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ABSTRACT 

Images form a significant and useful source of information in 

published biomedical articles, which is still under-utilized in 

biomedical document classification and retrieval. Much current 

work on biomedical image retrieval and classification employs 

simple, standard image features such as gray scale histograms and 

edge direction to represent and classify images. We have used such 

features as well to classify images in our early work [5], where we 

used image-class-tags to represent and classify articles.  

In the work presented here we focus on a different literature 

classification task, motivated by the need to identify articles 

discussing cis-regulatory elements and modules in the context of 

understanding complex gene-networks. The curators who try to 

identify such articles in the vast literature use as a major cue a 

certain type of image in which the conserved cis-regulatory region 

on the DNA is shown. Our experiments show that automatically 

identifying such images using common image features (like those 

mentioned above) can be highly error prone. However, using 

Optical Character Recognition (OCR) to extract alphabet characters 

from images, calculating character distribution and using the 

distribution parameters as image features, allows us to form a novel 

representation of images, and identify DNA-content in images with 

high precision and recall (over 0.9). Utilizing the occurrence of 

such DNA-rich images within articles, we train a classifier that 

identifies articles pertaining to cis-regulatory elements with a 

similarly high precision and recall.  The use of OCR-based image 

features has much potential beyond the current task, to identify 

other types of biomedical sequence-based images showing DNA, 

RNA and proteins. Moreover, the ability to automatically identify 

such images has much potential to be widely applicable in other 

important biomedical document classification tasks. 
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1. INTRODUCTION 
Classifying biomedical documents based on their relevance with 

respect to a specific topic is a fundamental step in biomedical 

database curation; it is also a major component in a variety of 

biomedical text mining applications. One example is the process 

used by the Mouse Genome Informatics (MGI) resource at the 

Jackson labs [1]. Part of the resource includes extensive gene 

expression information, for which MGI’s curators are tasked with 

identifying published literature containing information about gene 

expression in the mouse [2]. Doing this requires, as a first step, to 

obtain all and only articles describing experiments relevant to gene 

expression in the mouse. The articles are then read, and pertinent 

information is extracted and curated. Another example is the 

identification of articles that may contain experimental evidence for 

protein-protein interaction. Automating the latter task was part of 

the challenge posed in BioCreative III [4].  

Images shown within articles form a rich source of information, 

and provide significant cues to curators when deciding the 

relevance of an article to certain biological domains. We are 

interested in using both images and text to classify biomedical 

articles, as we have shown in an earlier work [5].  

Much research has been done during the past decade on image 

categorization and content-based retrieval, both within and outside 

the biomedical domain [5]. Most of the work is concerned with 

contents-based categorization and retrieval of images (not of 

documents). To do so, a corpus of images is defined (for testing 

and training), certain features are extracted from the images, the 

images are represented as feature-vectors, and a classifier is trained 

to identify certain types of images within the corpus, under the 

specified feature-vector representation. Features that are often used 

for image representation include, among others, statistics based on 

gray-level histograms [17], Haralick’s texture-features [18], and 

values from edge direction histograms [19]. We have used such 

features as well to classify images in our early work [5] where we 

used image-class-tags to represent and classify documents.  

In the work presented here we focus on a specific and different 

literature classification task, motivated by the need to identify 

articles discussing cis-regulatory elements and modules in the 

context of understanding complex gene-networks. The group 

working on the CYRENE cis-regulatory browser project at Brown 

University [20,21] noted that to identify such articles in the vast 

literature, one can use as a major cue a certain type of image 

showing the DNA and denoting the conserved cis-regulatory 

elements. An example of such a diagram is shown in Figure 1. We 

refer to images that show DNA content as DNA-rich images. 
 

Automatically identifying such images using common image 

features (like those mentioned above) proves highly error prone, as 
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our experiments show. However, using Optical Character 

Recognition (OCR) to extract alphabet characters from images, 

calculating character distribution and using the distribution 

parameters as image features, allows us to form a novel 

representation of images, and identify DNA-content in images with 

high accuracy. Using such DNA-rich images, we then train a 

classifier that identifies documents pertaining to cis-regulatory 

elements or modules with high precision and recall.   

While this paper focuses on the specific task of identifying cis-

regulatory-related publications, the use of OCR as image features 

has much potential beyond the current task, to identify other types 

of biomedical sequence-based images, and automatically 

identifying such images has much potential to be widely applicable 

in computational biomedicine. Throughout the rest of the paper we 

describe our approach, experiments and results. Section 2 provides 

a brief survey on image analysis in biomedical documents 

highlighting the difference between previous work and the research 

presented here. Section 3 provides more information about the 

specific problem we are addressing in the context of the CYRENE 

project. Section 4 discusses the datasets and the methods we use to 

process and to represent images and articles. Section 5 presents 

experiments and results, while Section 6 concludes and outlines 

future work. 

2. BACKGROUND and RELATED WORK 
Among the earliest work on using images within biomedical 

articles is the research by Murphy et al. [6,7,8,9], which uses image 

categorization for identifying images and articles discussing protein 

subcellular localization. They provide an extensive in-depth 

investigation of a specific task: identifying and interpreting a 

certain type of microscopy image, characteristic of localization 

experiments. In their image processing they use standard image-

features like the ones mentioned above. Notably their tools are 

centered around the protein-subcellular-localization task, and not 

around biomedical text/image retrieval as a whole. Work by 

Rafkind et al. [10] explored retrieval of biomedical images from 

the literature in a more general context, while work by Shatkay et 

al. [5] started to examine the integration of text and image data for 

bioemedical document retrieval. Both used similar, standard image 

features such as gray-scale and edge-direction statistics. 

Another area that focuses on image processing is content-based 

retrieval of medical images and medical documents. In this type of 

retrieval one may look, for instance, for all x-ray images of a 

fractured wrist, or for all documents that contain such images. The 

shared tasks of ImageClef [11] in the past few years have included 

challenges of this type, and lead to quite a few systems addressing 

such challenges [e.g. 12]. Again, typically standard image features 

like the ones mentioned earlier (texture features, gray-scale-based 

features etc.) are used to represent the images.  

Taking advantage of text that is associated with images for 

document retrieval or for identifying relevant images typically 

involved using the text of the figures caption (an idea introduced by 

Regev et al. [23]) or possibly also the text referencing the image 

from within the article’s body [13].  

Last, as a way to improve indexing and retrieval of biomedical 

images, Xu et al. [15] and later Rodriguez-Estaban and Iossifov 

[[16] proposed to use optical character recognition (OCR) to 

extract text from within biomedical images, using the extracted 

words/terms to index images [15] or help classify them [[16]. 

Notably, in contrast to the work presented here, that research 

viewed OCR as a way to extract text-words associated with images, 

rather than as an independent source of useful, distributional 

image-features. This latter idea, which to the best of our knowledge 

was not pursued before, is the focus of our work as presented here. 

3. The Article Classification Task for CYRENE 
The CYRENE project [20,21] is concerned with obtaining, 

providing and displaying highly reliable information  about cis-

regulatory genomics and gene regulatory networks (GRN). Two of 

its components include the cisGRN-Lexicon and the cisGRN-

Browser. The lexicon is a database containing high-quality 

information  about the sites, function, operation mechanism and 

other aspects of cis-regulatory elements, currently including 200 

transcription factors encoding genes and 100 other regulatory 

genes. (Primarily in human, mouse, fruit fly, sea urchin and 

nematode, with some information pertaining to rat, chicken, and 

zebrafish). To be included in the lexicon, a regulatory mechanism 

must adhere to the stringent criteria of experimental validation, in-

vivo. Obtaining such highly reliable information that can be placed 

in the database requires scanning carefully through the literature, 

identifying the articles that describe the cis-regulatory mechanisms 

and the experiments validating them, annotating the relevant 

information within them, and depositing the information into the 

database. This paper is concerned with the first step, namely, that 

of identifying articles that are likely to contain the high-quality 

information that can be curated into the CYRENE database. 

As noted by the group working on creating and curating CYRENE 

[20], (of which RT,KS and SI are a part), the publications in which 

the most relevant information is typically found often contain 

certain types of diagrams and graphs (referred to by the team as the 

quintessential diagrams and the quintessential graphs). We focus 

here on the diagrams, which typically display short sequences of 

DNA, particularly marking the conserved regions, the motifs or the 

sites involved in the regulatory module described in the paper.  

Figure 1 shows an example of such an image, taken from one of the 

papers used to curate information into Cyrene [22]. 

The classification task is thus to identify publications, among a set 

of candidates already containing basic terms such as “regulation” 

or published in the relevant journals (such as Molecular and 

Cellular Biology), the documents that are most likely to contain 

experimentally validated information about cis-regulatory elements 

and modules. We pursue this task by using both a text-based 

classifier (briefly mentioned here), and an image-based document 

classifier, the latter is the main focus of this paper. The data and the 

methods used for training and testing such a classifier are discussed 

in the next section. 

4. DATA and METHODS 

4.1 The Dataset of CYRENE-related Articles 
For the purpose of this work, the CYRENE team of curators has 

initially identified a set of 271 publications as high-quality articles 

containing experimentally-validated information about cis-

regulatory modules. To obtain this set, they read through a subset 

of publications in a selected set of about 60 journals (primarily 

Figure 1 An example of a DNA-rich diagram of the type that is 

over-represented in articles discussing cis-regulatory elements. 

Taken, with permission, from PMID 12972592, Figure 2. [22] 



drawing on the main journals that publish in the area, including: 

The Journal of Biological Chemistry, Molecular and Cellular 

Biology, Development, Gene & Development, Developmental 

Biology, The EMBO Journal, Gene, Biochemical and biophysical 

research communications, PNAS, Nucleic Acids Research), 

published after 1985. About 90 of the relevant articles came from 

the first two journals, and additional 80 came from the next five in 

the above list. A keyword search (using keywords such as 

regulatory, transcription, DNA element, DNA motif) was applied to 

the many thousands of resulting articles, to further reduce the set to 

those articles likely to discuss gene regulation. The resulting set  

(several thousand articles) was examined by the curators to identify 

the high-quality articles, namely ones that experimentally validate 

cis-regulatory modules, forming the set of 271 articles. The latter is 

the positive set or the set of Relevant articles for our classification 

training/testing process. 

Many of the remaining published articles were rejected from the 

CYRENE-relevant dataset without further tracing. A small subset 

of those irrelevant publications, consisting of 78 articles, were 

identified and kept by the curators, and were provided as a negative 

set of Irrelevant articles. As the resulting overall set is highly 

unbalanced as far as classification goes, (271 positive examples and 

78 negative ones), we selected an additional set of 143 negative 

examples from the Journal of Molecular Cellular Biology – which 

is a journal in which close to 20% of the 271 relevant articles were 

found. The negative documents were selected by going into the 

same volumes from which relevant articles were obtained, and 

obtaining 10-20 articles from the same volume that were not judged 

to be relevant by the curators. By selecting irrelevant articles from 

the same volume from which relevant articles were selected we 

ensure that the general discourse and style of writing remains 

consistent across the relevant and the irrelevant articles. That is, 

there is no shift in time and in the overall areas of current interest 

between the corpus of relevant articles and the corpus of irrelevant 

articles. Such a shift, if existed, would over-simplify the learning 

task of separating between the relevant and irrelevant sets, as 

separation could then rely on differences in language and style, as 

opposed to on the difference in actual contents. 

The resulting final set thus consists of 271 positive examples 

(CYRENE-relevant articles) and 221 negative examples (articles 

that are irrelevant for CYRENE). The PDF of the complete articles 

was obtained for 264 of the relevant articles and for 220 of the 

irrelevant ones. We describe how the documents are used for 

testing and training an image-based document-classifier in Sec. 4.3. 

4.2 Images, Image Panels, Representation and 

Classification 
It has been noted by multiple groups [6,5,13] that figures in 

biomedical publications often consist of multiple subfigures or 

panels, as shown in Figure 2. Each panel is typically an individual 

image, and as such, when considering images, we would like to 

separate figures into individual panels.  

To obtain images and image panels from the PDF file we use a tool 

that we have developed for this purpose, based on the Xerox 

Rossinante utility [24]. A full description of this tool and its 

features is beyond the scope of this paper and will be published 

separately.  

As we noted earlier, image panels containing DNA information, 

like the one shown in Figure 1, are typically over represented in 

articles that discuss cis-regulatory modules. As such, we 

hypothesized that the ability to identify such images automatically, 

and to identify articles that show an over-abundance of such images 

would prove helpful in identifying relevant documents for 

CYRENE database. As before, we refer to this type of image panel, 

which shows DNA regions, as DNA-rich image panel. In order to 

automatically identify such image panels, we would like to train a 

classifier that can perform this task, i.e. would distinguish between 

DNA-rich images and all other images. To achieve this goal we 

need:  

a) To obtain a set positive image panels that contain DNA 

sequences and a set of negative images panels, which do not 

contain DNA sequences;  and 

b) To represent images using a set of features that would expose 

the DNA-content. Once such features are identified, all the images 

in the positive and in the negative set can be represented as a 

weighted vector of these features, and a classifier that aims to 

distinguish between the two types of images can be trained and 

tested. 

To achieve the first sub-goal (a) above, we identified a set of 88 

DNA-rich image panels, and 100 image panels that do not show 

DNA sequence (although they may show other sequences, such as 

proteins or RNA). This set of 188 panels is the one to be used for 

training and testing a classifier that would aim to distinguish 

between DNA-rich and non-DNA-rich images. 

In order to represent images as feature-vectors, so that the panel-

classification task could be attempted (aim b above), we introduce 

a novel OCR-based representation. To do so, we apply an optical 

character recognition (OCR) tool, ABBYY Finereader [25], to all 

the panels, and obtain all the characters that occur in each panel. 

We count the number of times each character (A-Z, 0-9, Other) 

occurs, and represent each panel as a 37-dimentional feature vector 

<w1…w37>, where wi denotes the frequency of the ith character in 

the panel. An example of the character frequency distribution for 

two different image panels is illustrated in Figure 3 (in which we 

only show the first 26 characters A-Z). Panel A in the figure is a 

DNA-rich panel, and as such its character frequency distribution 

shows four distinct peaks at A, C, G and T. In contrast, panel B 

does not display a DNA sequence, and as such its associated 

character distribution assigns relatively low, similar values to quite 

a few characters including A, E, I, and L, and low values to C and 

G. Notably, the overall character-distribution is quite robust to 

OCR errors, as mis-reading some characters has only a small, local 

impact on the overall magnitude of character counts and on the 

distribution as a whole. 

We have also experimented with a similar, but more compact 

representation using a 5-dimensional vector, collapsing all 

characters except for A, C, G and T, into “Other”, while 

maintaining the frequencies of A, C, G, and T. As our results show, 

the two representations perform at about the same level in our 

experiments. For comparison, we have also used a simple gray-

scale histogram representation of all images and experimented with 

learning a classifier under this representation, as further discussed 

in Section 5. Figure 2  An Example of a composite figure, consisting of multiple 

image panels. Taken, with permission, from PMID 12972592, Fig. 3. 

[22]  



Each of the 188 image panels is represented as such a vector (under 

either 5-dimensional or 37-dimensional) representation. To train 

and test classifiers using these representations, we use the standard  

WEKA tools [28] to train and test a decision-tree classifier (the J48 

algorithm). Further details regarding these experiments are 

provided in Section 5.  

A summary of the datasets discussed above and their respective 

sizes is shown in Table 1. 

4.3 Articles Representation and Classification 
While the above paragraphs discussed the representation and the 

classification of image panels, recall that our ultimate goal is to 

classify published articles based on their relevance (or there lack-

of) to the CYRENE dataset. The dataset of articles we used consists 

of 271 positive (relevant) examples, and 221 negative (irrelevant) 

examples, where we have obtained the full PDF text files for 264 

positive and 220 negative articles respectively, as discussed in 

Section 4.1. 

Given an article d in the dataset, we create an image-based 

representation for it, by examining each image panel within the 

article and tagging it as DNA-rich or non-DNA-rich. While 

ultimately this step will be done automatically using the classifier 

trained on image data as described at the end of Section 4.2, in the 

experiments described here we used manual tagging of the images, 

to ensure independence between the results reported here for the 

image-classification step and those reported for the document-

classification step. This issue is revisited in Section 6.  

We then count how many panels in the article are DNA-rich and 

how many are not. For an article d, let Ad denote the number of 

DNA-rich panels in it, and Nd denote the number of non-DNA-rich 

panels. The article d is then represented as a simple 2-dimensional 

vector of the form:  

                         < Ad /(Nd +Ad) ;  Nd /(Nd+Ad) >,               (Eq. 1) 

that is, the article is represented based on the relative frequency of 

its DNA-rich panels, and its relative frequency of non-DNA-rich 

panels. 

Using this simple representation of all 484 articles for which we 

have access to the full PDF, we again test and train a decision-tree 

classifier using the standard WEKA tools [28]. 

Finally, to compare the image-based classification to a text-based 

classification, we obtain the title and abstract of each article as they 

appear in PubMed and represent each article using a set of 

unigrams and bi-grams derived directly from the resulting corpus 

of text. Stop-words are excluded, and rare and frequent terms are 

removed. Moreover, as was done before [29], terms that are 

uninformative for distinguishing between relevant and irrelevant 

documents (as measured within the training set, in each iteration of 

the cross-validation runs) are removed from the vocabulary. 

The vector representation for each article d is a simple binary 

vector of the form <dt1,…,dtn>, where dti = 1 if the ith term in the 

corpus-vocabulary is present in article d, and 0 otherwise. 

Given the still relatively large number of features involved in such 

a representation (about 550 terms per vector), we use the WEKA 

naïve Bayes rather than decision tree, to train/test a classifier from  

the text representation of articles. 

 

5. EXPERIMENTS and RESULTS 

5.1 Experimental Setting 
Notably, there are two main hypotheses we are examining. The first 

is whether the OCR-based representation discussed above is indeed 

an effective representation for automatically distinguishing 

between DNA-rich image panels and non-DNA-rich panels in 

articles. The second is whether the proportion of DNA-rich panels 

within an article can be used as an effective indicator for assessing 

the article’s relevance to the CYRENE dataset. 

Accordingly we perform two sets of experiments. The first is 

concerned with image panel classification using OCR-based 

representation of image panels. The second is concerned with 

article classification, using image-based representation of articles. 

These experiments are described in Sections 5.1.1 and 5.1.2 

respectively. 

Dataset # Positives # Negatives Total 

CYRENE-related articles 271 221 492 

CYRENE-related articles 

with full-text PDF 
264 220 484 

DNA-rich panels 88 100 188 

Table 1. Summary of the datasets used for training/testing 

classifiers. Positives are items that satisfy the Dataset condition 

listed on the left, while Negatives are items that do not satisfy the 

Dataset condition listed on the left. 

A 

C 
G 

T A 

C 
G 

T 

A  B 

Figure 3 An example of two panels, A ([26], Fig. 5b) and B ([27], Fig. 2b); obtained with permission. The respective character frequency 

distribution (shown only for the letters a-z) is provided below each image. Panel A shows a DNA-rich image, which translates to peaks on A, 

C, G and T in the character distribution, while panel B does not. 



5.1.1 Image-Panel Classification using OCR-based 

          Representation 
To evaluate the effectiveness of the OCR-based representation for 

supporting an automated distinction between DNA-rich and non-

DNA-rich image panels, we use the 188 image panels that were 

manually annotated for this purpose (as discussed in Section 4.2). 

For each of these image panels we construct three different 

representations, as follows: 

1) A 37-dimentional feature vector < w1

p
 … w37

p
>, where the 

weight in each of the first 36 positions corresponds to the relative 

abundance of each of the 36 characters (A-Z1, 0-9) in the panel, 

while the 37th position corresponds to the relative abundance of all 

other characters combined. Thus w
i

p

 denotes the frequency of the 

ith  character among (A-Z,0-9,Other) in the image panel, that is: 

wi

p =
# of times character ci  occurs in  panel p

Total #of  character occurrences in  panel p
 .  

 

(See Section 4.2 for further detail and Figure 3 for an example).  
 

2) A 5-dimentional feature vector < w1

p
 … w5

p
>, where the weight 

in each of the first 4 positions, w1

p
- w4

p
 is the respective frequency 

of the characters A, C, G and T in the panel p, while w5

p
 is the 

frequency of all other characters combined.  

3) A simple gray-scale histogram representation. That is a 256-

dimensional vector < w1

p
 … w256

p
>, where the weight wi

p
 is the 

number of pixels in panel p whose intensity level is i. 

Under each of the representations we use the WEKA [28] standard 

tools to train and test a decision tree classifier, using stratified 5-

fold cross validation. Under this setting both the 100 positive 

examples and the 88 negative examples are partitioned into 5 

subsets; 4/5 of both the positive and the negative examples are used 

for training and 1/5 is left out for testing. The process is iterated 5 

times with a different 1/5 of the data being left out at each iteration. 

To ensure stability of the results, we use five separate complete 

runs of 5-fold-cross-validation for each of the representations (a 

total of 25 runs per representation).   

5.1.2 Article Classification using image-based 

          Representation 
To evaluate the effectiveness of the image-based representation for 

supporting an automated distinction between CYRENE-relevant 

and non-CYRENE-relevant publications, we represent the 484 pre-

classified articles (264 CYRENE-related, 220 non-CYRENE-

related, as discussed in Section 4.1) using the simple 2-dimensional 

representation described by Eq. 1 in Section 4.1. 

We again use the WEKA standard tools for training/testing a 

decision tree, but this time the classification is of articles rather 

than of images, and the classes are CYRENE-related vs. non-

CYRENE-related. As before, we use five separate runs of 5-fold 

cross validation to ensure stability of the results. 

                                                                 

1 While we use the upper case notation A-Z here, any capital letter 

X denotes here an occurrence of either the small (x) or the capital 

(X) letter within the image; the counts of small and capital 

occurrences are combined for each letter. 

As a point of comparison, we also use a text-based representation 

of the articles, employing the bag-of-words model of text 

documents, which is commonly used in information retrieval and 

document classification applications. The text we use to represent 

each article is taken only from its title and abstract, rather than the 

full PDF. This is done for three reasons: 1) The use of full-text 

leads to very large representations that are both slower to work 

with and typically lead to sub-optimal results in terms of 

classification accuracy or clustering coherence. 2) While studies on 

biomedical information extraction, e.g. identifying protein or gene 

mentions in the literature, suggested that using full-text rather than 

abstracts allows an application to identify more instances to extract, 

no similar study suggests that document classification improves 

when using larger full-text documents. Our own experience in 

another curation-related task [30] supports the notion that text from 

title-and-abstract fits well for this type of document-classification 

application. 3) Full-text versions of the articles are not available in 

ASCII – only in PDF. Converting from PDF to ASCII text is often 

error-prone, thus introducing noise as an additional factor to 

consider in a comparative study. This problem does not arise when 

using titles and abstracts, as they are readily available as ASCII 
text. 

The titles and the abstracts of all 484 articles – both positive and 

negative examples – were tokenized to obtain a dictionary of terms 

consisting of single words (unigrams) and pairs of consecutive 

words (bigrams), where words were stemmed using the Porter 

stemmer [31] and standard stop-words removed. Rare terms 

(appearing only in a single article) as well as very frequent ones 

(occurring in more than 60% of the documents) were also removed.  

The remaining set of terms was further reduced by selecting only 

distinguishing terms. These are terms whose probability to occur in 

positive (CYRENE-relevant) articles is statistically significantly 

different from their probability to occur in negative (non-

CYRENE-relevant) articles. Statistical significance of the 

difference is determined using the Z-score test, as described in our 
earlier work [29].  

The resulting vocabulary of 551 terms is used to represent each 

article d as a 551-dimensional vector of binary values,                    

< w1

d
 … w551

d
>, where wi

d
=1 if the ith term, ti, occurs in document 

d, i.e. ti Î d , and wi

d
=0 otherwise.  

As this is a relatively high-dimensional representation, we use the 

naïve Bayes classifier in the WEKA tools, employing again 5-fold 
cross validation to train and test the classifier. 

5.1.3 Evaluation Measures 

To assess the performance of all the classifiers described above, we 

use the standard measures widely used for classification evaluation, 

namely: Precision, Recall, F-measure, and overall accuracy (Acc) 

as defined below:  

Recall=
TP

TP + FN
 ;  Precision=

TP

TP + FP
; 

F =
2 × Precision × Recall

Precision+ Recall
 ;   Acc=

TP +TN

TP + FN +TN + FP
  '  

where TP, FP, TN, and FN denote the number of true positives, 

false positives, true negatives and false negatives, respectively. 

Notably a “positive” instance is a DNA-rich panel for the panel-

classification task, while it is a CYRENE-relevant article for the 

article classification task.  



5.2 Results 

5.2.1 Image-Panel Classification Results 
Table 2 summarizes the average results obtained from running five 

separate panel-classification runs of stratified 5-fold cross 

validation, under each of the three image-panel representation we 

have used, as described in Section 5.1.1. The top two rows show 

the precision, recall, accuracy and F-measure when the OCR-based 

features are used to represent each image panel. The topmost 

results are of using a 37-dimensional vector, where the counts for 

each of the 26 alphabet letter and each digit (0-9) form separate 

feature values, and the counts for all other non-alphanumeric 

characters are grouped together into the 37th feature value. The 

middle-row shows the results for a more condensed 5-dimensional 

representation, where separate counts are calculated only for the 

letters A,C,G,T, and all other characters are grouped together into a 

fifth feature.  

The average precision for the top two rows is above 0.9 while the 

average recall is about 0.9 in both cases. While the second row 

shows slightly higher values than the first, the differences in 

performance between the two representations are not statistically 

significant (p>>0.1).  

In contrast, the third row, where image panels are represented 

based on their gray-scale histogram, shows a significantly lower 

performance on all measures. The difference in performance with 

respect to the top two rows is also extremely statistically significant 

(p<0.0001, using the two-sample t-test). 

Table 2. Image-panel classification results, averaged over 5 independent 
runs of 5-fold cross validation. The top two rows show results (Precision, 

Recall, Accuracy and F-measure) when the panel is represented using 
OCR-based features, while the bottom row shows results obtained using a 

gray-scale histogram representation. Standard deviation is shown in 

parentheses. 

 

5.2.2 Article Classification Results 
Table 3 summarizes the average results obtained from running five 

separate article-classification runs of stratified 5-fold cross 

validation, using the image-panel-based representation and the text-

based representation of articles. Recall that the image-based 

representation of an article is simply a 2-dimensional vector 

containing the proportion of DNA-rich panels and of non-DNA-

rich panels in the article. The text-based representation is a 551-

dimesnional vector of 0/1 denoting the absence/presence of each of 

the 551 distinguishing terms in the article. 

Table 3. Article classification results, averaged over 5 independent runs of 

5-fold cross validation. The top row shows the results from using an image-

panel based representation of each article, i.e. as a 2-dimensional vector 
representing the proportion of DNA-rich panels and of non-DNA-rich 

panels. The second row shows the results when using a standard binary 

term-vector representation, over a set of 551 distinguishing terms.  

 

On the whole, according to all performance measures, the image-

based classifier outperforms the text-based classifier. The 

differences in Precision, Recall, F-score and Accuracy are visible, 

and are also highly statistically significant (p<0.0001, using the 

two-sample t-test).  

While the image-based classifier does show here a better 

performance than the text-based classifier, we note that this is not 

the main message this study aims to convey. The results show that 

despite its simplicity, the image-based classifier performs at a level 

that is at least comparable to the one demonstrated by a text-based 

classifier. This relatively high level of performance suggests that 

our approach to image-based classification can be effective, and 

can aid in improving current biomedical document classification 

and retrieval efforts. We further discuss the results and their 

implications in the next section. 

6. DISCUSSION and CONCLUSIONS 
The work we described here presents two main contributions. First, 

we introduced a new method, based on OCR, to represent 

biomedical images as distributions of characters. Second, we have 

demonstrated that through the identification and the use of image 

types, (in this case DNA-rich images vs non-DNA-rich images), 

one can represent articles quite simply and effectively in support of 

biomedical document classification. 

In terms of image-representation, the results shown in Section 5.2.1 

strongly support the notion that OCR-based character distribution 

provides a very useful - yet simple - representation of images. The 

proposed approach is particularly suitable, applicable and 

significant in the context of biomedical publications, because so 

much of the data has the form of character sequences (RNA, DNA 

and proteins  which are readily distinguishable from other images 

based on character distribution), and so many of the images contain 

text for a variety of reasons ranging from organ- or cell-labels in 

fluorescence images, through DNA sequences, to tags and marks 

on graphs and diagrams. 

Moreover, by using the distributional properties of characters in the 

image  as opposed for instance to extracting complete words from 

it (which was done by others before [15][16])   the method is 

robust to the typically noisy OCR process. Missing or mis-reading 

a few characters in an image is very unlikely to have a strong 

impact on the overall distribution of characters obtained from the 

image. 

 In terms of article-representation and classification, this work 

continues along the lines of our own work [5,14] and that by others 

[e.g. 10], suggesting that defining types of images and being able to 

automatically identify images of certain types within articles is 

useful not only for image retrieval in-and-of itself, but also as a 

basis for document classification. 

The methods and the results presented here will benefit from 

further exploration of the possible variants in the specific choice of 

vector representations, classifiers and even evaluation measures, 

which we plan to do as the next step in this work.  

As we have noted in Section 4.3, the image-based article 

representation, used for the article-classification task presented 

here, relied on the manual tagging of the DNA-rich images, rather 

than on automated tagging by the image-classifier. We used manual 

tagging of images to ensure that we indeed focus in that part of the 

work on the merits and shortcomings of the article-representation 

and classification, rather than on the possible issues involved in the 

image-classification step. Therefore, another important direction to 

Panel Representation 
Avg Prec. 

(STD) 

Avg Recall 

(STD) 

Avg Acc.  

(STD) 

Avg F  

 

OCR: A-Z,0-9; Other 0.92 (.015) 0.89 (.015) 0.91 (.012) 0.90 

OCR: ACGT; Other 0.93 (.006) 0.90 (.014) 0.92 (.007) 0.92 

Gray-scale Hist. 0.64 (.009) 0.66 (0.00) 0.67 (.008) 0.65 

Article 

Representation 

Avg Prec. 

(STD) 

Avg Recall 

(STD) 

Avg Acc.  

(STD) 

Avg F  

 

Img-panel distribution  
(2-dimensional vector) 

0.87 (.000) 0.89 (.000) 0.89 (.000) 0.88 

Text (551-dimensional 

vector)  
0.82 (.057) 0.82 (.061) 0.80 (.043) 0.82 



be pursued in the immediate future is that of assembling the image-

classifier and the article-classifier into a single pipeline that will 

serve in the curation process for CYRENE. We are also pursuing 

the integration of the text- and the image- based classifiers. The 

application of the proposed tools to larger and more diverse 

datasets is another part of our planned future research. 
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