
Ocelot: A Dynamic Optimization Framework for
Bulk-Synchronous Applications in Heterogeneous

Systems

Gregory Diamos
School of Electrical and
Computer Engineering

Georgia Institute of
Technology

Atlanta, Georgia 30332–0250
gregory.diamos@gatech.edu

Andrew Kerr
School of Electrical and
Computer Engineering

Georgia Institute of
Technology

Atlanta, Georgia 30332–0250
arkerr@gatech.edu

Sudhakar Yalamanchili
School of Electrical and
Computer Engineering

Georgia Institute of
Technology

Atlanta, Georgia 30332–0250
sudha@ece.gatech.edu

Nathan Clark
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia 30332–0250
ntclark@cc.gatech.edu

ABSTRACT
Ocelot is a dynamic compilation framework designed to map
the explicitly data parallel execution model used by NVIDIA
CUDA applications onto diverse multithreaded platforms.
Ocelot includes a dynamic binary translator from Parallel
Thread eXecution ISA (PTX) to many-core processors that
leverages the Low Level Virtual Machine (LLVM) code gen-
erator to target x86 and other ISAs. The dynamic compiler
is able to execute existing CUDA binaries without recompi-
lation from source and supports switching between execution
on an NVIDIA GPU and a many-core CPU at runtime. It
has been validated against over 130 applications taken from
the CUDA SDK, the UIUC Parboil benchmarks [1], the Vir-
ginia Rodinia benchmarks [2], the GPU-VSIPL signal and
image processing library [3], the Thrust library [4], and sev-
eral domain specific applications.

This paper presents a high level overview of the implemen-
tation of the Ocelot dynamic compiler highlighting design
decisions and trade-offs, and showcasing their effect on ap-
plication performance. Several novel code transformations
are explored that are applicable only when compiling explic-
itly parallel applications and traditional dynamic compiler
optimizations are revisited for this new class of applications.
This study is expected to inform the design of compilation
tools for explicitly parallel programming models (such as
OpenCL) as well as future CPU and GPU architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—processors, com-
pilers; C.1.2 [Computer Systems Organization]: Pro-
cessor Architectures—multiple data stream architectures

General Terms
Design, Experimentation, Performance

1. INTRODUCTION
The mainstream adoption of many-core architectures has

resulted in an excess of applications that can no longer fully
utilize the resources available in modern processors. Appli-
cations that could once leverage frequency and ILP scaling
to transparently improve performance are now confined to
a single core: they are restricted to an amount of chip area
that is shrinking with Moore’s law. The problem of de-
signing applications that perform well on modern as well as
future multi-core architectures has been pushed up the stack
into programming languages, execution models, and compi-
lation chains. Much of the progress made towards this goal
has been pioneered by the graphics community, which has
almost uniformly adopted a bulk-synchronous [5] program-
ming model [6] coupled to architectures that abandon global
cache coherence and strong memory consistency in favor of
coarse- and fine-grained parallelism [6–8].

Unfortunately, moving to an explicitly parallel, bulk-
synchronous programming model significantly changes the
problem presented to a compiler; the hardware target may
have a different degree of parallelism relative to what is ex-
pressed in the programming model. Whereas compilers for
sequential or implicitly parallel programming models were
required to automatically extract instruction or thread level
parallelism from applications, compilers for explicitly par-
allel applications must reduce the degree of parallelism to
match the resources available in a given processor. This

fundamental change in the problem definition coupled with
new ISA semantics for dealing with parallel execution will
effect a significant change in the design of future compilers.

Scalable bulk-synchronous applications will also require
dynamic compilation and binary translation. At least three
independent studies have shown that the most efficient pro-
cessor for a given application is dependent both on appli-
cation characteristics and input-data [9–11]. Binary trans-
lation allows a runtime to select high-throughput accelera-
tors if they are available or fall back on slower processors
for cross-platform compatibility or load balancing. Whether
binary translation is done using hardware decoders as in
modern Intel and AMD x86 processors or in software as
in NVIDIA and AMD GPUs or Transmeta CPUs [12], the
evolution of the processor micro-architecture in response to
circuit and technology constraints will mandate changes in
the hardware/software interface. Binary translation will be
necessary to bridge this gap, but it will not be enough alone
to ensure high performance on future architectures. Dy-
namic and life-long program optimization will be needed to
traverse the space of program transformations and fit the de-
gree of parallelism to the capabilities of future architectures
that have yet to be designed.

This paper is written in the context of these challenges.
It makes the following contributions:

• A model for the translation of explicitly parallel bulk
synchronous applications to a multi-threaded execu-
tion model.

• A description of the complete implementation and de-
tailed performance evaluation of the Ocelot dynamic
compiler, which can generate code for both CPU and
GPU targets at runtime.

• Empirical evidence that there are significant differ-
ences in the most efficient code transformations for
different architectures. For example, thread-serializing
transformations that result in sequential memory ac-
cesses perform significantly better on CPU platforms
whereas approaches that result in strided, coalesced
accesses are more appropriate when targeting GPUs.

• A sensitivity evaluation of existing compiler optimiza-
tions applied to CUDA applications.

Ocelot is an open source project that is intended to pro-
vide a set of binary translation tools from PTX to diverse
many-core architectures. It currently includes an internal
representation for PTX, a PTX parser and assembly emit-
ter, a set of PTX to PTX transformation passes, a PTX
emulator, a dynamic compiler to many-core CPUs, a dy-
namic compiler to NVIDIA GPUs, and an implementation
of the CUDA runtime. The emulator, many-core code gener-
ator, and GPU code generator support the full ptx1.4 spec-
ification and have been validated against over 130 CUDA
applications. Although Ocelot is designed to target a va-
riety of possible architectures, this paper focuses on com-
pilation for shared-memory multi-core CPUs. The intent is
to expose the unique problems associated with compiling ex-
plicitly parallel execution models to many-core architectures
and evaluate several potential solutions.

2. MODEL FORMULATION
This paper addresses the problem of compiling explicitly

parallel programs to many-core architectures. Rather than

providing an abstract and generic solution, this paper evalu-
ates a real implementation for the specific case of PTX pro-
grams and many-core x86 CPUs. The approach advocated
by this paper is to 1) start with a highly parallel, architecture
independent, specification of an application, 2) perform ar-
chitecture specific, parallel to serial, transformations that fit
the amount of parallelism to the resources available in hard-
ware, 3) generate code and execute the application utilizing
all of the available hardware resources, and 4) collect per-
formance information at runtime and possibly apply differ-
ent transformations to under-performing applications. It is
shown in Figure 1. The implementation described in this pa-
per, Ocelot, begins with pre-compiled PTX/CUDA applica-
tions and targets CPUs with multiple cores, a shared global
memory space, coherent caches, and no on-chip scratch-pad
memory. To the best of our knowledge, this implementa-
tion is the first example of a dynamic compiler from a bulk-
synchronous programming model to an x86 many-core target
processor.

This section covers the salient of features of NVIDIA’s
Parallel Thread Execution (PTX) ISA that make it a suit-
able intermediate representation for many-core processors as
well as related work that influenced the design of Ocelot.

2.1 A Bulk-Synchronous Execution Model
One could speculate that PTX and CUDA grew out of

the development of Bulk-Synchronous Parallel (BSP) pro-
gramming models first identified by Valiant [5]. PTX de-
fines an execution model where an entire application is com-
posed of a series of multi-threaded kernels. Kernels are com-
posed of parallel work-units called Cooperative Thread Ar-
rays (CTAs), each of which can be executed in any order
subject to an implicit barrier between kernel launches. This
makes the PTX model similar to the original formulation of
the BSP programming model where CTAs are analogous to
BSP tasks.

The primary advantage of the BSP model is that it al-
lows an application to be specified with an amount of par-
allelism that is much larger than the number of physical
cores without incurring excessive synchronization overheads.
The expectation is that global synchronization (barriers) will
eventually become the fundamental limitation on applica-
tion scalability and that their cost should be amortized over
a large amount of work. In the case of PTX, a program
can launch up to 232 CTAs per kernel. CTAs can update
a shared global memory space that is made consistent at
kernel launch boundaries, but they cannot reliably commu-
nicate within a kernel. These characteristics encourage PTX
and CUDA programmers to express as much work as possi-
ble between global synchronizations.

As a final point, PTX extends the BSP model to support
efficient mapping onto SIMD architectures by introducing
an additional level of hierarchy that partitions CTAs into
threads. Threads within a CTA are grouped together into
logical units known as warps that are mapped to SIMD units
using a combination of hardware support for predication,
a thread context stack, and compiler support for identify-
ing reconverge points at control-independent code [13]. In
contrast with other popular programming models for SIMD
architectures that require vector widths to be specified ex-
plicitly, the aforementioned techniques allow warps to be
automatically mapped onto SIMD units of different sizes.
The next section briefly revisits the topic of how these ab-

Grid of cooperative
 thread arrays

Cooperative Thread Array
- Fine-grain parallelism

Kernel

barrier

barrier

divergent
control flow

Execution Model Translation

barrier

Pthread

One worker Pthread per
CPU core

fused-threads

Global Variables

spill

restore

1) PTX-PTX Transformations

 -SSA

 -Predication

 -Thread Fusion

2) Translation

 -Rounding Modes

 -Special Registers, Memory Spaces

 -Correctness Checks

3) LLVM Transformations

 -Dynamic Optimizations

 -Code Generation

4) Runtime

 -Globals, Textures

 -Atomic Operations

 -CTA Scheduling

Lightweight threads
context-switch on barriers

Translation Process

Figure 1: An overview of the translation process from PTX to multi-threaded architectures.

stractions, which were intended to scale across future GPU
architectures, can be mapped to many-core CPU architec-
tures as well.

2.2 Mapping The Model To A Machine
The goal of Ocelot is to provide a just-in-time compiler

framework for mapping the PTX BSP model onto a variety
of many-core processor architectures. The existence of such
a framework allows for the same high level representation
of a program to be executed efficiently on different proces-
sors in a heterogeneous system. It also enables the develop-
ment and evaluation of a new class of parallel-aware dynamic
compiler optimizations that operate directly on an IR with
explicit notions of threads, synchronization operations, and
communication operations. Rather than focusing on a sin-
gle core and relying on a runtime layer to handle processors
with multiple cores, the compiler can treat a many-core pro-
cessor as a single device: it is responsible for generating code
that fully utilizes all of the core and memory resources in a
processor.

This topic has previously been explored from three com-
plementary perspectives: 1) a static compiler from CUDA to
multi-core x86 described in Stratton et al. [14] and extended
by the same authors in [14], and 2) a dynamic compiler from
PTX to Cell by Diamos et al. [15], and 3) a characteriza-
tion of the dynamic behavior of PTX workloads by Kerr
et al. [16]. From this body of work, the following insights
influenced the design of the Ocelot dynamic compiler.

• From MCUDA: PTX threads within the same CTA
can be compressed into a series of loops between barri-
ers using thread-fusion to reduce the number of threads
to match the number of cores in a processor.

• From the PTX to Cell JIT: Performing the compila-
tion immediately before a kernel is executed allows the
number and configuration of threads to be used to op-
timize the generated code.

• From PTX Workload Characterization: Dynamic pro-
gram behavior such as branch divergence, inter-thread
data-flow, and activity factor can significantly influ-
ence the most efficient mapping from PTX to a par-
ticular machine.

2.3 Thread Fusion
Mapping CTAs in a PTX program onto set of parallel pro-

cessors is a relatively simple problem because the execution

model semantics allow CTAs to be executed in any order. A
straightforward approach can simply iterate over the set of
CTAs in a kernel and execute them one at a time. Threads
within a CTA present a different problem because they are
allowed to synchronize via a local barrier operation, and
therefore must be in-flight at the same time. In MCUDA,
Stratton et al. suggest that this problem could be addressed
by beginning with a single loop over all threads and travers-
ing the AST to apply ”deep thread fusion” at barriers to
partition the program into several smaller loops. Processing
the loops one at a time would enforce the semantics of the
barrier while retaining a single-thread of execution. Finally,
”universal” or ”selective” replication could be used to allo-
cate thread-local storage for variables that are alive across
barriers.

MCUDA works at the CUDA source and AST level, whereas
Ocelot works at the PTX and CFG level. However, Ocelot’s
approach applies the same concept of fusing PTX threads
into a series of loops that do not violate the PTX barrier
semantics and replicating thread local data.

2.4 Just-In-Time Compilation
With the ability of the compiler to i) fuse threads to-

gether [14], ii) redefine which threads are mapped to the
same SIMD units [13], iii) re-schedule code to trade off cache
misses and register spills [17], and iv) migrate code across
heterogeneous targets [15], recompiling an application with
detailed knowledge of the system and a dynamic execution
profile can result in significant performance and portability
gains.

The first industrial implementations of dynamic binary
translation were pioneered by Digital in FX32! [18] to ex-
ecute x86 binaries on the Alpha microarchitecture. Trans-
meta extended this work with a dynamic translation frame-
work that mapped x86 to a VLIW architecture [12]. Sev-
eral Java compilers have explored translating the Java Vir-
tual Machine to various backends [19]. Even the hardware
schemes that translate x86 to microops used in AMD and In-
tel x86 processors can be considered to be completely hard-
ware forms of binary translation. These forms of binary
translation are used to enable compatibility across architec-
tures with different ISAs.

Another complementary application of binary translation
is for program optimization, instrumentation, and correct-

ness checking. The Dynamo [20] system uses runtime profil-
ing information to construct and optimize hot-paths dynam-
ically as a program is executed. Pin [21] allows dynamic in-
strumentation instructions to be inserted and removed from
a running binary. Valgrind [22] guards memory accesses with
bounds checking and replaces memory allocation functions
with book-keeping versions so that out-of-bounds accesses
and memory leaks can be easily identified.

Several challenges typically faced by dynamic binary trans-
lation systems were simplified by the CUDA programming
model and exploited in the design of Ocelot. Most signif-
icantly, 1) kernels are typically executed by thousands or
millions of threads, making it significantly easier to jus-
tify spending time optimizing kernels, which are likely to
be the equivalent of hot paths in serial programs; 2) the
self-contained nature of CUDA kernels allows code for any
kernel to be translated or optimized in parallel with the ex-
ecution of any other kernel, without the need for concerns
about thread-safety; 3) code and data segments in PTX are
kept distinct and are registered explicitly with the CUDA
Runtime before execution, precluding any need to distin-
guish between code and data by translating on-the-fly.

2.5 Profile-Aware Compilation
Effective dynamic compilation requires low overhead and

accurate predictions of application performance to apply op-
timizations intelligently. Kerr et al. have recently identified
several metrics that can be used to characterize the behav-
ior of PTX applications [16]. Example metrics include the
amount of SIMD and MIMD parallelism in an application,
control flow divergence, memory access patterns, and inter-
thread data sharing. Bakhoda et al. [23] and Collange et
al. [24] take a more architecture-centric approach by show-
ing the impact of caches, interconnect, and pipeline organi-
zation on specific workloads. Taken together, this body of
work provides basis for identifying memory access patterns,
control flow divergence, and data sharing among threads as
key determinants of performance in PTX programs. Ocelot’s
many-core backend focuses on efficiently handling these key
areas.

In addition to revisiting the insights provided by previous
work, the design of Ocelot exposed several other problems
not addressed in prior work, most significantly 1) on-chip
memory pressure, 2) context-switch overhead, and 3) vari-
able CTA execution time.

3. IMPLEMENTATION
This section covers the specific details of Ocelot’s PTX

to x86 many-core dynamic compiler. At a high level, the
process can be broken down into the following operations:
1) performing transformations at the PTX level to create
a form that is representable in LLVM, 2) translation from
PTX to LLVM, 3) LLVM optimizations and native code gen-
eration, 4) laying out memory, setting up the execution en-
vironment, and initializing the runtime that executes the
program on a many-core processor. LLVM was chosen due
to the similarities between the LLVM ISA and the PTX
ISA, the stability and maturity of the codebase, and the rel-
ative complexity of back-end code generators for x86. The
key issues and solutions for addressing each of the preced-
ing operations are shown in the right of Figure 1, they are
described in the following section.

3.1 Building The PTX IR
After PTX assembly programs are extracted from CUDA

binaries and registered with the Ocelot runtime, each PTX
program is parsed into an abstract syntax tree (AST). Once
the AST has been generated, a Module is created for each
distinct AST. Ocelot borrows the concept of a Module from
LLVM [25] which contains a set of global variables and func-
tions. Similarly, the concept of a Module in Ocelot contains
a set of global data and texture variables which are shared
among a set of kernels. The portions of the AST belonging
to distinct kernels are partitioned and the series of instruc-
tions within each kernel are used to construct a control flow
graph for each kernel.

3.2 PTX to PTX Transformations
During translation to the LLVM ISA, concepts associated

with the PTX thread hierarchy such as barriers, atomic op-
erations, votes, as well as the exact number and organization
of threads are lost. Subsequently, parallel-aware optimiza-
tions are performed at this stage.

An optimization pass interface was designed where dif-
ferent optimization ”Passes” can be applied to a Module, a
Kernel, or a basic block. A similar design is used in LLVM.
It is motivated by the idea that a manager can orchestrate
the execution of a series of optimization passes in a way that
improves the performance of generated code or improves the
performance of the optimizer, which is critical to optimiza-
tions that are applied dynamically. For example, the op-
timizer could apply the series of passes to each block be-
fore moving on to the next one to improve the locality of
data accessed. Two PTX optimizations were implemented
to reverse if-conversion (since the LLVM IR does not sup-
port predication) and modify the control flow structure such
that the semantics of a PTX barrier were satisfied even when
executing the program with a single thread.

PTX SSA Form. For any individual PTX kernel in
Ocelot, a data-flow graph mirrors the control-flow-graph and
retains information at the basic block level in the form of
live-in and live-out register sets. These sets are computed
using iterative data-flow analysis. The control-flow-graph
and data-flow-graph are kept separate and computed lazily
to reduce the overheads of performing full iterative data-flow
for targets that do not require it (such as the Ocelot PTX
emulator).

A PTX kernel begins in partial SSA form (infinite registers
but no phi nodes). Conversion to full SSA form is useful for
some optimizations and necessary for translation to LLVM.
It is done using the live-in and live-out sets for each basic
block where each live-in register with at least two predeces-
sors is converted into a phi node. As PTX does not have a
concept of a PHI node, these are maintained separately in
the data-flow-graph rather than the control-flow-graph.

Reversing If-Conversion. LLVM does not support pred-
ication. Instead it includes a conditional select instruction
similar to the PTX selp instruction. In order to handle PTX
code that uses predicated instructions that update variables
(as opposed to predicated branches which do not condition-
ally update registers), it is necessary to convert from pred-
icated instructions in PTX to select instructions in LLVM.
However, SSA form significantly complicates the conversion
from predication to conditional selection.

Consider the example PTX code shown in the upper left
of Figure 2 before converting into SSA form. After convert-

ld.param.s32 r0, [condition];
mov.s32 r1, 0;
setp.ne.s32 p0, r0, r1;
@p0 add.s32 r1, r1, 1;

ld.param.s32 r0, [condition];
mov.s32 r1, 0;
setp.ne.s32 p0, r0, r1;
@p0 add.s32 r2, r1, 1;

 add.s32 temp, r1, 1;
 selp.s32, r2, temp, ????, p0;

SSA Conversion

Remove predicate instructions

 ld.param.s32 r0, [condition];
 mov.s32 r1, 0;
 setp.ne.s32 p0, r0, r1;
 add.s32 temp, r1, 1;
 selp.s32, r2, temp, r1, p0;

ld.param.s32 r0, [condition];
mov.s32 r1, 0;
setp.ne.s32 p0, r0, r1;
@p0 add.s32 r1, r1, 1;

 add.s32 temp, r1, 1;
 selp.s32, r1, temp, r1, p0;

Remove predicate instructions

SSA Conversion

Figure 2: An example of removing predicated code
in PTX.

ing into SSA form (middle left of the figure), the destination
of the add instruction is assigned a new register (r2). Now,
converting the predicated add instruction to a regular add
followed by a conditional select instruction becomes prob-
lematic. The original predicated add instruction could map
to a non-predicated add paired with a select as shown in
the bottom left of the figure. However, it is not possible to
easily determine the new value of r2 if the predicate is not
true. It is much simpler to insert conditional select instruc-
tions before converting into SSA form, as in the upper right
of the figure. In which case it is simple to determine that r1
should be the value of r2 if the predicate condition is false
(bottom right). This example reiterates the point that SSA
form is complicated by predication. From an engineering
perspective, it is difficult to move between SSA forms that
support predication (PTX in Ocelot) and those that do not
(LLVM).

Deep Thread-Fusion. The semantics of the PTX bar-
rier instruction state that all threads execute up to the bar-
rier before any thread executes beyond the barrier. In order
to handle this case, each kernel is broken into sub-kernels
beginning at either the program entry point or a barrier,
and ending at either a barrier or the program exit point.
The solution is to iterate over each sub-kernel to ensure
that the semantics of a barrier are retained. However, it
is still necessary to handle registers that are live across the
barrier because they represent thread-local state that would
otherwise be lost during a context switch.

Live registers are maintained by creating a register spill
area in local memory for each thread. For each kernel exit
point ending in a barrier, all live registers are saved to the
spill area before exiting the kernel. For every kernel entry
point beginning with a barrier, code is added that restores
live registers from the spill area. The definition of local
memory ensures that the spill area will be private for each
thread, so this transformation can be applied directly at the
PTX level.

Figure 3 shows an instructive example of this process. The
left kernel contains a single basic block with a barrier in the
middle. The right figure shows the program control flow
graph after removing barriers. The immediate successor of
the entry block decides whether to start from the original
kernel entry point or the barrier resume point. The left
successor of this block is the original kernel entry point and
the right block is the barrier resume point. Note that two
live registers are saved at the end of the left-most node.

They are restore in the rightmost block. During execution,
all threads will first execute the leftmost block then they
will execute the rightmost block and exit the kernel.

For a series of barriers, multiple resume points will be
created. After translation, the LLVM optimizer is used to
convert the chain of entry blocks into a single block with an
indirect jump. This approach is logically equivalent to deep-
thread-fusion as described by Stratton et al. [14], although
it works with the PTX control-flow-graph rather than the
CUDA AST. 1

3.3 Translation to LLVM
Figure 4 shows the translated LLVM assembly for a sim-

ple PTX program. The basic approach is to perform naive
translation as fast as possible and rely on subsequent op-
timization passes to generate more efficient code. PTX in-
structions are examined one at a time and an equivalent
sequence of LLVM instructions is generated2. It is assumed
that PTX transformations have been applied to a kernel and
that it has been converted into full SSA form. Translation
begins by creating an LLVM function for each PTX kernel.
This function is passed a single parameter which contains the
context for the thread being executed. This makes generated
code inherently thread-safe because each thread context can
be allocated and managed independently.

Once the function has been created, the PTX control flow
graph is walked and each basic block is examined. For each
basic block, the data-flow-graph is examined to obtain the
set of PHI instructions and one LLVM PHI instruction is
emitted for each PTX PHI instruction. Each PTX instruc-
tion in each block is dispatched to a translation function
for that instruction, which generates an equivalent sequence
of LLVM instructions. This simpler approach was chosen
(rather than translating multiple instructions concurrently)
to reduce translator complexity.

Some special translation cases are mentioned below.
Rounding Modes. PTX supports all of the IEEE754

rounding modes (to nearest, to infinity, to -infinity, to zero).
However, LLVM only supports rounding to the nearest int.
Support for infinity and to -infinity is emulated by respec-
tively adding or subtracting 0.5 before rounding a number.
This introduces one extra instruction of overhead. To zero
is supported by determining if the number is greater or less
than zero and conditionally adding or subtracting 0.5. This
introduces three extra instructions of overhead. None of
these transformations conform to the IEEE standard, and
do affect the precision of generated code. Modifications to
the LLVM ISA or high overhead emulation would be re-
quired for full standards compliance.

Special Registers. Special Registers in PTX are used to
provide programs with a fast mechanism of obtaining status
information about the thread that is currently executing.
They allow single instruction access to the thread’s id, the
CTA’s id, the CTA dimensions, the kernel dimensions, sev-
eral performance counters, and the thread’s mapping to a

91Stratton et al. have recently extended their approach to
eliminate the need for the scheduler block at the program entry
point [14], and this approach could also be used in Ocelot in fu-
ture work. However, it is not included in this implementation.

92It is interesting to note that this makes the processing of trans-
lating each PTX instruction completely independent and suitable
for data-parallel translation. Future work could explore writing
translation passes in a data parallel language like CUDA and of-
floading them to accelerators.

entry

$BB_1_1

mov.u32 %r1, __cuda_shared8

cvt.u32.u16 %r2, %tid.x

mul24.lo.u32 %r3, %r2, 4

ld.param.u32 %r4, [__cudaparm__Z7barrierPiS__in]

add.u32 %r5, %r4, %r3

ld.global.s32 %r6, [%r5 + 0]

add.u32 %r7, %r2, 1

cvt.u32.u16 %r8, %ntid.x

rem.u32 %r9, %r7, %r8

mul.lo.u32 %r10, %r9, 4

add.u32 %r11, %r1, %r10

st.shared.s32 [%r11 + 0], %r6

bar.sync 0

add.u32 %r12, %r3, %r1

ld.shared.s32 %r13, [%r12 + 0]

ld.param.u32 %r14, [__cudaparm__Z7barrierPiS__out]

add.u32 %r15, %r14, %r3

st.global.s32 [%r15 + 0], %r13

exit

exit

entry

$BB_1_1

mov.u64 %r0, __ocelot_remove_barrier_pass_syncpoint

ld.local.u32 %r1, [%r0 + 0]

setp.eq.u32 %p2, %r1, 1

@%p2 bra $BB_1_3

exit

$BB_1_2

mov.u32 %r3, __cuda_shared8

cvt.u32.u16 %r4, %tid.x

mul24.lo.u32 %r5, %r4, 4

ld.param.u32 %r6, [__cudaparm__Z7barrierPiS__in]

add.u32 %r7, %r6, %r5

ld.global.s32 %r8, [%r7 + 0]

add.u32 %r9, %r4, 1

cvt.u32.u16 %r10, %ntid.x

rem.u32 %r11, %r9, %r10

mul.lo.u32 %r12, %r11, 4

add.u32 %r13, %r3, %r12

st.shared.s32 [%r13 + 0], %r8

mov.u64 %r14, __ocelot_remove_barrier_pass_stack

st.local.u32 [%r14 + 0], %r3

st.local.u32 [%r14 + 4], %r5

ret 0

$BB_1_3

mov.u64 %r15, __ocelot_remove_barrier_pass_stack

ld.local.u32 %r16, [%r15 + 4]

ld.local.u32 %r17, [%r15 + 0]

add.u32 %r18, %r16, %r17

ld.shared.s32 %r19, [%r18 + 0]

ld.param.u32 %r20, [__cudaparm__Z7barrierPiS__out]

add.u32 %r21, %r20, %r16

st.global.s32 [%r21 + 0], %r19

exit

Scheduler Block

Restore Registers

Spill Registers

Barrier

Original PTX Code Transformed PTX Code

Figure 3: Example of PTX Barrier Conversion. Blue edges are branch targets and black edges are fall-through
targets. The left CFG is split at the barrier, all live registers are spilled before the split point, a scheduler
block is inserted to direct threads to the resume point, and all live registers are restored at the resume point.

warp. A lightweight thread context is allocated for each
host thread; it is updated to reflect the currently executing
thread on a context-switch via a pointer bump. For PTX
instructions that try to read from a special register, loads
are issued to the corresponding field in the thread’s context.

Special Functions. Special Functions such as sin, cos,
exp, log, inverse, texture interpolation, etc are supported as
instructions in PTX and are accelerated by dedicated hard-
ware in GPUs. CPUs generally do not have equivalent sup-
port so these instructions are translated into function calls
into an emulation library. This introduces a significant over-
head when executing these instructions on CPU platforms.

Different Memory Spaces. PTX supports six distinct
memory spaces: parameter, local, shared, global, constant,
and texture. These spaces are handled by including a base
pointer to each space in the context of the current thread and
adding this base pointer to each load or store to that space.
The texture, constant, parameter, and global memory spaces
are shared across all CTAs in a kernel. However, each CTA
has a unique shared memory space and each thread has a
unique local memory space. These spaces present a problem
because allocating separate shared memory to each CTA and
local memory to each thread would consume an excessive
amount of memory as described by Diamos [26].

This problem is addressed by only allowing a single CTA
to be executed by each CPU core at a time. Only enough
memory to support threadsper−cta ∗ CPUcores is allocated
at a time and this memory is shared across different CTAs
and threads in a kernel. In order to avoid excessive alloca-
tion/deallocation operations, the shared and local memory
spaces are never deallocated and only reallocated when they
increase in size.

Memory Errors: Out of bounds memory accesses, mis-
aligned memory accesses, or memory races are common pro-
grammer errors that are difficult to debug on GPU plat-
forms. Array bounds checking, misalignment detection, and
memory race detection are supported in Ocelot by adding

guards to translated memory operations which check against
allocated memory regions, which are managed by Ocelot.
These checks are selectively enabled or disabled at differ-
ent optimization levels, which control whether or not the
checking operations are inserted into the translated code.

3.4 LLVM Transformations
LLVM provides a very comprehensive library of optimiz-

ing compiler transformations as well as either a static code
emitter or a lazy code emitter. The static emitter will gen-
erate x86 instructions for the entire kernel before executing
it. The lazy emitter will generate x86 instructions dynami-
cally, as the program is being executed by trapping segfaults
generated when the program tries to jump into a block that
has not yet been compiled. The lazy emitter is complicated
by the fact that Ocelot executes kernels in parallel using
multiple host threads. At the very least, the x86 code gen-
erator would need to lock the generated code region so that
only a single thread could update it at a time. This would
introduce overhead into the compilation and execution of
a kernel. PTX kernels are typically small with good code
coverage and are cooperatively executed by thousands of
threads so Ocelot uses the static emitter by default.

The initial implementation included the basic optimiza-
tion passes available in OPT, the LLVM optimizer, for O1,
O2, Os, and O3. After several experiments, it was found
that the inter-procedural optimizations included in OPT
were not relevant for optimizing single PTX kernels and they
were subsequently removed. Section 4.2 explores this topic
in more detail by examining the sensitivity of CUDA appli-
cations to individual optimization passes.

3.5 Linker and Runtime Issues
Translating the instructions from PTX to LLVM to x86

is only part of the process of executing a PTX program
on a many-core processor. It also involves allocating space
for statically allocated variables, propagating the locations

__global__ void

k_simple_sequence(int *A)

{

int n = blockDim.x * blockIdx.x +

threadIdx.x;

A[n] = 2*n+1;

}

.entry _Z17k_simple_sequencePi (

.param .u32 __cudaparm_A)

{.reg .u16 %rh<4>;

.reg .u32 %r<10>;

$LBB1__Z17k_simple_sequencePi:

mov.u16 %rh1, %ctaid.x;

mov.u16 %rh2, %ntid.x;

mul.wide.u16 %r1, %rh1, %rh2;

cvt.u32.u16 %r2, %tid.x;

add.u32 %r3, %r2, %r1;

mul.lo.s32 %r4, %r3, 2;

add.s32 %r5, %r4, 1;

ld.param.u32 %r6, [__cudaparm_A];

mul.lo.u32 %r7, %r3, 4;

add.u32 %r8, %r6, %r7;

st.global.s32 [%r8+0], %r5;

exit;

} // _Z17k_simple_sequenceP

define default i32

@_Z_ocelotTranslated__Z17k_simple_sequencePi(

%LLVMContext* %__ctaContext) nounwind align 1;

{

BB_2_1:

%rt0 = getelementptr %LLVMContext* %__ctaContext,

i32 0, i32 0, i32 0;

%rt1 = load i16* %rt0;

%r0 = zext i16 %rt1 to i32;

%rt2 = getelementptr %LLVMContext* %__ctaContext,

i32 0, i32 2, i32 0;

%rt3 = load i16* %rt2;

%r1 = bitcast i16 %rt3 to i16;

%rt4 = getelementptr %LLVMContext* %__ctaContext,

i32 0, i32 1, i32 0;

%rt5 = load i16* %rt4;

%r2 = bitcast i16 %rt5 to i16;

%rt6 = zext i16 %r1 to i32;

%rt7 = zext i16 %r2 to i32;

i
%r3 = mul i32 %rt6, %rt7;

%r4 = add i32 %r0, %r3;

%r5 = mul i32 %r4, 2;

%r6 = add i32 %r5, 1;

%rt8 = getelementptr %LLVMContext* %__ctaContext,

i32 0, i32 7;

%rt9 = load i8** %rt8;

%rt10 = bitcast i8* %rt9 to i64*;

%r7 = load i64* %rt10, align 8;

%r8 = sext i32 %r4 to i64;

%r9 = mul i64 %r8, 4;

%r10 = add i64 %r7, %r9;

%rt11 = inttoptr i64 %r10 to i32*;

store i32 %r6, i32* %rt11, align 4;

ret i32 0;

br label %exit;

exit:

ret i32 0;}

CUDA Kernel PTX Kernel LLVM Kernel
NVCC Ocelot

Figure 4: Sample CUDA source, PTX assembly, and LLVM assembly. There is a significant amount of
code expansion, mainly due to explicit casts which are required in LLVM, but not in PTX. Much of this
redundancy is lost during LLVM to x86 code generation.

of these variables to references in the program, as well as
allocating OpenGL buffers and variables bound to textures.

Global Variables. Global variables in PTX present a
problem from a compilation perspective because they can
conditionally be linked to dynamic memory allocations de-
clared externally from the PTX program and bound at run-
time using the CUDA Runtime API. Ocelot handles global
variables in translated code via a primitive runtime linker.
Before translation, the linker scans though the instructions
in the kernel and replaced accesses to these variables with
static offsets into a module-local memory region. This han-
dles the private variables. External variables are declared
as globals in LLVM and their identifiers are saved in a list.
The LLVM code generator is then used to compile the ker-
nel without linking the external variables. Upon executing
a kernel, existing mappings for these variables are cleared
and the LLVM linker is used to bind references to the most
currently mapped memory for that variable.

Texture Interpolation. Graphics applications rely heav-
ily on the process of texture mapping - intuitively this is the
process of wrapping a 2D image around a 3D geometry using
interpolation. Most modern GPUs include hardware sup-
port for texture mapping in the form of floating point units
that perform load operations from floating point addresses.
These addresses are wrapped or clamped to the dimensions
of a 1D or 2D image bound to a texture. For addresses that
do not fall on integer values, nearest point, linear, or bilin-
ear interpolation is used to compute a pixel value from the
surrounding pixels. For non-graphics applications, textures
can be used to accelerate interpolation for image or signal
processing.

In PTX, textures are exposed in the ISA using instruc-
tions that sample different color channels given a set of float-
ing point coordinates. Modern CPUs do not have hardware
support for interpolation. Furthermore, this operation is
complex enough that it cannot be performed using a short
sequence of LLVM instructions. In order to reduce the com-
plexity of the LLVM translator, a texture interpolation li-
brary was implemented to emulate the interpolation opera-
tions in software.

Library support is also required (and was implemented)
for OpenGL and multi-threaded applications. A detailed
description is omitted here for brevity.

Runtime. Once a kernel has been translated, it must be

executed in parallel on all of the cores in a CPU. The Hy-
drazine threading library [27] (which itself wraps pthreads
on Linux) is used to bind one worker thread to each CPU
core. When the first kernel is executed on a CPU device, all
of the worker threads are started. The main thread will as-
sign a subset of CTAs to each thread and signal each worker
to begin executing the kernel. The main thread will then
block until all workers have completed in order to preserve
the global barrier semantics of the bulk-synchronous execu-
tion model.

In this implementation, care was taken to reduce the num-
ber of synchronization routines used during kernel execu-
tion. Only one condition variable broadcast is issued from
the main thread when the kernel is launched and one condi-
tion variable signal is used per worker thread when the ker-
nel completes. The overhead of creating/destroying worker
threads is mitigated by reusing the same threads to execute
a series of kernels.

Special considerations were also given to handle atomic
memory operations and CTAs with variable execution times.

Atomic Operations. Atomic operations in PTX are
useful for performing commutative operations with low over-
head across CTAs in a program. For example, they can be
used to implement an efficient reduction across a large num-
ber of CTAs. As useful as they are, atomic operations in-
troduce some difficulties when being executed by multiple
worker threads. Straightforward solutions involving lock-
ing access to atomic operations may introduce an excessive
amount of overhead as locks can involve much higher over-
head than atomic operations supported by hardware in the
GPU. LLVM alternatively supports a series of intrinsic op-
erations that expose hardware support for the atomic oper-
ations in PTX. Ocelot’s implementation of atomic operation
uses locks rather than atomic operations for simplicity. This
decision is justified empirically in Section 4.1.

CTA Scheduling. The initial implementation of the
Ocelot runtime used a static partitioning scheme where the
2D space of CTAs was projected onto a 1D space and divided
equally among the worker threads. This scheme proved ef-
fective for many applications where the execution time of
CTAs was constant. However, several applications, particu-
larly the SDK Particles example, exhibited variable execu-
tion time for each CTA leading to cases where some worker

1 2 4 8 16 32 64 12
8

25
6

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut

Linear
Strided

Figure 5: Memory Bandwidth.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Threads

0

5

10

15

20

At
om

ic
 S

lo
w

do
w

n

Figure 6: Atomics Throughput.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Live Variables

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
 (b

ar
rie

rs
/s

ec
)

1e7

Figure 7: Barrier Throughput.

threads would finish their set of CTAs early and sit idle until
the kernel completed.

To address this problem, the classical work stealing ap-
proaches as well as different static partitioning schemes were
considered. Eventually a locality-aware static partitioning
scheme was selected due to perceived overheads associated
with work stealing. For several applications, the execution
time of a CTA was strongly correlated with that of its neigh-
bors. In the Particles example, this is the case because
neighboring CTAs process neighboring particles, which are
more likely to behave similarly. An interleaved partition-
ing scheme was implemented where the 2D space was still
mapped onto a 1D space, but the space was traversed be-
ginning at an offset equal to the worker thread’s id, and
incremented by the total number of worker threads. This
made it more likely that each worker thread would be as-
signed a set of CTAs with a similar distribution of execution
times.

4. RESULTS
This Section covers a preliminary analysis of the perfor-

mance of several CUDA applications when translated to x86
and executed on a quad-core CPU. The system configuration
of an Intel i920 CPU with 8GB RAM is used for all of the
experiments in this section. NVCC 2.3 is used to compile
all CUDA programs, Ocelot-1.0.432, and LLVM-2.7svn are
used for all experiments. Results from a set of microbench-
marks are presented first. They explore the performance
limits of the Ocelot CPU backend. A second set of exper-
iments attempt to characterize the sources and significance
of overheads in Ocelot. A third set of experiments cover the
scalability of several full applications using multiple cores. A
final experiment evaluates the sensitivity of CUDA applica-
tions to common compiler optimizations available in LLVM.
The measurements presented in this section were taken from
a real system, and thus there is some measurement noise
introduced by lack of timer precision, OS interference, dy-
namic frequency scaling, etc. In response, the sample mean
was computed from at least 100 samples per experiment and
are presented in the form of bar charts with 95% confidence
intervals.

4.1 Microbenchmarks
Microbenchmarks provide an upper bound on the real-

world performance of PTX applications that are translated
to an x86 system using Ocelot. In order to avoid artifacts
introduced by the NVIDIA CUDA to PTX compiler, Ocelot
was extended to accept inlined PTX assembly via a set of

new CUDA API calls. Microbenchmarks for memory band-
width, atomic operation throughput, context-switch over-
head, instruction throughput, and special function through-
put were written using this new interface.

Benchmark: Memory Bandwidth. The first microbench-
mark explores the impact of memory traversal patterns on
memory bandwidth. This experiment is derived from prior
work into optimal memory traversal patterns on GPUs, which
indicates that accesses should be coalesced into multiples of
the warp size to achieve maximum memory efficiency. When
executing on a GPU, threads in the same warp would exe-
cute in lock-step, and accesses by from a group of threads
to consecutive memory locations would map to contiguous
blocks of data. When translated to a CPU, threads are
serialized by thread-fusion and coalesced accesses are trans-
formed into strided accesses. Figure 5 shows the perfor-
mance impact of this change. The linear access pattern
represents partitioning a large array into equal contiguous
segments and having each thread traverse a single segment
linearly. The strided access pattern represents a pattern that
would be coalesced on the GPU.

Insight: Compiler Optimizations Impact Memory Traver-
sal Patterns. It is very significant that the strided access
pattern is over 10x slower using the CPU backend when
compared to the linear access pattern. This indicates that
the optimal memory traversal pattern for a CPU is com-
pletely different than that for a GPU. PTX transformations,
such as thread-fusion used in MUCDA [14], that change the
memory traversal pattern of applications should be designed
with this in mind.

Benchmark: Atomic Operations. The next experiment
details the interaction between the number of host worker
threads and atomic operation overhead. This experiment
involves an unrolled loop consisting of a single atomic incre-
ment instruction that always increments the same variable
in global memory. The loop continues until the counter in
global memory reaches a preset threshold. As a basis for
comparison, the same program was run with a single thread
that incremented a single variable in memory until it reached
the same threshold without using atomics. Figure 6 shows
that the overhead of atomic operations is less than 20x the
overhead of non-atomic equivalents.

Benchmark: Context-Switch Overhead. This experiment
explores the overhead of a context-switch when a thread hits
a barrier. The test consists of an unrolled loop around a bar-
rier, where several variables are initialized before the loop
and stored to memory after the loop completes. This ensures
that they are all alive across the barrier. In order to isolate

1 2 4 8 16

CTAs

0.0

0.5

1.0

1.5

2.0

2.5
Th

ro
ug

hp
ut

 (
op

s/
se

c
)

1e10

u64
u32
f32

Figure 8: Instruction Throughput

co
s

ex
2

lg
2

rc
p

rs
qr

t

si
n

sq
rt

te
x1

d

te
x2

d

te
x3

d0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (

op
s/

se
c

)

1e8

Figure 9: Special Op Throughput

cp

m
ri

-f
h
d

m
ri

-q

p
n
s

rp
e
s

sa
d

tp
a
cf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 E

xe
cu

ti
o
n
 T

im
e

1_threads

2_threads

3_threads

4_threads

5_threads

6_threads

7_threads

8_threads

Figure 10: Multi-Core Scaling

the effect of barriers on a single thread, only one thread
in one CTA is launched. The thread will hit the barrier,
exit into the Ocelot thread scheduler, and be immediately
scheduled again. Figure 7 shows the measured throughput,
in terms of number of barriers processed per second. Note
that the performance of a barrier decreases as the number of
variables increases, indicating that a significant portion of a
context-switch is involved in saving and loading a thread’s
state.

Insight: Memory Pressure Matters. One of the assump-
tions behind the PTX programming model is that all threads
in a CTA are alive at the time that the CTA is executed.
This implicitly assumes that there are enough on-chip re-
sources to accommodate all threads at the same time to
avoid a context-switch penalty. For GPU style architectures,
this puts pressure on the register capacity of a single multi-
processor; if the total number of registers needed by all of
the threads in a CTA exceeds the register file capacity, the
compiler must spill registers to memory. For CPU style ar-
chitectures, this puts pressure on the cache hierarchy; all
live registers must be spilled on a context-switch which will
hopefully hit in the L1 data cache. If the total number of
live registers needed by all threads in a CTA exceeds the
cache capacity, a CTA-wide context-switch could flush the
entire L1 cache. Programs without barriers have an advan-
tage from the perspective of memory pressure because there
is no need to keep more than one thread alive at a time.

The PTX model indirectly addresses this problem with
the concept of a CTA. This reduces the number of threads
that must be alive at the same time from the total number of
threads in a kernel to the CTA size. This partitioning maps
well to the hardware organization of a GPU and most CPUs
which have local memory per core (either a shared regis-
ter file or L1 cache). Future architectures may introduce
additional levels of hierarchy to address increasing on-chip
wire latency. A scalable programming model for these archi-
tectures should extend to a multi-level hierarchy of thread
groups, and the compiler should be able to map programs
with deep hierarchies to architectures with more shallow
memory organizations. Concepts similar to Sequoia mem-
ory hierarchies [28] or Habanero hierarchical place trees [29]
could be applied to this problem.

Insight: Context-Switch Overhead Is Significant. This
microbenchmark demonstrates that there is a non-trivial
overhead associated with context-switching from one thread
to another. This suggests that the compiler should actively
try to reduce the number of context switches. Ocelot does
this by deferring switches until barriers are encountered.

However, it may be possible to reduce the number of context-
switches more aggressively by identifying threads that can
never share data and allowing disjoint sets of threads to pass
through barriers without context-switching. This could be
done statically using points-to analysis or dynamically by
deferring context-switches to loads from potentially shared
state. Additionally, it may be possible to reduce the context-
switch overhead by scheduling independent code around the
barrier to reduce the number of variables that are alive
across the barrier.

Benchmark: Instruction Throughput. The fourth mi-
crobenchmark attempts to determine the limits on integer
and floating point instruction throughput when translat-
ing to a CPU. The benchmark consists of an unrolled loop
around a single PTX instruction such that the steady state
execution of the loop will consist only of a single instruction.
32-bit and 64-bit integer add, and floating point multiply-
accumulate instructions were tested, the results of which
are shown in Figure 8. The theoretical upper bound on in-
teger throughput in the test system is 3 integer ALUs ∗ 4
cores ∗ 2.66 ∗ 109 cycles/s = 31.2 ∗ 109ops/s. 32-bit adds
come very close to this limit, achieving 81% of the maximum
throughput. 64-bit adds achieve roughly half of the maxi-
mum throughput. 32-bit floating point multiply-accumulate
operations are much slower, only achieving 4Gflops on all
4 cores. This is slower than the peak performance of the
test system, and could be the result of the generated code
schedule or use of x87 for floating point operations. These
results suggest that code translated by Ocelot will be rel-
atively fast when performing integer operations, and slow
when performing floating point operations.

Benchmark: Special Function Throughput. The final
microbenchmark explores the throughput of different spe-
cial functions and texture sampling. This microbenchmark
is designed to expose the maximum sustainable through-
put for different special functions, rather than to measure
the performance of special functions in any real application.
The benchmarks consist of a single unrolled loop per thread
where the body consists simply of a series of independent
instructions. The number of threads and CTAs were varied
to maximize throughput. The special functions tested were
reciprocal (rcp), square-root (sqrt), sin, cos, logarithm base
2 (lg2), 2power (ex2), and 1D, 2D, and 3D texture sampling.

Figure 9 shows the maximum sustainable throughput for
each special function. The throughputs of these operations
are relatively consistent when run on the GPU, which uses
hardware acceleration to quickly provide approximate re-
sults. Ocelot implements these operations with standard

cp

m
ri-

fh
d

m
ri-

q

pn
s

rp
es sa
d

tp
ac

f

Applications

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000
Re

la
tiv

e
O

ve
rh

ea
d

O0
O1
O2
Os
O3

Figure 11: Optimization Overhead

cp

m
ri-

fh
d

m
ri-

q

pn
s

rp
es sa
d

tp
ac

f

Applications

0.9

1.0

1.1

1.2

1.3

1.4

Ex
ec

ut
io

n
Ti

m
e

(s
)

O0
O1
O2
Os
O3

Figure 12: Optimization Scaling

PTX Parser5.5%

Verify LLVM
1.3%

Transform PTX1.1%

Translate PTX
4.0%

LLVM Assembler1.9%

LLVM Parser

5.4%

LLVM Optimizer (-O1)

26.9%

LLVM to x86 Code Generator

53.9%

Figure 13: Sources of Overhead

library functions, incurring the overhead of a fairly com-
plex function call per instruction in all cases except for rcp,
which is implemented using a divide instruction. Rcp can
be used as a baseline, as it shows the throughput of the
hardware divider. Based on these results, the special opera-
tion throughput using Ocelot is significantly slower than the
GPU, even more so than the ratio of theoretical FLOPs on
one architecture to the other. Texture operations are the
slowest, nearly 30x slower than the Rcp baseline. Conse-
quently, texture-intensive kernels should be biased towards
GPU architectures.

4.2 Runtime Overheads
The next set of experiments are designed to identify over-

heads that limit total application performance. The kernel
startup cost is measured first, followed by the overhead in-
troduced by optimizing LLVM code before executing it, and
finally the contribution of various translation operations to
the total execution time of a program.

Benchmark: Kernel Startup and Teardown. The use of
a multi-threaded runtime for executing translated programs
on multi-core CPUs introduces some overhead for distribut-
ing the set of CTAs onto the CPU worker threads. Ocelot
was instrumented using high precision linux timers to try to
measure this overhead. The mean overhead across the Par-
boil benchmark suite was found to be approximately 30us
which is on the order of the precision of the timers. These
are negligible compared to the overheads of translation and
optimization. Future work may explore more dynamic work
distribution mechanisms such as work stealing that take ad-
vantage of this headroom.

Benchmark: Optimization Overhead. In order to de-
termine the relative overhead of applying different levels of
optimization at runtime, the optimization passes in Ocelot
were instrumented to determine the amount of time spent
in optimization routines. The total amount of time spent in
optimization routines is shown in Figure 11 for different ap-
plications in the Parboil benchmark suite. Notice that the
total optimization time depends significantly on the appli-
cation. Furthermore, the relative overhead of O3 compared
to O2 is also significantly application dependent.

A second experiment measures the total execution of the
Parboil benchmarks using different optimization levels, which
are shown in Figure 12. This experiment includes overheads
of optimization as well as speedups due to executing more
optimized code. For CP, MRI-Q, and SAD, the overhead
of performing optimizations can not be recovered by im-
proved execution time, and total execution time is increased
for any level of optimization. The other applications ben-

efit from O1, and none of the other optimization levels do
better than O1. Note that the LLVM to x86 code generator
always applies basic register allocation, peephole instruction
combining, and code scheduling to every program regardless
of optimizations at the LLVM level. These may make many
optimizations at the LLVM level redundant, not worth ded-
icating resources to at execution time.

Insight: Parallel-Aware Optimizations Are Necessary. A
significant amount of effort in our implementation was spent
dealing with barriers and atomic operations in PTX, and
that all of the compiler transformations available in LLVM
were oblivious to these program semantics. In the future,
there could be significant progress made in developing com-
piler optimizations that are aware of the PTX thread hierar-
chy and primitive parallel operations. For example, sections
of threads that are independent of the thread id could be
computed by one thread and then broadcast to others, bar-
riers could be reorganized to reduce the number of context-
switches, and threads that take the same control paths could
be fused together into a single instruction stream.

Benchmark: Component Contribution. As a final ex-
periment into the overheads of dynamic translation, call-
grind [22] was used to determine the relative proportion of
time spent in each translation process. Note that callgrind
records basic block counts in each module, which may be
different than total execution time. Figure 13 shows that
the vast majority of the translation time is spent in the
LLVM code generator. The decision to use a new LLVM
IR only accounts for 6% of the total translation overhead.
The time it takes to translate from PTX to LLVM is less
than the time needed to parse either PTX or LLVM, and
the speed of Ocelot’s PTX parser is on par with the speed
of LLVM’s parser. LLVM optimizations can be a major
part of the translation time, but removing if-conversion and
barriers from PTX takes less than 2% of the total transla-
tion time. These results justify many of the design decisions
made when implementing Ocelot.

4.3 Full Application Scaling
Moving on from micro-benchmarks to full applications,

the ability of CUDA applications to scale to many cores on
a multi-core CPU was studied. The test system includes a
processor with four cores, each of which supports 2-way si-
multaneous multi-threading (SMT). Therefore, perfect scal-
ing would allow performance to increase with up to 8 CPU
worker threads. This is typically not the case due to shared
resources such as caches and memory controllers, which can
limit memory bound applications.

A
p
p
li
c
a
t
io

n

C
o
n
s
t
a
n
t
P
r
o
p
a
g
a
t
io

n

D
e
a
d
In

s
t
E
li
m

in
a
t
io

n

D
e
a
d
C
o
d
e
E
li
m

in
a
t
io

n

D
e
a
d
S
t
o
r
e
E
li
m

in
a
t
io

n

A
g
g
r
e
s
s
iv

e
D

C
E

In
d
u
c
t
io

n
V
a
r
ia

b
le

S
im

p
li
fy

In
s
t
r
u
c
t
io

n
C
o
m

b
in

in
g

L
o
o
p
In

v
a
r
ia

n
t
M

o
t
io

n

L
o
o
p
S
t
r
e
n
g
t
h
R
e
d
u
c
e

L
o
o
p
U
n
s
w
it
c
h

L
o
o
p
U
n
r
o
ll

L
o
o
p
R
o
t
a
t
e

T
a
il
D

u
p
li
c
a
t
io

n

J
u
m

p
T
h
r
e
a
d
in

g

C
F
G

S
im

p
li
fi
c
a
t
io

n

B
lo

c
k
P
la

c
e
m

e
n
t

G
lo

b
a
lV

a
lu

e
N
u
m

b
e
r

G
E
P
S
p
li
t
t
e
r

S
C
C
V
N

A
ll

O
p
t
im

iz
a
t
io

n
s

CP 1.03 1.04 1.01 1.03 1.02 1.01 1.01 1 1.02 1.04 1.01 1.03 1.02 1.02 .96 1.04 1 .99 1.02 .99

MRI-FHD .89 1.14 .92 .92 .95 .9 .77 1 1 .92 1.02 .88 .9 .81 .97 .94 .86 .88 .74 .99

MRI-Q 1.04 .92 .88 1.06 1.03 .9 1.03 .88 .98 1.01 .9 1.18 1.01 1 1.01 .92 1 .97 .93 .99

PNS 1.02 .97 1.01 .98 1.02 .97 1.02 1.02 .98 1 1.02 1 1 .95 1 1.01 .97 .98 1.02 1

RPES 1 1.05 1.01 1 .99 1.01 1.03 1 1 1 1.01 1.02 1 1.02 1.03 1 1 .99 .91 .98

SAD 1.15 1.21 1.18 1.16 1.12 1.47 1.18 1.2 1.13 1.12 1.18 1.15 1.15 1.16 1.1 1.53 1.32 1.12 1.2 .98

TPACF .84 .86 .76 .88 .87 .89 .89 .89 .85 .86 .8 .8 .78 .84 .87 .83 .88 .84 .9 .85

Average .98 .99 .95 .98 .97 .98 .99 .98 .96 .98 .96 .96 .95 .97 .98 .98 .97 .96 .95 .97

Table 1: Normalized execution time of different LLVM passes compared to the baseline with no optimization.

Benchmark: Parboil Scaling. The Parboil benchmarks
were used as examples of real CUDA applications with a
large number of CTAs and threads; previous work shows
that the Parboil applications launch between 5 thousand and
4 billion threads per application [16]. Figure 10 shows the
normalized execution time of each application using from 1
to 8 CPU worker threads. All of the applications scale well
to two threads, but not necessarily beyond that. The CP
benchmark is able to achieve better than a 4x speedup us-
ing 8 threads, indicating that it is probably compute bound
and is able to benefit from SMT. Conversely, SAD slows
down when the number of threads is increased beyond two.
Previous work by Kerr et al. [16] have found PNS and SAD
to be highly memory intensive, and likely to be constrained
by a processor’s off-chip memory bandwidth rather than its
core count. These applications may be more suitable for
GPU architectures, which focus on high bandwidth rather
than low latency. These results motivate the need for a dy-
namic compiler like Ocelot that can direct applications to
the most efficient architecture in a heterogeneous system.

Insight: Variable CTA Execution Time. Several of the
applications in this paper demonstrate the importance of
evenly distributing CTAs across cores in a CPU or GPU.
These results suggest that work distribution schemes must
simultaneously deal with two constraints that follow from
locality among CTAs: 1) neighboring CTAs are likely to
have similar execution times, and 2) neighboring CTAs are
likely to access similar memory locations. In other words,
mapping neighboring CTAs to the same processor core will
improve memory locality, but lead to uneven work distri-
butions. Conversely, random partitioning schemes will hurt
memory locality, but even out work distributions. There is
a clear need for additional work that addresses this problem
using static analysis as well as runtime adaptive mapping
encapsulated in the translator.

4.4 Sensitivity Analysis
This paper concludes with an analysis of the sensitivity of

individual Parboil applications to single LLVM optimization
passes shown in Table 1. These results also include normal-
ized runtimes with all optimizations enabled. No overheads
are included in this experiment, only time spent executing
translated code is counted. On average, LLVM optimiza-
tions improve execution time by 1% to 5%. Some applica-
tions, such as TPACF, universally benefit from optimization
(possibly due to optimizations being performed in the code
generator) while others, such as SAD, uniformly slow down.
It is also clear that certain optimizations are more suitable

to specific applications. For example, MRI-FHD benefits the
most from instruction combining, which negatively impacts
the performance of PNS. In several applications, optimiza-
tions such as ConstantPropagation and InductionVariableS-
implify achieve faster execution individually than when all
optimization passes are applied. Yet, this relationship does
not hold for every application. Overall these per-thread op-
timizations yield relatively minor improvements in execution
time, indicating that the optimizations performed statically
by NVCC, the during code generation by LLVM, and dy-
namically by the CPU instruction schedulers are already
highly tuned. Future work into dynamic optimization may
have more success by shifting focus away from single-threads
to address system-wide issues such as improving memory ac-
cess patterns via better thread/CTA schedules or eliminat-
ing redundancy via inter-thread analysis.

5. CONCLUSIONS
This paper presents a detailed overview of Ocelot, includ-

ing a dynamic compiler from PTX to Multi-core x86 CPUs.
Through the study of Ocelot using several microbenchmarks
and full applications, on-chip memory pressure, context-
switch overhead, and variable CTA execution time were iden-
tified as fundamental issues that impact performance when
compiling highly parallel programs to systems with few hard-
ware resources. In the future, these issues will have to be
addressed as systems continue to migrate towards many-core
architectures, and developers seek programming models that
can scale to them.

6. ACKNOWLEDGEMENT
This research was supported by NSF under grant CCF-

0905459, IBM through an OCR Innovation award, LogicBlox
Corporation, and an NVIDIA Graduate Fellowship.

7. REFERENCES
[1] IMPACT, “The parboil benchmark suite,” 2007.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark
suite for heterogeneous computing,” in IEEE
International Symposium on Workload
Characterization, 2009. IISWC 2009., October 2009.

[3] A. Kerr, D. Campbell, and M. Richards, “Gpu vsipl:
High-performance vsipl implementation for gpus,” in
HPEC’08: High Performance Embedded Computing
Workshop, Lexington, MA, USA, 2008.

[4] J. Hoberock and N. Bell, “Thrust: A parallel template
library,” 2009, version 1.2.

[5] L. G. Valiant, “A bridging model for parallel
computation,” Commun. ACM, vol. 33, no. 8, pp.
103–111, 1990.

[6] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C.
Crago, W. Tuohy, A. Mahesri, S. S. Lumetta, M. I.
Frank, and S. J. Patel, “Rigel: an architecture and
scalable programming interface for a 1000-core
accelerator,” in ISCA ’09: Proceedings of the 36th
annual international symposium on Computer
architecture. New York, NY, USA: ACM, 2009.

[7] NVIDIA, “Nvidias next generation cuda compute
architecture: Fermi,” NVIDIA Coporation, Tech. Rep.,
2009.

[8] AMD, “R600/r700/evergreen assembly language
format,” Tech. Rep., 2009.

[9] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling
gpu-cpu workloads and systems,” in Third Workshop
on General-Purpose Computation on Graphics
Procesing Units, Pittsburg, PA, USA, March 2010.

[10] C. Luk, S. Hong, and H. Kim, “Qilin: Exploiting
parallelism on heterogeneous multiprocessors with
adaptive mapping,” in MICRO’09. New York, USA:
IEEE, devember 2009.

[11] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil,
G. Fursin, and N. Navarro, “Predictive runtime code
scheduling for heterogeneous architectures,” in
HiPEAC ’09: Proceedings of the 4th International
Conference on High Performance Embedded
Architectures and Compilers. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 19–33.

[12] J. C. Dehnert, B. K. Grant, J. P. Banning,
R. Johnson, T. Kistler, A. Klaiber, and J. Mattson,
“The transmeta code morphingTMsoftware: using
speculation, recovery, and adaptive retranslation to
address real-life challenges,” in CGO ’03: Proceedings
of the international symposium on Code generation
and optimization. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 15–24.

[13] W. W. L. Fung, I. Sham, G. Yuan, and T. M.
Aamodt, “Dynamic warp formation and scheduling for
efficient gpu control flow,” in MICRO ’07: Proceedings
of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 407–420.

[14] J. Stratton, V. Grover, J. Marathe, B. Aarts,
M. Murphy, Z. Hu, and W. mei Hwu, “Efficient
compilation of fine-grained spmd-threaded programs
for multicore cpus,” in CGO 2010, Toronto, Canada,
April 2010.

[15] G. Diamos, A. Kerr, and M. Kesavan, “Translating
gpu binaries to tiered simd architectures with ocelot,”
Georgia Institute of Technology, Tech. Rep.
GIT-CERCS-09-01, January 2009.

[16] A. Kerr, G. Diamos, and S. Yalamanchili, “A
characterization and analysis of ptx kernels,” in
IISWC09: IEEE International Symposium on
Workload Characterization, Austin, TX, USA,
October 2009.

[17] C. Madriles, P. Lopez, J. M. Codina, E. Gibert,
F. Latorre, A. Martinez, R. Martinez, and

A. Gonzalez, “Anaphase: A fine-grain thread
decomposition scheme for speculative multithreading,”
in PACT ’09: Proceedings of the 2009 18th
International Conference on Parallel Architectures and
Compilation Techniques. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 15–25.

[18] A. Chernoff and R. Hookway, “Digital fx!32 running
32-bit 86 applications on alpha nt,” in NT’97:
Proceedings of the USENIX Windows NT Workshop
on The USENIX Windows NT Workshop 1997.
Berkeley, CA, USA: USENIX Association, 1997.

[19] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico,
A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss,
T. Ngo, and V. Sarkar, “The jikes research virtual
machine project: building an open-source research
community,” IBM Syst. J., vol. 44, no. 2, 2005.

[20] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a
transparent dynamic optimization system,” in PLDI
’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and
implementation. New York, NY, USA: ACM, 2000.

[21] V. J. Reddi, A. Settle, D. A. Connors, and R. S.
Cohn, “Pin: a binary instrumentation tool for
computer architecture research and education,” in
WCAE ’04: Proceedings of the 2004 workshop on
Computer architecture education. New York, NY,
USA: ACM, 2004, p. 22.

[22] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,”
SIGPLAN Not., vol. 42, no. 6, pp. 89–100, 2007.

[23] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing cuda workloads using a
detailed gpu simulator,” in IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), Boston, MA, USA, April 2009.

[24] S. Collange, D. Defour, and D. Parello, “Barra, a
modular functional gpu simulator for gpgpu,” Tech.
Rep. hal-00359342, 2009.

[25] C. Lattner and V. Adve, “Llvm: A compilation
framework for lifelong program analysis &
transformation,” in CGO ’04: Proceedings of the
international symposium on Code generation and
optimization. Washington, DC, USA: IEEE
Computer Society, 2004, p. 75.

[26] G. Diamos, “State explosion: An obvious limitation to
strong scaling,” NFinTes, Tech. Rep., 2009.

[27] ——, “Hydrazine: A high performance library for c++
and cuda,” November 2009.

[28] K. Fatahalian, T. J. Knight, M. Houston, M. Erez,
D. R. Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan, “Sequoia: Programming
the memory hierarchy,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, 2006.

[29] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical
place trees: A portable abstraction for task parallelism
and data movement,” in Proceedings of the 22nd
Workshop on Languages and Compilers for Parallel
Computing (LCPC), october 2009.

