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Abstract OCL 2.0 is the newest version of the OMG’s constraint language to accompany their suit of Object 

Oriented modelling languages. The use of OCL as an accompanying constraint and query language for 

modelling with these languages is essential. As tools are built to support the modelling languages, it is also 

necessary to implement the OCL. This paper reports our experience of implementing OCL based on the latest 

version of the OMG’s OCL standard, UML models and MDA [17] techniques supported by the Kent 

Modelling Framework (KMF) [12], developed at the University of Kent. We provide an efficient LALR 

grammar for parsing the language and describe an architecture that enables the language to be bridged to any 

other modelling framework or tool. We also provide both syntactic and semantic models, which were used as 

inputs for KMFStudio [12] in order to generate Java code. In addition we give feedback on problems and 

ambiguities discovered in the standard, with some suggested solutions.  

 

1 Introduction/Motivation 

The Object Constraint Language (OCL) [16] is a textual language, especially designed for use in the context of 

diagrammatic languages such as the UML. OCL was added to UML, as it turned out a visual diagram-based 

language is limited in its expressiveness. For instance, although the UML is powerful and covers many important 

situations, it is often not sufficient to describe certain important constraints. Using natural language on the one 

hand introduces ambiguities, due to freedom of interpretation and on the other hand there are no tools capable to 

cope with its complexity. 

Hence, the Object Constraint Language was introduced as a textual add-on to the diagrams to cover the above 

aims. OCL is deeply connected to UML diagrams, as it is used as a textual addendum within the diagrams, e.g. 

to define pre- and post- conditions, invariants, or transition guards, but it also uses the elements defined in the 

UML diagram, such as classes, methods, and attributes. 

The prime motivation of this work has been to provide support for OCL constraint checking over populations 

from a variety of models. This work has been done under the Kent Modelling Framework [12] project at the 

University of Kent, involving both the RWD [18] and DSE4DS [6] projects. Integration with the Eclipse 

framework was also supported by a grant from IBM. 
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2 Implementation Structure 

 

The task of a translator is to transform a program written in one language, called the source language, into an 

equivalent program written in another language, called the target language. In order to achieve this goal, a 

translator must first determine and understand the structure and meaning of the source program, and then 

generate the equivalent representation using concepts from the target language. The first phase is called analysis 

and the second synthesis. Afterwards, the resulting program is executed on the target virtual machine, either 

executing the generated code or interpreting the generated representation. 

The OCL implementation presented in this paper follows this typical structure of a language processor, 

consisting of an initial analysis phase, providing afterwards two options for execution: code generation or 

interpretation. This structure is described in Figure 1. 
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Figure 1 Implementation Structure 

The analyser generates an internal description of the semantics of the input text, according to the information 

contained in the UML model. We chose to represent the semantics of the input using a classic augmented 

Abstract Syntax Tree (AST). The Translator to Java and the Interpreter use the internal representation of the 

semantics in order to perform the corresponding task: generation of executable code and evaluation. Framework 

and modelling tools details are implemented using a model description, a bridge, and an implementation adapter. 

This approach increases the portability of the implementation. 

Each of these stages has involved different problems relating to the specification contained in the OCL 

standard. We discuss each stage separately in the following sections.  
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3 Analysis 

 

In order to analysis the input text, a translator must perform the following three steps: 

1) Lexical Analysis: the input program is broken into basic symbols or tokens 

2) Syntax Analysis: construct the phrase structure of the program 

3) Semantic Analysis: compute the meaning of the program 

Our implementation follows this approach. The structure of our analyser, including the dataflow and the 

dependencies between the modules, is presented in Figure 2. 
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Figure 2 Structure of the analyser 

 

3.1 Lexical Analysis 

 

The lexical analyser transforms the source program, seen as a sequence of characters, into a sequence of symbols 

with a semantic meaning. These symbols, together with their encoding, form the intermediate language 

generated by the lexical analyser.  

In order to separate the lexical analyses from the rest of the translator, the grammar G of the OCL language 

was partitioned on two levels: the first level contains the OCL grammars, and the second level contains the sub-

grammars G1, …, Gn, associated to each token.  The purpose of this partitioning operation is to allow the OCL 

grammar G to describe the language using basic symbols. The language L(G) is obtained by replacing the 

terminal symbols of grammar G with strings from L(G1), …, L(Gn).  

According to [20], the construction of a lexical analyser should be done following the steps: 

1) Define the basic symbols of OCL, partition the grammar of OCL and determine the rules 

associated to the basic symbols. 
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2) Decide how the basic symbols will be recognized, extracted and represented. 

3) Decide how to report the lexical errors. 

4) Design and implement the finite state machine for each basic symbol, and then design the overall 

finite state transducer. 

5) Implement the lexical analyser. 

 Defining the basic symbols  

After performing steps 1 and 2, we have obtained the grammars for the basic tokens: name, integer, string, 

keyword, specialSign, and comment. The description of these grammars, according with the rules from Annex A, 

is given below: 

name  → letter alpha* . 

integer → digit+ . 

real →  integer ‘.’ integer . 

real →  integer [‘e’ | ‘E’ ][‘+’ | ‘-‘] integer 

real →   integer ‘.’ integer [‘e’ | ‘E’][‘+’ | ‘-‘] integer . 

keyword →     

‘package’ | ‘endpackage’ | ‘context’ | ‘init’ | ‘derive’ | ‘inv’ | ‘def’ | ‘pre’ | ‘post’ | ‘body’ | 

‘implies’ | ‘and’ | ‘or’ | ‘not’ | ‘true’ | ‘false’ | ‘xor’ |   

‘div’ | ‘mod’ |  

‘Collection’ | ‘Bag’ | ‘Set’ | ‘Sequence’ | ‘OrderedSet’ | ‘TupleType’ | ‘Type’ |  

‘if’ | ‘then’ | ‘else’ | ‘endif’ | 

‘let’ | ‘in’ | ‘iterate’ . 

specialSign →  

 ‘..’ | ‘::’ | ‘:’ |   

‘(‘  |  ‘)’ | ’[‘ | ’]’ | ‘{‘ | ‘}’ | 

‘,’ | ‘;’ | ‘|’ | ‘@’ | ‘?’ |  

‘=’ | ‘<>’ | ‘<=’ | ‘>=’ | ‘<’ |  ‘>’ |  

‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘.’ | ‘->’ | 

‘^^’ |   ‘^’ . 

comment → lineComment | paragraphComment . 

lineComment → ‘-‘’-‘ (any character except a line terminator)* lineTerminator . 

paragraphComment → ‘/*’ (any character sequence except the sequence */) ‘*/’ . 

lineTerminator →‘\r’ | ‘\n’ | ‘\r\n’ | ’\n\r’ . 

whiteSpace → ‘\t’ | ‘\f’ | ‘\n’ | ‘\r’ . 

letter → ‘a’ | … | ‘z’  | ‘A’ | … | ‘Z’ | ‘_’ . 

digit → ‘0’ | … | ‘9’ . 

alpha → letter | digit . 
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Beside the above grammar we have to specify the set of allowed characters. We consider that the 

allowed set of characters in OCL is the Unicode set. 

 Error handling 

Every time a lexical error occurs, the lexical analyser will pass a message to the Error Manager, which is 

responsible for reporting errors (see Figure 2). The error manager considers the following cases: 

• Input contains an illegal character 

• A lexical rules is broken 

If the input string contains an illegal character, the lexical analyser removes the illegal character from the 

input and invokes the error manager in order to report an error and returns a bad token to the context. If a lexical 

rule is broken, the lexical analyser invokes the error manager in order to report an error and returns a bad token 

to the context. 

 Lexical Analyser Construction 

Usually there are two possibilities to implement the lexical analyser:  

• Write the code by hand 

• Use a lexical analyser generator  

Our OCL implementation uses a lexical analyser generator. Usually the lexical analyser is either standalone or 

integrated into a parser. For reasons that we will explain latter, we decide to use JFlex, a lexical analyzer 

generator for Java. The input for JFlex is specified in Annex B. 

 

3.2 Syntax Analysis 

 

Firstly, a syntax analyser must recognize whether the input program belongs to the language of a grammar. 

Secondly, it must represent the input program in order to provide accurate information to later phases, like the 

semantic analysis. 

In order to build a syntax analyser for a given language, one must follow the steps: 

• Write an ambiguous grammar for language, usually a LL(1) or LALR(1) grammar. 

• Build the corresponding parser, manually or by using a parser generator. 

• Choose the intermediate language to represent the structure of the input 

• Design the semantic actions to build the internal representation of a given source program 

 

 Choosing the grammar type and the parser generator 

We decided to use a LALR(1) grammar for several reasons: 

• The weakness of LL(k) parsing techniques is that they must predict which production to use, having 

seen only the first k tokens of the right-hand side. 
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• As LR(k) parsing technique is more powerful, it is able to postpone the decision until it has seen 

input tokens corresponding to the entire right-hand side of the production in question (and k more 

input tokens beyond). 

• Any reasonable programming language has a LALR(1) grammar, and there are many parser-

generator tools available for LALR(1) grammar.  

• For this reason LALR(1) has become a standard for programming languages and for automatic parser 

generators e.g. Flex/CUP and SableCC. 

 

The LR grammar of OCL, which uses OCL tokens as terminal symbols, is described below according to the 

rules from Annex A: 
 
packageDeclaration → 'package' pathName contextDeclList 'endpackage'. 
packageDeclaration → contextDeclList . 
contextDeclList → contextDeclaration* . 
contextDeclaration → propertyContextDecl . 
contextDeclaration → classifierContextDecl .  
contextDeclaration → operationContextDecl . 
propertycontext'Decl → 'context' pathName simpleName ':' type initOrDerValue+ . 
initOrDerValue → 'init' ':' oclExpression | 'derive' ':' oclExpression  
classifiercontext'Decl → 'context' pathName invOrDef+ . 
invOrDef → 'inv' [simpleName] ':' oclExpression .  
invOrDef → 'def' [simpleName] ':' defExpression . 
defExpression → simpleName ':' type '=' oclExpression . 
defExpression → operation '=' oclExpression . 
operation'context'Decl → 'context' operation prePostOrBodyDecl+ . 
prePostOrBodyDecl → 'pre' [simpleName] ':' oclExpression . 
prePostOrBodyDecl → 'post' [simpleName] ':' oclExpression . 
prePostOrBodyDecl → 'body' [simpleName] ':' oclExpression .  
operation → pathName '(' [variableDeclarationList] ')' [':' type]  
variableDeclarationList → variableDeclarationList (',' variableDeclaration)* . 
variableDeclaration → simpleName [':' type] ['=' oclExpression]  
type → pathName | collectionType | tupleType . 
collectionType → collectionKind '(' type ')' . 
tupleType → 'TupleType' '(' variableDeclarationList ')' . 
oclExpression →  
   literalExp | 
   '(' oclExpression ')' | 
   pathName isMarkedPre  | 
   oclExpression DOT simpleName isMarkedPre  | 
   oclExpression '->' simpleName  | 
   oclExpression '(' ')'  | 
   oclExpression '(' oclExpression ')'  | 
   oclExpression '(' oclExpression ',' argumentList ')'  | 
   oclExpression '(' variableDeclaration '|' oclExpression ')'  | 
   oclExpression '(' oclExpression ',' variableDeclaration '|' oclExpression ')'  | 
   oclExpression '(' oclExpression ':' type ',' variableDeclaration '|' oclExpression ')'  | 
   oclExpression '[' argumentList ']' isMarkedPre  | 
   oclExpression '->' 'iterate' '(' variableDeclaration [';' variableDeclaration] '|' 
oclExpression ')'  | 
   'not' oclExpression  | 
   '-' oclExpression  | 
   oclExpression '*' oclExpression  | 
   oclExpression '/' oclExpression  | 
   oclExpression 'div' oclExpression  | 
   oclExpression 'mod' oclExpression  | 
   oclExpression '+' oclExpression  | 
   oclExpression -' oclExpression  | 
   'if' oclExpression 'then' oclExpression 'else' oclExpression 'endif'  | 
   oclExpression '<' oclExpression  | 
   oclExpression '>' oclExpression  | 
   oclExpression '<' oclExpression  | 
   oclExpression '<' oclExpression  | 
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   oclExpression '=' oclExpression  | 
   oclExpression '<>' oclExpression  | 
   oclExpression 'and' oclExpression  | 
   oclExpression 'or' oclExpression  | 
   oclExpression 'xor' oclExpression  | 
   oclExpression 'implies' oclExpression  | 
   'let' variableDeclarationList 'in' oclExpression  | 
   oclExpression '^^' simpleName '(' [oclMessageArgumentList] ')'  | 
   oclExpression '^' simpleName '(' [oclMessageArgumentList] ')' . 
argumentList → oclExpression (',' oclExpression)* . 
oclMessageArgumentList → oclMessageArgument (',' oclMessageArgument)* . 
oclMessageArgument → oclExpression | '?' [':' type] . 
isMarkedPre → ['@' 'pre'] . 
literalExp → collectionLiteralExp . 
literalExp → tupleLiteralExp . 
literalExp → primitiveLiteralExp . 
collectionLiteralExp → collectionKind '{' collectionLiteralParts '}' . 
collectionLiteralExp → collectionKind '{' '}' . 
collectionKind → 'Set' | 'Bag' | 'Sequence' | 'Collection' | 'OrderedSet'. 
collectionLiteralParts → collectionLiteralPart (',' collectionLiteralPart)* . 
collectionLiteralPart → oclExpression | collectionRange . 
collectionRange → oclExpression '..' oclExpression . 
tupleLiteralExp → 'Tuple' '{' variableDeclarationList '}' . 
primitiveLiteralExp → integer . 
primitiveLiteralExp → real . 
primitiveLiteralExp → string . 
primitiveLiteralExp → 'true' . 
primitiveLiteralExp → 'false' .  
pathName → simpleName . 
pathName → pathName '::' simpleName . 

 

Rationale for Using ASTs 

As programming languages become more and more complex, one-pass compilers, which do not produce any 

intermediate form of the compiled code, are becoming very rare. This is also true in the area of program 

understanding and software engineering [19]. This has led to a variety of intermediate representations of the 

syntactic structure of source code. 

[13] contains a survey of common program representations, such as Abstract Syntax Trees (AST), Directed 

Acyclic Graphs (DAG), Prolog rules, code and concepts object, and control and data flow graphs. Among these, 

the AST is the representation that is most advantageous, and is most widely used by software developers. The 

reason for the popularity of the AST as a program representation scheme is its ability to capture all the necessary 

information for performing any operations with respect to data flow and control flow source code properties. 

To justify the AST representation, we need to distinguish between a parse tree, or derivation tree, and an AST. 

A parser explicitly or implicitly uses a parse tree to represent the structure of the source program [2]. An AST is 

a compressed representation of the parse tree where the operators appear as nodes, and operands of the operator 

are the children of the node representing the operator.  

In Annex C we present the syntax model of OCL using UML diagrams.  

 Designing the Semantic Actions 

Formal mechanisms used to describe the translation from one language to another are based on the following 

basic idea: the information contained in a syntax construction is specified by using attributes attached to grammar 

symbols, and the values for these attributes are computed using semantic rules attached to grammar rules.  
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There are two notations to attach the semantic rules to grammar rules: Syntax Driven Definitions (SDD) and 

Syntax Driven Translation Scheme (SDTS). The definitions are high-level specifications of the translation. They hide 

a lot of the implementation details and do not specify the order in which the semantic rules should be executed. The 

translation schemes specify the order in which the semantic rules should be evaluated, therefore contain more details 

about the implementation. 

The STDS, which has been used to translate an OCL string into instances of elements from the OCL syntax 

model, is described in Annex D. The translation scheme was designed so that it can be used as input for CUP, a 

parser generator for Java that works with JFlex. 

3.3 Semantic Analysis 

 

The semantic analysis phase of our implementation connects variable definitions to their uses, checks that 

each expression has a correct type, and translates the abstract syntax into a simpler representation suitable for 

generating machine code or interpretation. This phase is characterized by the maintenance of symbol tables (also 

called an environment), mapping identifiers to their types and locations. As the declarations of variables, type 

expressions, and expressions are processed, these identifiers are bound to meanings in the symbol tables. When 

uses of identifiers are found, they are looked up in the symbol tables. 

 

 

Figure 3 OCL Types 
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 Types 

OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy 

determines the relation between different types from the OCL’s type system.  In OCL, a number of basic types 

are predefined and available to the modeller at all times. These predefined value types are independent of any 

object model and part of the definition of OCL. The basic types are Boolean, Integer, Real and String. OCL also 

contains collection types: Collection(T), Bag(T), OrderedSet(T), Sequence(T), and Set(T) where T is a type. The 

OCL type hierarchy that we used is specified in Figure 3. Differences between this hierarchy and the one from 

the OCL standard specification are explored in a following section.  

 Bridge 

Due to the fact that the OCL language is tied to UML, the OCL model specified in [16] can be divided into 

two sets of elements: 

1) Those that define the OCL concepts. 

2) Those that refer to concepts from the UML metamodel. 

The concepts from 1) we further divide into those relating to OCL’s static semantics (e.g. OCL types) and 

those dealing with OCL’s dynamic semantics (e.g. OCL values).  

The classes from 2) are distinguished in the standard [16] by the fact that they come from various packages in 

the UML metamodel and they are coloured white as opposed to grey.  

We choose to implement the interaction between the semantic analyser and the UML model by using a bridge 

to separate the abstractions and the implementations of the model dependent actions. We redefine classes from 2) 

to be members of a single package named bridge. They keep the same names as before, but should be considered 

to map to the classes from the UML model, rather than directly being classes from the UML model. 

 

Figure 4 Bridge 

This approach offers the following advantages: 
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• The implementation of an abstraction can be configured or changed at run-time. 

• The abstraction and implementation hierarchies can be extended independently. 

• The clients can be shielded from implementation details. 

As a result, the portability of the OCL processor to different modelling frameworks and tools has increased. 

The classes in the bridge package (Figure 4) are those that must be supported by any model over which it is 

wished to interpret OCL expressions. These classes collectively provide the contextual information that enables 

an OCL expression to be evaluated. They easily map to classes from the UML 1.X metamodel as that is the 

model for which OCL was originally designed. However, we have successfully mapped the classes to the 

metamodel for Java and to the ECore Metamodel associated with IBM’s Eclipse Modelling Framework [11]. We 

see no problems mapping the classes to the UML 2.0 metamodel or MOF metamodels as and when their 

specifications are finalised. 

The operations and properties on the classes are those used within the disambiguating rules and the definition 

of the operations on the Environment class included in the OCL 2.0 standard.  

The following subsections discuss the issues relative to each of our three bridge implementations. Each of 

these bridge implementations provides support for the Enumeration, Namespace, Operation and Property classes. 

The implementation of the other bridge classes is common to each of these three, and we suspect common to 

most bridge implementations. 

OCL for KMF 

KMF version 2.0 is based on the UML1.4 metamodel. KMF uses a UML 1.4 XMI file to build a model 

implementation; it is this implementation that we wish to use as the user model for our OCL expressions. In 

order to get the correct type information, irrespective of the model implementation details, the KMF bridge 

implementation gets all of its information from the same XMI file used to store the model information and 

generate the Java code which implements the model. 

The file is use to populate an implementation of the UML 1.4 metamodel, which is used as the underlying 

implementation of the bridge classes. 

    11 



OCL for EMF 

 

Figure 5 ECore model (taken from EMF overview) 

The Eclipse Modelling Framework (EMF) is IBM’s version of a similar tool to KMF; to quote the overview 

of EMF: 

“EMF is a Java framework and code generation facility for building tools and other applications 

based on a structured model. For those of you that have bought into the idea of object-oriented 

modeling, EMF helps you rapidly turn your models into efficient, correct, and easily customizable 

Java code.” 

EMF code generation is based on a metamodel called ECore (Figure 5); as you can see, there are similarities 

between this and the UML metamodel. The java code generated by EMF carries with it all the information from 

the defined model (unlike KMF), i.e. it is possible to access an instance of an ECore class from each object 

instantiating a user model class. Thus the implementation of the bridge classes is achieved by forwarding calls to 

the appropriate ECore classes. 

The similarities between the ECore model and the UML metamodel mean that there are no difficulties in 

providing a bridge implementation. The only issue is the use of collection classes. EMF makes use of an EList 

implementation and extension of java.util.List for all types of collection. This class has an isUnique property to 

enable a distinction between collections with Set like properties and those without. There is no distinct difference 

made between Sequences and Bags or between Sets and OrderedSets – all collections are ordered; however, this 

has not proved to cause problems in building the bridge, but it must be born in mind that one will always get a 

Sequence or OrderedSet when getting collection properties from a user model. 

OCL for Java 

The most problematic bridge implementation is the one for Java. Java does not provide an explicit mechanism 

for creating enumerations; it does not provide typed collection classes; and its notion of a package does not 

match the UML package concept. The reflective capabilities of java have proved essential to forming our bridge 

implementation. 
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Enumerations 

We identify an enumeration in one of two ways. Either by looking up the enumeration in a pre instantiated list 

of enumerations, or by testing if the class extends java.util.Enumeration. This is a slight misuse of the 

java.util.Enumeration class, but it provides a nice solution to the problem. Such enumerations are assumed to be 

implemented with each enumeration literal being a static member of the enumeration class and an instance of 

that class. 

Namespaces 

The problem with a namespace is that java packages are separately identified by their full package name. 

Although appearing to support the notion of sub-packages, the java reflection features do not hold this sub-

package relationship. Hence, to lookup an owned element of a namespace by name, we first try and find a java 

class with the element name plus full path name of the current namespace; if that fails, we assume the name is a 

sub-namespace, create the appropriate sub-namespace object, and return the sub-namespace. This is not 

necessarily the best approach, but seems to work in most situations. 

Operations 

We simply use reflection to get the java signature of an operation and convert this to the correct representation 

as a bridge class. 

Properties 

We assume standard java get/set methods are implemented for each property. The bridge implementation 

simply capitalises the name of the property, adds a “get” prefix, and use the same reflective process as for an 

operation with no arguments. 

Typed Collections 

To construct the correct OCL typed collection type for property types and operation return types, it is 

necessary to get extra information about the type of the collection. Java collections do not carry this information. 

We provide two options; one is to pre-instantiate a list mapping properties and operation names to java classes 

that are the collection element types; another is to add a static final field named with the name of the 

property/operation + “_elementType” whose type is the element type of the collection, when a property or 

operation has a collection as its return type. Reflection operations are used to look up this field when needed. 

 Type-checking 

According to [16] the type conformance rules for types in the class diagram are simple: 

• Type conformance is reflexive: Type1 conforms to Type1 

• Type conformance is antisymmetric: if Type1 conforms to Type2 and Type2 conforms to Type1 then 

Type1 is identical to Type2 

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3, then 

Type1 conforms to Type3 
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• Each type conforms to each of its supertypes 

• Integer conforms to Real 

• The types Set(T), Bag(T), OrderedSet(T), Sequence(T) and Set(T) are all subtypes of Collection(T) 

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2 

In order to implement the type-checking process, the abstract syntax tree is augmented with new attributes to 

allow the computation of expression types and type conformance checking: 

• Synthesized attributes. Each node from the abstract syntax tree has one inherited attribute called 

type, which holds the type of that expression. 

• Inherited attributes. Each production rule has one inherited attribute called env (short for 

environment), which holds a list of names that are visible from the expression. All names are 

references to elements in the model. In fact, env is a name space environment for the expression or 

expression part denoted by the current node.  

Type checking can be done in several ways. We decided to use the visitor pattern over the abstract syntax 

tree, which was built by the previous phase. The type-checking visitor scans bottom-up the augmented tree and 

computes the type attribute for each node using predefined rules and the env attribute. 

This approach increases the values for the following software quality attributes: 

• Understandability: better understanding of the logical concepts and the way they apply; 

• Learnability: faster learning of the application 

• Analysability: reduces the effort required to diagnose the failures and crash causes; reduces the 

effort to identify the parts that must be changed in case of a failure 

• Changeability: reducing the effort required to modify the source code 

• Testability: reducing the effort to validate the software 

• Reusability: increases the reusability of the code  

4 Synthesis 

This sections contains the descriptions of the standard library, code generation and interpretation.  

4.1 Standard Library  

In order to support the evaluation of OCL expressions, we provided a library, which contains OCL values: 

strings, numbers, model elements, enumerations etc. These classes were extracted from [13] selecting all the 

features that are related to the OCL’s dynamic semantics.  

4.2  Code Generation and Interpretation 

The semantics of OCL seem to be well defined and we have had few issues regarding the implementation of 

the evaluation and code generation processes. Both processes are implemented as visitors over the semantic 

model. 

As an example, for the OCL expression  

 
context library::Library inv: self.books->asSequence()->first().author 
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the following Java code is generated or interpreted using reflection: 

 
   try { 
    // Call property 'books' 
    OclSet t17 = StdLibAdapterImpl.INSTANCE.Set(self.getBooks()); 
    // Call operation 'asSequence' 
    OclSequence t16 = (OclSequence)t17.asSequence(); 
    // Call operation 'first' 
    library.Book t15 = (library.Book)t16.first(); 
    // Call property 'author' 
    library.Author t14 = (library.Author)t15.getAuthor(); 
    // return result 
    if (t14 != null) return t14; 
    else return StdLibAdapterImpl.INSTANCE.Undefined(); 
   } catch (Exception e) { 
    return StdLibAdapterImpl.INSTANCE.Undefined(); 
   } 
 

5 OCL Issues 

Annex E contains some observation regarding the way OCL was designed and specified in [16]. The 

observations are both at a syntactic and a semantic level. 

 

6 Related Work 

There are many CASE tools supporting the drawing of UML diagrams and features like code generation and 

reversing engineering. However, support for OCL and transformation and mappings between models is rarely 

found in these tools. There are several tasks that a CASE tool should provide in order to provide support for 

OCL. For example, syntax analysis of OCL construction and a precise mechanism for reporting syntactical 

errors, help in writing syntactically correct OCL statements. The next step could be a semantic analyzer, which 

should report as many errors as possible in order to help the user to develop solid OCL code. If the tool provides 

both an interpreter and a compiler, the user has the possibility to choose the best approach in order to obtain high 

quality software. 

Probably the first available tool for OCL was a parser developed by the OCL authors at IBM, now maintained 

at Klasse Objecten. The parser uses the grammar described in [16]. Another toolset was developed at TU 

Dresden [7]. A part of this tool has been integrated with the open source CASE Tool Argo [4]. [10] contains a 

description of an OCL interpreter. It is based partly on an OCL meta-model describing the abstract syntax of 

OCL. [15] also provides a good implementation for OCL. 

 

7 Conclusions 

We have been experimenting with implementations of the OCL since it was first added to the UML. It is our 

opinion that the language is invaluable as part of the OMG modelling environment however we feel that it is 

imperative that the language be implemented as part of the standardization process in order to avoid the 

ambiguities and inconsistencies we have discovered. 
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Our experience has illustrated many areas in which the standard requires improvement and we have provided 

ideas to address some of these improvements. In particular we suggest the need for a reference implementation 

of language in order to improve the definitions included in the standard. 

7.1 Unsupported Concepts 

Our implementation currently does not fully support the following constructs 

- ^ and ^^ hasSent and message Operators 

- contexts, other than inv: 

- OclState, OclMessage types 

@pre 
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Annex A. Grammar Specification Rules 

Grammar specification is done using the following rules: 

1) Left hand-side and right hand-side are separated by symbol →. 

2) Each production ends with a dot. 

3) Terminal symbols are written using capital letter or delimited by apostrophes.  

4) The following shortcuts are permitted:  

SHORTCUT MEANING 

 x → α ( β ) γ . x → α Y γ . Y → β . 

 x → α [ β ] γ . x → α γ | α ( β ) γ . 

 x → α u + γ . x → α Y γ . Y → u | u Y . 

 x → α u * γ . x → α Y γ . Y → u | u Y | λ . 

 x → α || a. x → α ( a α ) * . 

where α, β and γ strings over the language alphabet, Y is a symbol which does not appear elsewhere in the 

specification, u is either a unique symbol or an expression delimited by parentheses, and a is a terminal symbol. 
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Annex B. Flex Input 

// Usercode Section 
package uk.ac.kent.cs.ocl20.syntax.parser; 
import java_cup.runtime.*; 
import uk.ac.kent.cs.kmf.util.*; 
       
%%   
// Options Sections 
%unicode 
%cup 
%line 
%column 
    
// Declarations Section 
%{ 
  // Debug flag 
  public static boolean lexDebug = false; 
  protected void debug(int type) { 
    if (lexDebug) { 
       log.reportMessage( 
          yyline+":"+yycolumn+" Token "+type+" '"+yytext()+"'");     
    } 
  } 
  // Output log 
  protected ILog log; 
  public void setLog(ILog log) { 
    this.log = log; 
  } 
   
  // Create a new Symbol with information about the current token 
    protected Symbol symbol(int type) { 
      debug(type); 
      return new Symbol(type, yyline, yycolumn, new String(yytext())); 
    } 
    protected Symbol symbol(int type, Object value) { 
      debug(type); 
      return new Symbol(type, yyline, yycolumn, value); 
    } 
%} 
    
%eofval{ 
  return symbol(sym.EOF); 
%eofval} 
 
 
// Macro declarations 
lineTerminator     = \r|\n|\r\n|\n\r 
whiteSpace         = [ \t\f\n\r] 
comment        = {paragraphComment} | {lineComment} 
paragraphComment  = "/*" ~"*/" 
lineComment      = "--" ~{lineTerminator} 
 
lowerCase      = [a-z] 
upperCase      = [A-Z] 
digit        = [0-9] 
letter        = {lowerCase} | {upperCase} | [_] 
alpha        = {letter} | {digit} 
integer        = {digit}+ 
real        = {integer}"\."{integer}[eE][+-]?{integer} |  
     {integer}[eE][+-]?{integer} | {integer}"\."{integer}  
string        = "'" ~"'"    
simpleName      = {letter}{alpha}* 
 
%% 
// Lexical Rules Section  
    
<YYINITIAL> {   
  {whiteSpace}    { /* just skip what was found, do nothing */ }    
  {comment}      { /* just skip what was found, do nothing */ }    
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  ".."         { return symbol(sym.DOT_DOT); } 
  "::"         { return symbol(sym.COLON_COLON); } 
  "^^"         { return symbol(sym.UP_UP); } 
  "."          { return symbol(sym.DOT); } 
  ":"          { return symbol(sym.COLON); } 
  "^"          { return symbol(sym.UP); } 
 
  "("          { return symbol(sym.LEFT_PAR); } 
  "["          { return symbol(sym.LEFT_BRK); } 
  "{"          { return symbol(sym.LEFT_BRA); } 
  ")"          { return symbol(sym.RIGHT_PAR); } 
  "]"          { return symbol(sym.RIGHT_BRK); } 
  "}"          { return symbol(sym.RIGHT_BRA); } 
   
  ","          { return symbol(sym.COMMA); } 
  ";"          { return symbol(sym.SEMICOLON); } 
  "|"          { return symbol(sym.BAR); } 
  "@"          { return symbol(sym.AT); } 
  "?"          { return symbol(sym.QUESTION); } 
 
  "="          { return symbol(sym.EQ); } 
  "<>"         { return symbol(sym.NE); } 
 
  "<="         { return symbol(sym.LE); } 
  ">="         { return symbol(sym.GE); } 
  "<"          { return symbol(sym.LT); } 
  ">"          { return symbol(sym.GT); } 
 
  "+"          { return symbol(sym.PLUS); } 
  "->"         { return symbol(sym.MINUS_GT); } 
  "-"          { return symbol(sym.MINUS); } 
 
  "*"          { return symbol(sym.TIMES); } 
  "/"          { return symbol(sym.DIVIDE); } 
 
  "package"       { return symbol(sym.PACKAGE); } 
  "endpackage"    { return symbol(sym.ENDPACKAGE); } 
  "context"       { return symbol(sym.CONTEXT); } 
  "init"          { return symbol(sym.INIT); } 
  "derive"        { return symbol(sym.DERIVE); } 
  "inv"           { return symbol(sym.INV); } 
  "def"           { return symbol(sym.DEF); } 
  "pre"           { return symbol(sym.PRE); } 
  "post"          { return symbol(sym.POST); } 
  "body"          { return symbol(sym.BODY); } 
 
  "Set"           { return symbol(sym.SET); } 
  "Bag"           { return symbol(sym.BAG); } 
  "Sequence"      { return symbol(sym.SEQUENCE); } 
  "Collection"    { return symbol(sym.COLLECTION); } 
  "OrderedSet"    { return symbol(sym.ORDERED_SET); } 
  "TupleType"     { return symbol(sym.TUPLE_TYPE); } 
  "Tuple"         { return symbol(sym.TUPLE); } 
 
  "if"            { return symbol(sym.IF); } 
  "then"          { return symbol(sym.THEN); } 
  "else"          { return symbol(sym.ELSE); } 
  "endif"         { return symbol(sym.ENDIF); } 
 
  "let"          { return symbol(sym.LET); } 
  "in"           { return symbol(sym.IN); } 
  "iterate"      { return symbol(sym.ITERATE); } 
 
  "implies"      { return symbol(sym.IMPLIES); } 
  "and"          { return symbol(sym.AND); } 
  "or"           { return symbol(sym.OR); } 
  "xor"          { return symbol(sym.XOR); } 
  "not"          { return symbol(sym.NOT); } 
  "true"         { return symbol(sym.TRUE); } 
  "false"        { return symbol(sym.FALSE); } 
 
  "div"          { return symbol(sym.INT_DIVIDE); } 
  "mod"          { return symbol(sym.INT_MOD); } 
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  {real}         { return symbol(sym.REAL); } 
  {integer}      { return symbol(sym.INTEGER); } 
   
  {simpleName}   { return symbol(sym.SIMPLE_NAME); } 
  {string}       { return symbol(sym.STRING); } 
} 
 
[^]              { log.reportError("Illegal character '"+yytext()+"'"); 
            return symbol(sym.BAD);} 
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Annex C. OCL Syntax Model 

 

 

Figure 6 Syntax contexts 

 

 

 

Figure 7 Expressions 
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Figure 8 Primary Expressions 

 

 

 

Figure 9 Selection, Call, and Loop Expressions 
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Figure 10 Logical Expressions 

 

Figure 11 If, Let, Message Expressions 

 

Figure 12 Types 
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Annex D. SDTS to Build the AST 

This section contains the description of the SDTS which is being use to build ASTs from OCL inputs. The 

SDTS is described using the rules from Annex A and the following extra rules: 

5) Semantic actions are identified using % followed by a number. 

6) Semantic rule identifiers are local to a production.  

7) The place in which a semantic action is invoked is described by inserting the rule in the right hand 

side of a production. 

8) The body of a semantic action is described after the production, using Java code. 
 
packageDeclaration →  PACKAGE pathName:path contextDeclList:contextDecls ENDPACKAGE %1 

| 
            contextDeclList:contextDecls %2 . 
%1 = { 
// Create a PackageDeclaration 
 RESULT = factory.buildPackageDeclaration(path, contextDecls); 
} 
%2 = { 
 // Create a PackageDeclaration 

RESULT = factory.buildPackageDeclaration(new Vector(), contextDecls); 
} 
        
contextDeclList → % 1 
      | 
      contextDeclList:list contextDeclaration:contextDecl %2. 
%1 = { 
 // Create a LIST 
 RESULT = new Vector();  
} 
%2 = { 
 // Add element to list 
 RESULT = list; 
 RESULT.add(contextDecl); 
:} 
 
contextDeclaration → propertyContextDecl:contextDecl %1 
   | 
   classifierContextDecl:contextDecl %2 
   | 
   operationContextDecl:contextDecl %3 . 
%1 = { 
 // Copy rule 
 RESULT = contextDecl; 
} 
%2 = { 
// Copy rule 
 RESULT = contextDecl; 
:} 
%3 = {: 
 // Copy rule 
 RESULT = contextDecl; 
:} 
 
propertyContextDecl → CONTEXT pathName:path simpleName:name COLON type:type 
initOrDerValue:constraints %1 . 
%1 = {: 
 // Create PropertyContextDecl 

RESULT = factory.buildPropertyContextDeclaration(path, name, type, constraints); 
:} 
 
initOrDerValue    →  INIT COLON oclExpression:exp %1 
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   | 
   DERIVE COLON oclExpression:exp %2 
   | 
   initOrDerValue:list INIT COLON oclExpression:exp %3 
   | 
   initOrDerValue:list DERIVE COLON oclExpression:exp %4 . 
%1 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.INIT, "", exp, null)); 
:} 
%2 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.DERIVE, "", exp, null)); 
:} 
%3 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.INIT, "", exp, null)); 
:} 
%4 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.DERIVE, "", exp, null)); 
:} 
 
classifierContextDecl → CONTEXT:loc pathName:path invOrDef:constraints %1 . 
%1 : {: 
 // Create a ClassifierContext 

RESULT = factory.buildClassifierContextDeclaration(path, constraints, new Symbol(0, 
locleft, locright)); 

:} 
 
invOrDef   →  INV simpleName:name COLON oclExpression:exp %1 
  | 
  INV COLON oclExpression:exp %2 
  | 
  DEF simpleName:name COLON defExpression:exp %3 
  | 
  DEF COLON defExpression:exp %4 
  |        
  invOrDef:list INV simpleName:name COLON oclExpression:exp %5 
  | 
  invOrDef:list INV COLON oclExpression:exp %6 
  | 
  invOrDef:list DEF simpleName:name COLON defExpression:exp %7 
  | 
  invOrDef:list DEF COLON defExpression:exp %8 . 
%1 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.INV, name, exp, null)); 
:} 
%2 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.INV, "", exp, null)); 
:} 
%3 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.DEF, name, 
(OclExpressionAS)exp[1], exp[0])); 

:} 
%4 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.DEF, "", 
(OclExpressionAS)exp[1], exp[0])); 

:} 
%5 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.INV, name, exp, null)); 
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:} 
%6 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.INV, "", exp, null)); 
:} 
%7 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.DEF, name, 
(OclExpressionAS)exp[1], exp[0])); 

:} 
%8 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.DEF, "", 
(OclExpressionAS)exp[1], exp[0])); 

:} 
 
defExpression → simpleName:name COLON type:type EQ oclExpression:exp %1  
   | 
   operation:oper EQ oclExpression:exp %2 . 
%1 = {: 
 // Create a container 
 VariableDeclarationAS var = new VariableDeclarationAS$Class(); 
 var.setName(name); 
 var.setType(type); 
 var.setInitExp(exp); 
 RESULT = new Object[] {var, exp}; 
:} 
%2 = {: 
 // Create a container 
 RESULT = new Object[] {oper, exp}; 
:} 
 
operationContextDecl → CONTEXT operation:oper prePostOrBodyDecl:list %1. 
%1 = {: 
 // Create OperationContextDecl 
 RESULT = factory.buildOperationContextDeclaration(oper, list); 
:} 
 
prePostOrBodyDecl  → PRE simpleName:name COLON oclExpression:exp %1 
   | 
   PRE COLON oclExpression:exp %2 
   | 
   POST simpleName:name COLON oclExpression:exp %3 
   | 
   POST COLON oclExpression:exp %4 
   | 
   BODY simpleName:name COLON oclExpression:exp %5 
   | 
   BODY COLON oclExpression:exp %6 
   | 
   prePostOrBodyDecl:list PRE simpleName:name COLON oclExpression:exp %7 
   | 
   prePostOrBodyDecl:list PRE COLON oclExpression:exp %8 
   | 
   prePostOrBodyDecl:list POST simpleName:name COLON oclExpression:exp %9 
   | 
   prePostOrBodyDecl:list POST COLON oclExpression:exp %10 
   | 
   prePostOrBodyDecl:list BODY simpleName:name COLON oclExpression:exp %11 
   | 
   prePostOrBodyDecl:list BODY COLON oclExpression:exp %12. 
%1 = {: 
 // Create a LIST and add constraint 
 // Create a constraint 

ConstraintAS cons = factory.buildConstraint(ConstraintKindAS$Class.PRE, name, exp, 
null); 

 // Create a list 
 RESULT = new Vector(); 
 RESULT.add(cons); 
:} 
%2 = {: 
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 RESULT = new Vector(); 
RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.PRE, "", exp, null)); 
:} 
%3 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.POST, name, exp, null)); 
:} 
%4 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.POST, "", exp, null)); 
:} 
%5 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.BODY, name, exp, null)); 
:} 
%6 = {: 
 // Create a LIST and add constraint 
 RESULT = new Vector(); 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.BODY, "", exp, null)); 
:} 
%7 = {: 
 // Add constraint to list 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.PRE, name, exp, null)); 
:} 
%8 = {: 
 // Create a constraint 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.PRE, "", exp, null)); 
:} 
%9 = {: 
 // Create a constraint 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.POST, name, exp, null)); 
:} 
%10 = {: 
 // Create a constraint 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.POST, "", exp, null)); 
:} 
%11 = {: 
 // Create a constraint 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.BODY, name, exp, null)); 
:} 
%12 = {: 
 // Create a constraint 
 RESULT = list; 

RESULT.add(factory.buildConstraint(ConstraintKindAS$Class.BODY, "", exp, null)); 
:} 
 
operation  →  pathName:path COLON_COLON simpleName:name  

LEFT_PAR variableDeclarationList:params RIGHT_PAR COLON type:type %1 
  | 
  pathName:path COLON_COLON simpleName:name 

LEFT_PAR variableDeclarationList:params RIGHT_PAR %2 
  | 
  pathName:path COLON_COLON simpleName:name 

LEFT_PAR RIGHT_PAR COLON type:type %3 
  | 
  pathName:path COLON_COLON simpleName:name LEFT_PAR RIGHT_PAR %4 
  | 
  simpleName:name  

LEFT_PAR variableDeclarationList:params RIGHT_PAR COLON type:type %5 
  | 
  simpleName:name LEFT_PAR variableDeclarationList:params RIGHT_PAR %6 
  | 
  simpleName:name LEFT_PAR RIGHT_PAR COLON type:type %7 
  | 
  simpleName:name LEFT_PAR RIGHT_PAR %8. 
%1 = {: 
 // Create an Operation 

    28 



 RESULT = factory.buildOperation(path, name, params, type); 
:} 
%2 = {: 
 // Create an Operation 
 RESULT = factory.buildOperation(path, name, params, null); 
:} 
%3 = {: 
 // Create an Operation 
 RESULT = factory.buildOperation(path, name, new Vector(), type); 
:} 
%4 = {: 
 // Create an Operation 
 RESULT = factory.buildOperation(path, name, new Vector(), null); 
:} 
%5 = {: 
 // Create an Operation 

RESULT = factory.buildOperation(new Vector(), name, params, type); 
:} 
%6 = {: 
 // Create an Operationn 

RESULT = factory.buildOperation(new Vector(), name, params, null); 
:} 
%7 = {: 
 // Create an Operationn 

RESULT = factory.buildOperation(new Vector(), name, new Vector(), type); 
:} 
%8 = {: 
 // Create an Operationn 

RESULT = factory.buildOperation(new Vector(), name, new Vector(), null); 
:} 
 
variableDeclarationList → variableDeclaration:var %1 
       | 
       variableDeclarationList:varList COMMA variableDeclaration:var %2. 
%1 = {: 
 // Create a List 
 RESULT = new Vector(); 
 RESULT.add(var); 
:} 
%2 = {: 
 // Append 'var' to 'varList'  
 RESULT = varList; 
 RESULT.add(var); 
:} 
 
variableDeclaration → simpleName:name COLON type:type EQ oclExpression:init %1 
   | 
   simpleName:name COLON type:type %2 
   | 
   simpleName:name EQ oclExpression:init %3 
   | 
   simpleName:name %4. 
%1 = {: 
 // Create a VariableDeclaration 
 RESULT = factory.buildVariableDeclaration(name, type, init); 
:} 
%2 = {: 
 // Create a VariableDeclaration 
 RESULT = factory.buildVariableDeclaration(name, type, null); 
:} 
%3 = {: 
 // Create a VariableDeclaration 
 RESULT = factory.buildVariableDeclaration(name, null, init); 
:} 
%4 = {: 
 // Create a VariableDeclaration 
 RESULT = factory.buildVariableDeclaration(name, null, null); 
:} 
 
type → pathName:path %1 
 | 
 collectionType:type %2 
 | 
 tupleType:type %3 . 
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 // Create PathNameType 
 RESULT = factory.buildPathNameType(path); 
:} 
%2 = {: 
 // Copy rule 
 RESULT = type; 
:} 
%3 = {: 
 // Copy rule 
 RESULT = type; 
:} 
       ; 
collectionType → collectionKind:kind LEFT_PAR type:elementType RIGHT_PAR %1 . 
%1 = {: 
 // Create CollectionType 
 RESULT = factory.buildCollectionType(kind, elementType); 
:} 
       ; 
tupleType → TUPLE_TYPE LEFT_PAR variableDeclarationList:varList RIGHT_PAR %2 
%1 = {: 
 // Create TupleType 
 RESULT = factory.buildTupleType(varList); 
:} 
 
oclExpression   → literalExp:exp %1 
   | 
   LEFT_PAR oclExpression:exp RIGHT_PAR %2 
   | 
   pathName:path isMarkedPre:isMarkedPre %3 
   | 
   oclExpression:exp DOT simpleName:simpleName isMarkedPre:isMarkedPre %4 
   | 
   oclExpression:exp MINUS_GT simpleName:simpleName %5 
   | 
   oclExpression:exp LEFT_PAR RIGHT_PAR %6 
   | 
   oclExpression:exp LEFT_PAR oclExpression:arg RIGHT_PAR %7 
   | 
   oclExpression:exp 

LEFT_PAR oclExpression:arg1 COMMA argumentList:list RIGHT_PAR %8 
   | 
   oclExpression:exp1  

LEFT_PAR oclExpression:nameExp COMMA variableDeclaration:var2 
BAR oclExpression:exp2 RIGHT_PAR %9 

   | 
   oclExpression:exp1 

LEFT_PAR oclExpression:nameExp COLON type:type COMMA 
variableDeclaration:var2 BAR oclExpression:exp2 RIGHT_PAR %10 

   | 
   oclExpression:exp1 

LEFT_PAR variableDeclaration:var1 BAR oclExpression:exp2 RIGHT_PAR %11 
    | 
   oclExpression:exp 

LEFT_BRK argumentList:arguments RIGHT_BRK isMarkedPre:isMarkedPre %12 
   | 
   oclExpression:exp1 MINUS_GT ITERATE 

LEFT_PAR variableDeclaration:var1 SEMICOLON variableDeclaration:var2 
BAR oclExpression:exp2 RIGHT_PAR %13 

   | 
   oclExpression:exp1 MINUS_GT ITERATE 

LEFT_PAR variableDeclaration:var2 BAR oclExpression:exp2 RIGHT_PAR %14 
   | 
   NOT oclExpression:opd %15 
   | 
   MINUS oclExpression:opd %16 
   %prec UMINUS 
   | 
   oclExpression:left TIMES oclExpression:right %17 
   | 
   oclExpression:left DIVIDE oclExpression:right %18 
   | 
   oclExpression:left INT_DIVIDE oclExpression:right %19 
   | 
   oclExpression:left INT_MOD oclExpression:right %20 
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   oclExpression:left PLUS oclExpression:right %21 
   | 
   oclExpression:left MINUS oclExpression:right %22 
   | 
   IF oclExpression:condition 

THEN oclExpression:thenExp ELSE oclExpression:elseExp ENDIF %23 
   | 
   oclExpression:left LT oclExpression:right %24 
   | 
   oclExpression:left GT oclExpression:right %25 
   | 
   oclExpression:left LE oclExpression:right %26 
   | 
   oclExpression:left GE oclExpression:right %27 
   |  
   oclExpression:left EQ oclExpression:right %28 
   | 
   oclExpression:left NE oclExpression:right %29 
   |   
   oclExpression:left AND oclExpression:right %30 
   | 
   oclExpression:left OR oclExpression:right %31 
   | 
   oclExpression:left XOR oclExpression:right %32 
   |   
   oclExpression:left IMPLIES oclExpression:right %33 
   | 
   LET variableDeclarationList:variables IN oclExpression:exp %34 
   | 
   oclExpression:target UP_UP simpleName:name 

LEFT_PAR oclMessageArgumentList:arguments RIGHT_PAR %35 
   | 
   oclExpression:target UP_UP simpleName:name LEFT_PAR RIGHT_PAR %36 
   | 
   oclExpression:target UP simpleName:name 

LEFT_PAR oclMessageArgumentList:arguments RIGHT_PAR %37 
     | 
     oclExpression:target UP simpleName:name LEFT_PAR RIGHT_PAR %38. 
%1 = {: 
 // Literal expression without enumLiteralExp 
 // Copy rule 
 RESULT = exp; 
:} 
%2 = {: 
 // Copy rule 
 RESULT = exp; 
:} 
%3 = {: 
 // Create PathNameExp 
 RESULT = factory.buildPathNameExp(path, isMarkedPre); 
:} 
%4 = {: 
 // Create DotSelectionExp 

RESULT = factory.buildDotSelectionExp(exp, simpleName, isMarkedPre); 
:} 
%5 = {: 
 // Create ArrowSelectionExp 
 RESULT = factory.buildArrowSelectionExp(exp, simpleName); 
:} 
%6 = {: 
 // Create OperationCallExp 
 RESULT = factory.buildOperationCallExp(exp, new Vector()); 
:} 
%7 = {: 
 // Create OperationCallExp 
 List args = new Vector(); 
 args.add(arg); 
 RESULT = factory.buildOperationCallExp(exp, args); 
:} 
%8 = {: 
 // Create OperationCallExp 
 List args = new Vector(); 
 args.add(arg1); 
 args.addAll(list); 
 RESULT = factory.buildOperationCallExp(exp, args); 
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:} 
%9 = {: 
 // Create first variable - check the name 

VariableDeclarationAS var1 = makeVariableDeclaration(nameExp, null, null, nameExpleft, 
nameExpright); 

 // Create IteratorCallExp 
 RESULT = factory.buildIteratorCallExp(exp1, var1, var2, exp2); 
:} 
%10 = {: 
 // Create first variable - check the name 

VariableDeclarationAS var1 = makeVariableDeclaration(nameExp, type, null, nameExpleft, 
nameExpright); 

 // Create IteratorCallExp 
 RESULT = factory.buildIteratorCallExp(exp1, var1, var2, exp2); 
:} 
%11 = {: 
 // Create IteratorCallExp 
 RESULT = factory.buildIteratorCallExp(exp1, var1, null, exp2); 
:} 
%12 = {: 
 // Create AssociationCallExp 

RESULT = factory.buildAssociationCallExp(exp, arguments, isMarkedPre); 
:} 
%13 = {: 
 // Create IterateExp 
 RESULT = factory.buildIterateExp(exp1, var1, var2, exp2); 
:} 
%14 = {: 
 // Create IterateExp 
 RESULT = factory.buildIterateExp(exp1, null, var2, exp2); 
:} 
%15 = {: 
 // Create NotExp 
 RESULT = factory.buildLogicalExp(sym.NOT, opd, null); 
:} 
%16 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("-", opd, null); 
:} 
%17 = {: 
 // Create an OperationCallExp 

RESULT = factory.buildOperationCallExp("*", left, right); 
:} 
%18 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("/", left, right); 
:} 
%19 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("div", left, right); 
:} 
%20 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("mod", left, right); 
:} 
%21 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("+", left, right); 
:} 
%22 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("-", left, right); 
:} 
%23 = {: 
 // Create IfExp 
 RESULT = factory.buildIfExp(condition, thenExp, elseExp); 
:} 
%24 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("<", left, right); 
:} 
%25 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp(">", left, right); 
:} 
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%26 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("<=", left, right); 
:} 
%27 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp(">=", left, right); 
:} 
%28 = {: 

// Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("=", left, right); 
:} 
%29 = {: 
 // Create an OperationCallExp 
 RESULT = factory.buildOperationCallExp("<>", left, right); 
:} 
%30 = {: 
 // Create AndExp 
 RESULT = factory.buildLogicalExp(sym.AND, left, right); 
:} 
%31 = {: 
 // Create OrExp 
 RESULT = factory.buildLogicalExp(sym.OR, left, right); 
:} 
%32 = {: 
 // Create OrExp 
 RESULT = factory.buildLogicalExp(sym.XOR, left, right); 
:} 
%33 = {: 
 // Create ImpliesExp 
 RESULT = factory.buildLogicalExp(sym.IMPLIES, left, right); 
:} 
%34 = {: 
 // Create LetExp 
 RESULT = factory.buildLetExp(variables, exp); 
:} 
%35 = {: 
 // Create OclMessageExpAS 

RESULT = factory.buildOclMessageExp(OclMessageKindAS$Class.UP_UP, target, name, 
arguments); 

:} 
%36 = {: 
 // Create OclMessageExpAS 

RESULT = factory.buildOclMessageExp(OclMessageKindAS$Class.UP_UP, target, name, new 
Vector()); 

:} 
%37 = {: 
 // Create OclMessageExp 

RESULT = factory.buildOclMessageExp(OclMessageKindAS$Class.UP, target, name, 
arguments); 

:} 
%38 = {: 
 // Create OclMessageExp 

RESULT = factory.buildOclMessageExp(OclMessageKindAS$Class.UP, target, name, new 
Vector()); 

:} 
 
argumentList → oclExpression:arg %1 
  | 
  argumentList:argList COMMA oclExpression:arg %2 . 
%1 = {: 
 // Create a List 
 List seq = new Vector(); 
 seq.add(arg); 
 RESULT = seq; 
:} 
%2 = {: 
 // Append 'arg' to 'argList'  
 RESULT = argList; 
 argList.add(arg); 
:} 
 
oclMessageArgumentList → oclMessageArgument:arg %1 
     | 
   oclMessageArgumentList:argList COMMA oclMessageArgument:arg %2 . 
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%1 = {: 
 // Create List 
 List seq = new Vector(); 
 seq.add(arg); 
 RESULT = seq; 
:} 
%2 = {:         
 // Append 'arg' to 'argList'  
 RESULT = argList; 
 argList.add(arg); 
:} 
      
oclMessageArgument → QUESTION %1  
   | 
   QUESTION COLON type:type %2 
   | 
   oclExpression:exp %3 . 
%1 = {: 
 // Create OclMessageArg 
 OclMessageArgAS arg = new OclMessageArgAS$Class(); 
 RESULT = arg; 
:} 
%2 = {: 
 // Create OclMessageArg 
 OclMessageArgAS arg = new OclMessageArgAS$Class(); 
 arg.setType(type); 
 RESULT = arg; 
:} 
%3 = {: 
 // Create OclMessageArg 
 RESULT = factory.buildOclMessageArg(exp); 
:} 
 
isMarkedPre → %1   

| 
  AT PRE %2 . 
%1 = {: 
 RESULT = new Boolean(false); 
:} 
%2 = {: 
 RESULT = new Boolean(true); 
:} 
      
literalExp → collectionLiteralExp:exp %1  
  | 
  tupleLiteralExp:exp %2 
  | 
  primitiveLiteralExp:exp %3 . 
%1 = {: 
 RESULT = exp; 
:} 
%2 = {: 
 RESULT = exp; 
:} 
%3 = {: 
 RESULT = exp; 
:} 
 
collectionLiteralExp → collectionKind:kind LEFT_BRA collectionLiteralParts:parts RIGHT_BRA%1 
   | 
   collectionKind:kind LEFT_BRA RIGHT_BRA %2 . 
%1 = {: 
 // Create CollectionLiteralExp 
 RESULT = factory.buildCollectionLiteralExp(kind, parts); 
:} 
%2 = {: 
// Create CollectionLiteralExp 
 RESULT = factory.buildCollectionLiteralExp(kind, new Vector()); 
:} 
 
collectionKind   → SET %1 
     | 
   BAG %2  
   | 
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   SEQUENCE %3 
   | 
   COLLECTION %4 
   | 
   ORDERED_SET %5 . 
%1 = {: 
 // Set kind to SET 
 RESULT = CollectionKindAS$Class.SET; 
:} 
%2 = {: 
 // Set kind to BAG 
 RESULT = CollectionKindAS$Class.BAG; 
:} 
%3 = {: 
 // Set kind to SEQUENCE 
 RESULT = CollectionKindAS$Class.SEQUENCE; 
:} 
%4 = {: 
 // Set kind to COLLECTION 
 RESULT = CollectionKindAS$Class.COLLECTION; 
:} 
%5 = {: 
 // Set kind to ORDERED_SET 
 RESULT = CollectionKindAS$Class.ORDERED_SET; 
:} 
 
collectionLiteralParts → collectionLiteralPart:colPart %1 
     | 
     collectionLiteralParts:seq COMMA collectionLiteralPart:colPart %2 . 
%1 = {: 
 // Create a List 
 List seq = new Vector(); 
 seq.add(colPart); 
 RESULT = seq; 
:} 
%2 = {: 
 // Add collPart to seq 
 RESULT = seq; 
 seq.add(colPart); 
:} 
 
collectionLiteralPart →   oclExpression:exp %1 
     | 
     collectionRange:range %2 . 
%1 = {: 
 // Create CollectionItem 
 RESULT = factory.buildCollectionItem(exp); 
:} 
%2 = {: 
 // Copy rule 
 RESULT = range; 
:} 
 
collectionRange → oclExpression:first DOT_DOT oclExpression:last %1 . 
%1 = {: 
 // Create CollectionRange 
 RESULT = factory.buildCollectionRange(first, last); 
:} 
 
tupleLiteralExp → TUPLE LEFT_BRA variableDeclarationList:seq RIGHT_BRA %1 . 
%1 = {: 
 // Create TupleLiteralExp 
 RESULT = factory.buildTupleLiteralExp(seq); 
:} 
 
primitiveLiteralExp → INTEGER:value %1 
   | 
   REAL:value %2 
   | 
   STRING:value %3 
   | 
   TRUE:value %4 
   | 
   FALSE:value %5. 
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%1 = {: 
 // Create IntegerLiteralExp 
 RESULT = factory.buildIntegerLiteralExp(value); 
:} 
%2 = {: 
 // Create RealLiteralExp 
 RESULT = factory.buildRealLiteralExp(value); 
:} 
%3 = {: 
 // Create StringLiteralExp 
 RESULT = factory.buildStringLiteralExp(value); 
:} 
%4 = {: 
 // Create BooleanLiteralExp 
 RESULT = factory.buildBooleanLiteralExp(value); 
:} 
%5 = {: 
 // Create BooleanLiteralExp 
 RESULT = factory.buildBooleanLiteralExp(value); 
:} 
 
 
pathname → simpleName:name %1 
     | 
     pathName:path COLON_COLON simpleName:name %2 . 
%1 = {: 
 // Create a 
 List seq = new Vector(); 
 seq.add(name); 
 RESULT = seq; 
:} 
%2 = {: 
 // Add name to path 
 RESULT = path; 
 path.add(name); 
:} 
 
simpleName → SIMPLE_NAME:value %1 . 
%1 = {: 
 RESULT = value; 
:} 
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Annex E. OCL issues 

Issue: General section to define OCL concepts 

Description: The specification should contain an introductory section 
containing definitions of the terms used in the specification and other 
notations that are used (e.g. well-formed expression, ill-formed 
expression, behaviour, undefined-behaviour etc.). 

Rationale: This will avoid ambiguities and provide a better specification 
of the OCL (see specifications for C++, Java, and C#).   

Issue: Virtual machine 

Description: The OCL 2.0 specification should be behaviour-oriented and not 
implementation-oriented (see section 4.3).  

Rationale: The idea of using OCL to describe itself is interesting from the 
research point of view, but unfortunately OCL is not a suitable 
metalanguage to define the meaning of other textual languages. We think 
that the best thing to do is to define a virtual machine and to describe 
the behaviour of the virtual machine using natural language. This technique 
was successfully used for languages like C, C++, Java, C#, and Prolog. We 
see no reasons why such a technique would fail for OCL. After all, OCL is 
less complex than modern programming language like C++, Java, or C#. 

A proper description and implementation of the OCL virtual machine will 
create all the conditions to have a language that is platform/tool 
independent.  

Issue: Set of characters  

Description: The OCL 2.0 specification should describe the set of 
characters allowed in the OCL constructions (e.g. Unicode or ASCII).  

Rationale: This will help implementers to solve an ambiguity and to produce 
portable implementations. Unicode will be in our opinion the best choice.  

Issue: Unspecified syntax and semantics for Integer, Real, and String 

Description: The specification does not describes the syntax of integer, 
real or string literals. Also, it does not contain the description of the 
allowed set of values. 

Rationale: Specifying the syntax and the semantics of basic types will 
increase the portability of OCL programs. In order to describe the 
semantics of basic types, the specification should describe the set of 
values, the allowed operations, and the standard used to perform the 
allowed operations. We think that, in order to optimize the computational 
process, it will be also useful to allow different types of integers and 
reals, like Integer(16), Integer(32), Integer(64), Real(32), and Real(64). 
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Issue: Keywords 

Description: OCL 2.0 uses keywords (e.g. and, or, xor, implies etc.) that 
cannot be used elsewhere. 

Rationale: This means that these names cannot be used to identify 
properties, classes, or packages. There are two options to solve this 
problem: either UML 2.0 specifies the names that cannot be used to denote 
model elements or the OCL concept of keywords has to be revised.  

Issue: Comments 

Description: OCL 2.0 comments start with -- 

Rationale: This means that an expression like –-4 cannot be interpreted as 
an arithmetic expression without inserting at least one space between the 
first – and the second -. I think that this problem can be resolved if the 
OCL comments start with // instead of --.    

Issue: Operator precedence 

Description: Section 4.3.2 does not specify precedence for operators like 
div, mod, ^^, or ^. 

Rationale: In order to provide a platform-independent implementation the 
operator precedence must be very precise. We think that logical operators 
should be organized on different levels of precedence: 

 ‘not’ 

‘and’ 

‘or’ 

‘xor’ 

‘implies’  

Issue: Grammar of OCL 

Description: The grammar presented in 4.3, which is our opinion a semantic 
grammar, is not suitable to describe the syntax of OCL. 

Rationale: Introducing non-terminals like primary-expression, selection-
expression, and operation-call-expression will solve all the problems and 
will reduce the number of ambiguities. Hence, the grammar contained in the 
specification will suffer fewer changes in order to be used to design and 
implement a deterministic parser. This is the case of the specifications 
for C, C++, Java, C#, and Prolog.  

Issue: Abstract syntax tree 

Description: Some of the elements presented in 3.3.10 (e.g. EnumLiteralExp, 
children of ModelPropertyCallExp) cannot be constructed without using 
semantic information (e.g. the type of the expression determines if a name 
denotes an attribute, an association end, or an operation).  

Rationale: Usually a parser produces an AST. The semantic analyser augments 
the AST by computing for each node from AST the values of the attached 
attributes. The semantic analysis also checks if there are static semantics 
errors and reports them. Using other terms in the AST and hence other non-
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terminals in 4.5 (e.g. dot-selection-expression, arrow-selection-
expression, call-expression etc.) will solve this problem. 

Issue: Attributes and Association Ends versus Properties 

Description: The submission uses the terms of Attributes and Association 
Ends, which are no longer used in UML 2.0. 

Rationale: In order to align OCL 2.0 and UML 2.0 specifications we think 
that the expression package should look like: 

  

We also think that the OCL grammar should be rewritten accordingly. 

Issue: oclIUndefined() versus isEmpty() 

Description: OCL offers two choices to test if a value is undefined or not: 
isEmpty and oclIsUndefined. 

Rationale: Most of the modern programming languages contain null values. 
The best OCL mapping for null value is the undefined value. Using isEmpty 
to test if a value is null/undefined is confusing: 

* the result of property->isEmpty() must be true if the value of the         
property is null/undefined 

* the result of  Set{1/0}->isEmpty() must be false 

because the expression property->isEmpty() is converted according to the 
OCL specification to Set{property}->empty() 

These situations are a source of errors and confusion at the implementation 
level. We think that isEmpty() should be used only to test if a collection 
is empty or not; the null/undefined values should be tested using 
ocIslUndefined. This operation should be also valid on collections. This 
approach will also work nice and clear for nested collections. On the other 
hand we don’t think that () should not be optional, if the called operation 
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has no arguments. This is feature specific to old languages like TAL and 
Pascal, while in modern languages like C, C++ the meaning of f and f() is 
different. 

Issue: OclType 

Description: OclType should disappear from the OCL type hierarchy. 

Rationale: OclType should be only present in the standard library to 
support values for the type expression used in functions like oclAsType(), 
oclIsKindOf(), and oclIsTypeOf(). 

Issue: OclModelElement 

Description: The object OclModelElement object should be removed from the 
standard library, while OclModelElementType should remain in OCL type 
hierarchy. 

Rationale: It implies a useless level of wrapping for the model objects. 

Issue: Syntax of Operation Call, Iterator, and Iterate Expressions 

Description: Syntax for the above constructions is extremely ambiguous and 
it might involve backtracking.  

Rationale: According to OCL specification 

 * self.f(x, y) 

 * Set{1,2,3}->select(x, y| x+y = 3) 

 * Set{1,2,3,4,5,6}->iterate(x; acc:Integer=0 | acc + x)  

describes an operation call, an iterator, and an iterate expression. 

In order to make the distinction between an iterator call and an operation 
call we need in this case a three token lookahead, starting from x. The 
problem gets even more complicated if we consider that an argument for an 
operation call can be an expression. 

In order to solve this problem, which is a potential source of problems for 
the implementation (error-prone, inefficiency etc), we think that these OCL 
constructs should contain some extra syntax markers. There are several 
choices: 

* change the comma marker from iterator calls to something else, maybe a 
semicolon 

* add a syntax marker to an iterator name 

* do not allow the default types  

Each of the above choices will allow to a deterministic parser to deal with 
the enumerated problems more efficiently. We would prefer the third because 
it will solved the above problem and because we do not agree with textual 
language in which variables are given a default type according to the 
context in which they are used, especially if these languages are designed 
for industrial use. The same problems were in the previous versions of C 
standard, which allowed implicit type int for variables in constructions, 
as in 

      x; 

The latest C standard states that variables with default type are not 
allowed. 

    40 



Issue: Parsing Tuple Types and Collection Types as Arguments 

Description: One issue we have discovered is about expressions of the form: 
expr.oclAsTypeOf( Type ) The OCL standard does not support Type as a 
collection or tuple type. 

Rationale: We think that the syntax should be extended to support 
collection and tuple types. This will make the language more symmetric and 
increase the expressiveness of the language. 

Issue: OclAny operations of tuples and collections 

Description: The OCL specification does not allow operations like = or <> 
to be performed tuple values. It also forbids operations like oclIsKindOf 
and oclIsTypeOf on collections. 

Rationale: Add such operations to tuple and collection types signatures 
directly or by inheritance, will make the language more powerful (e.g. a 
set of dogs can be conveted to a set of animals). 

Issue: Signature of Environment 

Description: The specification (in the standard) of the Environment class 
is missing a few things that are used or referred to elsewhere in the 
standard; some are missing altogether and some are missing from the class 
diagram: 

The association from an environment to its parent. 

The operations lookupImplicitSourceForOperation, lookupPathName, 
addEnvironment 

Rationale: We show a more complete specification below. We also add a 
convenience method addVariableDeclaration; although not necessary as 
addElement can be used to add a VariableDeclaration, this operation avoids 
the need to construct the VariableDeclaration before adding it to the 
environment. 

The specification of the Environment operations uses various methods on the 
bridge classes; we have added these operations to the classes, as shown in 
the previous section about the bridge classes. 

 

 

 

    41 


	Introduction/Motivation
	Implementation Structure
	Analysis
	Lexical Analysis
	Defining the basic symbols
	Error handling
	Lexical Analyser Construction

	Syntax Analysis
	Choosing the grammar type and the parser generator
	Rationale for Using ASTs
	Designing the Semantic Actions

	Semantic Analysis
	Types
	Bridge
	OCL for KMF
	OCL for EMF
	OCL for Java
	Enumerations
	Namespaces
	Operations
	Properties
	Typed Collections


	Type-checking


	Synthesis
	Standard Library
	Code Generation and Interpretation

	OCL Issues
	Related Work
	Conclusions
	Unsupported Concepts


