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Abstract OCL 2.0 is the newest version of the OMG’s constraint language to accompany their suit of Object
Oriented modelling languages. The use of OCL as an accompanying constraint and query language for
modelling with these languages is essential. As tools are built to support the modelling languages, it is also
necessary to implement the OCL. This paper reports our experience of implementing OCL based on the latest
version of the OMG’s OCL standard, UML models and MDA [17] techniques supported by the Kent
Modelling Framework (KMF) [12], developed at the University of Kent. We provide an efficient LALR
grammar for parsing the language and describe an architecture that enables the language to be bridged to any
other modelling framework or tool. We also provide both syntactic and semantic models, which were used as
inputs for KMFStudio [12] in order to generate Java code. In addition we give feedback on problems and

ambiguities discovered in the standard, with some suggested solutions.

1 Introduction/Motivation

The Object Constraint Language (OCL) [16] is a textual language, especially designed for use in the context of
diagrammatic languages such as the UML. OCL was added to UML, as it turned out a visual diagram-based
language is limited in its expressiveness. For instance, although the UML is powerful and covers many important
situations, it is often not sufficient to describe certain important constraints. Using natural language on the one
hand introduces ambiguities, due to freedom of interpretation and on the other hand there are no tools capable to
cope with its complexity.

Hence, the Object Constraint Language was introduced as a textual add-on to the diagrams to cover the above
aims. OCL is deeply connected to UML diagrams, as it is used as a textual addendum within the diagrams, e.g.
to define pre- and post- conditions, invariants, or transition guards, but it also uses the elements defined in the
UML diagram, such as classes, methods, and attributes.

The prime motivation of this work has been to provide support for OCL constraint checking over populations
from a variety of models. This work has been done under the Kent Modelling Framework [12] project at the
University of Kent, involving both the RWD [18] and DSE4DS [6] projects. Integration with the Eclipse

framework was also supported by a grant from IBM.
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2 Implementation Structure

The task of a translator is to transform a program written in one language, called the source language, into an
equivalent program written in another language, called the target language. In order to achieve this goal, a
translator must first determine and understand the structure and meaning of the source program, and then
generate the equivalent representation using concepts from the target language. The first phase is called analysis
and the second synthesis. Afterwards, the resulting program is executed on the target virtual machine, either
executing the generated code or interpreting the generated representation.

The OCL implementation presented in this paper follows this typical structure of a language processor,
consisting of an initial analysis phase, providing afterwards two options for execution: code generation or

interpretation. This structure is described in Figure 1.
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Figure 1 Implementation Structure

The analyser generates an internal description of the semantics of the input text, according to the information
contained in the UML model. We chose to represent the semantics of the input using a classic augmented
Abstract Syntax Tree (AST). The Translator to Java and the Interpreter use the internal representation of the
semantics in order to perform the corresponding task: generation of executable code and evaluation. Framework
and modelling tools details are implemented using a model description, a bridge, and an implementation adapter.
This approach increases the portability of the implementation.

Each of these stages has involved different problems relating to the specification contained in the OCL

standard. We discuss each stage separately in the following sections.



3 Analysis

In order to analysis the input text, a translator must perform the following three steps:
1) Lexical Analysis: the input program is broken into basic symbols or tokens
2) Syntax Analysis: construct the phrase structure of the program
3) Semantic Analysis: compute the meaning of the program
Our implementation follows this approach. The structure of our analyser, including the dataflow and the

dependencies between the modules, is presented in Figure 2.
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Figure 2 Structure of the analyser

3.1 Lexical Analysis

The lexical analyser transforms the source program, seen as a sequence of characters, into a sequence of symbols
with a semantic meaning. These symbols, together with their encoding, form the intermediate language
generated by the lexical analyser.

In order to separate the lexical analyses from the rest of the translator, the grammar G of the OCL language
was partitioned on two levels: the first level contains the OCL grammars, and the second level contains the sub-
grammars Gy, ..., Gy, associated to each token. The purpose of this partitioning operation is to allow the OCL
grammar G to describe the language using basic symbols. The language L(G) is obtained by replacing the
terminal symbols of grammar G with strings from L(G)), ..., L(G,).

According to [20], the construction of a lexical analyser should be done following the steps:

1) Define the basic symbols of OCL, partition the grammar of OCL and determine the rules

associated to the basic symbols.



2) Decide how the basic symbols will be recognized, extracted and represented.

3) Decide how to report the lexical errors.

4) Design and implement the finite state machine for each basic symbol, and then design the overall
finite state transducer.

5) Implement the lexical analyser.

Defining the basic symbols
After performing steps 1 and 2, we have obtained the grammars for the basic tokens: name, integer, string,
keyword, specialSign, and comment. The description of these grammars, according with the rules from Annex A,
is given below:
name - letter alpha* .
integer — digit+ .
real — integer ‘.’ integer .
real - integer [‘¢’ | ‘E’ ][‘+’ | *-°] integer
real - integer *.” integer [‘e’ | ‘E’][*+’ | *-‘] integer .
keyword —
‘package’ | ‘endpackage’ | ‘context’ | ‘init’ | ‘derive’ | ‘inv’ | ‘def” | ‘pre’ | ‘post’ | ‘body’ |
‘implies’ | ‘and’ | ‘or’ | ‘not’ | ‘true’ | ‘false’ | “xor’ |
‘div’ | ‘mod’ |
‘Collection’ | ‘Bag’ | “Set’ | ‘Sequence’ | ‘OrderedSet’ | ‘TupleType’ | ‘Type’ |
‘if” | “then’ | ‘else’ | ‘endif” |
‘let’ | “in’ | ‘iterate’ .
specialSign —

3 7|‘.,5|‘,,‘

SO 2 B A O A O R

13 a“,a|c|’|c@7‘u)7|

> > .

[ ‘ > | =’ | = | ‘< | >0 |
a+"4c|4*’|a/"49|c>’|

CANA? | CA .

comment — lineComment | paragraphComment .

lineComment — ‘-“’-° (any character except a line terminator)* lineTerminator .
paragraphComment — ‘/*’ (any character sequence except the sequence */) “*/° .
lineTerminator — ‘\r’ | “\n’ | ‘\r\n’ | "\n\r’ .

whiteSpace — \t* | \ | “\n” | \r” .
letter - ‘a’|...|‘2” |‘A’|...| 2| .
digit — ‘0’ |... ‘9.

alpha — letter | digit .



Beside the above grammar we have to specify the set of allowed characters. We consider that the

allowed set of characters in OCL is the Unicode set.

Error handling

Every time a lexical error occurs, the lexical analyser will pass a message to the Error Manager, which is
responsible for reporting errors (see Figure 2). The error manager considers the following cases:
e Input contains an illegal character
* A lexical rules is broken
If the input string contains an illegal character, the lexical analyser removes the illegal character from the
input and invokes the error manager in order to report an error and returns a bad token to the context. If a lexical
rule is broken, the lexical analyser invokes the error manager in order to report an error and returns a bad token

to the context.

Lexical Analyser Construction

Usually there are two possibilities to implement the lexical analyser:
e Write the code by hand
e Use a lexical analyser generator
Our OCL implementation uses a lexical analyser generator. Usually the lexical analyser is either standalone or
integrated into a parser. For reasons that we will explain latter, we decide to use JFlex, a lexical analyzer

generator for Java. The input for JFlex is specified in Annex B.

3.2 Syntax Analysis

Firstly, a syntax analyser must recognize whether the input program belongs to the language of a grammar.
Secondly, it must represent the input program in order to provide accurate information to later phases, like the
semantic analysis.

In order to build a syntax analyser for a given language, one must follow the steps:

e Write an ambiguous grammar for language, usually a LL(1) or LALR(1) grammar.
e  Build the corresponding parser, manually or by using a parser generator.
¢ Choose the intermediate language to represent the structure of the input

¢ Design the semantic actions to build the internal representation of a given source program

Choosing the grammar type and the parser generator

We decided to use a LALR(1) grammar for several reasons:
e The weakness of LL(k) parsing techniques is that they must predict which production to use, having

seen only the first k tokens of the right-hand side.



e As LR(k) parsing technique is more powerful, it is able to postpone the decision until it has seen
input tokens corresponding to the entire right-hand side of the production in question (and k more
input tokens beyond).

* Any reasonable programming language has a LALR(1) grammar, and there are many parser-
generator tools available for LALR(1) grammar.

e For this reason LALR(1) has become a standard for programming languages and for automatic parser

generators e.g. Flex/CUP and SableCC.

The LR grammar of OCL, which uses OCL tokens as terminal symbols, is described below according to the

rules from Annex A:

packageDecl arati on - 'package' pathNane contextDecl Li st 'endpackage'.
packageDecl arati on - context Decl Li st

cont ext Decl Li st - context Decl arati on*

cont ext Decl aration — propertyContext Decl

cont ext Decl arati on - classifierContextDecl

cont ext Decl aration - operationCont ext Decl

propertycontext' Decl - 'context' pathNane sinpleNane ':' type initO DerVal ue+ .
initOrDerValue - '"init' ':' ocl Expression | 'derive' ':' ocl Expression
classifiercontext'Decl - 'context' pathNanme invOr Def+ .

invOrDef - 'inv' [sinpleNane] ':' ocl Expression .

invOrDef - 'def' [sinpleNane] ':' def Expression .
def Expression - sinpleNane ':' type '='" ocl Expression .
def Expression - operation '=" ocl Expression .

operation' context' Decl - 'context' operation prePost O BodyDecl + .
prePost OrBodyDecl - 'pre' [sinpleNane] ':' ocl Expression .

prePost OrBodyDecl - 'post' [sinpleNanme] ':' ocl Expression .

prePost Or BodyDecl - 'body' [sinpleName] ':' ocl Expression .

operation - pathName ' (' [variableDeclarationList] '")' [':' type]

vari abl eDecl arati onLi st — variabl eDeclarationList (',' variableDeclaration)* .

vari abl eDecl aration - sinpleNanme [':' type] ['=" ocl Expression]
type - pathNanme | collectionType | tupleType .
collectionType - collectionKind ' (' type ')’
tupl eType - 'TupleType' '(' variableDeclarationList ")'
ocl Expression -
literal Exp |
'"(' ocl Expression ")' |
pat hNane isMarkedPre |
ocl Expressi on DOT sinpl eNanme i sMarkedPre |
ocl Expression '->'" sinpleNane |

ocl Expression ' (' ") |

ocl Expression ' (' ocl Expression ')' |

ocl Expression ' (' ocl Expression ',' argumentList ')' |

ocl Expression ' (' variabl eDeclaration '|' ocl Expression ')"' |

ocl Expression ' (' ocl Expression ',' variableDeclaration '|' ocl Expression ')"' |

ocl Expression ' (' ocl Expression ':' type ',"' variableDeclaration '|' ocl Expression ")’
ocl Expression '[' argunentList ']' isMarkedPre

ocl Expression '->" 'iterate' '(' variableDeclaration [';"' variableDeclaration] '|

ocl Expression ')

‘not' ocl Expression

'-' ocl Expression |
ocl Expression '*' ocl Expression
ocl Expression '/' ocl Expression
ocl Expression 'div' ocl Expression
ocl Expression 'nod' ocl Expression
ocl Expression '+ ocl Expression
ocl Expression -' ocl Expression
"if' ocl Expression 'then' ocl Expression 'else' ocl Expression 'endif’
ocl Expression '<' ocl Expression
ocl Expression '>'" ocl Expression
ocl Expression '<' ocl Expression
ocl Expression '<' ocl Expression
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ocl Expression ' =" ocl Expression |

ocl Expression '<>' ocl Expression |

ocl Expression 'and' ocl Expression |

ocl Expression 'or' ocl Expression |

ocl Expression ' xor' ocl Expression |

ocl Expression '"inplies' ocl Expression |

‘let' variabl eDeclarationList "in' ocl Expression |

ocl Expression ' sinpleNanme ' (' [ocl MessageArgunentList] ')' |
ocl Expression '~ sinpleNane ' (' [ocl MessageArgunentlList] ')'

argunent Li st - ocl Expression (',"' ocl Expression)* .
ocl MessageArgunment Li st - ocl MessageArgunment (',' ocl MessageArgunent)* .
ocl MessageArgunment - ocl Expression | "?" [':' type]

i sMarkedPre - ['@ 'pre']

literal Exp - collectionLiteral Exp .

literal Exp — tupleLiteral Exp .

literal Exp - primtiveliteral Exp .

collectionLiteral Exp - collectionKind '{' collectionLiteral Parts '}"
collectionLiteral Exp - collectionKind '{' '}’

collectionKind - 'Set' | 'Bag' | 'Sequence' | 'Collection' | 'OrderedSet'.
collectionLiteral Parts - collectionLiteralPart ('," collectionLiteral Part)*
collectionLiteral Part — ocl Expression | collectionRange .

col l ecti onRange - ocl Expression '..' ocl Expression .

tupleLiteral Exp - 'Tuple' '{' variabl eDeclarationList '}'
primtiveLiteral Exp - integer

primtiveLiteral Exp - real

primtivelLiteral Exp — string .

primtiveLiteral Exp - 'true'

primtivelLiteral Exp - 'false'

pat hNane - sinpleNane .

pathNane - pathNane '::' sinpleNane .

Rationale for Using ASTs

As programming languages become more and more complex, one-pass compilers, which do not produce any
intermediate form of the compiled code, are becoming very rare. This is also true in the area of program
understanding and software engineering [19]. This has led to a variety of intermediate representations of the
syntactic structure of source code.

[13] contains a survey of common program representations, such as Abstract Syntax Trees (AST), Directed
Acyclic Graphs (DAG), Prolog rules, code and concepts object, and control and data flow graphs. Among these,
the AST is the representation that is most advantageous, and is most widely used by software developers. The
reason for the popularity of the AST as a program representation scheme is its ability to capture all the necessary
information for performing any operations with respect to data flow and control flow source code properties.

To justify the AST representation, we need to distinguish between a parse tree, or derivation tree, and an AST.
A parser explicitly or implicitly uses a parse tree to represent the structure of the source program [2]. An AST is
a compressed representation of the parse tree where the operators appear as nodes, and operands of the operator
are the children of the node representing the operator.

In Annex C we present the syntax model of OCL using UML diagrams.

Designing the Semantic Actions
Formal mechanisms used to describe the translation from one language to another are based on the following
basic idea: the information contained in a syntax construction is specified by using attributes attached to grammar

symbols, and the values for these attributes are computed using semantic rules attached to grammar rules.



There are two notations to attach the semantic rules to grammar rules: Syntax Driven Definitions (SDD) and
Syntax Driven Translation Scheme (SDTS). The definitions are high-level specifications of the translation. They hide
a lot of the implementation details and do not specify the order in which the semantic rules should be executed. The
translation schemes specify the order in which the semantic rules should be evaluated, therefore contain more details
about the implementation.

The STDS, which has been used to translate an OCL string into instances of elements from the OCL syntax
model, is described in Annex D. The translation scheme was designed so that it can be used as input for CUP, a

parser generator for Java that works with JFlex.

3.3 Semantic Analysis

The semantic analysis phase of our implementation connects variable definitions to their uses, checks that
each expression has a correct type, and translates the abstract syntax into a simpler representation suitable for
generating machine code or interpretation. This phase is characterized by the maintenance of symbol tables (also
called an environment), mapping identifiers to their types and locations. As the declarations of variables, type
expressions, and expressions are processed, these identifiers are bound to meanings in the symbol tables. When

uses of identifiers are found, they are looked up in the symbol tables.
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Figure 3 OCL Types



Types

OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy
determines the relation between different types from the OCL’s type system. In OCL, a number of basic types
are predefined and available to the modeller at all times. These predefined value types are independent of any
object model and part of the definition of OCL. The basic types are Boolean, Integer, Real and String. OCL also
contains collection types: Collection(T), Bag(T), OrderedSet(T), Sequence(T), and Set(T) where T is a type. The
OCL type hierarchy that we used is specified in Figure 3. Differences between this hierarchy and the one from

the OCL standard specification are explored in a following section.

Bridge
Due to the fact that the OCL language is tied to UML, the OCL model specified in [16] can be divided into
two sets of elements:
1) Those that define the OCL concepts.
2) Those that refer to concepts from the UML metamodel.
The concepts from 1) we further divide into those relating to OCL’s static semantics (e.g. OCL types) and
those dealing with OCL’s dynamic semantics (e.g. OCL values).
The classes from 2) are distinguished in the standard [16] by the fact that they come from various packages in
the UML metamodel and they are coloured white as opposed to grey.
We choose to implement the interaction between the semantic analyser and the UML model by using a bridge
to separate the abstractions and the implementations of the model dependent actions. We redefine classes from 2)
to be members of a single package named bridge. They keep the same names as before, but should be considered

to map to the classes from the UML model, rather than directly being classes from the UML model.
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+zanfarmsTo(e:Classifier) : Classifier

il

DataType

EnumLiteral Enumeration OciModelElementType Primitive

literal

+lookupEnumLiteraliname:Sting) : EnumLiteral

Figure 4 Bridge
This approach offers the following advantages:
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e The implementation of an abstraction can be configured or changed at run-time.
e The abstraction and implementation hierarchies can be extended independently.
¢ The clients can be shielded from implementation details.
As a result, the portability of the OCL processor to different modelling frameworks and tools has increased.
The classes in the bridge package (Figure 4) are those that must be supported by any model over which it is
wished to interpret OCL expressions. These classes collectively provide the contextual information that enables
an OCL expression to be evaluated. They easily map to classes from the UML 1.X metamodel as that is the
model for which OCL was originally designed. However, we have successfully mapped the classes to the
metamodel for Java and to the ECore Metamodel associated with IBM’s Eclipse Modelling Framework [11]. We
see no problems mapping the classes to the UML 2.0 metamodel or MOF metamodels as and when their
specifications are finalised.
The operations and properties on the classes are those used within the disambiguating rules and the definition
of the operations on the Environment class included in the OCL 2.0 standard.
The following subsections discuss the issues relative to each of our three bridge implementations. Each of
these bridge implementations provides support for the Enumeration, Namespace, Operation and Property classes.
The implementation of the other bridge classes is common to each of these three, and we suspect common to

most bridge implementations.

OCL for KMF

KMF version 2.0 is based on the UML1.4 metamodel. KMF uses a UML 1.4 XMI file to build a model
implementation; it is this implementation that we wish to use as the user model for our OCL expressions. In
order to get the correct type information, irrespective of the model implementation details, the KMF bridge
implementation gets all of its information from the same XMI file used to store the model information and
generate the Java code which implements the model.

The file is use to populate an implementation of the UML 1.4 metamodel, which is used as the underlying

implementation of the bridge classes.
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OCL for EMF
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Figure 5 ECore model (taken from EMF overview)

The Eclipse Modelling Framework (EMF) is IBM’s version of a similar tool to KMF; to quote the overview
of EMF:

“EMF is a Java framework and code generation facility for building tools and other applications
based on a structured model. For those of you that have bought into the idea of object-oriented
modeling, EMF helps you rapidly turn your models into efficient, correct, and easily customizable
Java code.”

EMF code generation is based on a metamodel called ECore (Figure 5); as you can see, there are similarities
between this and the UML metamodel. The java code generated by EMF carries with it all the information from
the defined model (unlike KMF), i.e. it is possible to access an instance of an ECore class from each object
instantiating a user model class. Thus the implementation of the bridge classes is achieved by forwarding calls to
the appropriate ECore classes.

The similarities between the ECore model and the UML metamodel mean that there are no difficulties in
providing a bridge implementation. The only issue is the use of collection classes. EMF makes use of an EList
implementation and extension of java.util. List for all types of collection. This class has an isUnique property to
enable a distinction between collections with Set like properties and those without. There is no distinct difference
made between Sequences and Bags or between Sets and OrderedSets — all collections are ordered; however, this
has not proved to cause problems in building the bridge, but it must be born in mind that one will always get a

Sequence or OrderedSet when getting collection properties from a user model.

OCL for Java

The most problematic bridge implementation is the one for Java. Java does not provide an explicit mechanism
for creating enumerations; it does not provide typed collection classes; and its notion of a package does not
match the UML package concept. The reflective capabilities of java have proved essential to forming our bridge

implementation.
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Enumerations

We identify an enumeration in one of two ways. Either by looking up the enumeration in a pre instantiated list
of enumerations, or by testing if the class extends java.util. Enumeration. This is a slight misuse of the
Java.util. Enumeration class, but it provides a nice solution to the problem. Such enumerations are assumed to be
implemented with each enumeration literal being a static member of the enumeration class and an instance of

that class.

Namespaces

The problem with a namespace is that java packages are separately identified by their full package name.
Although appearing to support the notion of sub-packages, the java reflection features do not hold this sub-
package relationship. Hence, to lookup an owned element of a namespace by name, we first try and find a java
class with the element name plus full path name of the current namespace; if that fails, we assume the name is a
sub-namespace, create the appropriate sub-namespace object, and return the sub-namespace. This is not

necessarily the best approach, but seems to work in most situations.

Operations

We simply use reflection to get the java signature of an operation and convert this to the correct representation

as a bridge class.

Properties

We assume standard java get/set methods are implemented for each property. The bridge implementation
simply capitalises the name of the property, adds a “get” prefix, and use the same reflective process as for an

operation with no arguments.

Typed Collections

To construct the correct OCL typed collection type for property types and operation return types, it is
necessary to get extra information about the type of the collection. Java collections do not carry this information.
We provide two options; one is to pre-instantiate a list mapping properties and operation names to java classes
that are the collection element types; another is to add a static final field named with the name of the
property/operation + “_elementType” whose type is the element type of the collection, when a property or

operation has a collection as its return type. Reflection operations are used to look up this field when needed.

Type-checking
According to [16] the type conformance rules for types in the class diagram are simple:
¢ Type conformance is reflexive: Typel conforms to Typel
*  Type conformance is antisymmetric: if Typel conforms to Type2 and Type2 conforms to Typel then
Typel is identical to Type2
¢ Type conformance is transitive: if Typel conforms to Type2, and Type2 conforms to Type3, then

Typel conforms to Type3

13



Each type conforms to each of its supertypes

Integer conforms to Real

The types Set(T), Bag(T), OrderedSet(T), Sequence(T) and Set(T) are all subtypes of Collection(T)
Collection(Typel) conforms to Collection(Type2), when Typel conforms to Type2

In order to implement the type-checking process, the abstract syntax tree is augmented with new attributes to

allow the computation of expression types and type conformance checking:

Synthesized attributes. Each node from the abstract syntax tree has one inherited attribute called
type, which holds the type of that expression.

Inherited attributes. Each production rule has one inherited attribute called env (short for
environment), which holds a list of names that are visible from the expression. All names are
references to elements in the model. In fact, env is a name space environment for the expression or

expression part denoted by the current node.

Type checking can be done in several ways. We decided to use the visitor pattern over the abstract syntax

tree, which was built by the previous phase. The type-checking visitor scans bottom-up the augmented tree and

computes the #ype attribute for each node using predefined rules and the env attribute.

This approach increases the values for the following software quality attributes:

Understandability: better understanding of the logical concepts and the way they apply;
Learnability: faster learning of the application

Analysability: reduces the effort required to diagnose the failures and crash causes; reduces the
effort to identify the parts that must be changed in case of a failure

Changeability: reducing the effort required to modify the source code

Testability: reducing the effort to validate the software

Reusability: increases the reusability of the code

4 Synthesis

This sections contains the descriptions of the standard library, code generation and interpretation.

4.1 Standard Library

In order to support the evaluation of OCL expressions, we provided a library, which contains OCL values:

strings, numbers, model elements, enumerations etc. These classes were extracted from [13] selecting all the

features that are related to the OCL’s dynamic semantics.

4.2 Code Generation and Interpretation

The semantics of OCL seem to be well defined and we have had few issues regarding the implementation of

the evaluation and code generation processes. Both processes are implemented as visitors over the semantic

model.

As an example, for the OCL expression

14
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the following Java code is generated or interpreted using reflection:

try {
// Call property 'books'

Ccl Set t17 = StdLi bAdapter | mpl . | NSTANCE. Set (sel f. get Books());
/1 Call operation 'asSequence'
Ccl Sequence t16 = (COcl Sequence)t17. asSequence();
/1 Call operation 'first’
library.Book t15 = (library.Book)t16.first();
// Call property 'author'
library. Author t14 = (library. Author)t15. get Aut hor();
/1 return result
if (t14 '= null) return t14;
el se return StdLi bAdapter! npl .| NSTANCE. Undefi ned();
} catch (Exception e) {
return StdLi bAdapter!| nmpl .| NSTANCE. Undefi ned();
}

5 OCL Issues

Annex E contains some observation regarding the way OCL was designed and specified in [16]. The

observations are both at a syntactic and a semantic level.

6 Related Work

There are many CASE tools supporting the drawing of UML diagrams and features like code generation and
reversing engineering. However, support for OCL and transformation and mappings between models is rarely
found in these tools. There are several tasks that a CASE tool should provide in order to provide support for
OCL. For example, syntax analysis of OCL construction and a precise mechanism for reporting syntactical
errors, help in writing syntactically correct OCL statements. The next step could be a semantic analyzer, which
should report as many errors as possible in order to help the user to develop solid OCL code. If the tool provides
both an interpreter and a compiler, the user has the possibility to choose the best approach in order to obtain high
quality software.

Probably the first available tool for OCL was a parser developed by the OCL authors at IBM, now maintained
at Klasse Objecten. The parser uses the grammar described in [16]. Another toolset was developed at TU
Dresden [7]. A part of this tool has been integrated with the open source CASE Tool Argo [4]. [10] contains a
description of an OCL interpreter. It is based partly on an OCL meta-model describing the abstract syntax of
OCL. [15] also provides a good implementation for OCL.

7 Conclusions

We have been experimenting with implementations of the OCL since it was first added to the UML. It is our
opinion that the language is invaluable as part of the OMG modelling environment however we feel that it is
imperative that the language be implemented as part of the standardization process in order to avoid the

ambiguities and inconsistencies we have discovered.
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Our experience has illustrated many areas in which the standard requires improvement and we have provided

ideas to address some of these improvements. In particular we suggest the need for a reference implementation

of language in order to improve the definitions included in the standard.

7.1 Unsupported Concepts

Our implementation currently does not fully support the following constructs

@pre

~ and ™ hasSent and message Operators
contexts, other than inv:

OclState, OclMessage types
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Annex A. Grammar Specification Rules

Grammar specification is done using the following rules:

1)
2)
3)
4)

Left hand-side and right hand-side are separated by symbol —.
Each production ends with a dot.
Terminal symbols are written using capital letter or delimited by apostrophes.

The following shortcuts are permitted:

SHORTCUT MEANING

Xx->a(B)y. Xx->0aYYy.Y - B.

x - a[B]y. X - ayla(B)y.

X ->0u+ty. X-0YY.Y -ujuY.
X > 0u*y. X->0YY.Y >uluY]|A.
X - O a. X >0(aa)*.

where a, B and y strings over the language alphabet, Y is a symbol which does not appear elsewhere in the

specification, u is either a unique symbol or an expression delimited by parentheses, and a is a terminal symbol.
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Annex B. Flex Input

/] Usercode Section

package uk. ac. kent. cs. ocl 20. synt ax. par ser
i mport java_cup.runtine.*;

i mport uk.ac.kent.cs.knf.util.*;

%

/1 Options Sections
%uni code

Y%eup

% i ne

%ol um

/| Declarations Section
A

/1 Debug flag

public static bool ean | exDebug = fal se

protected void debug(int type) {

if (lexDebug) {
| 0g. report Message(
yyline+":"+yycol um+" Token "+type+" '"+yytext()+"'");

}

}

/1 Qutput |og

protected ILog |og

public void setLog(lLog log) {
this.log = log

}

/'l Create a new Synbol with infornmation about the current token
protected Synbol synbol (int type) {
debug(type);
return new Synbol (type, yyline, yycolum, new String(yytext()));

}
protected Synbol synbol (int type, Object value) {
debug(type);
return new Synbol (type, yyline, yycolum, value);
% }
%eof val {

return synbol (sym EOCF);
%eof val }

/1 Macro decl arations

I'i neTer m nat or = \r|\n/\r\nj\n\r

whi t eSpace = [ \t\f\n\r]

comment = {paragraphComent} | {IineConment}

par agraphComment = "/*" ~"*/"

| i neConment ="--" ~{lineTerm nator}

| oner Case = [a-Z2]

upper Case = [A-Z]

digit = [0-9]

letter = {lower Case} | {upperCase} | [_]

al pha = {letter} | {digit}

i nt eger = {digit}+

real = {integer}"\."{integer}[eE][+-]?{integer}
{integer}[eE][+-]?{integer} | {integer}"\

string = nemonn

si npl eNare = {letter}{al pha}*

%%

/1 Lexical Rules Section

<YYI NI TI AL> {
{whi t eSpace} { /* just skip what was found, do nothing */ }
{comment } { /* just skip what was found, do nothing */ }

19
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NeT

"e=m
" n

"y
"o

"k

o

"package"
"endpackage"
"cont ext"
"init"
"derive"
"inv"

“def"

"pre”

"post"
"body"

"Set"

"Bag"

" Sequence"
"Col | ection"
"OrderedSet"
"Tupl eType"
"Tupl e"

nin
"t hen"
"el se"
"endi f"

"l et
"
"iterate"

"inplies"
"and"
"or®
"xor"
"not"
"true"
"fal se"

"div"
" mod"
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return synbol (sym DOT_DOT); }

return

return synbol (sym UP_UP); }
return synbol (sym DOT); }
return synbol (sym COLON); }
return synbol (sym UP); }

return synbol (sym LEFT_PAR);
return synbol (sym LEFT_BRK) ;
return synbol (sym LEFT_BRA);
return synbol (sym Rl GHT_PAR) ;
return synbol (sym Rl GHT_BRK) ;
return synbol (sym Rl GHT_BRA) ;

return synbol (sym COWR) ; }
return synbol (sym SEM COLON) ;
return synbol (sym BAR); }
return synbol (sym AT); }
return synbol (sym QUESTI ON) ;

return synbol (sym EQ ;
return synmbol (sym NE) ;

return synbol (sym LE);

return synbol (symLT);

}
}
}
return synbol (sym GE); }
}
}

return synbol (sym GT);

return synbol (sym PLUS); }
return symbol (sym M NUS_GT) ;
return synbol (sym M NUS); }

return synbol (sym TI MES); }
return synbol (sym DI VIDE); }

e R Lan et Rat Ran Tan)

—_~—

L R Lan Yatn Non Ran Rae Raan Rat Raan)

e N Yan R Late Ran Tan)

e e Y tatn)

return synbol (sym PACKAGE)

}

}

}
}
}
}

}

}

synbol (sym COLON_COLQN) ;

}

}

}

return synbol (sym ENDPACKAGE) ;

return synbol (sym CONTEXT)
return synbol (symINT); }
return synbol (sym DERI VE);
return synbol (symINV); }
return synbol (sym DEF); }
return synbol (sym PRE); }
return synbol (sym POST); }
return synbol (sym BODY); }

return synbol (sym SET); }
return synbol (sym BAG ; }

return synbol (sym SEQUENCE) ;
return synbol (sym COLLECTI ON);
return synbol (sym ORDERED_SET) ;
return synbol (sym TUPLE_TYPE) ;

return synbol (sym TUPLE);

return synbol (symIF); }
return synbol (sym THEN); }
return synbol (sym ELSE); }
return synbol (sym ENDI F);

return synbol (sym LET); }
return synbol (symIN); }
return synbol (sym | TERATE);

return synbol (sym | MPLI ES);
return synbol (sym AND); }
return synbol (symOR); }
return synmbol (sym XOR); }
return synbol (sym NOT); }
return synbol (sym TRUE); }
return synbol (sym FALSE); }

}

}

}
}

}
}

return synbol (sym | NT_DI VI DE) ;

return synbol (sym | NT_MD) ;

}

}

}

}

}
}
}



{real} { return synbol (sym REAL); }
{integer} { return synbol (sym | NTEGER); }
{si mpl eNane} { return synbol (sym SI MPLE_NAME) ; }
{string} { return synbol (sym STRING ; }
}
[] { log.reportError("Illegal character '"+yytext()+"'");

return synbol (sym BAD); }
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Annex C. OCL Syntax Model

FackageDeclarationAS

+pathMame : List

+oontextbecls

0."

ContextbeclarationAs

ConstraintdS

+bodyE><pressio?

OclExprassionAs

0.7 |+name : String

+kind : ConstraintkindAS

-ishakiedPre : Boolean

+oonstraimre
\JJL\\ 0.1
+ihitExp
N
i FropertyContextDeclAS
ClassifierC ontexdleclAS QperationContexdbeclAS pelty - pe 1 Tyoed s
+pathMame : List +pathName : List
+name : String
1 LI}
+ype +ype
<¢enumeration: >
ConstraintiindAS Hdefariable 1
-INIT : ConstraintkindAsS +defOperation 0.1 a1
ADERIVES LonstraintKind s . i 1 0.7 | variableDeclarationag | !
-INV ; ConstraintKindAS toperation OperationAS
5 +name : String
-DEF : ConstraintkindAsS +pathMame : List 5
-PRE : Constraintiindas +name : String +parametars
-POST : ConstraintkindAS
-BO0Y : ConstraintkindAS
Figure 6 Syntax contexts
+parent ’7
Oc|ExpressionAs
-istatkedPre : Boolean
FrinaryExpAS SelectonExpAS CallExpAS LoopExpAS LogicalExpAS HExpAS LetExpaS OcliessageExpas

-name : String

+name : String
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Figure 7 Expressions

+name : String
+hind : OclMessagekindAS




<<enumerations>

CollectionKindAS

o a5t expressions)

+SET : CollectionKindAS

+BAG : CollectionKindAS
+SEQUENCE : CollectionkindAS
+COLLECTION : CollectionKindAS
+0ORDERED_SET : Collectionkind Al

FPrimanyExgA s
tom astexpressions)

BooleanliteralExpAS
tfom 2stexpressions)

+wvalue : Boolean

frowe 35t.examessions)

1

Primitiveliterz!ExpAS
frowe ast.expressions)

/_’F.A

IntegerLiteralExpAS
froar astexpressions)

+value : Intager

T~

TupleLiteralExpAs
Frowe 35t.examessions)

+HuptEra
T

RealliteralExp.

StringLiteralE:

froa 2stexpmressions)

+value : Double

+ualue : String

ifmir 35t enAesSOns) | gy sstoomtexts)

VariableDeclarationAS

+name : String

FathMameExpAS

+pathHame : List

frowe 35t.examessions)

CollectionLiteralExpAS

Frowe 35t.examessions)
+kind : CollectionKindAS

L : L3
T

CollectionliteralPadAS
frowe 3st.expmressions)

CollectionltemAS
o gat exoressions)

CollzctionRangeAs
frone 35t expressions)

+Hirst
.. OolExp +last
fone ast.expressions) [[Foq
p -ishdakedPre : Boolean g 4
+item
Figure 8 Primary Expressions
- Hequrce
OclExpressionAs
-isharkedPre : Booleanqhbady
+zource
+arguments
(H +source
Seleckion, AL
‘?‘D CallEXpAS LooaBxaAs
-name : String +name : String
DotSelectionExpAs ArronSelectionExpAs OperationCallExpAs AszociationCallExpAs IteratorExpas ItarateExpAs
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Figure 9 Selection, Call, and Loop Expressions




+rightOperand

Oc|ExpressionAs HleftOperand

-ishdakedFre : Boolean

LogicalExp AL

T

MotExpas

AndExpAS

OrExpAs HorExpAs

ImpliesExpAS

Figure 10 Logical Expressions

+expreszion
: 01
+elseExpression OclExpressionAS
+target
-ishakedFre : Boolean
+thenExprassian
in
+eon \i\ion V;\
LetExpAS OclheszageExphs St o
clhleszagesn
+name : String 0.7 Lo
HERpAS +hind : OclMessagekindAs
+arguments
+uariables 3
“ariableDeclarationAs
+name : String
Figure 11 If, Let, Message Expressions
TypeA s i
+element Ty
CollectionTypeAS i i
¥P Classifiaris TupleTypeaS - YariableDeclarationAs
+pathMame : List +name : String
+variableDec|aratomist
BagTypeAs SetTypeAs SequenceTypeAS OrderedSetTypass
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Annex D. SDTS to Build the AST

This section contains the description of the SDTS which is being use to build ASTs from OCL inputs. The
SDTS is described using the rules from Annex A and the following extra rules:
5) Semantic actions are identified using % followed by a number.
6) Semantic rule identifiers are local to a production.
7) The place in which a semantic action is invoked is described by inserting the rule in the right hand
side of a production.

8) The body of a semantic action is described after the production, using Java code.

packageDecl arati on - PACKAGE pat hNanme: pat h cont ext Decl Li st: cont ext Decl s ENDPACKACE %
I
cont ext Decl Li st: contextDecls 9% .
W = {
/1 Create a PackageDecl aration
RESULT = factory. bui |l dPackageDecl ar ati on(path, contextDecls);

}
”w = {

/'l Create a PackageDecl aration

RESULT = factory. buil dPackageDecl arati on(new Vector(), contextDecls);
}

contextDeclList - %1
|
cont ext Decl Li st:1ist contextDeclaration:contextDecl %.
%W = {
/!l Create a LIST
RESULT = new Vector();

}
R =
/1 Add element to |ist
RESULT = i st;
RESULT. add( cont ext Decl ) ;
)

context Decl aration - propertyContextDecl:contextDecl %
|

cl assi fi er Cont ext Decl : cont ext Decl %R

I
oper ati onCont ext Decl : cont ext Decl %3 .

W = {

/1 Copy rule

RESULT = cont ext Decl ;
}
w = {
/1 Copy rule

RESULT = cont ext Decl ;
'}
W = {:

/1 Copy rule

RESULT = cont ext Decl ;
'}

propertyCont ext Decl - CONTEXT pat hNane: pat h si npl eNane: nane COLON type:type
i ni tOrDerVal ue: constraints % .
u = {:
/1 Create PropertyContext Decl
RESULT = factory. buil dPropertyCont ext Decl arati on(path, nane, type, constraints);

i}
i ni tOrDerVal ue - I NI T COLON ocl Expression: exp %
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I
DERI VE COLON ocl Expressi on: exp %

I
initOrDerValue:list INIT COLON ocl Expressi on: exp %3

I
initOrDerValue:list DERIVE COLON ocl Expression: exp %t .

W = {:

/'l Create a LIST and add constraint

RESULT = new Vector();

RESULT. add(f act ory. bui | dConst rai nt (Constrai nt Ki ndAS$Cl ass. INIT, "", exp, null));
)
w = {:

/Il Create a LIST and add constraint

RESULT = new Vector();

RESULT. add(f act ory. bui | dConstr ai nt (Constr ai nt Ki ndAS$Cl ass. DERI VE, "", exp, null));
'}
W = {:

/1 Add constraint to |ist

RESULT = |ist;

RESULT. add(factory. bui |l dConstraint (ConstraintKindAS$Cl ass. INIT, "", exp, null));
)
% = {:

/1 Add constraint to |ist

RESULT = list;

RESULT. add(factory. bui | dConstrai nt (Constrai nt Ki ndAS$Cl ass. DERI VE, "", exp, null));
)

cl assifierContextDecl - CONTEXT:|oc pathNane:path invOrDef:constraints %1 .

W : {:
I/l Create a O assifierContext
RESULT = factory. buil dd assifi erContextDecl arati on(path, constraints, new Synbol (0,
locleft, locright));

)

i nvOr Def - I NV sinpl eNane: nane COLON ocl Expr essi on: exp %l

I
I NV COLON ocl Expression: exp %2

IDEF si npl eNanme: nane COLON def Expressi on: exp %3

IDEF COLON def Expr essi on: exp %

! nvOrDef:list I NV sinpleNane: nane COLON ocl Expressi on: exp %
! nvOrDef:list I NV COLON ocl Expressi on: exp %6

! nvOrDef:1ist DEF sinpl eNane: nanme COLON def Expressi on: exp %

|
invOrDef:list DEF COLON def Expression:exp 98 .

u = {:
/'l Create a LIST and add constraint
RESULT = new Vector();
RESULT. add( factory. bui | dConstrai nt (Constrai nt Ki ndAS$Cl ass. | NV, nane, exp, null));
i
w = {:
/'l Create a LIST and add constraint
RESULT = new Vector();
RESULT. add(f act ory. bui | dConst r ai nt (Const rai nt Ki ndAS$Cl ass. I NV, "", exp, null));
)
W = {:
/Il Create a LIST and add constraint
RESULT = new Vector();
RESULT. add(f act ory. bui | dConst r ai nt (Const r ai nt Ki ndAS$Cl ass. DEF, nane,
(Ccl Expressi onAS) exp[ 1], exp[0]));
)
% = {:
/'l Create a LIST and add constraint
RESULT = new Vector();
RESULT. add(factory. bui | dConstrai nt (Constrai nt Ki ndAS$Cl ass. DEF, "",
(Ccl Expressi onAS) exp[ 1], exp[0]));
)
% = {

' /1 Add constraint to |list
RESULT = i st;
RESULT. add(f act ory. bui | dConst r ai nt (Const r ai nt Ki ndAS$Cl ass. | NV, nane, exp, null));
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-}

% = {:
/1 Add constraint to |ist
RESULT = |ist;
RESULT. add(factory. bui | dConstrai nt (Constrai nt Ki ndAS$Cl ass. I NV, "", exp, null));
=
/1 Add constraint to |ist
RESULT = |ist;
RESULT. add(f act ory. bui | dConst r ai nt (Const r ai nt Ki ndAS$Cl ass. DEF, nane,
(Ccl Expressi onAS) exp[ 1], exp[0]));
)
W = {:
/1 Add constraint to |ist
RESULT = |ist;
RESULT. add(factory. bui | dConstrai nt (Constrai nt Ki ndAS$Cl ass. DEF, "*",
(Ccl Expressi onAS) exp[ 1], exp[0]));
'}
def Expression - si mpl eNane: name COLON type:type EQ ocl Expression: exp %
I
operation: oper EQ ocl Expression:exp % .
W =
/'l Create a container
Vari abl eDecl arati onAS var = new Vari abl eDecl ar ati onAS$C ass() ;
var. set Name( nane) ;
var. set Type(type);
var. set | ni t Exp(exp);
RESULT = new Object[] {var, exp};
/'l Create a container
RESULT = new Object[] {oper, exp};
'}
operati onCont ext Decl - CONTEXT operation: oper prePost OrBodyDecl:1ist 9%.
u = {:
/1 Create OperationContext Decl
RESULT = factory. buil dOperati onCont ext Decl arati on(oper, list);
'}

prePost Or BodyDecl - PRE sinpl eNane: nane COLON ocl Expr essi on: exp %

%
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|

PRE COLON ocl Expressi on: exp %

I

POST si npl eNane: nane COLON ocl Expressi on: exp %8

|
POST COLON ocl Expressi on: exp %4

I
BODY si npl eNane: nane COLON ocl Expressi on: exp %

|
BODY COLON ocl Expressi on: exp %6

I
prePost O BodyDecl : | i st PRE sinpl eName: name COLON ocl Expressi on: exp %

|

prePost Or BodyDecl : 1i st PRE COLON ocl Expressi on: exp %8

I

prePost Or BodyDecl : | i st POST si npl eNarme: name COLON ocl Expressi on: exp %9

|
prePost Or BodyDecl : 1i st POST COLON ocl Expressi on: exp %10

I
prePost Or BodyDecl : | i st BODY si npl eNane: name COLON ocl Expression: exp %1

|
prePost Or BodyDecl : 1i st BODY COLON ocl Expressi on: exp %12.

. /]l Create a LIST and add constraint

/'l Create a constraint

Constrai nt AS cons = factory. buil dConstrai nt (ConstraintKi ndAS$Cl ass. PRE, nane, exp,
null);

/]l Create a list

RESULT = new Vector();

RESULT. add( cons) ;

. /!l Create a LIST and add constraint



RESULT.

‘)
]

'}
%

“}
%

“}
%0

“}
%1

‘)
%4.2

)

RESULT = new Vector();

add(factory. bui |l dConstrai nt (Constrai nt Ki ndAS$Cl ass. PRE,

/] Create a LIST and add constraint
RESULT = new Vector();
RESULT. add(factory. buil dConstrai nt (Constr ai

/'l Create a LIST and add constraint
RESULT = new Vector();
RESULT. add(factory. bui | dConstrai nt ( Constr ai

/'l Create a LIST and add constraint
RESULT = new Vector();
RESULT. add( factory. bui | dConstrai nt (Constr ai

/'l Create a LIST and add constraint
RESULT = new Vector();
RESULT. add( f actory. bui | dConstrai nt (Constr ai

/1 Add constraint to |list
RESULT = i st;
RESULT. add(fact ory. bui |l dConstrai nt ( Constr ai

/] Create a constraint
RESULT = list;
RESULT. add(factory. bui |l dConstrai nt (Constr ai

/'l Create a constraint
RESULT = |ist;
RESULT. add(factory. bui | dConstrai nt (Constr ai

-// Create a constraint
RESULT = li st;
RESULT. add(factory. bui |l dConstrai nt (Constr ai

.// Create a constraint
RESULT = list;
RESULT. add(factory. bui |l dConstrai nt (Constr ai

/'l Create a constraint
RESULT = i st;
RESULT. add(factory. bui |l dConstrai nt ( Constr ai

nt Ki

nt Ki

nt Ki

nt Ki

nt Ki

nt Ki

nt Ki

nt Ki

nt Ki

nt Ki

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

ndAS$d ass.

operation - pathNanme: path COLON_COLON si npl eNane: nane
LEFT_PAR vari abl eDecl arati onLi st: parans Rl GHT_PAR COLON

%l

2

:{:

8

pat hNane: pat h COLON_COLON si npl eNane: nane
LEFT_PAR vari abl eDecl ar ati onLi st: parans Rl GHT_PAR %@

pat hNane: pat h COLON_COLON si npl eNane: nanme
LEFT_PAR RI GHT_PAR COLON type:type %3

exp,

POST,

POST,

BODY,

BODY,

PRE,

PRE,

POST,

POST,

BODY,

BODY,

null));

name, exp, null));

", exp, null));

nane, exp, null));

exp, null));

name, exp, null));

", exp, null));

nane, exp, null));

exp, null));

nane, exp, null));

", exp, null));

type:type %

pat hNane: pat h COLON_COLON si npl eNane: name LEFT_PAR RI GHT_PAR %t

si mpl eNane: nane

LEFT_PAR vari abl eDecl arati onLi st: parans Rl GHT_PAR COLON type:type %

si npl eNarme: name LEFT_PAR vari abl eDecl ar ati onLi st: paranms Rl GHT_PAR %%

si mpl eNane: name LEFT_PAR RI GHT_PAR COLON type:type %

si npl eNarme: name LEFT_PAR RI GHT_PAR 9%8.

/Il Create an Operation



RESULT = factory. buil dQperation(path, name, parans, type);

'}
w = {:

/1 Create an Operation

RESULT = factory. buil dQperation(path, name, parans, null);
'}
W = {

/1 Create an Operation

RESULT = factory. buil dQperation(path, name, new Vector(), type);
'}
% = {:

/1 Create an Operation

RESULT = factory. buil dQperation(path, name, new Vector(), null);
'}
% = {:

/1 Create an Operation

RESULT = factory. buil dOperati on(new Vector(), nane, parans, type);
'}
% = {:

/1 Create an QOperationn

RESULT = factory. buil dOperati on(new Vector(), nanme, parans, null);
'}
w = {:

/1 Create an Operationn

RESULT = factory. bui |l dOperation(new Vector(), name, new Vector(), type);
'}
mw = {:

/1 Create an Operationn

RESULT = factory. bui |l dOperation(new Vector(), name, new Vector(), null);
'}

vari abl eDecl arati onLi st - variabl eDecl arati on:var %

vari abl eDecl arati onLi st: varLi st COMWA vari abl eDecl arati on: var %.

W = {:
/'l Create a List
RESULT = new Vector();
RESULT. add(var);

o}

w = {:
/1 Append 'var' to 'varlList'
RESULT = varlList;
RESULT. add(var);

)

vari abl eDecl arati on - sinpleNanme: name COLON type:type EQ ocl Expression:init %

|
si npl eNare: nane COLON type:type %2

si npl eNare: name EQ ocl Expression:init 93

si npl eNarre: nane %t.

W = {:

// Create a Variabl eDecl aration

RESULT = factory. buil dVari abl eDecl aration(nane, type, init);
)
w = {

// Create a Variabl eDecl aration

RESULT = factory. buil dVari abl eDecl aration(nane, type, null);
)
W = {:

// Create a Variabl eDecl aration

RESULT = factory. buildVariabl eDecl aration(nane, null, init);
)
% = {:

/'l Create a Variabl eDecl aration

RESULT = factory. buildVari abl eDecl aration(nane, null, null);
)

type - pathNane: path %

|
col l ecti onType: type %R

I
tupl eType:type 93 .



/1 Create Pat hNameType
RESULT = factory. bui | dPat hNameType( pat h) ;

S}
w = {:
/1 Copy rule
RESULT = type,;
S}
W = {:
/1 Copy rule
RESULT = type,;
o}

col l ectionType - collectionKind: kind LEFT_PAR type: el ement Type Rl GHT_PAR % .
W = {:

/] Create CollectionType

RESULT = factory. buildCol |l ecti onType(kind, el enentType);
)

tupl eType — TUPLE_TYPE LEFT_PAR vari abl eDecl arati onLi st: varLi st Rl GHT_PAR %2
W = {:

/1 Create Tupl eType

RESULT = factory. buil dTupl eType(varList);
'}

ocl Expr essi on - literal Exp:exp %

|

LEFT_PAR ocl Expressi on: exp Rl GHT_PAR %

I

pat hNane: pat h i sMarkedPre: i sMarkedPre 93

|

ocl Expr essi on: exp DOT si npl eNane: si npl eNane i sMar kedPre: i sMarkedPre %}
I

ocl Expression: exp M NUS_GT si npl eNane: si npl eNane %

|

ocl Expr essi on: exp LEFT_PAR RI GHT_PAR %6

I

ocl Expressi on: exp LEFT_PAR ocl Expression:arg Rl GHT_PAR %

|

ocl Expr essi on: exp

LEFT_PAR ocl Expression: argl COMVA argunentList:list Rl GHT_PAR %8

|

ocl Expr essi on: expl

LEFT_PAR ocl Expr essi on: naneExp COWA vari abl eDecl arati on: var 2

BAR ocl Expressi on: exp2 Rl GHT_PAR %9

I

ocl Expr essi on: expl

LEFT_PAR ocl Expr essi on: naneExp COLON type:type COMVA

vari abl eDecl arati on: var2 BAR ocl Expressi on: exp2 Rl GHT_PAR %0

I

ocl Expr essi on: expl

LEFT_PAR vari abl eDecl aration: var1l BAR ocl Expressi on: exp2 Rl GHT_PAR %1
I

ocl Expr essi on: exp

LEFT_BRK ar gunent Li st: argunments Rl GHT_BRK i sivar kedPre: i sMarkedPre %42
|

ocl Expressi on: expl M NUS_GT | TERATE

LEFT_PAR vari abl eDecl aration: var1l SEM COLON vari abl eDecl arati on: var 2
BAR ocl Expressi on: exp2 Rl GHT_PAR %13

|

ocl Expressi on: expl M NUS_GT | TERATE

LEFT_PAR vari abl eDecl arati on: var2 BAR ocl Expressi on: exp2 Rl GHT_PAR %4

|
NOT ocl Expressi on: opd %15

IVI NUS ocl Expressi on: opd %46
%rec UM NUS
|ocI Expression:left TIMES ocl Expression:right %7
!)cl Expression:left DI VIDE ocl Expression:right %8
|ocI Expression:left |NT_DI VIDE ocl Expression:right %9
IocI Expression:left | NT_MOD ocl Expression:right %0
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%
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ocl Expression:left PLUS ocl Expression:right %1

I
ocl Expression:left M NUS ocl Expression:right %22

| F ocl Expression: condition

THEN ocl Expr essi on: t henExp ELSE ocl Expressi on: el seExp ENDI F %23
|ocl Expression:left LT ocl Expression:right %24

!)cl Expression:left GI ocl Expression:right %5

|ocl Expression:left LE ocl Expression:right 926

!)cl Expression:left CGE ocl Expression:right 927

|ocl Expression:left EQ ocl Expression:right 928

!)cl Expression:left NE ocl Expression:right %9

|ocl Expression:left AND ocl Expression:right %30

Iocl Expression:left OR ocl Expression:right %31

Iocl Expression:left XOR ocl Expression:right %32

|ocl Expression:left | MPLI ES ocl Expression:right %33

I_Er vari abl eDecl arati onLi st: vari abl es I N ocl Expressi on: exp %34
|ocl Expression: target UP_UP si npl eNane: nane

LEFT_PAR ocl MessageAr gurment Li st: arguments Rl GHT_PAR 935

|ocl Expression:target UP_UP sinpl eNane: nane LEFT_PAR RI GHT_PAR %36
!)cl Expression:target UP sinpl eNanme: name

LEFT_PAR ocl MessageAr gunment Li st: argunments Rl GHT_PAR 937

|
ocl Expression:target UP sinpl eNane: name LEFT_PAR Rl GHT_PAR %38.

/1 Literal expression w thout enuniiteral Exp

/1 Copy rule
RESULT = exp;

. /1 Copy rule

RESULT = exp;

- /'l Create Pat hNameExp

RESULT = factory. buil dPat hNanmeExp(path, isMarkedPre);

. /1 Create Dot Sel ecti onExp

RESULT = factory. buil dDot Sel ecti onExp(exp, sinpleNane, isMarkedPre);

. /1 Create ArrowSel ectionExp

RESULT = factory. buil dArrowSel ecti onExp(exp, sinpl eNane);

. /1 Create OperationCall Exp

RESULT = factory. buil dOperationCal | Exp(exp, new Vector());

. /1 Create OperationCall Exp

Li st args = new Vector();
args. add(arg);
RESULT = factory. buil dOperationCal | Exp(exp, args);

' /'l Create OperationCall Exp

Li st args = new Vector();

args. add(argl);

args. addAl I (1ist);

RESULT = factory. buil dOperati onCal | Exp(exp, args);



'}
%40

“}
%1

“}
%2
‘)
%3

‘)
%4

‘)
%5
‘)
%46

‘)
%7

“}
%48
“}
%49

“}
%20

°}
%21

-}

w2 = {

-}

%3 = {

'}
w4 = {
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%5 = {

I/l Create first variable - check the nane

Vari abl eDecl arati onAS var1l = makeVari abl eDecl arati on( nameExp, null, null,
naneExpri ght);

/'l Create lteratorCall Exp

RESULT = factory. buildlteratorCall Exp(expl, varl, var2, exp2);

/Il Create first variable - check the nane

Vari abl eDecl arati onAS varl = makeVari abl eDecl ar ati on( nameExp, type, null,
naneExpri ght);

/Il Create IteratorCallExp

RESULT = factory.buildlteratorCall Exp(expl, varl, var2, exp2);

/Il Create IteratorCallExp
RESULT = factory. buildlteratorCall Exp(expl, varl, null, exp2);

'// Create AssociationCal | Exp
RESULT = factory. buil dAssoci ati onCal | Exp(exp, argunents, isMarkedPre);

/1 Create |terateExp
RESULT = factory. buildlterateExp(expl, varl, var2, exp2);

.// Create |terateExp
RESULT = factory. buildlterateExp(expl, null, var2, exp2);

.// Creat e Not Exp
RESULT = factory. buil dLogi cal Exp(sym NOT, opd, null);

.// Create an OperationCal |l Exp
RESULT = factory. buil dOperationCal |l Exp("-", opd, null);

{:
/'l Create an OperationCall Exp

RESULT = factory. buil dQperationCall Exp("*", left, right);

.// Create an OperationCal | Exp
RESULT = factory. buildQperationCall Exp("/", left, right);

-// Create an OperationCal | Exp
RESULT = factory. buil dQperationCal |l Exp("div", left, right);

{:
/1 Create an OperationCall Exp

RESULT = factory. buil dOperationCal |l Exp("nmod", left, right);

.// Create an OperationCal | Exp
RESULT = factory. buil dQperationCal |l Exp("+", left, right);

.// Create an OperationCal | Exp
RESULT = factory. buil dQperationCall Exp("-", left, right);

.// Create |fExp
RESULT = factory. buildlfExp(condition, thenExp, elseExp);

.// Create an OperationCal | Exp
RESULT = factory. buil dQOperationCal |l Exp("<", left, right);

-// Create an OperationCall Exp
RESULT = factory. buil dOperationCall Exp(">", left, right);

naneExpl ef t,

nameExpl ef t,



we = {:
/'l Create an OperationCall Exp

RESULT = factory. buildOperationCal | Exp("<=", left, right);
'}
w7 = {:
/'l Create an OperationCall Exp
RESULT = factory. buildOperationCal | Exp(">=", left, right);
-}
w8 = {:
/'l Create an OperationCall Exp
RESULT = factory. buil dQOperationCal |l Exp("=", left, right);
'}
w9 = {:
/'l Create an OperationCall Exp
RESULT = factory. buildOperationCal | Exp("<>", left, right);
'}
w80 = {:
/1 Create AndExp
RESULT = factory. buil dLogi cal Exp(sym AND, left, right);
-}
w1 = {:
/1l Create O Exp
RESULT = factory. buil dLogi cal Exp(sym OR, left, right);
-}
w82 = {:
/1l Create O Exp
RESULT = factory. buil dLogi cal Exp(sym XOR, left, right);
-}
"33 = {:
/'l Create InpliesExp
RESULT = factory. buil dLogi cal Exp(sym | MPLIES, left, right);
-}
w84 = {:
/'l Create LetExp
RESULT = factory. buil dLet Exp(vari abl es, exp);
-}
985 = {:
/] Create COcl MessageExpAS
RESULT = factory. buil dCcl MessageExp( Ccl MessageKi ndAS$Cl ass. UP_UP, target, nane,
argunents);
'}
w6 = {:
/] Create Ccl MessageExpAS
RESULT = factory. buil dCcl MessageExp( Ccl MessageKi ndAS$d ass. UP_UP, target, nane, new
Vector());
“}
w7 = {:
/1 Create Ccl MessageExp
RESULT = factory. buil dCcl MessageExp( Ccl MessageKi ndAS$Cl ass. UP, target, nane,
argunents) ;
-}
9388 = {:
/1 Create Ccl MessageExp
RESULT = factory. buil dOcl MessageExp( Ccl MessageKi ndAS$C ass. UP, target, name, new
Vector());
o}

argument Li st — ocl Expression:arg %
I
argunent Li st: argLi st COVWA ocl Expression:arg 9% .
%W = {:
/] Create a List
Li st seq = new Vector();
seq. add(arQg);
RESULT = seq;

s..
1

. /1 Append 'arg' to 'argList’
RESULT = argLi st;
argLi st. add(arg);
)

ocl MessageArgunent Li st — ocl MessageArgunent:arg %

I
ocl MessageAr gunment Li st: argLi st COMWA ocl MessageArgunent:arg %@ .
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W = {:
/] Create List
Li st seq = new Vector();
seq. add(arg);

RESULT = seq;
)
w = {:
/1 Append 'arg' to 'argList’
RESULT = arglLi st;
argLi st. add(arg);
)

ocl MessageArgument - QUESTI ON %1

|
QUESTI ON COLON type:type %R
I

ocl Expression:exp 98 .

W = {:
/1 Create Ccl MessageArg
Ccl MessageAr gAS arg = new Ccl MessageAr gAS$d ass() ;
RESULT = arg;
)
w = {:
/1 Create Ccl MessageArg
Ccl MessageAr gAS arg = new Ccl MessageAr gAS$d ass() ;
arg. set Type(type);
RESULT = arg;
-}
W = {:
/1 Create Ccl MessageArg
RESULT = factory. buil dCcl MessageAr g( exp) ;
'}
i sMarkedPre - 9%
|
AT PRE % .
W = {:
RESULT = new Bool ean(fal se);
'}
w = {:
RESULT = new Bool ean(true);
)

literal Exp - collectionLiteral Exp: exp %

I
tupl eLi teral Exp: exp %

|
primtivelLiteral Exp:exp %8 .

W = {:

RESULT = exp;
)
w = {:

RESULT = exp;
-}
W = {:

RESULT = exp;
o}

collectionLiteral Exp — collectionKind: kind LEFT_BRA col | ectionLiteral Parts: parts Rl GHT_BRA%
I
col I ectionKi nd: ki nd LEFT_BRA RI GHT_BRA % .
W = {:
/'l Create CollectionLiteral Exp
RESULT = factory. buildColl ectionLiteral Exp(kind, parts);
-
w = {:
/'l Create CollectionLiteral Exp
RESULT = factory. buildCol | ectionLiteral Exp(kind, new Vector());
o}

col I ecti onKi nd - SET %

I
BAG 92

|
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SEQUENCE 93
|
COLLECTI ON %

|
ORDERED_SET % .

u = {:

/1 Set kind to SET

RESULT = Col | ecti onKi ndAS$Cl ass. SET;
i}
w = {:

/1 Set kind to BAG

RESULT = Col | ecti onKi ndAS$Cl ass. BAG
W = [

/1 Set kind to SEQUENCE

RESULT = Col | ecti onKi ndAS$C ass. SEQUENCE;
i}
%l =

{:
/1 Set kind to COLLECTI ON
RESULT = Col | ecti onKi ndAS$Cl ass. COLLECTI ON;

'}
"% = {:

/1 Set kind to ORDERED SET

RESULT = Col | ecti onKi ndAS$Cl ass. ORDERED_SET;
)

collectionLiteral Parts - collectionLiteral Part:col Part 9%l

collectionLiteral Parts: seq COWA col l ectionLiteral Part:col Part 9% .

u = {:
// Create a List
Li st seq = new Vector();
seq. add(col Part);
RESULT = seq;

)

w = {:
/1 Add collPart to seq
RESULT = seq;
seq. add(col Part);

)

collectionLiteral Part - ocl Expression:exp %

col I ecti onRange: range % .

W = {:
/1 Create Collectionltem
RESULT = factory. buildCollectionlten(exp);
-}
w = {:
/1 Copy rule
RESULT = range;
i}

col l ecti onRange - ocl Expression:first DOI_DOT ocl Expression:last % .
W = {:

/'l Create CollectionRange

RESULT = factory. buildColl ecti onRange(first, last);

o}
tupleLiteral Exp —» TUPLE LEFT_BRA vari abl eDecl arati onLi st: seq Rl GHT_BRA % .
u = {:

/'l Create TupleLiteral Exp

RESULT = factory. buil dTupl eLi teral Exp(seq);
)
primtivelLiteral Exp - | NTEGER val ue %
IREAL: val ue %R
|STRI NG val ue %3
lI'RUE: val ue %
|FALSE: val ue %.
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W = {:
/] Create |ntegerlLiteral Exp
RESULT = factory. buil dl ntegerlLiteral Exp(val ue);

'}
w = {:

// Create RealLiteral Exp

RESULT = factory. buil dReal Li teral Exp(val ue);
'}
W = {:

I/l Create StringlLiteral Exp

RESULT = factory. buildStringLiteral Exp(val ue);
-}
% = {:

/] Create Bool eanLiteral Exp

RESULT = factory. buil dBool eanLi t eral Exp(val ue);
'}
% = {:

/] Create Bool eanLiteral Exp

RESULT = factory. buil dBool eanLi t eral Exp(val ue);
i}

pat hnane - sinpl eNane: name %

|
pat hNane: path COLON_COLON si npl eNane: nanme %@ .

u = {:
/] Create a
Li st seq = new Vector();
seq. add( nan®) ;
RESULT = seq;
)
w = {:
// Add nane to path
RESULT = pat h;
pat h. add( nane) ;
)
si npl eName - S| MPLE_NAME: val ue % .
W = {:
RESULT = val ue;
)
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Annex E. OCL issues

I ssue: Ceneral section to define OCL concepts

Description: The specification should contain an introductory section
containing definitions of the terns used in the specification and other
notations that are used (e.g. well-forned expression, ill-forned

expr essi on, behavi our, undefi ned-behaviour etc.).

Rationale: This will avoid anbiguities and provide a better specification
of the OCL (see specifications for C++, Java, and C#).

| ssue: Virtual machine

Description: The OCL 2.0 specification should be behaviour-oriented and not
i npl ement ation-oriented (see section 4.3).

Rational e: The idea of using OCL to describe itself is interesting fromthe
research point of view, but unfortunately OCL is not a suitable

met al anguage to define the neaning of other textual |anguages. W think
that the best thing to do is to define a virtual machine and to describe

t he behavi our of the virtual machi ne using natural |anguage. This technique
was successfully used for |anguages like C, C++, Java, C#, and Prolog. W
see no reasons why such a technique would fail for OCL. After all, OCL is

| ess conpl ex than nodern progranm ng | anguage |i ke C++, Java, or C#

A proper description and inplenmentation of the OCL virtual machine wll
create all the conditions to have a | anguage that is platformtoo
i ndependent .

| ssue: Set of characters

Description: The OCL 2.0 specification should describe the set of
characters allowed in the OCL constructions (e.g. Unicode or ASCII).

Rationale: This will help inplenenters to solve an anbiguity and to produce
portabl e inpl ementati ons. Unicode will be in our opinion the best choice.

I ssue: Unspecified syntax and semantics for Integer, Real, and String

Description: The specification does not describes the syntax of integer
real or string literals. Also, it does not contain the description of the
all owed set of val ues.

Rati onal e: Specifying the syntax and the semantics of basic types wll
increase the portability of OCL prograns. In order to describe the
semantics of basic types, the specification should describe the set of

val ues, the allowed operations, and the standard used to performthe

al | oned operations. We think that, in order to optinize the conputationa
process, it will be also useful to allow different types of integers and
reals, like Integer(16), Integer(32), Integer(64), Real (32), and Real (64).
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| ssue: Keywords

Description: OCL 2.0 uses keywords (e.g. and, or, xor, inplies etc.) that
cannot be used el sewhere.

Rational e: This means that these nanmes cannot be used to identify
properties, classes, or packages. There are two options to solve this
problem either UML 2.0 specifies the nanes that cannot be used to denote
nmodel el ements or the OCL concept of keywords has to be revised.

| ssue: Comments

Description: OCL 2.0 coments start with --

Rational e: This neans that an expression like —4 cannot be interpreted as
an arithrmetic expression without inserting at |east one space between the
first — and the second -. | think that this problemcan be resolved if the
OCL commrents start with // instead of --.

| ssue: Operator precedence

Description: Section 4.3.2 does not specify precedence for operators like
div, nmod, ~», or .

Rationale: In order to provide a platformindependent inplenentation the
operator precedence nmust be very precise. W think that |ogical operators
shoul d be organi zed on different |evels of precedence:

not

and’

or

xor

“inplies’

| ssue: Gammar of OCL

Description: The grammar presented in 4.3, which is our opinion a senantic
grammar, is not suitable to describe the syntax of OCL.

Rational e: Introducing non-terminals |ike primary-expression, selection-
expression, and operation-call-expression will solve all the probl ens and
wi Il reduce the nunber of anbiguities. Hence, the granmar contained in the
specification will suffer fewer changes in order to be used to design and
i mpl ement a determnistic parser. This is the case of the specifications
for C, C++, Java, C#, and Prol og.

I ssue: Abstract syntax tree

Description: Sone of the elenents presented in 3.3.10 (e.g. Enuniiteral Exp,
chil dren of Model PropertyCal | Exp) cannot be constructed w thout using
semantic information (e.g. the type of the expression deternines if a nane
denotes an attribute, an association end, or an operation).

Rational e: Usually a parser produces an AST. The semantic anal yser augnments
the AST by conputing for each node from AST the val ues of the attached
attributes. The semantic analysis also checks if there are static semantics
errors and reports them Using other terns in the AST and hence other non-
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termnals in 4.5 (e.g. dot-sel ection-expression, arrowselection-
expression, call-expression etc.) will solve this problem

|Issue: Attributes and Association Ends versus Properties

Description: The submi ssion uses the ternms of Attributes and Association
Ends, which are no | onger used in UML 2.0.

Rationale: In order to align OCL 2.0 and UML 2.0 specifications we think
that the expression package should | ook Iike:

ModelElement

o fridge,

+hody i Classifier
DelExp
0.1 |+ismarkedPre - Boolean 5 —Mﬁ%
+ype
+in|tExpression +ype
T
+source iy ‘
+appliedProperty
0.1 @ ‘
CallExp LiteralExp IfExp WariableExp UnspecifiedWalueExp Oclhd Exp
o.r
0.1
ModelPropertyCallExp LoopExp . =
PE=p .
+iterators .
+referredVariable
‘ “ariableDeclarationd..1
2] +iestizetaratrt

+resul

IteratorExp IterateExp a1

+hazeExp

We also think that the OCL grammar should be rewitten accordingly.

| ssue: ocl | Undefined() versus isEnmpty()

Description: OCL offers two choices to test if a value is undefined or not:
i sEnpty and ocl | sUndefi ned.

Rati onal e: Most of the nodern progranm ng | anguages contain null val ues.
The best OCL mapping for null value is the undefined value. Using i sEnpty
to test if a value is null/undefined is confusing:

* the result of property->isenpty() nust be true if the value of the
property is null/undefined

* the result of Set{l/0}->i sEnpty() nust be fal se

because the expression property->i senpty() is converted according to the
OCL specification to Set{property}->enpty()

These situations are a source of errors and confusion at the inplenentation
I evel. W& think that isEnpty() should be used only to test if a collection
is enpty or not; the null/undefined val ues should be tested using

ocl sl Undefi ned. This operation should be also valid on collections. This
approach will also work nice and clear for nested collections. On the other
hand we don’t think that () should not be optional, if the called operation
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has no argunments. This is feature specific to old | anguages |ike TAL and
Pascal , while in nodern | anguages like C, C++ the nmeaning of f and f() is
different.

I ssue: Ccl Type

Description: Ccl Type shoul d di sappear fromthe OCL type hierarchy.

Rational e: Ccl Type should be only present in the standard library to
support values for the type expression used in functions |ike ocl AsType(),
ocl I skindOf (), and oclIsTypeO ().

| ssue: Ccl Model El enent

Description: The object Ccl Model El enent object should be renmoved fromthe
standard library, while Ccl Mbdel El enent Type should remain in OCL type
hi er ar chy.

Rationale: It inplies a useless |evel of wapping for the nodel objects.

| ssue: Syntax of Operation Call, Iterator, and Iterate Expressions

Description: Syntax for the above constructions is extrenely anbi guous and
it mght involve backtracking.

Rati onal e: According to OCL specification

* self.f(x, y)

* Set{l,2,3}->select(x, y| x+ty = 3)

* Set{l1,2,3,4,56}->terate(x; acc:Integer=0 | acc + x)

descri bes an operation call, an iterator, and an iterate expression

In order to make the distinction between an iterator call and an operation
call we need in this case a three token | ookahead, starting fromx. The
probl em gets even nore conplicated if we consider that an argunent for an
operation call can be an expression

In order to solve this problem which is a potential source of problens for
the inplenmentation (error-prone, inefficiency etc), we think that these OCL
constructs should contain sonme extra syntax markers. There are severa

choi ces:

* change the comma marker fromiterator calls to sonmething el se, maybe a
sem col on

* add a syntax nmarker to an iterator nane
* do not allow the default types

Each of the above choices will allowto a determ nistic parser to deal wth
the enunerated problens nore efficiently. W would prefer the third because
it will solved the above probl em and because we do not agree with textua

| anguage in which variables are given a default type according to the
context in which they are used, especially if these | anguages are desi gned
for industrial use. The same problens were in the previous versions of C
standard, which allowed inplicit type int for variables in constructions,
as in

X,

The | atest C standard states that variables with default type are not
al | owed.
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I ssue: Parsing Tuple Types and Col | ection Types as Argunents

Description: One issue we have discovered is about expressions of the form
expr.ocl AsTypeOr( Type ) The OCL standard does not support Type as a
collection or tuple type.

Rational e: W think that the syntax should be extended to support
collection and tuple types. This will nake the | anguage nore symetric and
i ncrease the expressiveness of the |anguage.

I ssue: Ccl Any operations of tuples and collections

Description: The OCL specification does not allow operations |ike = or <>
to be performed tuple values. It also forbids operations |ike ocllsKi ndCf
and ocl I sTypeO on collections.

Rati onal e: Add such operations to tuple and collection types signatures
directly or by inheritance, will nmake the | anguage nore powerful (e.g. a
set of dogs can be conveted to a set of aninals).

| ssue: Signature of Environnent

Description: The specification (in the standard) of the Environnent class
is mssing a fewthings that are used or referred to el sewhere in the
standard; sone are mi ssing altogether and sone are nissing fromthe class
di agr am

The association froman environnment to its parent.

The operations | ookuplnplicitSourceFor Qperation, |ookupPat hName,
addEnvi r onnent

Rati onal e: We show a nore conpl ete specification below. W also add a
conveni ence net hod addVari abl eDecl arati on; although not necessary as

addEl enent can be used to add a Vari abl eDecl aration, this operation avoids
the need to construct the Variabl eDecl arati on before adding it to the

envi ronnent .

The specification of the Environnent operations uses various nethods on the
bridge cl asses; we have added these operations to the classes, as shown in
the previous section about the bridge classes.

MamedElement a.F Enviranment

+mayBelmplicit: Boole af
+name : String +namedElements +lookupLocaliname:Sting) : HamedElement

+lookupiname:5tring) : ModelElemeant
+lookupP athMamelnames:List) : ModelElement

+addElement{name:String, elem:ModelElement, imp:Boolean) : Environment

+getTypel) : Classifier

+addEnwironmentienw:Enviranment) : Environment

+referredElement +addNamespaceins:Namespace) : Environment

+lookuplmplicitProperhiname:String) : Property

odelElement L .
+lookuplmplicitSourceFarPropedyname:String) : HamedElement

fom frdge) +lookuplmplicitOperationfname:String, types:List) : Operation

+nestedEnvironment)) : Enviranment
+loakupP athMamelnames:List, types:List) : Operation
+lookuplmplicitSourceForOperation(name:String, twpes:List) : NamedElement

+addWariableleclaration{name:String, type:Classifier, imp:Boolean) : Enviranment

+parant
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