
OCL as a Speci�cation Language for Business

Rules in Database Applications

Birgit Demuth, Heinrich Hussmann, and Sten Loecher

Dresden University of Technology, Department of Computer Science

Abstract. Business rules are often speci�ed only implicitly by appli-

cations to express user-de�ned constraints. OCL provides the chance

to explicitly and automatically deal with business rules when building

object-oriented applications. We investigate how OCL constraints can

be handled in database applications as one of the most important kind

of business applications. Based on our OCL toolset prototype and ear-

lier research work we particularly experiment with various strategies for

the evaluation of OCL constraints in object-oriented applications which

use relational databases. For this work, a
exible SQL code generator is

needed which can be used and adapted for di�erent relational database

systems and di�erent object-to-table mappings. We implement such a

database tool as an additional module for our OCL toolset using XML

techniques.

1 Introduction

Business rules are not a new approach to de�ne or constrain some aspects of

the business. They represent business knowledge and govern how the business

processes should execute [7]. There are many de�nitions at di�erent abstraction

levels of what business rules are. Within the context of data-intensive appli-

cations we only consider a subset of business rules: integrity constraints which

are supported by database management systems (DBMS). We explicitly aim at

non-trivial integrity constraints which may a�ect in relational DBMS tuples of

several tables.

Business rules are often speci�ed only implicitly by applications to express

user-de�ned constraints. Facing this problem, an ECOOP'98 Workshop [12] dis-

cussed and listed requirements for tools and environments for business rules.

Some of these requirements such as the use of a declarative language to express

business rules or the support for maintaining software integrity are full�lled by

the UML Object Constraint Language (OCL) [14]. OCL provides the chance to

explicitly and automatically deal with business rules when building UML-based

object-oriented applications. Several authors already investigated the use of OCL

for expressing business rules (e.g. [24] [7] [5]). Some OCL tools have also been

built to allow experiments with formally speci�ed business rules [18] [10], [14]. In

�rst applications of OCL, these tools were particularly used during the software

development itself such as for simulation, code generation and test automation

[10]. Using OCL as a language for business rule speci�cation, extended investi-

gations can be carried out which aim at maintaining the software integrity by

checking business rules during the execution of a business process. This check

can be done by two basic strategies:

{ The theoretically best way is the immediate constraint check: The OCL ex-

pressions are immediately evaluated when objects are changed. In databases,

the unit of consistency is the transaction. In object-oriented applications,

check points are more di�cult to �nd because most runtime systems like

the Java Virtual Machine do not provide transaction support. In [25], this

problem is addressed.

{ A more realistic way in many cases is an independent constraint check: The

OCL expression is only checked at selected points to achieve a trade-o� be-

tween consistency maintenance and e�ciency. As a consequence, inconsistent

states of objects respectively of the database are possible.

According to the classi�cation in [9] we basically distinguish active and pas-

sive constraints. Whereas active integrity constraints maintain consistency by

executing actions, passive integrity constraints only prevent data manipulation

operations which violate the consistency. Furthermore, there are two primary

methods by which integrity constraints can be speci�ed, applied and enforced in

database applications [11]:

{ through the application programs (application enforced constraints).

{ through the DBMS itself (database enforced constraints)

Both methods are controversial [23], [13], [3]. Apriori we focus on database-

enforced constraints because then we can exploit all advantages of the database

technology [5]. The OMG proposal for a Data Modeling UML pro�le [19] includes

constraints as stereotyped operations in a relational manner like <<check>> rep-

resenting passive constraints and <<trigger>> representing active constraints.

Based on this UML pro�le, an object-to-table mapping is given in [20]. In [5], we

discussed the mapping of UML objects including OCL constraints to a relational

database schema in a very similar way. However, we found many limitations both

in the object-to-table mapping supported by most environments and in the ma-

turity of current DBMS. In this paper, we address these problems and present

some ideas to make object-to-table and OCL-to-SQL mappings more
exible

and practicable.

Section 2 discusses an advanced approach for supporting OCL in object-

relational applications by application- and database-enforced constraints. The

basic idea is applying an independent constraint check by the evaluation of a

database view representing invalid tuples. In Section 3 we describe a prototype

implementation of an SQL tool including code generation for OCL constraints

and its integration into our OCL toolset and CASE tools like Argo/UML. Finally,

section 4 summarizes our results and gives an outlook for further research and

tool development.

2 Approaches Supporting OCL Constraints in

Object-Relational Applications

2.1 Discussion of di�erent approaches

Up to now a number of di�erent approaches and suggestions for the implementa-

tion of OCL speci�ed business rules using the current database technology have

been made. All these approaches support the immediate constraint check and

share the problem of being not e�cient for runtime evaluation or not practicable

on current database systems.

The implementation of the OCL-to-SQL patterns from [5] shows that to the

best of our knowledge no current relational DBMS supports the Full SQL92

level [11] as far as automatic integrity checks are concerned. The required check

clause is provided by all advanced DBMS, but only for Intermediate SQL. That

means that the search condition contained in the check clause shall not contain

a subquery. Furthermore, standalone integrity constraints including an arbitrary

number of tables (SQL92 assertions) are not supported at all. Therewith, only

simple one-tuple related constraints can be checked in real DBMS.

In [22], procedural mapping patterns were investigated to translate an OCL

expression into code executable on relational database systems. The resulting

code of such a translation was a (proprietary) procedure such as a Sybase' Trans-

act SQL stored procedure. The evaluation of the constraint can be done by calling

this procedure. The right moment for doing this is at the end of a transaction

that is before the transaction commit. One drawback of this approach is the

dependence of database integrity from the applications instead of being part of

the database constraints.

Another way to implement passive as well as active integrity constraints is

to apply triggers to check respectively maintain the integrity after each data

manipulation statement. One problem is that triggers are standardized foremost

by SQL-99 [6], but are already implemented by di�erent dialects.

2.2 The VIEW approach

Driven by our implementation experience and motivated by database literature

[21], [17] we propose an approach to realise either an independent or an immedi-

ate constraint check for an SQL based implementation of OCL speci�ed business

rules. The basic element of our approach are SQL views generated from OCL

invariants. Each single OCL invariant is translated into a separate view de�ni-

tion. The result of a view evaluation is a set of tuples from the constrained table

respectively the object which violate the speci�ed business rule. This approach

yields a number of advantages:

{ The usage of SQL features available in most database systems makes the

usage of OCL in database design practicable. A view allows to evaluate a

complex search condition which is part of an integrity constraint. In this

sense, a view can substitute the evaluation of the not supported assertions

respectively "multiple table" check constraints in current DBMS.

{ The generation of views from OCL invariants is basically not di�erent from

generating SQL92 assertions. For this reason we can use our already devel-

oped technique for SQL code generation.

{ The views are based on declarative SQL code and, therefore, are subject of

query optimization of the DBMS.

{ The generation of declarative SQL code from OCL invariant speci�cations

is simpler than the generation of procedural DBMS code.

{ The views can be integrated into di�erent constraint evaluation strategies.

Then it can be decided when to evaluate the constraint and what to do if

some constraint is violated.

The last mentioned item should be discussed in detail. Most real world applica-

tions have their own requirements according to performance, integrity, and other

design issues. Some applications may prefer performance over integrity, others

may demand full integrity at each database state1. For this reason, it is not

realistic to always apply the typical immediate constraint check for any kind of

application. Another question arises with respect to the handling of faulty data.

Some applications may prefer to get noti�ed about all constraint violations, oth-

ers may prefer the handling of faulty data by the database system. The proposed

view approach can be used to support various kinds of requirements.We consider

the following three variations:

Application driven view evaluation. The evaluation of a view is not cou-

pled to any database integrity mechanism like assertions or triggers. Instead,

it is evaluated by an application. In the given context, the evaluation of

the view representing invalid tuples can be seen as an independent con-

straint check. Furthermore, it is a hybrid method of checking application-

and database-enforced constraints. For example, to access to a database, an

object-relationalmiddleware with an own transaction approach is often used.

The middleware can evaluate the views just before the transaction commit

is executed. If one of the views returns any tuples, the middleware is able to

rollback the current transaction or do some treatment for the faulty data.

This approach has the disadvantage of taking the integrity control away from

the database system, but allows the middleware or the application itself to

decide on the moment of constraint evaluation and thus leaves some space

for the treatment of performance problems. Another possible way to use

"integrity views" are database monitor applications which support database

administrators to maintain huge data stores and keep them clean from faulty

data.

Assertion replacement. The views can be used by triggers which evaluate

the constraints after each critical data manipulation operation. When any

constraint violation is found, the trigger should rollback the current transac-

tion and send an appropriate error message to the invoking application. This

approach can be used as a replacement for SQL92 assertions, if the database

system does not support such a feature.

1 In [17] these kinds of integrity are called quali�ed respectively absolute integrity.

ECA trigger template. To support the idea of active database systems a trig-

ger template can be generated which must be edited by the application

or database developer respectively. The template should support the ECA

(Event-Condition-Action) rule paradigm [1]. Such a trigger is evaluated after

each critical data manipulation operation (the event). If the condition holds,

for instance a constraint is violated, the action part is executed. This way,

faulty data can be treated before storing them in the database.

For a better understanding of how our concept works, we give a simple ex-

ample. Suppose there is a class called PERSON with two attributes: the age of a

person and a Boolean
ag which indicates whether this person isMarried or not.

In our case, this class is mapped to a single table with the according columns

AGE and ISMARRIED respectively. A simple business rule is that all persons which

are married should be at least 18 years of age. The respective OCL expression

is given below:

context Person

inv ageOfMarriage: (isMarried = true) implies (age>=18)

The �rst step is the translation of this invariant into a corresponding SQL view

evaluating all tuples of the table PERSON which violate the speci�ed business

rule. We use an adapted version of the OCL INVARIANT pattern from [5]:

create view AGEOFMARRIAGE as

(select * from PERSON SELF

where not (not (ISMARRIED = true) or (AGE>=18)))

According to the three approaches for the use of integrity views, the evaluation

of the given business rule is as follows:

Application driven view evaluation. Invoking the evaluation of views by an

application can be done in various ways. Using Java and JDBC to access to

the database, the following code can be used:

ResultSet rs = theStatement.executeQuery(

"select nvl(count(*),0) from AGEOFMARRIAGE "

);

if (rs.next().getInt(0) > 0) {

// integrity error handling

}

Note that nvl() is an Oracle speci�c function which, in the above example,

returns 0 if count(*) is null, otherwise it returns the number of selected

tuples.

Assertion replacement. The trigger template for the assertion replacement

would look like this:

create trigger TR_AGEOFMARRIAGE

after insert or update or delete on PERSON

begin

if (select nvl(count(*),0) from AGEOFMARRIAGE) > 0 then

raise_application_error("Integrity error !", 20900);

end if;

end;

ECA trigger template. If the treatment of faulty data is necessary, the use

of the according trigger template should be preferred. In this example, the

action code would be implemented directly by the trigger body:

create trigger TR_AGEOFMARRIAGE

after insert or update or delete on PERSON

begin

if (select nvl(count(*),0) from AGEOFMARRIAGE) > 0 then

// todo: add action code here

end if;

end;

Due to the simplicity of the example, an important fact is not shown which

must be considered in more detail. If an integrity view uses more than one table

of the database to evaluate a business rule, the constraint evaluation must be

done after manipulation of all of these tables.

For instance, a view can be generated from an OCL expression which uses

navigation to express constraints on a model. Suppose we add a second class to

our example stated above. This class is called Car and is also mapped to a single

table. Between class Person and class Car exists an one-to-many association

which describes the ownership between persons and cars. This association will

be mapped by inserting the primary key of the PERSON table (PID) to the CAR

table. A constraint is that each person can be the owner of at most two cars:

context Person

inv maxCars: self.car->size <= 2

This OCL expression is mapped using the NAVIGATION pattern from [5] into

the following view:

create view MAXCARS as

(select * from PERSON SELF

where not ((select count(CID)

from CAR

where PID = self.PID) <= 2)

As one can see, the view uses both the table PERSON and the table CAR to evaluate

the constraint. It is important to evaluate the view if any of the two tables

is modi�ed. If the view MAXCARS is integrated into any trigger evaluation

mechanism, this means that a trigger must be created for each table to evaluate

the according view.

3 Extended OCL toolset

The implementation of the OCL constraint translation to SQL (called the

OCL2SQL tool) follows the above explained VIEW approach and is done by a

modular extension of the OCL toolset [10]. Our toolset has already proven to be

a stable and
exible environment for the development of OCL tools [25]. In the

following subsections, we describe the design and outline the implementation of

the OCL2SQL tool based on a �rst prototype implementation.

3.1 Experience with the OCL-to-SQL pattern catalogue

We use the OCL-to-SQL pattern catalogue from [5] to translate OCL invariants

to SQL code. Our �rst prototype implementation of an SQL code generator

implementing these patterns has shown the following problems:

Object-relational mapping. The translation of OCL expressions to SQL code

is dependent from the underlying object-to-table mapping. Therefore, one

requirement for the SQL code generator should be a
exible interface that

allows the integration of di�erent object-to-table mappings. Unfortunately,

the patterns are described only based on the commonly used one-object-to-

one-tuple mapping.

Metadata. The mapping of operations on metadata is not considered and thus

should be added by new patterns.

Full SQL92 level. The mapping patterns take advantage of the SQL92 full

level speci�cation. Assertions over any number of tables, and derived tables

in the from clause of select statements are important SQL features for the

patterns. How explained above, current database systems lack the support

for these features, especially the �rst one.

The iterate problem and sequences. The iterate operator and OCL se-

quences are two features which have to be discussed in more detail.

3.2 Design

The current version of the OCL2SQL tool takes a static UML model and a

number of OCL invariants as input and generates an according DDL script

including a database schema as well as view de�nitions and trigger templates

representing the constraints as output. It consists of the following components:

Model repository As stated above, the OCL2SQL tool needs information

about the used static UML model and the number of OCL invariants spec-

i�ed on this model. Since we aim at the integration of the OCL2SQL tool

into di�erent environments like UML CASE tools, it is mandatory to pro-

vide appropriate interfaces which can be implemented for di�erent use cases.

A more loose integration is the use of XMI �les [26] for static UML model

information. The OCL toolset already provides the necessary component

to use this technology. For a tight integration as it has been realised for

Argo/UML, the "model interfaces" must be implemented by a CASE tool

integration component accessing whose repository.
SQL code generator The core component is the SQL code generator which

generates the SQL code for an OCL invariant based on the parsed, type-

checked and normalised OCL expression given as an abstract syntax tree.

The "SQL code" generated by this component is a view de�nition such as the

AGEOFMARRIAGE example in subsection 2.2. The implementation of the

SQL code generator is explained in the following subsections in more detail.

To make such a SQL code generator work, we need some additional infor-

mation about the underlying object-to-table mapping. Since there exists a

great number of di�erent object-to-table mappings, an interface is provided

for the integration of various strategies.
Schema generator The �rst idea was to integrate the SQL code generator with

the database schema generation functions available by most UML-CASE

tools. Unfortunately, we recognized that the quality of the generated schemas

does not match
exible requirements. Therefore, we had to implement an

own object-to-table mapping and to provide an interface for later CASE

tool integration e�orts.
Trigger template generator In contrast to the SQL code generator, the trig-

ger template generator is rather simple. It takes the output of the SQL code

generator and produces a number of triggers according to the view speci�-

cations and user requirements.

3.3 XML coded pattern re�nement

The implementation of the eight rather general OCL-to-SQL patterns requires a

further re�nement of the patterns to make them applicable in code generation.

Beyond the re�nement, a
exible speci�cation of the patterns is needed to adapt

them to di�erent SQL dialects for their practical use in DBMS. We decided to

use XML [27] to describe the re�ned patterns because of the following reasons:

{ The XML �les can be comfortably edited by XML editors and thus are easily

adaptable to a certain SQL dialect.
{ An XML �le containing a set of re�ned patterns can be directly interpreted

by the SQL code generator written in Java.
{ XML technology supports well de�ned structures of documents.

The structure of an XML document is speci�ed by a Document Type De�nition

(DTD). An adequate DTD calledCODEGEN describing OCL-to-SQL patterns

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT catalog (description?, pattern*)>

<!ATTLIST catalog name CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT pattern (template)*>

<!ATTLIST pattern rule ID #REQUIRED>

<!ELEMENT template (li)+>

<!ATTLIST template spec CDATA #REQUIRED

rem CDATA #IMPLIED>

<!ELEMENT li (#PCDATA | param)*>

<!ATTLIST li connector (true|false) "false">

<!ELEMENT param EMPTY>

<!ATTLIST param name CDATA #REQUIRED>

Fig. 1. The CODEGEN DTD

is shown in �g. 1. According to this DTD, the XML �le is structured as a cata-

logue which consists of a description and an arbitrary number of patterns. Each

pattern is associated to an OCL grammar rule. For example, the patterns that

describe the mapping of OCL features like operations over collections are asso-

ciated to the featureCall grammar rule. Since a single pattern usually consists

of several mapping descriptions, a pattern consists of at least one SQL code tem-

plate. Each SQL code template again is described by lines of code. The templates

are identi�ed by the spec parameter to distinguish them from each other. Let

us consider for example the OCL grammar rule featureCall. There are several

mapping templates for collection operators like collect, select, reject, and

forAll. The templates can contain parameters respectivly placeholders which

must be replaced by further templates. One example for such a pattern rule is

represented in �g. 2. The example shows the template which maps the OCL

operator collect to an SQL query block and re�nes the general QUERY pat-

tern [5] (indicated by the rem parameter). As explained above, from a translation

point of view, the template belongs to the grammar rule featureCall and needs

two further templates for the complete code generation. That is, the parameters

column and table must be replaced with appropriate SQL code.

3.4 SQL code generator

In our �rst prototype implementation based on the OCL-to-SQL92 patterns we

already got some experience with the implementation of an SQL code generator.

The recent SQL code generator represents the adapted prototype and realises

the generation of view de�nitions. The design of the SQL code generator is done

under consideration of two primary aspects:

<?xml version="1.0">

<!DOCTYPE catalogue SYSTEM "CODEGEN.dtd">

<catalog name="EntrySQL">

...

<pattern rule="feature_call">

...

<template spec="collect" rem="QUERY">

select <param name="column">

from <param name="table">

</template>

...

</pattern>

...

</catalogue>

Fig. 2. Example of the feature call pattern rule

{ The SQL code generator should be completely based on the OCL toolset

because the toolset provides a quite reliable platform for syntactical analysis,

typechecking and normalisation of OCL expressions.

{ The XML based approach for the translation of OCL expressions to SQL

statements has been proven and therefore should be used.

For the integration of di�erent code generators like for Java or SQL, the OCL

toolset provides two interfaces [8]. At �rst a code generator must implement

the interface CodeGenerator. Such a code generator produces a certain number

of code fragments. These code fragments are stored in objects of classes which

implement the interface CodeFragment (see �g. 3).

The patterns described in [5] aim at the generation of declarative SQL code

only. As already described in the preceeding subsection, each pattern was de-

signed to encapsulate one OCL language concept. The equivalent SQL code

allows the nesting of SQL expressions according to the structure of the given

OCL expression. To implement this concept, we chose a general syntax driven

approach.

The feature of being rather general than speci�c to SQL code generation led

to the following design decision. The core functionality of the strategy is encap-

sulated in a separate class called DeclarativeCodeGenerator since the strategy

seems to be suitable for the generation of declarative target code preferably. Sub-

classes of this class generate code fragments that will be stored in objects of the

class DeclarativeCodeFragment.

The actual generation of SQL code is realised by the class SQLCodeGenerator

which implements only features speci�c to the SQL code generation problem.

The SQLCodeGenerator uses an XML �le based on the CODEGEN DTD. The

CodeAgent parses the XML �le and fetches the appropriate code template for

the code generator. Therefore it is prepared with a number of parameters which

Fig. 3. SQL code generator

are supposed to replace the placeholders in the templates. Then the getCode()

method is called with the pattern rule ID for the requested OCL grammar rule

and the accurate template speci�cation (spec parameter). The placeholders al-

low an arbitrary nesting of templates. Then the getCode() method returns a

prepared SQL code template which can be further handled by the SQL code

generator.

Experiments with the �rst SQL code generator prototype have already shown

the applicability of the XML based approach for code generation. We used two

XML coded pattern catalogues, one for an "ideal" DBMS supporting SQL92

full level and another one for Oracle 8i. Oracle8i is an example for an advanced

DBMS where we could demonstrate our mapping approach and its limitations

on current database management systems. Now, we reuse the code generator

prototype for the implementation of the above described OCL2SQL tool.

3.5 CASE tool integration

An important requirement of tools supporting OCL is the tight integration with

UML-CASE tools. As explained in the preceding subsections, our OCL2SQL tool

has a number of well de�ned interfaces which allow the integration of the tool into

di�erent environments. A new module of the OCL toolset is a comfortable OCL

editor which includes besides editing of constraints features like a toolbar and

adequate error messages. The according user interface is designed to integrate

the OCL editor not into a speci�c CASE tool, but into various environments.

Currently it is tested with the Open Source CASE Tool Argo/UML and also

serves as test environment for the OCL2SQL tool. The screenshot in �g. 4 gives

an impression of the new OCL editor integrated into Argo/UML.

4 Conclusion

In this paper, we reported on our recent research results using OCL constraints

as business rules in object-relational database applications [5] as well as extend-

ing the OCL toolset [10] for SQL code generation. The automatic translation

of complex OCL expressions to database integrity constraints speci�ed by SQL

rises some serious problems which we try to solve by trigger-based techniques

or, especially if performance plays an important role, by an unusual approach

which we call independent constraint check. All these techniques use an integrity

view which is de�ned as the set of tuples from the constrained tables respectively

objects violating the according OCL invariant. We design an SQL tool extend-

ing the OCL toolset which supports in a
exible way both di�erent constraint

evaluation strategies and di�erent SQL dialects of the DBMS vendors. Further-

more, di�erent object-to-table mappings can be handled by the design of
exible

interfaces.

Our plans for further practical and theoretical investigations as well as OCL

toolset development are the following:

Fig. 4. OCL editor integrated into Argo/UML

{ So far we only considered the use of OCL invariants for the speci�cation of

business rules in database applications. However, which role play pre and

post conditions for methods handling persistent objects?

{ The OCL toolset should realise important requirements for the handling of

business rules [12]. According these requirements it seems desirable to extend

the OCL toolset by modules such as

� a repository for business rules

� dedicated browsers

� supporting di�erent scopes of business rules (application and

database enforced constraints) including di�erent constraint evaluation

strategies

� adaptable for changing, re�ning and removing existing rules

� a debugger for systems containing lots of business rules

� a con
ict detection

� a reasoning engine

For the future, an important objective of our work is the practical use of the

OCL toolset in case studies to gain further experience with application- and

database-enforced constraints.

Acknowledgment: The authors would like to thank Frank Finger, Ralf Wie-

bicke and Ste�en Zschaler for their contributions to the OCL toolset.

References

1. ACT-NET Consortium, The Active Database Management System Manifesto: A

Rulebase of ADBMS Features. SIGMOD Record 25(1996)3:40-49

2. Argo/UML Page, http://www.ArgoUML.com

3. Blaha, M., Premerlani, W.: Object-Oriented Modeling and Design for Database

Applications. Prentice Hall, 1998

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Uni�ed Modeling Language User Guide.

Addison-Wesley, 1999

5. Demuth, B., Hussmann, H.: Using OCL Constraints for Relational Database Design.

in: UML'99 The Uni�ed Modeling Language, Second Int. Conference Fort Collins,

CO, USA, October 1999, Springer, 1999

6. Eisenberg, A., Melton, J.: SQL: 1999, formerly known as SQL-3. ACM SIGMOD

Record, 22(1999)1, 131-138

7. Eriksson, H.-E., Penker, M. Business Modeling with UML. Business Patterns at

Work, John Wiley & Sons, Inc., New York, 2000

8. Finger, F., Design and Implementation of a Modular OCL Compiler. diploma thesis,

Dresden University of Technology, 2000

9. Herbst, H. et al, The speci�cation of business rules: a comparison of selected method-

ologies. in: Methods and Associated Tools for the Information System Life Cycle.

Elsevier, Amsterdam, 1994

10. Hussmann, H., Demuth, B., Finger, F.: Modular Architecture for a Toolset Sup-

porting OCL. in: UML'2000 - The Uni�ed Modeling Language. Advancing the Stan-

dard, Third Int. Conference York, UK, October 2000, Springer, 2000

11. Melton, J., Simon, A.: Understanding the New SQL: A Complete Guide. Morgan

Kaufmann, 1993

12. Mens, K. et al, Workshop Report - ECOOP'98 Workshop 7 Tools and Environ-

ments for Business Rules. in: Object oriented technology: ECOOP'98 Workshop

Reader. Springer, 1998

13. O'Neil, P., Database - principles, programming, performance. Morgan Kaufmann,

1994

14. OCL Center, Klasse Objecten, http://www.klasse.nl/ocl/index.htm

15. OCL Page, Dresden University of Technology, http://dresden-ocl.sourceforge.net/

16. OMG UML v. 1.3 speci�cation, http://www.omg.org/cgi-bin/doc?ad/99-06-08

17. Motro, A., Integrity= validity + completeness. ACM Transactions on Database

Systems, 14(1989)4,480-502

18. Richters, M., Gogolla, M., Validating UML Models and OCL Constraints. in:

UML'2000 - The Uni�ed Modeling Language. Advancing the Standard, Third Int.

Conference York, UK, October 2000, Springer, 2000

19. Rational. The UML and Data Modeling. Whitepaper TP-180, 2000,

http://www.rational.com

20. Rational. Mapping Objects to Data Models with the UML. Whitepaper TP-185,

2000, http://www.rational.com

21. Ross, K., Srivastava, D., Sudarshan, S., Materialized view maintenance and in-

tegrity constraint checking: Trading space for time. in: Proc. of the ACM SIGMOD

Int. Conference on Management of Data, Montreal, Canada, 1996, ACM Press, 1996

22. Schmidt, A.: Untersuchungen zur Abbildung von OCL-Ausdruecken auf SQL. Dres-

den University of Technology, diploma thesis, 1998

23. Spencer, B., Business Rules vs. Database Rules. A Position Statement. in: Object

oriented technology: ECOOP'98 Workshop Reader. Springer, 1998

24. Warmer, J., Kleppe, A.: The Object Constraint Language. Precise Modeling with

UML. Addison-Wesley, 1999

25. Wiebicke, R., Utility Support for Checking OCL Business Rules in Java Programs.

diploma thesis, Dresden University of Technology, 2001

26. OMG, XMI SMIF Revised Submission (ad/98-10-06). http://www.omg.org

27. W3C, Extensible Markup Language (XML). http://www.w3.org

