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Abstract. In this paper we clearly demonstrate that changes

in oceanic nutrients are a first order factor in determining

changes in the primary production of the northwest Euro-

pean continental shelf on time scales of 5–10 yr. We present

a series of coupled hydrodynamic ecosystem modelling sim-

ulations, using the POLCOMS-ERSEM system. These are

forced by both reanalysis data and a single example of a

coupled ocean-atmosphere general circulation model (OA-

GCM) representative of possible conditions in 2080–2100

under an SRES A1B emissions scenario, along with the cor-

responding present day control. The OA-GCM forced sim-

ulations show a substantial reduction in surface nutrients in

the open-ocean regions of the model domain, comparing fu-

ture and present day time-slices. This arises from a large

increase in oceanic stratification. Tracer transport experi-

ments identify a substantial fraction of on-shelf water origi-

nates from the open-ocean region to the south of the domain,

where this increase is largest, and indeed the on-shelf nutri-

ent and primary production are reduced as this water is trans-

ported on-shelf. This relationship is confirmed quantitatively

by comparing changes in winter nitrate with total annual ni-

trate uptake. The reduction in primary production by the re-

duced nutrient transport is mitigated by on-shelf processes

relating to temperature, stratification (length of growing sea-

son) and recycling. Regions less exposed to ocean-shelf ex-

change in this model (Celtic Sea, Irish Sea, English Channel,

and Southern North Sea) show a modest increase in primary

production (of 5–10 %) compared with a decrease of 0–20 %

in the outer shelf, Central and Northern North Sea. These

findings are backed up by a boundary condition perturbation

experiment and a simple mixing model.

1 Introduction

Coastal and shelf seas and their ecosystems form a vital part

of the environment. They support substantial economic ac-

tivity, e.g. a large fraction of global fisheries occur in these

seas (Watson and Pauly, 2001), and important biogeochem-

ical cycles, e.g. many coastal and shelf seas are observed to

be a net sink of atmospheric CO2 (e.g. Thomas et al., 2004).

However, this still remains a significant source of uncertainty

in the global carbon budget (Borges, 2005). Fixation of car-

bon by photosynthesis (primary production) is one of the

most fundamental processes underlying both these aspects.

Hence our ability to understand and ultimately predict this

process, its variability and change is crucial to many aspects

of environmental policy, for example the European Commis-

sion’s Marine Strategy Framework Directive and the indica-

tors of Good Environmental Status therein1.

In this paper we explore the controls on the primary pro-

duction of the northwest European Continental shelf (NWS;

Fig. 1) on decadal time scales, through coupled hydrody-

namic ecosystem modelling using the POLCOMS-ERSEM

system (Allen et al., 2001; Holt and James, 2001). We

1http://ec.europa.eu/environment/water/marine/ges.htm
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consider both present day/recent past conditions and an ex-

ample of a possible future climate scenario. The latter is used

to illustrate this region’s susceptibility to change under sub-

stantially altered global conditions. Our focus here is on the

interaction of these seas with the open-ocean, and the con-

sequences of variability and change. We present an initial

comparison between the changes in the oceanic effects and

changes in the internal cycling in the model, but a detailed

analysis of the latter is left to future work.

We now briefly review some features of this region im-

portant to this study. The NWS is a broad temperate shelf

forming the eastern margin of the Northern North Atlantic. It

includes several shelf sea regions that are identified in Fig. 1.

The dynamics of the region are controlled by the seasonal

heating cycle, atmospheric fluxes, tides, river inputs and ex-

changes with the open-ocean. Much of the open-shelf is sea-

sonally stratified, with tidal mixing fronts separating these

regions from well mixed/sporadically stratified shallower re-

gions either nearer the coast or on banks and shoals. River

discharge plays an important role in near coastal regions,

leading to regions of freshwater influence; although com-

pared with other shelf sea regions globally, river flows are

low. The large scale ocean-shelf exchange is controlled by

seasonal upwelling in the south of the region (see Gomez-

Gesteira et al., 2011 and references therein), and the pole-

ward slope current and Ekman transport in the North (Holt et

al., 2009; Huthnance et al., 2009). This exchange is sup-

plemented by sub-mesoscale processes (e.g. filaments and

internal tides; Huthnance, 1995), which are not considered

further here. This physical background controls, to a large

extent, the spatial/temporal patterns of primary production in

this region; accepting that this assertion may reflect our lim-

ited understanding of “top-down” control in this context.

Much of these seas are inorganic nutrient limited and

hence the supply and recycling of these nutrients generally

controls the primary production. In coastal regions the com-

bined inputs of significant riverine nutrient loads and op-

tically active constituents (suspended particulate material,

SPM, and coloured dissolved organic matter, CDOM) can

lead to light limited regimes that can also exhibit excep-

tionally high levels of production (e.g. Cadee and Hegeman,

2002). In winter months phytoplankton growth is inhibited

by high levels of mixing (Huisman et al., 1999) and short

day length. During spring, increasing solar irradiance and

reduced mixing and consequent stratification can trigger in-

tense phytoplankton blooms. These deplete surface nutri-

ent supplies, but intermittent cross-thermocline mixing (e.g.

from spring neap tidal variability; Sharples, 2008) can main-

tain mid-water production in stratified regions throughout the

summer months, as long as the thermocline is within the eu-

photic zone. In well-mixed and near-coastal regions the pro-

duction is more erratic, being controlled by a complex inter-

play of optical, mixing and river plume conditions. During

autumn, storms and surface cooling (convection) mix the sea-

sonally stratified water. This can trigger an autumn bloom.

Fig. 1. Model domain, sections for flux calculations and regions for

areal integrals.

However, the de-stratification generally proceeds from south

to north (Holt and Proctor, 2008), with the northern regions

remaining stratified until December. Hence, light levels can

limit the intensity of the autumn bloom. Bacterial and zoo-

plankton consumption of phytoplankton and detrital material

in both pelagic and benthic systems recycles the nutrients and

can also fuel further production.

The distribution and fluxes of inorganic nutrients are there-

fore critical to understanding primary production. The NWS

receives nutrients from:

1. oceanic inflow, which is in turn supplied by deep win-

ter mixing and coastal upwelling (predominantly in the

south of the region);

2. river inputs resulting from human, agricultural and in-

dustrial sources (e.g. Artioli et al., 2008);

3. atmospheric inputs.

The oceanic components have been identified as dominating

nutrient budgets in this region by several model based stud-

ies (Proctor et al., 2003; Vermaat et al., 2008; Artioli et al.,

2008; Patsch and Kuhn, 2008), while Hydes et al. (2004)

notes the importance of oceanic nutrient input to the NWS

in an analysis of data from five cruises west of Great Britain
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and long time series observations in the Irish Sea. Vermaat et

al. (2008) identify variability in oceanic input (characterised

by the North Atlantic Oscillation) as a significant source of

variability in North Sea nutrients, but also note the inflow

is a substantial source of uncertainty in their budgets. The

time scales associated with the oceanic input are generally

long compared with the seasonal cycle. For example, Hy-

des et al. (2004) identifies the transit time for Atlantic water

crossing the Celtic Sea into the Irish Sea to be 6 yr, while

the transports estimates used by Huthnance (1997) imply a

North Sea flushing time of ∼1 yr.

There are several observational and empirical approaches

to investigating primary production, for example through

ship based measurements using incubations and chlorophyll

based relations (e.g. Cadee and Hegeman, 2002; Joint and

Pomeroy, 1993) and through satellite Ocean Colour based

models (Carr et al., 2006). Here we explore the dynam-

ical modelling approach, using a coupled hydrodynamic-

ecosystem model of the NWS. We use the Proudman

Oceanographic Laboratory Coastal Ocean Modelling System

(POLCOMS; Holt and James, 2001) coupled to the Euro-

pean Regional Seas Ecosystem Model (ERSEM; Blackford

et al., 2004). While the uncertainties associated with such

models are well documented (see Stow et al., 2009 and ref-

erences therein), they provide a complete budget for the bio-

geochemical and physical fluxes that is not available from

other approaches. Hence they provide an invaluable tool for

systems understanding and exploring hypotheses. Moreover,

they can operate under “what if ?” scenarios representing

particular environmental and/or anthropogenic change.

Potential impacts of climate change on the physical

oceanography of these shelf seas are reviewed by Holt et

al. (2010). Here we can identify three specific mechanisms

(drivers) whereby large scale change might impact primary

production in the NWS: through changes to the nutrient sup-

ply (and its spatial/temporal distribution), through changes

to the temperature, and consequent changes in chemical and

physiological rates, and through changes to on-shelf strati-

fication. Increases in stratification act both to reduce ver-

tical nutrient fluxes during the summer and to increase the

length of the growing season. For example in a HadRM3

forced simulation, Holt et al. (2010) find the stratified period

in the North Sea increases by ∼10 % towards the end of the

21st century (under an SRES A1B scenario) compared with

present day conditions. In a region where in-season nutrient

recycling and cross-thermocline transport play an important

role, changes to the length of the growing season might be

expected to have a significant effect on the total annual pri-

mary production. While the experiments considered below

also show an increase in stratification, forcing from other

climate models might instead show a decrease in seasonal

stratification. This can occur if winter temperatures warm

faster than summer or if there is an increase in evaporation

compared with precipitation. However, the non-linear equa-

tion of state favours an increase in density stratification under

warming conditions. Similarly, the permanent oceanic strat-

ification will increase under surface warming conditions for

the time scales considered here.

These three drivers operate on a wide range of time scales

up-wards from the phytoplankton growth time of a few days

(Bissinger et al., 2008). In the present context we are con-

cerned with inter-annual scales and these drivers might be

expected to act both through climate variability and climate

change.

Our focus here is on the first of these drivers: changes

to the nutrient supply, and the temperature and stratification

effects are considered only briefly to put these changes in

context. Climatic influence on nutrient supply has received

substantial attention in the global ocean context through the

reduction in winter mixing and expansion of the oligotrophic

gyres seen by several coupled Ocean Atmosphere General

Circulation Models (OA-GCMs). For example, the four

models considered by Steinacher et al. (2010) all agree on

a reduction in primary production in the North East Atlantic

by the end of the 21st century in an SRES A2 scenario, ow-

ing to increased stratification and reduced nutrient supply. In

global scale models reduced nutrient supply due to stratifica-

tion can be out-weighed by the temperature response and the

increased growing season in mid- to high-latitudes, to give

an overall increase in primary production (Sarmiento et al.,

2004). The importance of the temperature response has also

been highlighted by Taucher and Oschlies (2011). Other po-

tential drivers, such as changes to optical properties, have as

yet received scant attention.

It is well appreciated that most global models that include

an ecosystem component have inadequate resolution and pro-

cess representation to simulate shelf seas with any accuracy

(Allen et al., 2010). The common approach is therefore

to use limited area regional models with external oceanic

boundary conditions. This allows improved resolution and

process representation (e.g. of tides and benthic ecosystems),

however, many such models have tended to focus exclusively

on the shelf sea(s) in question both through limited area and

limited boundary condition information. Examples of stud-

ies of individual sea regions for process investigation include

the North Sea (Kuhn et al., 2010; Patsch and Kuhn, 2008)

and Irish Sea (Holt et al., 2004). This is perfectly adequate

for simulations that are no longer than the seas’ flushing

time, as is the case in these examples. But for longer sim-

ulations, for example to explore decadal change, the ocean-

shelf coupling needs to be explicitly included through ex-

tended domains and improved boundary condition informa-

tion. This is particularly the case when considering prop-

erties (e.g. salinity and nutrients) that are not strongly con-

strained by atmospheric feedback. In contrast temperature

and seasonal stratification can be adequately modelled with

1-D models (Sharples et al., 2006) and 3-D models of lim-

ited area and boundary condition information (Young and

Holt, 2007; Meyer et al., 2011). Hence, such models can be

usefully employed in climate change downscaling studies to
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investigate changes in atmospheric and riverine forcing (e.g.

Schrum et al., 2003; Skogen et al., 2011), but miss a poten-

tially important vector of change, namely that arising from

changes in oceanic conditions. Addressing this shortcoming,

and exploring its implications, is one of the specific objec-

tives of this work. An additional advantage of the regional

scale domain we are considering here, is to include several

shelf sea regions and allow a consistent comparison between

them, particularly some areas (such as the Celtic Sea), which

have seen little modelling attention in this context.

In the next section we briefly describe the POLCOMS-

ERSEM model and the specific experiments considered here.

Section 3 describes the controls on the present day and po-

tential future primary production, and the ocean-shelf cou-

pling is further explored in Sect. 4. Conclusions are drawn in

Sect. 5.

2 Model description, validation and experiments

POLCOMS is a three-dimensional hydrodynamic model us-

ing a quasi finite-volume approach discretised on a B-grid

in spherical-polar-terrain following coordinates. The At-

lantic Margin Model (AMM; Fig. 1) configuration consid-

ered here has a resolution of 1/9◦ latitude by 1/6◦ longitude

grid (∼12 km) with 42 s-coordinate levels (Song and Haid-

vogel, 1994) in the vertical. This configuration is further de-

scribed by Wakelin et al. (2009).

ERSEM (Fig. 2) is a well established, generic lower-

trophic level/biogeochemical cycling model. Eight plank-

ton functional types are represented, including phyto-, zoo-

plankton and bacteria, along with the cycling of C, N, P, Si

through pelagic (Blackford et al., 2004) and benthic (Black-

ford, 1997) ecosystems; latter being critical for nutrient cy-

cling in shelf seas. The model equations can be found in

these two papers. The implementation of ERSEM consid-

ered here essentially matches that described in Blackford et

al. (2004) with the treatment of abiotic (SPM, CDOM) ab-

sorption described by Wakelin et al. (2011). The parameter

set matches that used by Blackford (2004), except here we

limit the carbon to chlorophyll ratio to better match observa-

tions (Geider et al., 1997; Artioli et al., 2011). In the current

model we also included a resuspension flux of particulate or-

ganic material driven by tidal and residual bottom currents,

following Wakelin et al. (2011); surface wave effects are not

considered.

The POLCOMS-ERSEM system has been used exten-

sively in several NWS model domains in the context of un-

derstanding model uncertainty (Holt et al., 2005; Lewis et al.,

2006; Allen et al., 2007a), understanding regional processes

(Proctor et al., 2003; Blackford et al., 2008; Holt et al., 2004)

and for operational oceanography (Siddorn et al., 2007).

2.1 Model experiments

Here we consider four model experiments: a reanalysis

forced simulation (ERA40) and three OA-GCM forced simu-

lations (CNTRL, A1B and A1Bb). We use ERA40 to explore

present day variability, the difference between CNTRL and

ERA40 to explore the consequences of forcing this regional

model with a coarser resolution OA-GCM and the difference

between A1B and CNTRL to explore the behaviour of the

system under a single example of possible future conditions.

Experiments ERA40 and CNTRL are compared with obser-

vations and other models in Sect. 2.2. Experiment A1Bb

is used to further explore the importance of oceanic nutri-

ent change for the on-shelf production. For this work we

adopt a time-slice approach commonly used in climate im-

pact studies, whereby mean conditions in a future period are

compared with mean conditions in a present day reference

period to give a measure of the climate change signal, on the

assumption that conditions in both time-slices are approxi-

mately stationary. This signal can then be compared with

natural variability, model (structural and parameter) uncer-

tainty and emissions uncertainty to assess the significance

of this signal (Hawkins and Sutton, 2009). Because we only

consider the first of these here and make no assessment of the

likelihood of the future conditions (both in terms of the emis-

sions scenario or the forcing OA-GCM) these simulations

should be considered as a “sensitivity” experiment, rather

than as a projection, illustrating the system’s response and

the relative importance of different vectors of change. An

alternative approach is to sequentially perturb different as-

pects of the forcing to identify different response processes

(Skogen et al., 2011). While this is insightful, the decadal

simulations needed to investigate ocean-shelf coupling pro-

hibit a full range of perturbation experiments, so we instead

opt for a single self consistent set of forcing. The model ex-

periments are now described in some detail.

2.1.1 ERA40

This is a 45 yr (1960–2004) simulation with surface forcing

from the ERA-40 reanalysis (until September 2001) and sub-

sequently ECMWF operational analysis, using 6-hourly at-

mospheric air temperature, winds, pressure and relative hu-

midity, and daily precipitation and short-wave radiation (the

latter is modulated by the diurnal cycle). Surface fluxes are

calculated by COARE v3 bulk formulae (Fairall et al., 2003)

in all the experiments considered here. Lateral boundary con-

ditions are taken from a 1◦ NEMO ocean reanalysis (Smith

and Haines, 2009) and a North Atlantic Tidal model (pro-

viding 15 constituents; Flather, 1981). Elevation and depth

mean current boundary conditions (tidal and 5 day mean

residuals) are applied using a flux/radiation scheme. Temper-

ature and salinity are relaxed to 5-daily NEMO data values

in a four grid cell wide relaxation zone. Lateral boundary

conditions for ERSEM use monthly values from the World

Biogeosciences, 9, 97–117, 2012 www.biogeosciences.net/9/97/2012/
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Fig. 2. Pelagic and benthic components of the ERSEM Model.

Ocean Atlas (WOA; Garcia et al., 2006) for nitrate, silicate

and phosphate, imposed with an up-wind advection bound-

ary condition. Other variables use a “zero-gradient” bound-

ary condition; this is equivalent to a one-dimensional (ver-

tical) model at the boundary grid cell. An exception is the

detrital organic material fluxes, which are set to zero inflow

concentration to avoid numerical instability. For freshwater

fluxes, daily discharge data for 250 rivers are used from the

Global River Discharge Data Base (Vörösmarty et al., 2000)

and from data prepared by the Centre for Ecology and Hy-

drology as used by Young and Holt (2007). River nutrient

loading matches that used by Lenhart et al. (2010), with raw

data for the UK, Northern Ireland, Ireland, France, Norway,

Denmark and the Baltic processed by van Leeuwen (CEFAS,

UK) and raw data for Germany and the Netherlands was pro-

cessed by Pätsch and Lenhart (2004). The Baltic exchange at

the Belts is treated crudely as an inflow source using a mean

annual cycle of depth averaged transport, salinity and nutri-

ents. A constant spatial field of atmospheric nitrogen deposi-

tion (oxidized and reduced) is provided by EMEP (Cooper-

ative Programme for Monitoring and Evolution of the Long-

range transmission of Air Pollutants in Europe; as is also

used in some models considered by Lenhart, 2010). Aspects

of this simulation have previously been reported by Holt et

al. (2009) and a subset of data from this simulation is freely

available2.

2.1.2 CNTRL

This is a 23 yr present day simulation forced by the IPSL-

CM4 OA-GCM (Marti et al., 2006) as run for the ENSEM-

BLES project3, for the nominal present day period 1980–

1999 (1980 is repeated three times before this period is sim-

ulated). The OA-GCM provides the same frequency atmo-

spheric forcing fields as ERA40, and monthly ocean currents,

sea level, temperature and salinity. Tides, rivers, abiotic ab-

sorption, and nutrient boundary conditions match those in

ERA40. We note this OA-GCM has a significant negative

temperature bias in NWS (∼−2 ◦C), which may unduly in-

fluence changes in those processes non-linearly dependent on

the temperature e.g. growth rates and stratification. Hence we

correct this bias (equally in CNTRL, A1B and A1Bb) using a

time constant 3-D correction field (for temperature and salin-

ity, derived from WOA data) applied to the initial and bound-

ary conditions, and a 2-D correction to the air temperature

2http://www.myocean.eu/web/24-catalogue.php
3http://www.ensembles-eu.org/

www.biogeosciences.net/9/97/2012/ Biogeosciences, 9, 97–117, 2012
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derived from ERA40. This is partially successful in remov-

ing this bias (see Sect. 2.2).

2.1.3 A1B and A1Bb

A1B is a future climate scenario representative of possible

conditions in 2080–2100 under a business as usual emissions

scenario: SRES A1B (Nakicenovic and Swart, 2000). The

first year is repeated two times before running this period.

Forcing matches CNTRL using the same OA-GCM simula-

tion run forward to this period. This OA-GCM simulation

includes the PISCES ecosystem model (Aumont et al., 2003)

and we perturb the open-boundary nutrient values (nitrate,

silicate and phosphate) by the fractional change between this

time-slice and CNTRL; the bias between the PISCES nutri-

ent values and WOA data prohibits the use of an absolute

change. River flows are perturbed by changes in regional

rainfall from the OA-GCM, whereas riverine nutrient loads

and atmospheric inputs are unchanged.

For the purpose of this work, the climate change signal be-

tween A1B and CNTRL is well characterised by the change

in temperature (not shown) and potential energy anomaly

(Fig. 3). The potential energy anomaly gives a measure of

stratification appropriate for both shelf seas and open-ocean,

and is defined as the energy required to mix the top 400 m of

the water column (see Holt et al. (2010) for further details).

The sea surface temperature (SST) change (comparing CN-

TRL and A1B) shows a strong seasonal signal being larger

in the summer and autumn than winter and spring. Spatially

the changes are largest in the North Sea (∼4 ◦C in the Central

North Sea in summer) and smallest west of Biscay (∼0.5 ◦C

in winter). This is accompanied by an increase in both sea-

sonal and permanent stratification (Fig. 3). There is a sub-

stantial increase in stratification in open-ocean regions of the

model throughout the year. During the summer the greatest

increase in oceanic stratification is towards the south of the

domain. The shelf remains generally well mixed during win-

ter, but there is a significant increase in stratification during

the summer particularly in the Irish Sea, North Sea and En-

glish Channel. While there is a significant fractional change

in the “well-mixed” regions, values here remain low.

Experiment A1Bb matches A1B, except in this case the

nutrient boundary conditions are not changed compared with

CNTRL (i.e. just WOA nutrients are used). This partially

constrains the open-ocean portion of the model to present

day nutrient values.

In all experiments we treat the first 5 yr (justified in Sect. 4)

as “spin-up” to allow the model to adjust to its lateral bound-

ary and surface forcing conditions, so the results presented

here are means for 40 yr for ERA40 and 18 yr for CNTRL,

A1B and A1Bb.

2.2 Validation

As with any model simulation, these results need to be

considered in the context of observed properties to inform

the reliability of the conclusions. The uncertainties in the

POLCOMS-ERSEM system have been extensively investi-

gated in comparison with contemporary observations for sea-

sonal scale simulations (Allen et al., 2007a, b; Holt et al.,

2005; Lewis et al., 2006) and detailed analysis of the repre-

sentation of inter-annual variability in this simulation is un-

derway (e.g. Holt et al., 2011). Hence, these are not con-

sidered here. Instead we follow the approach of Holt et

al. (2010) and focus on an assessment of the mean state for

temperature, salinity, nitrate and chlorophyll, drawing on the

substantial volume of in-situ data for this region held at the

Wold Ocean Data Base 4. We concentrate on values in the

13 regions shown in Fig. 1. All the data available in the pe-

riod 1981–2004 for each month are averaged onto the model

grid to give 12, 3-D monthly climatological mean fields for

each variable and corresponding fields are calculated from

the model results. For each month the surface fields are dif-

ferenced (model minus observations) and these values used

to calculate the statistics shown in Table 1, over each of the

13 regions. The bias is the average deviation across the re-

gion and for all months. The cost function, χ , is defined

as the root mean squared (RMS) deviation divided by the

standard deviation of the monthly mean observed fields in

each region. Surface values are defined as the top 8 model

s-levels; this ranges from 2 m in 10 m water depth to 37 m in

4000 m water depth. Hence, the mean bias indicates the over-

all sign and magnitude of the discrepancy between model

observation and χ assesses the model’s ability to reproduce

the mean annual cycle and the spatial variations. Cost func-

tion values are typically ∼1 across the regions and variables,

except for temperature, which has values between 0.4 and

0.7. Hence salinity, nitrate and chlorophyll have RMS er-

rors close to the spatial and temporal variability. The regions

of the highest error for nitrate and chlorophyll are Skager-

rak/Kattegat, Norwegian Trench (reflecting the poor repre-

sentation of Baltic exchange), and Armorican shelf; these re-

gions are not considered in detail in this investigation. The

NE Atlantic and Shetland shelf also show high errors for

chlorophyll, but there are limit number of data in these re-

gions. There is no systematic increase in errors when com-

paring CNTRL with ERA40, indicating that forcing with this

coarser resolution OA-GCM does not substantially degrade

the simulation. However, there is a consistent negative tem-

perature bias in the CNTRL experiment, indicating that a

more sophisticated bias correction approach may be needed.

Validation of the net primary production (netPP) is more

problematic. This is defined here as the total carbon uptake

by phytoplankton minus the phytoplankton respiration, an-

nually and depth integrated, but limited to the upper 200 m.

4http://www.nodc.noaa.gov/OC5/WOD/pr wod.html
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Fig. 3. Seasonal mean potential energy anomaly with integration limited to 400 m (Holt et al., 2010) for CNTRL and A1B (note log10 scale),

and the fractional difference between them. For clarity this is limited to changes of a factor of 3, maximum change in oceanic regions is a

factor of 5.7.

Direct measurements are rare and themselves subject to sub-

stantial uncertainties. Satellite derived estimates are based on

empirical modelling assumptions, are subject to contamina-

tion with other optical properties and also have a treatment of

respiration inconsistent with the model values. For example,

the satellite derived estimates, being calibrated against in-

situ primary production from bottle incubation experiments

tend not to have negative values in the winter. However, they

do provide our best spatially resolved estimate and so this is

the subject of ongoing work. Comparisons with other model

studies (e.g. Skogen and Moll, 2000) can provide a guide

to areas to investigate further, but can equally re-affirm er-

roneous model results. Hence, for our purposes observed

values of netPP from the literature, drawn from a range of

approaches, provides the best guide to model performance,

accepting that these few observations grossly under-sample

the spatial and inter-annual variation. We compare these with

ERA40 values by region in Table 1; values for CNTRL are

shown in Table 2. This demonstrates that both ERA40 and

CNTRL produce annual netPP within the observed range in

each region except for the Skagerrak/Kattegat. The netPP

values in CNTRL tend to be less than those in ERA40. This

most likely arises from both the air temperature and wind

speed being less in the OA-GCM forced run than the re-

analysis forced run. Compared with a SeaWiFs based pri-

mary production model (Smyth et al., 2005), we consistently
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Table 1. Model validation for ERA40 and CNTRL using all WOD data in the domain for the period 1981–2004. Mean Bias and cost

function, χ are shown for the regions in Fig. 1. This is based on ∼168 000 temperature and salinity observations, 62 000 nitrate observations

and 49 000 chl-a observations.

ERA40 Temp. Sal. Nit. Chl-a Mean netPP

Mean bias χ Mean bias χ Mean bias χ Mean bias χ ERA40 Literature
◦C PSU m mol m−3 mg m−3 g Cm−2

1. Southern North Sea −0.4 0.3 0.3 0.8 0.0 0.9 −3.0 1.0 149 150–300a

2. Central North Sea 0.2 0.4 0.0 0.8 4.1 1.3 −1.2 1.0 118 100–150a,b

3. Northern North Sea 0.2 0.4 0.1 0.8 2.6 1.2 −0.4 1.0 108 54–127c

4. English Channel −0.2 0.4 0.2 0.9 −6.0 0.9 −2.3 1.1 151

5. Skagerrak/Kattegat −0.6 0.4 0.7 0.5 6.1 2.3 −0.8 1.1 131 135–220f

6. Norwegian Trench −0.2 0.5 0.5 0.8 5.5 1.8 −1.8 1.1 102

7. Shetland Shelf 0.3 0.5 −0.1 0.9 0.4 0.9 0.2 2.0 105

8. Irish Shelf 0.4 0.4 0.1 0.6 2.9 1.1 −0.3 0.9 131

9. Irish Sea 0.2 0.7 0.2 0.8 2.6 1.0 0.1 0.9 145 <100–194d,e

10. Celtic Sea 0.9 0.7 −0.2 0.8 0.0 0.9 −0.8 1.0 143 160g

11. Armorican Shelf −0.4 0.5 0.1 0.7 2.5 1.4 0.6 1.1 170

12. NE Atlantic (S) 0.3 0.4 −0.2 1.1 0.6 0.7 0.0 1.0 122

13. NE Atlantic (N) −0.5 0.7 −0.2 0.9 −0.2 0.9 0.7 2.1 112

CNTRL Temp. Sal. Nit. Chl-a

Mean bias χ Mean bias χ Mean bias χ Mean bias χ
◦C PSU m mol m−3 mg m−3

1. Southern North Sea −1.1 0.4 0.9 0.8 −4.3 0.9 −3.3 1.1

2. Central North Sea −0.7 0.4 0.3 0.9 4.0 1.3 −1.3 1.0

3. Northern North Sea −0.9 0.5 0.4 0.9 2.7 1.2 −0.3 1.1

4. English Channl −0.7 0.4 0.6 0.9 −10.2 0.9 −2.7 1.1

5. Skagerrak/Kattegat −1.3 0.5 1.3 0.5 5.9 2.3 −0.8 1.2

6. Norwegian Trench −1.1 0.6 0.8 0.9 5.3 1.7 −1.8 1.1

7. Shetland Shelf −0.8 0.6 0.0 0.9 0.4 0.9 0.2 1.9

8. Irish Shelf −0.7 0.5 0.2 0.7 3.6 1.3 −0.3 1.0

9. Irish Sea −0.9 0.8 0.7 1.1 0.7 1.0 −0.5 1.0

10. Celtic Sea 0.0 0.5 0.2 0.8 −2.6 0.9 −1.0 1.1

11. Armorican Shelf −0.5 0.5 0.1 0.8 3.5 1.5 0.0 1.0

12. NE Atlantic (S) −0.8 0.5 0.0 1.0 0.9 0.7 0.2 1.2

13. NE Atlantic (N) −1.5 0.9 0.0 0.9 0.4 1.0 1.1 2.9

Literature values of netPP are from: a Joint and Pomeroy (1993); b North Sea Quality Status Report (1993); c Steel (1956); d Gowen and Bloomfield (1996); e Gowen et al. (2000);
f Joint et al. (2001); g Rydberg et al. (2006).

underestimate the annual netPP (in both ERA40 and CN-

TRL), for the reasons noted above. Compared with the NOR-

WECOM and ECOHAM1 models in the North Sea (Sko-

gen and Moll, 2000), POLCOMS-ERSEM, produces similar

netPP values in the Southern, Central and Northern North

Sea, but does not show the large values (∼200 g Cm2 yr−1)

seen in outer shelf regions of NORWECOM. POLCOMS-

ERSEM shows coastal values that are closer to the (higher)

values in NORWECOM than ECOHAM1, but has a less

marked netPP minimum in the Central North Sea than NOR-

WECOM (being closer to ECOHAM1 here).

Since ocean-shelf exchange is central to this work, some

quantification of the uncertainty in this is important. The

salinity observations provide a useful guide to the general

uncertainty by considering the fluxes into and out of a well

mixed sea region using the LOICZ budgeting methodology

(Gordon Jr., et al., 1996). While the validity of the assump-

tion of a well mixed sea is open to some question, it is ad-

equate for an approximate bias estimation. Using this ap-

proach, the mean on-shelf salinity, S, is given by:

S =
QSo +Fs

Q+Qr
, (1)

where Q, Qr are the oceanic and riverine inflow volume

fluxes, So is the oceanic salinity, and Fs the net atmospheric
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(E-P) flux. Hence, S is a function of four quasi-independent

variables, so perturbations in S can be written:

δS = δSo
dS

dSo
+δQ

dS

dQ
+δQr

dS

dQr
+δFs

dS

dFs
. (2)

With Eq. (1), this can be simplified to:

δQ

Q
≈

δS

So −S
−

δSo

So −S

S

So
, (3)

for the case Q ≫ Qr and SoQ ≫ Fs, as is appropriate here.

This analysis is applicable on a time scale over which the

shelf can be considered well mixed, i.e. decades (see Sect. 4).

Hence, it is appropriate to estimate a mean bias rather than

provide information on errors in variability. We use bias

estimation described above for the whole shelf and region

12 (southern section of NE Atlantic) to obtain mean errors

(model minus observation) for ERA40 of δS = 0.063 and

δSo = −0.19, and observed values S = 34.32 and So = 35.56.

This gives a mean bias of 21.7 % for the ocean-shelf ex-

change (model transport too large). It is interesting to note

that this bias in transport compensates a negative bias in

ocean salinity to give on-shelf salinity with a lower bias

than either. Repeating with CNTRL gives δS = 0.37 and

δSo = 0.02, and a mean bias in the transport of 30.0 %. The

consistency between the biases in these two experiments (in

sign and general magnitude), despite differing regional salin-

ity errors, lends credence to this approach. The ocean-shelf

shelf exchange considered here (of 2.6Sv, adding inflow and

outflow separately; see Table 3 and Huthnance et al, 2009)

corresponds to ∼1.3 m2 s−1 of exchange per length of the

slope (∼2000 km). This falls within the range estimated for

slope currents (Ekman drain) of 0.5–2 m2 s−1 by Huthnance

et al. (2009), but is a significant underestimate (by a factor of

2) when other processes that are more variable, (e.g. internal

tides) are added together. The salinity estimate of bias sug-

gests these processes are not simply additive, as is also noted

by Huthnance et al. (2009).

3 Present day and potential future primary production

The mean annual net primary production for ERA40 and CN-

TRL is shown in Fig. 4 along with the fractional difference

between A1B and CNTRL, and between A1Bb and CNTRL.

The ERA40 and IPSL-CM4 forced simulations show very

similar spatial patterns of netPP (r2
= 0.95). They differ

in magnitude, particularly around the coast of Ireland, in

the Celtic and Irish Seas, the English Channel and South-

ern North Sea. As noted above, the CNTRL simulation

underestimates the primary production in all these areas com-

pared with ERA40.

The A1B simulation shows a reduction in netPP in most

of the open-ocean regions, the shelf edge, Northern and Cen-

tral North Sea. This decrease ranges from ∼20 % in Biscay

to <5 % in Central North Sea. The primary production in-

creases in Celtic Sea, Irish Sea, Southern North Sea and west

of Scotland by 5–10 %. It also increases in an open-ocean

patch in Biscay, around the coast of Iceland and along the

Wyville-Thomson ridge. Regional mean values for CNTRL

are shown in Table 2, which also indicates where the differ-

ence in the mean in A1B and CNTRL is statistically signifi-

cant compared to the inter-annual variability.

The experiment without using PISCES boundary nutrient

data (A1Bb) shows a very different picture: an increase in

netPP across much of the domain of typically 0–20 %, except

in the Central and Northern North Sea, the southwest corner

and the central open-ocean region, where there is a decrease

of typically 0–20 %. We should keep in mind that this is a

rather artificial experiment, since the boundary conditions are

constrained towards present day values and so are constantly

out of balance with the response of the open-ocean regions

to local forcing.

To explain these changes in netPP we turn to the nitrogen

dynamics in the model. Figure 5 shows the fractional change

in winter dissolved inorganic nitrogen (DIN; in ERSEM this

is just nitrate and ammonia, other species of inorganic nitro-

gen are not considered) and winter mean total N (TN; pelagic

DIN, dissolved and particulate organic nitrogen, DON and

PON, and benthic N in water less than 200 m deep) between

CNTRL and both A1B and A1Bb. Again integrations are

limited to 200 m depth. Between A1B and CNTRL, the

DIN concentration across the whole northeast Atlantic (as

included in this domain) is decreased by 5–50 %. The ex-

ceptions are some localised patches that show a 0–10 % in-

crease and the Norwegian Sea, which shows a 0–5 % de-

crease. These changes are reflected across much of the con-

tinental shelf. However, the Irish, Celtic, Northern English

Channel and Southern North Sea all show an increase in DIN

of between 0 and 15 %. What is interesting to note is that this

increase is also apparent in the total nitrogen inventory. It is

not simply a redistribution of N, as might be expected by

simply increasing recycling rates. The pattern of winter DIN

change generally matches the netPP change; this is quanti-

fied below. The regions of positive netPP change are gener-

ally more extensive than the regions of positive DIN change

and the band of increased netPP across the northern part of

the domain is accompanied by a general reduction in winter

DIN. When the change between CNTRL and A1Bb is con-

sidered the reduction in winter DIN largely disappears and

is replaced by a modest increase to the south of the domain

and across much of the shelf. Again this change is reflected

in the total N inventory. The pattern of DIN change matches

the change in netPP on shelf, but is less clear in the open-

ocean.

We can quantify the relation between primary production

and winter DIN by evoking the strong correlation that exists

in this model between netPP and nitrogen uptake by phyto-

plankton (overall r2
= 83). Hence this uptake can be used

as a proxy for primary production that can be quantitatively

related to the available DIN. It is also helpful to move from

the detailed spatial fields to regional aggregation, both to
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Fig. 4. Depth integrated annual mean net primary production (top): ERA40 (left); CNTRL (right); fractional change (bottom) between

CNTRL and A1B (left); between CNTRL and A1Bb (right).

aid the interpretation and because it removes the small scale

variability, which may be less reliably modelled than the

larger scale properties. For example, Shutler et al. (2011)

use wavelet analysis to show model skill increases consid-

erably (compared with satellite estimates of chlorophyll) as

scale increases beyond the grid resolution. Some care is

needed however, as aggregation does obscure some impor-

tant biogeographic features such as fronts and coastal cur-

rents. Hence we now consider results integrated over the 13

regions shown in Fig. 1. Turning first to ERA40, Fig. 6 com-

pares the total DIN uptake in nine of these with the available

winter DIN. It clearly shows that the winter DIN provides a

lower bound on the total uptake. There is excess production

beyond this initial supply ranging from ∼20 % on the Shet-

land Shelf to ∼4 times in the Southern North Sea. At this

degree of aggregation all regions are nutrient limited and the

properties of any coastal light limited regions are hidden in

this averaging. This excess production reflects the various re-

supply mechanisms active over the seasonal cycle including

cross-pycnocline mixing, pelagic and benthic recycling, and

riverine and atmospheric nutrient inputs. Annual values for

all 40 yr of simulation are shown in this figure. These show

a positive correlation between the variability in winter nutri-

ents and annual DIN uptake, although the variability in the

uptake tends to be larger.

The next step is to consider how the winter DIN and

DIN uptake change between the present (CNTRL) and future

(A1B) time-slices. Figure 7 demonstrates that a decrease in

winter DIN is followed by a decrease in DIN uptake. This

relationship is seen in the absolute differences but is partic-

ularly clear in the fractional differences. For most regions

the change in DIN uptake matches the change in winter DIN

to within one standard deviation of the inter-annual variabil-

ity of this uptake. The Southern NE Atlantic region and the

Northern North Sea both show a decrease in nutrient uptake

that is greater than the corresponding decrease in winter nu-

trients; although this is not apparent for the Northern North

Sea region when fractional changes are considered. All other
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Table 2. Potential factors (metrics) effecting net primary production (netPP) for CNTRL and how these compared with A1B

(FC = A1B/CNTRL-1). Metrics are averaged over the regions shown in Fig. 1. Metrics are: depth integrated winter DIN; recycled pelagic

fraction: mean annual N remineralisation (R in Table 3) dived by mean total pelagic nitrogen (TPN); recycled benthic fraction: mean annual

benthic DIN efflux (Bi in Table 3) dived by mean total benthic nitrogen; diffused fraction: mean summer (JJAS) diffusive N flux across the

10 % light level, divided by TPN. Phytoplankton growing season: the period when 15 day mean netPP is greater than 0.1 g C day−1. Values

in bold indicate mean values in CNTRL and A1B are significantly different, given the inter-annual variability (tested at 95 %).

netPP Winter DIN Frac. P. Recyc. Frac. B. Recyc. Frac. Diff. Season

(g C m−2) (mol N m−2) (yr−1) (yr−1) (yr−1) (days)

CNTL FC % CNTL FC % CNTL FC % CNTL FC % CNTL FC % CNTL FC %

1. S. North Sea 129 3.9 0.4 0.2 5.5 1.7 1.2 34.5 2.0 1.2 253 2.4

2. Central North Sea 121 −3.2 0.6 −7.4 3.6 5.3 1.1 6.8 1.5 -7.4 236 2.5

3. N. North Sea 112 -9.6 1.1 -13.8 1.7 6.6 0.8 3.3 0.5 -10.8 209 1.7

4. English Channel 113 2.1 0.5 2.5 4.5 0.4 0.6 12.7 1.8 −10.1 255 4.1

5. Skag./Katt. 138 3.4 1.0 −3.2 2.3 2.9 1.3 5.4 0.7 −6.6 195 3.2

6. Norwegian Trench 96 −3.9 2.4 −9.8 0.9 8.0 0.2 14.1 0.1 −32.3 208 3.4

7. Shetland Shelf 105 −10.5 1.5 −15.6 1.0 6.3 0.6 4.7 0.3 −12.8 183 2.8

8. Irish Shelf 118 −1.6 1.2 −15.1 1.8 11.4 1.0 5.6 0.5 −5.1 217 3.6

9. Irish Sea 120 11.3 0.7 12.2 3.3 1.2 0.9 17.0 1.3 −18.1 233 4.6

10. Celtic Sea 121 1.7 1.4 −2.3 1.7 7.0 0.5 10.0 0.3 −7.3 243 4.3

11. Armorican Shelf 151 −2.1 1.0 −10.6 2.4 7.9 1.4 −0.3 0.3 -9.4 303 5.5

12. NE Atlantic (S) 120 −15.1 1.9 −16.2 1.0 –2.7 – – 0.1 −40.7 261 11.8

13. NE Atlantic (N) 103 −5.4 2.6 −12.4 0.6 5.6 – – 0.2 −25.2 168 4.2

regions show a change in DIN uptake that is more posi-

tive than the change in winter DIN would suggest. When

the oceanic nutrients are constrained to present day values

through only using WOA data (and not the OA-GCM model

data) at the boundaries (A1Bb; Fig. 7), there is a marked

change. In all the regions the decreases in winter DIN are re-

duced and correspondingly the change in DIN uptake is more

positive. Some regions still show a weak reduction in DIN

because the constraint to present day values is not absolute;

oceanic nutrient concentrations still adjust to local meteoro-

logical forcing. However, all regions now show an increase

in DIN uptake between CNTRL and A1B, except the Shet-

land shelf (which shows a ∼1.5 % decrease).

There are various other drivers that act alongside the ef-

fects of reduced winter nutrient concentrations. To put these

changes in context we now considered some of these other

effects in summary. Table 2 shows a range of metrics (see

caption for definitions) comparing the CNTRL value and the

fraction change between A1B and CNTRL for the 13 regions

shown in Fig. 1. The fraction of the total pelagic and ben-

thic nitrogen recycled each year is seen to increase between

these two experiments, except in Southern NE Atlantic, by

up to 11.4 % on the Irish Shelf in the pelagic, and 34.5 % in

the Southern North Sea in the benthic; this is the bacterial

response to rising temperatures. Alongside this, the grow-

ing season is also seen to increase by typically 4 %, mainly

due to an earlier spring bloom (by ∼7 days), rather than a

later end to the growing season (∼2 days). These positive

effects are off-set by an increase in seasonal stratification,

quantified by the fraction of the total pelagic nitrogen (TPN)

diffused across a layer defined by the 10 % light level, dur-

ing summer. This is seen to decrease in all regions (except

the Southern North Sea, which is strongly mixed), and is

particularly strong in the deep water regions (between 25–

40 % in the NE Atlantic and Norwegian Trench). While

these metrics show the expected response, quantitatively re-

lating them with each other and to the overall change in netPP

is not so straightforward because of non-linear interactions,

other drivers and the importance of detailed temporal (e.g.

seasonal) and spatial (e.g. above/below thermocline) varia-

tion. For example, in the Southern North Sea a modest in-

crease in netPP is seen, compared with the large increase in

benthic recycling, possibly because light limitation plays a

role in these near-coastal waters. The Central and North-

ern North Sea, Skagerrak/Kattegat, Norwegian Trench, and

Shetland/Irish shelf all show a decrease in netPP significantly

less than the decrease in winter N would suggest, indicating

that the temperature and growing season effects outweigh the

stratification effects in these regions.

Despite these mitigating factors, variations in winter nu-

trient supply are here seen to be an important control on on-

shelf primary production. Given that much of these nutrients

originate from the open-ocean we turn next to the issue of

ocean-shelf exchange in some detail.
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Fig. 5. Fractional change in winter DIN and total N comparing A1B and A1Bb with CNTRL.

4 Ocean-shelf nutrient transport

Before considering the on-shelf nutrient transport in the full

POLCOMS-ERSEM model, it is insightful to explore the

ocean-shelf water transport using a passive tracer experi-

ment. Here we introduce 6 tracer patches in experiment

ERA40 from January 1980 to December 1990, with the ob-

jective of identifying the general regions of origin of the on-

shelf water. Initial value is 1 m−3 throughout the water col-

umn in total water depths deeper than 1000 m, as shown in

Fig. 8, along with example tracer fields after 5 yr of integra-

tion from two of the patches. Time series of mean concentra-

tions in 9 of the regions shown in Fig. 1 (Fig. 8) demonstrate

how water from different oceanic regions impinges on-shelf.

Riverine and Baltic water is introduced with zero concentra-

tion, so the total tracer concentration gives a good indication

of the oceanic influence in each region. Open boundary con-

centrations are fixed at unity, so oceanic concentrations are

replenished on inflow with water of the original patch in that

location.

The southern and western shelf seas (Armorican Shelf,

Celtic Sea, English Channel, Irish Sea and Southern North

Sea) receive water in varying combinations from regions A,

B and C. This is generally dominated by water from region B

(Biscay), and region A (Iberian) only makes a minor contri-

bution. These proportions typically reach equilibrium on a 5–

10 yr time scale; and do not receive a significant contribution

from the northern patches (D–F). The outer-shelves, Central

and Northern North Sea initially receive water from patches

C, D, and E. All these regions receive water from patch D

first (accompanied by E on the Shetland Shelf), followed by

patches C and E. Water from D and E is replaced with water

from patch B so this dominates after ∼5 yr. There are two

pathways for this replacement. First off-shelf, whereby wa-

ter in patches C, D and E is replaced by water from patch

B owing to the general northward transport here, both in the

North Atlantic current and the slope current. Second, on-

shelf, whereby water from the Celtic Sea is transported north

around Ireland carried by the shelf edge (Pingree et al., 1999)

and Irish coastal (Fernand et al., 2006) currents. From Fig. 8a
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Fig. 6. Total annual DIN uptake and previous winter mean DIN, averaged for the on-shelf regions shown in Fig. 1 for ERA40.

it is apparent that both of these pathways are active, but the

transport into the Celtic Seas from patch B is slow. This

may well reflect our inability to resolve the pertinent shelf-

exchange processes active in this region with this coarse res-

olution model (see Huthnance, 1995). Figure 8a also shows

transport into the Southern North Sea from B and C occurs

via the Celtic Sea and Dover Straits route before the northern

route.

To explore the detailed spatial structure of the ocean-shelf

transport, fluxes of DIN across the shelf break (defined by

the 200 m isobath; Fig. 9) are calculated from monthly mean

model output of the layer integrals of u·DIN, where, u is the

velocity normal to the 200 m isobaths, with on-shelf values

being positive. These are time averaged during the model

simulation and so include both mean and fluctuating (e.g.

tidal residual) components but do not include any numeri-

cal diffusion arising from the advection scheme. A passive

tracer horizontal diffusion term is not explicitly included in

this model (Holt and James, 2001). The northwest European

continental shelf has an overall downwelling circulation with

water being brought on-shelf at the surface and leaving at

depth (Holt et al., 2009), both in the large scale circulation

and the surface and benthic Ekman layers. These layers are

associated, respectively, with the wind driven circulation and

the slope current. This downwelling circulation is reflected

by the overall DIN transport across the shelf break. When the

change in DIN transport between the time-slices is consid-

ered (Fig. 9), a reduction in mean DIN transport on-shelf is

apparent around the whole shelf break from 53◦ N to 61.3◦ N,

with only localised increases. This arises primarily from a

substantial reduction in DIN around the shelf break above

∼80 m depth, owing to a reduction in oceanic surface DIN.

There is a small reduction in volume flux between these ex-

periments. This is particularly noticeable where the slope

current intrudes on-shelf at ∼54.5◦ N in the region of Porcu-

pine bank.

The on-shelf nutrient flux has a strong seasonal signal;

for example, the mean N flux above 150 m for the length of

shelf break shown in Fig. 9 is 4.0 mmol N m−1 s−1 between

December and March, compared with 2.2 mmol N m−1 s−1

from April to November. This arises both because of de-

pleted surface nutrients in the growing season and increased

currents in the winter. In contrast the off-shelf transport

near-bed shows little seasonal variation. This confirms its

identification as an Ekman drain under the continuous slope

current as opposed to a density cascade, which would be a

predominantly winter phenomenon.

4.1 Shelf wide context of ocean shelf exchange

We can summaries the shelf wide impacts of changes in

ocean-shelf exchange by considering the various terms in the

N equation for pelagic DIN (Ni), total organic N (TON; No)

and benthic N (NB):

dNi

dt
= Ai −P +R+Bi +Fr +Fa (4)

dNo

dt
= Ao +P −R−Bo (5)
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Fig. 7. Total annual DIN uptake and winter mean DIN compared with CNTRL, averaged for the regions shown in Fig. 1 for A1B (left) and

A1Bb (right). Absolute and fractional differences are shown in top and bottom panels. Error bars indicate the inter-annual variability of the

DIN uptake.

dNB

dt
= Bo −Bi −D (6)

Here we amalgamate the full model equations (shown

schematically in Fig. 2) to give:

– Ai,o Advective flux divergence (inorganic, organic 5)

– P Pelagic phytoplankton uptake

– R Pelagic recycling

– Bi Benthic recycling

5includes implicit riverine organic N input

– Bo Net benthic PON inputs (settling plus filter feeders

minus resuspension)

– D Benthic dentrification

– Fr River DIN inputs

– Fa Atmospheric DIN inputs

We only consider depth integrals here, so no vertical diffu-

sion term is needed. We also integrate horizontally over two

on-shelf regions (depth <200 m) north of 48◦ N: northern re-

gion (2, 3, 7, 8 on Fig. 1) and southern/western region (1, 4,

9, 10). Time averaged values of these terms are presented in
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Fig. 8. Passive tracer concentrations from 6 tracer patches initialised in total water depths >1000 m with values of 1 in Jan 1980 and run

forward for 10 yr in the patches shown in the top panels, along with example distributions from patches B and C in January 1985 (note

different scales). Bottom panels shows mean concentrations in 9 of the regions shown in Fig. 1.
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Table 3. Regional integrals of terms in the pelagic DIN (Ni), TON (No) and benthic N (NB) equation (Eqs. 4, 5, 6) and average transports

across sections with net flow into and out of the region. Also shown is output from a mixing model calculation (Eq. 7). Values are in

G mol day−1 except where indicated.

ERA40 CNTRL A1B A1Bb A1B/CNTRL-1

Northern shelves

dNi/dt −0.0195 −0.0193 −0.0315 −0.0321 63.5 %

(2 ,3 ,7 ,8 )

dNo/dt 0.0024 0.0013 0.0012 0.0013 −10.1 %

dNB/dt 0.0010 0.0005 0.0010 0.0013 91.7 %

P 3.78 3.71 3.53 3.82 −4.7 %

R 3.27 3.18 3.01 3.26 −5.6 %

Bi 0.57 0.57 0.57 0.60 −0.6 %

Bo 0.58 0.58 0.57 0.61 −0.5 %

D 0.031 0.032 0.038 0.039 18.8 %

Ai −0.15 −0.14 −0.15 −0.15 5.2 %

Ao 0.07 0.05 0.05 0.05 −8.9 %

Fr 0.02 0.02 0.02 0.02 0.6 %

Fa 0.06 0.06 0.06 0.06 0.0 %

Western/Southern

dNi/dt −0.0091 −0.0038 −0.0171 −0.0163 347.7 %

(1, 4, 9, 10)

dNo/dt 0.0028 0.0006 0.0025 0.0024 347.5 %

dNB/dt 0.0010 0.0009 0.0004 0.0006 −55.2 %

P 4.02 3.21 3.33 3.56 3.9 %

R 3.62 2.87 2.95 3.15 2.7 %

Bi 0.30 0.22 0.28 0.30 27.4 %

Bo 0.30 0.22 0.28 0.30 27.1 %

D 0.021 0.020 0.024 0.024 20 %

Ai −0.15 −0.15 −0.16 −0.16 11.2 %

Ao −0.10 −0.11 −0.10 −0.10 −11.8 %

Fr 0.19 0.19 0.18 0.18 −4.2 %

Fa 0.06 0.06 0.06 0.06 0.0 %

Shelf wide

DIN Flx in 1.27 1.36 1.13 1.28 −16.8 %

DIN Flx out −1.52 −1.58 −1.38 −1.53 −12.7 %

Nin(m mol m−3) 10.94 10.56 8.81 10.02 −16.6 %

Nout(m mol m−3) 13.30 12.55 10.98 12.19 −12.5 %

Vol flux in (Sv) 1.34 1.49 1.48 1.48 −0.2 %

Vol flux out (Sv) −1.32 −1.46 −1.45 −1.45 −0.1 %

Ni(m mol m−3) 13.22 10.96 9.93 11.17 −9.4 %

Ns (m mol m−3) 13.70 13.06 11.27 12.46 −13.7 %

Table 3. This shows that in all runs the model is close to equi-

librium with dNi,o,B/dt being the smallest terms. The inor-

ganic trend term is consistently negative, whereas the organic

and benthic terms are positive, indicating a slow adjustment

in the model towards equilibrium. This may well represent

the benthic sub-model adjusting on much slower timescales

than the pelagic. The terms in CNTRL and ERA40 generally

agree well, especially in the northern region. The primary

balance in the inorganic system is between the net pelagic

uptake, −P + R, and the flux from the benthic sub-model,

Bi. The net loss through advection is similar in both groups

of region, but the river sources are substantially greater in

the western/southern regions. Comparing A1B and CNTRL

in the northern region, the balance remains generally un-

changed; the decrease in P is matched by a decrease in R

(the net pelagic uptake changes by only 2 %), the benthic

system shows little change and a small increase in advec-

tive loss matches the change in the trend term. Similarly the

organic system remains in close balance. The western and

southern regions show a somewhat different pattern. The net

pelagic uptake increases (i.e. becomes more autotrophic) by

∼12 % and the cycling through the benthic system increases

by ∼27 %.

Considering the results integrated across the whole of the

NWS (Table 3), the mean DIN, Ni, decreases by ∼9 %

between A1B and CNTRL, but increases slightly when

CNTRL is compared with A1Bb. The on-shelf volume flux

on the western margin is balanced by an off-shelf flux to

Norwegian Trench and into the Skagerrak (also shown in Ta-

ble 3). The inflow and outflow fluxes of DIN decrease in

Biogeosciences, 9, 97–117, 2012 www.biogeosciences.net/9/97/2012/
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Fig. 9. Mean volume flux, DIN flux and DIN concentration at 200 m isobath (representing the shelf break), projected on to latitude: CNTRL

(left); A1B minus CNTRL (right). Positive values indicate an on-shelf flux.

proportion to the decrease in DIN concentration at the shelf

edge (Nin and Nout), since the changes in volume flux are

only small.

It is useful to compare the modelled on-shelf nutrient

concentration with that predicted by a simple “mixing-box”

model (Gordon et al., 1996). Here we assume river and

oceanic water enters the region with volume fluxes Qr,o and

nutrient concentrations, Nr,o. This water is well-mixed on

the shelf to give a concentration, Ns, which leaves the shelf

with volume flux Qo +Qr (to give a constant volume). The

steady-state concentration (including the area averaged at-

mospheric input, Fa) is then given by:

Ns =
QoNo +QrNr +Fa

Qo +Qr
. (7)

Values for Ns calculated with the ocean in-flow and shelf-

edge nutrient concentrations and the riverine flux of 0.01 Sv

(constant across the experiments to ∼5 %) are given in Ta-

ble 3. It is interesting to note that changes in oceanic and

riverine volume fluxes impact the steady state nutrients only

www.biogeosciences.net/9/97/2012/ Biogeosciences, 9, 97–117, 2012
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in proportion with each other. The values from this very sim-

ple calculation agree reasonably well with the full model,

with Ns being consistently greater than Ni owing to biologi-

cal activity. The change between the time-slices is over pre-

dicted by the simple model as biogeochemical processes act

to reduce the magnitude of change that this simple, steady

state, passive model suggests.

5 Discussion and conclusions

Changes in oceanic nutrients are clearly demonstrated here

to be a first order factor in determining changes in on-shelf

primary production on time scales of 5–10 yr. While it has

long been known that oceans supply a substantial fraction of

shelf sea nutrients (e.g. Galloway et al., 1996), the conse-

quences for on-shelf primary production of potential future

changes has not up until now been clearly articulated. The

importance of changes in oceanic nutrient inputs is generally

supported by a simple mixing model, so is robust and not sen-

sitive to the details of the coupled hydrodynamic-ecosystem

model we employ. However, while shelf sea regions are vul-

nerable to changes in oceanic nutrient inputs, there are sev-

eral on-shelf processes that mitigate this and the changes are

generally less than either a simple passive tracer or nutrient

based analysis would suggest. Generally shelf regions that

are most directly exposed to ocean-shelf exchange show a

strong reduction in primary production, whereas those where

the exchange is slower show a weaker reduction or a net in-

crease. Examples of the former include Irish, Hebrides and

Shetland Shelves, and the Northern and Central North Sea.

Examples of less controlled regions are the English Chan-

nel, Irish Sea, Celtic Sea and Southern North Sea. Hjøllo et

al. (2009) also find a distinction between the Northern and

Southern North Sea’s response to external forcing, in that

case the North Atlantic Oscillation.

The mitigation of reduced on-shelf nutrient transport

arises from changes in temperature that lead to increased re-

cycling rates in both the pelagic and benthic systems (Ta-

ble 2). These temperature changes also lead to increased

on-shelf stratification, which in turn leads to reduced cross-

pynocline nutrient flux into the euphotic zone and lengthened

growing season (Table 2). Simply comparing the fractional

changes in Table 2 suggests the former dominates. That

the reduction in netPP by stratification effects is offset by

temperature and growing season effects is confirmed by the

boundary condition perturbation experiment (A1Bb) show-

ing a general increase in netPP across the shelf, except in the

Central/Northern North Sea, where the net change is small.

We also note that the total nitrogen inventory is seen to in-

crease in some regions, comparing A1B and CNTRL. This

cannot simply be a recycling phenomenon, but must involve

a process of nutrient capture. This necessarily involves mate-

rial in the particulate phase. The concentration of dissolved

material cannot accumulate, and the boundary concentrations

here are decreasing. In contrast, the particulate phase can

accumulate, as it does not necessarily move with the water.

This, along with the temperature and stratification effects de-

serves a much more detailed investigation than can be given

here. These mitigation processes will be diagnosed in more

detail in future model experiments. They will be explored

both in the context of overall primary production changes

and with regards to changes to the seasonality, which are po-

tentially important both to phytoplankton production and to

higher trophic levels. Similarly we highlight here the impor-

tance of the benthic component of the model in these sim-

ulations, but this is one of the least well-established areas

of marine ecosystem modelling. This component was val-

idated during the original development of ERSEM (Black-

ford, 1997), however, lack of data has generally prevented

much subsequent progress.

It is important to reiterate that here we have only consid-

ered a single realisation of possible future conditions. So

while we can explore the response of the system to this

physically plausible case, we can say little about the likeli-

hood of that case. For example, the details of the change

in oceanic stratification and the consequences for oceanic

nutrients might be expected to be a particular area of un-

certainty because of the general uncertainties in accurately

modelling the seasonal cycle of upper ocean mixing (e.g.

Sinha et al., 2010). Hence, an important next step in this

work is to explore the uncertainty in these conclusions. This

uncertainty arises from a combination of factors: forcing un-

certainty arises because of the structural and parameter un-

certainty in OA-GCMs and uncertainty in the emissions sce-

nario (Hawkins and Sutton, 2009). This is compounded by

the difficulty in isolating a clear climate change signal against

the background of natural variability (e.g. Table 2). Along-

side this are uncertainties in the coastal-ocean hydrodynamic

and ecosystem models themselves. Hence, while the natural

next step is to consider forcing data from several OA-GCMs

(and such work is underway in the EQUIP project6) and build

an ensemble of downscaled models, this only gives a partial

view of the uncertainty and the structural uncertainty in the

coastal-ocean model must be considered in some detail. For

example, the details of the division of the shelf sea regions

into those where the netPP is dependent on oceanic control

and those where local processes are more important is likely

to be sensitive to the choice of model and forcing (charac-

terised by the zero-fractional-change contour in Fig. 4). Here

we use an ecosystem model with a sophisticated representa-

tion of pelagic and benthic recycling, and we can speculate

that a model without, for example, explicit representation of

bacteria or dynamic stochiometric ratios, would give very

different results. Similarly, the ERSEM model has a static

foodweb with fixed interaction strengths between predators

and prey, with no ability to simulate changes in behaviour or

food preference. This lack of “plasticity”, necessarily limits

6http://www.equip.leeds.ac.uk/research/marine-ecosystems
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the model’s ability to simulate variations in top-down control

(Mariani and Visser, 2010), and results in a model ecosys-

tem that is predominantly sensitive to bottom-up changes in

the physical and chemical environment. Moreover, while the

overall uncertainty in ocean-shelf exchange is reasonable, the

POLCOMS model at this resolution may give a poor rep-

resentation of ocean-shelf exchange in regions, such as the

Celtic Sea, where this is dominated by fine scale processes

that are not represented in the model, such as internal tides

(Sharples et al., 2009). Capturing the uncertainty associated

with differing process representation constitutes a substantial

challenge for downscaling climate change impacts on marine

ecosystems.

Here we are primarily demonstrating the principles using

the “blunt instrument” of a future climate change scenario to

provide a self-consistent set of forcing. Of equal importance

and inherently more testable against observations would be

an analysis of the relative oceanic and local controls arising

from climate variability in the ERA40 simulation. This is

underway in a more in depth analysis of the propagation of

signals through the pelagic and benthic systems and will be

reported on in due course.

These results suggest that the model considered here is

minimal in its spatial extent for investigations of future cli-

mate downscaling in many regions of the northwest Euro-

pean Continental shelf: models that do not adequately repre-

sent changes in ocean-shelf nutrient transport (e.g. on-shelf

3-D models with fixed nutrient boundary conditions or 1-D

water column models) miss an important vector of climate

change for many regions. Ideally a model covering a sub-

stantially larger area of the North Atlantic should be used for

the climate change downscaling. Such a model is currently

under development in the EURO-BASINS FP7 project7.
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