown in Table 2. The

total percent variances among all of the teleconnection

patterns derived fromZ500, except for TNH, are 57.6%,

46.6%, 43.1%, and 47.0% from winter to autumn, re-

spectively. As the result of correlation analysis between

the monthly averaged SLP and Z500 (not shown), it was

found that the way SLP varies in winter corresponds

more to how Z500 varies over the ocean on a monthly

basis than other seasons.Wang and Swail (2006) showed

that SWH variations are closely associated with con-

temporaneous SLP variations. As described above, in

winter, when atmospheric variations such as Z500 and

FIG. 1. Spatial distributions of the correlation coefficients between the NAO index and monthly averaged SWH.
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SLP are the greatest, teleconnection patterns dominate

the atmospheric variations and Z500, SLP, and SWH

are associated well. Therefore, it is not surprising that

the correlation coefficients between teleconnection

pattern indices and SWH in the Northern Hemisphere

during winter are the largest of the year. From this

point of view, El Ni~no is also similar despite being

defined by SST, because the SST variation is the highest

during the winter and is accompanied by a fluctuation

in atmospheric pressure, leading to a fluctuation in

wave heights.

Although Semedo et al. (2011) reported a strong con-

nection between main patterns of the interannual vari-

ability of the swell fields and teleconnection patterns, the

coexistence of swells and wind waves complicates the

relationship between wave height and teleconnection

pattern because wind waves and swells have different

sources of wave generation geographically. In addition, it

can be easily expected that wind waves are related to

teleconnection patterns rather than swell because tele-

connection patterns affect winds in advance of ocean

waves. Swells dominate oceanwaves more in the summer

as compared to the stormy winter season. This is one of

the reasons why teleconnection patterns are less related

to wave climate variability in summer.

Thus we will focus on the stormy winter season when

wave climate variability has a stronger relation to tele-

connection patterns as shown above.

b. Spatial characteristics of teleconnection pattern

influences on winter wave climate variability

First, significance is defined. The total number of

months of data for the analysis is 93 (31 yr 3 3 months)

for each grid point. If the data are independent and the

correlation coefficient is larger than 0.2, a null hypoth-

esis indicating no correlation is rejected by the 5% sig-

nificance level. However, the series of monthly data in

a certain year cannot be assumed to be independent.

Therefore, the 3-month dataset for winter is regarded as

one unit and the number of independent datasets is as-

sumed to be 31, corresponding to the number of years.

Following standard statistical analysis, when the corre-

lation coefficient is larger than 0.36, the correlation is

considered to be significant by the 5% significance level.

The distributions of correlation coefficients between

all the teleconnection patterns derived from Z500 and

monthly averaged SWH were computed and shown in

Fig. 2. In addition, the regions that indicate statistically

significant correlationwith teleconnection pattern indices

are all shown in Fig. 3. In some areas, the influences of

several teleconnection patterns overlap, illustrating how

the complex relationship between wave climate and

teleconnection patterns depends on the geographical

location. In addition, Fig. 4 shows maps of correlation

coefficients for the AO and Ni~no-3.4 that are widely

associated with climate variability.

The spatial distributions of correlation coefficients

with respect to each teleconnection pattern have phys-

ical meanings such as a winter storm, tropical cyclone,

etc. Therefore, the large-scale relationship between

wave climate and teleconnection patterns can help il-

lustrate the local-scale relationship both statistically and

physically. Both the North Pacific and the North At-

lantic, regions that have significant correlation, are

larger in the eastern regions than in the western parts

(Fig. 3). This is caused by the smaller spatial fluctuations

in the atmosphere that are dominant over the land–sea

interface where westerly winds move eastward from the

continent. The western parts of the SLP or U10 are

strongly influenced by land, which disturbs the smooth

relationship between the local wind and wave fields

(e.g., Tokinaga and Xie 2011). Wang and Swail (2006)

and Graham et al. (2013) developed statistical wave

models to predict seasonal wave height statistics (aver-

age and extreme) using SLP as predictors. They show

the model performances in their respective papers: see

Fig. 2a inWang and Swail (2006) and Fig. 10a inGraham

et al. (2013). Their models’ performances at predicting

wave heights are relatively low in western regions rather

than eastern regions, which indicates that it is not easy to

express wave height variability in the western regions by

atmospheric values such as SLP. This supports the spa-

tial distribution in Fig. 3, which shows larger areas of

significant correlation in the eastern areas.

The spatial distributions of the SWH climate vari-

ability corresponding to teleconnection patterns derived

from reanalysis can be compared with the observed data

(spatially limited) as follows. In the North Atlantic, both

TABLE 2. Percent variances of teleconnection patterns (%). The values forAOare based on variance in SLP and others are based onZ500.

Those for Ni~no-3.4 cannot be derived. The TNH variance is only for winter.

NAO EA WP EPNP PNA EAWR SCA TNH POL Ni~no-3.4 AO

Winter (DJF) 9.1 6.1 9.0 6.4 7.7 6.8 5.3 6.4 7.2 — 17.9

Spring (MAM) 6.9 4.3 6.3 4.9 5.0 5.5 5.6 — 8.1 — 15.1

Summer (JJA) 6.6 5.4 4.6 5.1 8.1 4.1 4.7 — 4.5 — 12.3

Autumn (SON) 6.3 4.8 5.2 5.5 6.4 4.9 6.8 — 7.1 — 12.0
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the NAO and EA indices impact wave climate vari-

ability strongly. The spatial distribution of correlation

coefficients between winter monthly averaged SWHand

the NAO index is characterized by negative values over

the region from 308 to 408N and positive values north-

ward of 508N (Fig. 2a). This result is consistent with that

of satellite observations (Woolf et al. 2002; Izaguirre

et al. 2010).

The spatial distribution of correlation coefficients re-

lated to theNAO index is similar to that of theAO index

(Figs. 2a and 4a) because the NAO and AO indices are

correlated with each other (the correlation coefficients

are 0.80, 0.58, 0.60, and 0.73 in winter, spring, summer,

and autumn, respectively).

The EA index correlates positively with respect to the

SWH in the eastern North Atlantic and negatively in the

Mediterranean (Fig. 2b). Although ERA-40 wave data

are too coarse to allow conclusions with regard to regional

enclosed seas such as the Mediterranean Sea, ERA-40

wind speeds over the Mediterranean Sea correlate nega-

tively with the EA index (not shown). Regarding extreme

wave climate, the extreme distribution function model

FIG. 2. Spatial distributions of correlation coefficients from Z500-based teleconnection pattern indices and monthly averaged SWH

in winter.
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of wave height around the North Atlantic was discussed

by Izaguirre et al. (2010). The location parameter ex-

pressed as a function of the EA index has a spatial pattern

similar to the one for this study (Izaguirre et al. 2010).

Also, the results for the EAWR and SCA in Izaguirre

et al. (2010) are consistent with this study (Figs. 2c,d).

On the other hand, the PNA, TNH, and WP have

greater impact on wave climate variability in the North

Pacific. The PNA index correlates positively with the

SWH in the eastern half and is especially strong in the

center of the North Pacific area (Fig. 2h). Men�endez

et al. (2008) show that the PNA influences the extreme

wave heights in the eastern North Pacific. The TNH also

produces strong influences over the eastern North

Pacific (Fig. 2i). The TNH has greater impact on more

eastern regions when compared with the PNA. There-

fore, the TNH is the major index for the winter wave

climate along the west coast of the United States, rather

than the PNA.

Regarding the western North Pacific, Mase et al.

(2009) analyzed field observed SWH data along the

coast of the Sea of Japan and showed that the correla-

tion coefficients between the AO index and the annual

maxima of SWH are about 20.1 to 20.4. Our analysis

shows that the correlation coefficients between winter

monthly averaged SWH and the AO (or NAO) index

are about 20.4 to 20.3 in the Sea of Japan. The spatial

pattern of correlation coefficients between theWP index

FIG. 3. Areas of significant correlation at the 5% significance level between Z500-based teleconnection pattern indices and monthly

averaged SWH in winter.
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and the SWH is band-shaped (Fig. 2f), indicating posi-

tive, negative, and positive values in low, middle, and

high latitudes in the western North Pacific, respectively.

The relationship of the TNH andWP with wave climate

has not been discussed in previous studies.

For Ni~no-3.4, the distribution of correlation coef-

ficients with the SWH can be characterized by negative

values in the western North Pacific and positive values in

the eastern regions. The correlation coefficients are about

60.5 in the lower latitudes, and higher values are not

observed northward of 208N (Fig. 4b). Men�endez et al.

(2008) indicate that the relationship between extreme

wave height in the eastern North Pacific and El Ni~no is

weak but that a positive correlation is significant.

The spatial characteristics of how teleconnection pat-

terns impact wave climate are consistent with the obser-

vations of previous studies referred to in this subsection.

c. Prediction of wave climate pattern based on

teleconnection pattern index

The predictability of winter averaged SWH from

a combination of teleconnection pattern indices is dis-

cussed in this section. Teleconnection indices derived

from Z500 data, for the nine indices, were used as pre-

dictors because the nine indices are nearly uncorrelated

from each other. The prediction was examined by linear

multivariable regression analysis. A linear regression

model was developed for each grid point. The linear

regressionmodel is expressed as y5 b1�
k

i51aixi, where

ai and b are constants determined by the least squares

method, y is the SWH given as output, and xi is the index

as predictor. The number (k) and the combination of

indices as predictors for each grid point were de-

termined based on the Akaike information criterion

(Akaike 1973). Predictable skills were determined by

cross-validation.

A total of 93months (3months3 31 yr) were split into

78 months (26 yr) as the training period and 15 months

(5 yr) as the prediction period. The start year for the

prediction period was changed in 5-yr intervals from

1961 to 1986 (1961, 1966, . . . , 1986) and the period of

training was designated as the rest of the period from

1960 to 1990. Training and prediction were conducted

for each corresponding prediction period. Therefore, 90

prediction values (3 months 3 5 yr 3 6 predictions) for

each grid point were produced.

Figure 5a shows the correlation coefficients between

the ERA-40 winter monthly averaged SWH and the

prediction. The correlation coefficients are higher in the

eastern part of the ocean basin, especially in the regions

where the NAO, EA, and PNA correlate strongly with

the SWH (cf. Figs. 5a and 2). In the areas around 208 and

408N in the western part of the North Pacific and 208N in

the western part of the North Atlantic, the prediction

skills are low, and some of these areas show negative

correlation values. As an example of the prediction,

Figs. 5b and 5c show ERA-40 winter averaged SWH

during the period 1986–90 and the prediction. The values

in Figs. 5b and 5c are standardized by the mean and

standard deviations of the training period 1960–85.

FIG. 4. As in Fig. 2, but for AO and El Ni~no.
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Tendencies of the prediction (Fig. 5c) show some

agreement with those of ERA-40 SWH (Fig. 5b) quali-

tatively, such as increases in SWH along 158N, decreases

along 308N, and increases along 558N in theNorth Pacific,

and NAO-like changes in the North Atlantic. However,

quantitatively the predicted values do not agree with

ERA-40 SWHvalues well, especially in theNorth Pacific.

It is possible to improve the accuracy of the prediction by

using advanced analysis such as a nonlinear regression

instead of a linear one. However, we would like to em-

phasize that the monthly averaged SWH can be esti-

mated roughly from a combination of climate indices

depending on the location. This can provide some ap-

plications for wave climate research to predict wave

heights roughly with less computational cost than using

a dynamic projection base on a physical wave model.

d. The main spatial patterns of wave climate

variability and teleconnection patterns

The SWH at each grid point contains various compo-

nents of fluctuation. Several main components of spatial

fluctuation were derived and associated with tele-

connection patterns as follows. The EOF analysis was

applied to winter monthly averaged SWH in both the

North Pacific and the North Atlantic, and the dominant

spatial patterns of fluctuation were derived. We defined

the North Pacific as the area 08–608N, 1008W–1008E

and theNorthAtlantic as the area 08–708N, 908E–208W.

EOF analysis was applied to 93 serial datasets (31 yr 3

3 months) during the period 1960–90 for the North

Pacific and the North Atlantic separately. Procedures

of standardization and latitudinal correction were

conducted in the same way as in section 2b before EOF

analysis.

Figure 6 shows spatial patterns derived by EOF

analysis. The spatial patterns shown are the patterns of

the correlation coefficients between the temporal co-

efficient of the EOF and the monthly averaged SWH.

The reason why the representations in Fig. 6 are the

patterns of the correlation coefficients instead of the

original EOF patterns is because the former represen-

tation can visualize the relationship between the North

Pacific and the North Atlantic but the latter expresses

only the patterns in the North Pacific or the North At-

lantic. The first modes in both the North Pacific and

the North Atlantic are distributed widely, covering the

eastern parts and lower latitudes of each ocean basin.

The percent variances relative to the total are greater

than 30%, respectively. The second mode in the North

Pacific expresses a fluctuation at mainly southwestern

regions, and the third mode is band-shaped depending

on latitude. On the other hand, the second mode in the

North Atlantic has a band shape depending on the lat-

itude, and the third mode is distributed in the south-

western and northeastern regions of the North Atlantic.

As shown in the figures, the three dominant modes in

both oceans show three characteristic distributions: 1)

the eastern part of the basin, 2) the southwestern part of

the basin, and 3) the band-shaped regions. The total

percentage of variance in the three dominant modes is

55%–60%; these modes can be regarded as the major

modes by EOF analysis.

The relation between the three dominant modes of

the SWHand teleconnection patterns is discussed. Table 3

shows the correlation coefficients between the temporal

coefficients of the three modes and the teleconnection

pattern indices. For the North Pacific, the temporal co-

efficient of the first mode correlates significantly with the

FIG. 5. Prediction performances for monthly averaged SWH in winter based on teleconnection pattern indices.
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PNA, TNH, and Ni~no-3.4 indices. The first mode in the

North Pacific indicates that SWH fluctuations are forced

by fluctuations in the following: trade winds at lower

latitudes, westerly winds at midlatitudes, and southward

winds in the eastern North Pacific. Ni~no-3.4 impacts the

trade winds. The PNA impacts the westerly winds, and

the remaining TNH influences the southward winds in

the eastern part of the North Pacific. The linearly com-

bined index of three indicesmentioned above is correlated

well with the first mode, and the correlation coefficient is

about 0.7.

On the other hand, the second mode has a significant

correlation with the EPNP. The third mode is highly

related to the WP, and the correlation coefficient is

20.8; this value is the highest among all the indices. This

relationship between the third mode and the WP is

discussed in detail in the next subsection.

The EOF results for the North Atlantic can be

summarized as follows. The first mode, which includes

fluctuation in the eastern part of the North Atlantic, is

associated with the EA. The second mode shows band-

shaped fluctuations that exhibit high correlationwith the

NAO; the correlation coefficient is 20.86.

The above discussion of the EOF and teleconnection

pattern indices in the North Pacific and North Atlantic

clearly indicates that the winter-averaged SWH values

have similar spatial patterns of fluctuation in both ocean

basins. Also, the spatial patterns of fluctuation, espe-

cially the band-shaped ones, correspond well to tele-

connection patterns.

e. Winter wave climate variability in the North Pacific

The main spatial patterns (EOFs) of wave climate

variability in the North Atlantic have been associated

with the NAO (Wang and Swail 2001; Woolf et al. 2002;

Gulev andGrigorieva 2006; Semedo et al. 2011) and EA

(Woolf et al. 2002), and those in the North Pacific have

been associated with the NPI (Gulev and Grigorieva

FIG. 6. Spatial distributions of EOFs of winter monthly average SWH in the North Pacific (NP) and the North Atlantic (NA). The

percentage in parentheses indicates percent variance.
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2006; Semedo et al. 2011), which is related to the PNA as

described in the introduction, and the SOI (Semedo

et al. 2011), which is related to El Ni~no. In addition,

TNH, EPNP, andWP have been significantly associated

with themain spatial patterns of wave climate variability

in previous subsection. In particular, the band-shaped

fluctuation of the SWH in the North Pacific, which is the

third EOFmode, showed a strong connection to theWP.

This relationship has not been discussed in previous

studies. Therefore, the characteristics of the band-shaped

fluctuation in the North Pacific are analyzed in detail and

compared with observations. The third EOF mode of

the SWH in the North Pacific is simply denoted NP3 in

this section. The percent variance of NP3 is only 10.5%

(Fig. 6) over the North Pacific, and thus one could con-

sider NP3 to be negligible as wave climate variability.

However, the contribution of NP3 becomes as high as

42% in limited regions such as 208–408N, 1408E–1508W.

For validation, we selected observed winter wave data

by buoy and ship for analysis. The above discussion

roughly covers an area of length scale 5000–10 000 km;

therefore, data should be spread to a similar spatial scale

for comparison. We selected six offshore buoys around

the North Pacific as shown in Fig. 7. Two buoys [World

Meteorological Organization (WMO) numbers 21001

and 21004] are maintained by the Japan Meteorological

Agency (available at http://www.data.kishou.go.jp/kaiyou/

db/vessel_obs/data-report/html/buoy/buoy_NoS2_e.html).

The rest of the four buoys (WMO numbers 46003, 46006,

46035, and 51004) are maintained by the U.S. National

Oceanographic Data Center (available at http://www.

ndbc.noaa.gov/hmd.shtml). The periods of observation

at buoys 21001, 21004, 46003, 46006, 46035, and 51004 are

1978–89, 1982–2000, 1976–98, 1977–2009, 1985–2009, and

1984–2008, respectively. In addition, ship observations by

the International Comprehensive Ocean–Atmospheric

Data Set (ICOADS; Woodruff et al. 2010) were added

to the analysis. The ICOADS covers the region 27.58–

32.58N, 162.58–167.58E over the period 1958–2009. The

monthly averaged SWH observations used for the

analysis and the locations of the three different sources

are shown in Fig. 7.

The locations of buoys 21001 and 21004 are in the

region where the NP3 shows positive values and the rest

of the station locations are in the region with negative

values (see Figs. 6c and 7). The location of the ICOADS

is in the region where the NP3 shows strong positive

values among all the locations (Figs. 6c and 7). The

TABLE 3. Correlation coefficients between EOFs for winter monthly averaged SWH and teleconnection pattern indices. Values in bold

typeface indicate that the correlation is statistically significant at the 5% significance level.

NAO EA WP EPNP PNA EAWR SCA TNH POL Ni~no-3.4 AO

North Pacific

1st 0.01 20.03 0.35 0.06 0.46 20.17 20.08 20.55 20.06 0.44 20.00

2nd 0.31 20.01 0.12 20.41 20.20 0.01 0.10 0.17 20.18 20.03 0.21

3rd 20.08 20.26 20.80 0.37 0.40 20.18 20.09 0.03 20.09 20.11 20.37

North Atlantic

1st 20.18 0.62 0.01 0.04 20.29 0.34 0.29 0.41 20.08 0.14 0.00

2nd 20.86 20.23 20.08 0.24 0.17 20.20 20.03 20.34 20.16 0.19 20.75

3rd 20.23 0.35 20.08 0.26 0.29 20.19 0.26 20.15 20.01 0.18 20.23

FIG. 7. Locations of observation in the North Pacific.
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monthly averaged values cannot be calculated easily be-

cause of missing data in the observations. Therefore, only

the monthly averages for those months when the ratio of

missing data is less than 10% were used for analysis.

Additionally, the ICOADS observations are reported

irregularly. Therefore, only the monthly averages for

those months when the ratio of missing data is less than

the average were used for analysis.

As a result, the total numbers of valid observations of

monthly averaged SWH at buoys 21001, 21004, 46003,

46006, 46035, and 51004 and ICOADS are 15, 50, 41, 62,

45, 52, and 55, respectively. The monthly averages were

standardized by each calendar month value. The obser-

vations of monthly averaged SWH values by buoy or

ICOADSare plotted against theWP index in Figs. 8 and 9.

Here, this WP index was derived from NCEP–NCAR

reanalysis because observations cover a period longer

than the ERA-40 period. The correlation coefficients at

buoys 21001, 21004, 46003, 46006, 46035, and 51004 are

20.30, 20.22, 0.50, 0.33, 0.33, and 0.56, respectively.

The highest correlation coefficient of the ICOADS is

20.66. The locations where the correlation coefficients

are positive are regions where the NP3 shows negative

values, and vice versa. In addition, the magnitude of the

correlation coefficient agrees with the magnitude of Fig.

6c at each location. This means that the NP3 is solidly

related to the WP.

The relationship between the WP and the NP3 can

also be discussed from a physical point of view. It is

possible to explain the simultaneous fluctuations of the

westerly and trade winds by Wallace et al. (1990) to

some extent. Averaged winter SLP climatology in the

North Pacific is characterized by higher values along the

208–308N line. Westerly winds are caused by pressure

gradients between areas north of the line and the trade

wind in the south. When the WP index is positive, the

SLP becomes larger around the 208–408N region. Then

the pressure gradient in this region becomes large,

which causes the trade wind and westerly winds to be

stronger at the same time. The opposite case is also

possible. A strengthened (weakened) trade and westerly

winds strengthen (weaken) waves zonally. As a result,

the NP3 becomes the band-shaped distribution shown in

Fig. 6c.

However, it is hard to explain the fluctuations of the

SWH along 308N by SLP climatology with the trade

wind and westerly wind relationship. Therefore, we

analyzed the relationship between extratropical cy-

clones and the NP3 along 308N.

The extratropical cyclone data were culled from the

winter SLP data in the ERA-40 reanalysis dataset from

1958 to 2001 based on the method of Geng and Sugi

(2001). The definition of an extratropical cyclone is de-

scribed as follows:

FIG. 8. Relation between WP index and winter monthly average SWH derived from buoy

observation data.
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1) Atmospheric pressure is less than 1010 hPa.

2) Pressure is less than that of the surrounding eight grid

points.

3) The averaged difference with the surrounding grid

points is greater than 0.3 hPa.

4) Data on land are not used.

5) In cases where an extratropical cyclone satisfies the

conditions listed above at a location 600 km or less

from a grid point where an extratropical cyclone

existed 1 time step (6 h) before, the two are defined as

the same cyclone.

Figure 10 shows extratropical cyclone tracks (denoted

storm tracks hereafter) in a representative month when

the WP index is a positive or negative maximum. In

cases where the WP index is positive, the storm track

shifts northward. On the other hand, in cases where the

WP index is negative, the storm track shifts southward

and the area extends to a more easterly direction. The

months when the WP index is more than 0.5 and less

than 20.5 are divided into separate groups, and the

monthly average number of storm tracks was counted.

Figure 11 shows the difference between the positive and

negative WP conditions (smoothed by 48 3 48). Storm

tracks shift either north or south depending on the WP

index. When the WP index is positive, the storm does

not have an effect on the region along 308N, and vice

versa. Therefore, fluctuation in the SWH along 308N

occurs depending on the extratropical cyclone activity,

which depends on the sign of the WP.

Storm detection based on unfiltered SLP has bias be-

cause unfiltered SLP is strongly influenced by large

spatial scales, such as the Icelandic low, and strong

background flow (Hoskins and Hodges 2002). On the

other hand, the vorticity field is less influenced by

background flow. Therefore, storm detection based on

relative vorticity at 850 hPa was also conducted. As a re-

sult, the relation between the WP and storm tracks is

almost consistent with the results derived from storm

detection based on unfiltered SLP, such as the storm track

shifting either north or south depending on theWP index.

Lastly, another surface climate variability associated

with the WP is discussed briefly. As an example, the

increase in sea surface temperature south of Japan

should be selected for discussion. As shown above, trade

winds are strengthened when the WP index is positive.

In addition, the southerly wind in the west reaches of the

FIG. 9. Relation between WP index and winter monthly average

SWH derived from ICOADS observation data.

FIG. 10. Storm tracks in a representative month when the WP index showed (a) positive or (b) negative value (color coding indicates the

atmospheric pressure in hPa).
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trade wind in the North Pacific is strengthened. As

a result, heat is transported from south to north, and SST

is increased in the South China Sea and along 308N in the

western North Pacific (Ose 2000; Wallace et al. 1990).

Winter monthly averaged SST values in the regions 258–

308N and 1308–1608E correlate well with WP indices in

the ERA-40, and the correlation coefficient is 0.59. In

this way, several climate variabilities can be associated

with each other through teleconnection patterns.

4. Conclusions

The preferred pattern of large-scale climate variabil-

ity is called a teleconnection pattern. Understanding the

nature of teleconnection patterns and changes in their

behaviors is central to understanding regional climate

variability and climate change (Trenberth et al. 2007).

This study provides comprehensive insight into the re-

lationship between wave climate variability and tele-

connection patterns, which has been studied before in

a spatially limited way. The large-scale spatial patterns

of wave heights on a monthly scale corresponding to

teleconnection patterns in the Northern Hemisphere

were discussed using reanalysis data.

Analysis was focused on the winter season because

that season exhibits the strongest connection between

wave height variability and teleconnection patterns as

shown in section 3a. At first, the spatial distributions of

wave height variability as influenced by several telecon-

nection patterns were identified by correlation analysis

between monthly mean wave height and teleconnection

pattern indices (Figs. 2 and 4). The wave response to

teleconnection patterns makes sense in the eastern part

of the ocean in the Northern Hemisphere because of

a smooth relationship with atmospheric variations in this

area. The relationship between wave climate variability

and teleconnection patterns strongly depends on the

location (Fig. 3).

Second, the predictability of winter averaged SWH

from a combination of teleconnection pattern indices

was considered. As a result, the winter averaged SWH in

some areas in the eastern part of the ocean can be esti-

mated from a combination of teleconnection pattern

indices. However, in areas such as those along 208 and

408N in the western part of the North Pacific and 208N in

the western part of the North Atlantic, the winter av-

eraged SWH cannot be evaluated well.

Third, the main spatial patterns of wave climate var-

iability were analyzed by adapting EOF analysis to

winter averaged SWH in theNorth Pacific and theNorth

Atlantic respectively. The winter averaged SWH values

have similar spatial patterns of fluctuation across both

oceans. The spatial patterns of fluctuation, especially the

band-shaped pattern, exhibit a strong relation to the

teleconnection pattern. The characteristics of the band-

shaped pattern of the SWH in the North Pacific were

investigated in detail and found to be related to the WP

pattern. The tracks of extratropical cyclones are related

to the WP pattern in the region along 308N. The fluc-

tuation of the SWH along 308N occurs depending on the

extratropical cyclone activity, which depends on the

phase of the WP pattern.

Semedo et al. (2011) investigated the leadingmodes of

variability of wind-sea and swell based on the ERA-40

dataset, and swell plays an important role in theNorthern

Hemisphere. We did not separate wind-sea from swell in

this study, and swell has different spatial distributions

compared to wind seas. We will examine swell data in

a similar fashion in the near future.

In this study wave climate has not been addressed in

the context of climate change through teleconnection

patterns, which is the next step of this study. However,

this is discussed briefly, referring to some studies about

future climate projection, focusing on the North Pacific

in section 3e. Wang and Swail (2006) and Graham et al.

(2013) show the winter wave height change under

a forcing scenario at the end of the twenty-first century,

indicating that future winter waves become small over

the lower midlatitudes of the North Pacific, particularly

in the central and western regions, and increase at higher

latitudes. Mori et al. (2010) also show a similar change in

the pattern of future wave heights over the North Pacific.

Although Mori et al. (2010) analyzed annual average

future changes, the pattern is dominated by winter

changes. The future change pattern of winter wave heights

over the North Pacific seen in Wang and Swail (2006),

Grahamet al. (2013), andMori et al. (2010) is similar to the

negative phase pattern for the NP3 (Fig. 6c), which is well

associated with the WP pattern. Therefore, it can be

FIG. 11. The difference in the number of extratropical cyclones

(winter storms) passing as classified by the WP index: (WP . 0.5)

minus (WP , 20.5).
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speculated that future forcing would increase the posi-

tive phase of theWP pattern, and then the change in the

WP would lead to an increase in the negative phase of

the NP3 because of the strong negative correlation be-

tween the NP3 and the WP pattern index. Furthermore,

Fischer-Bruns et al. (2005) and Bengtsson et al. (2006)

investigated the future change of storm tracks under

a forcing scenario and showed that the change in fre-

quency of winter storms over the North Pacific is char-

acterized by a decrease at lower midlatitudes and an

increase at higher latitudes, which is similar to Fig. 11

of this study. Therefore, the changes in storm tracks

(Fischer-Bruns et al. 2005; Bengtsson et al. 2006) support

the idea that future forcing would increase the positive

phase of the WP pattern. This topic of future climate

projection will be examined in detail in the near future.
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