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Abstract

Optical Character Recognition (OCR) can open up understudied historical docu-

ments to computational analysis, but the accuracy of OCR software varies. This 

article reports a benchmarking experiment comparing the performance of Tesser-

act, Amazon Textract, and Google Document AI on images of English and Ara-

bic text. English-language book scans (n = 322) and Arabic-language article scans 

(n = 100) were replicated 43 times with different types of artificial noise for a cor-

pus of 18,568 documents, generating 51,304 process requests. Document AI deliv-

ered the best results, and the server-based processors (Textract and Document AI) 

performed substantially better than Tesseract, especially on noisy documents. Accu-

racy for English was considerably higher than for Arabic. Specifying the relative 

performance of three leading OCR products and the differential effects of commonly 

found noise types can help scholars identify better OCR solutions for their research 

needs. The test materials have been preserved in the openly available “Noisy OCR 

Dataset” (NOD) for reuse in future benchmarking studies.
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Introduction

Few technologies hold as much promise for the social sciences and humanities as 

optical character recognition (OCR). Automated text extraction from digital images 

can open up large quantities of understudied historical documents to computational 

analysis, potentially generating deep new insights into the human past.

But OCR is a technology still in the making, and available software provides var-

ying levels of accuracy. The best results are usually obtained with a tailored solu-

tion involving corpus-specific pre-processing, model training, or postprocessing, but 

such procedures can be labour-intensive.1 Pre-trained, general OCR processors have 

a much higher potential for wide adoption in the scholarly community, and hence 

their out-of-the box performance is of scientific interest.

For long, general OCR processors such as Tesseract ([27, 38]) only delivered per-

fect results under what we may call laboratory conditions, i.e., on noise-free, sin-

gle-column text in a clear printed font. This limited their utility for real-life histori-

cal documents, which often contain shading, blur, shine-through, stains, skewness, 

complex layouts, and other things that produce OCR error. Historically, general 

OCR processors have also struggled with non-Western languages ([16]), rendering 

them less useful for the many scholars working on documents in such languages.

In the past decade, advances in machine learning have led to substantial improve-

ments in standalone OCR processor performance. Moreover, the past 2 years have 

seen the arrival of server-based processors such as Amazon Textract and Google 

Document AI, which offer document processing via an application processing inter-

face (API) ([43]). Media and blog coverage indicate that these processors deliver 

strong out-of-the-box performance2, but those tests usually involve a small number 

of documents. Academic benchmarking studies exist ([37, 41]) but the predate the 

server-based processors.

To find out, I conducted a benchmarking experiment comparing the performance 

of Tesseract, Textract, and Document AI on English and Arabic page scans. The 

objective was to generate statistically meaningful measurements of the accuracy of 

a selection of general OCR processors on document types commonly encountered in 

social scientific and humanities research.

The exercise yielded specifications for the relative performance of three leading 

OCR products as well as the differential effects of commonly found noise types. The 

1 For pre-processing see, e.g, [3, 7, 13, 19, 42], and [44]. For model training, see, e.g., [4, 29, 33], and 

[45]. For postprocessing, see, e.g., [17, 35], and [39].
2 See, for example, Ted Han and Amanda Hickman, “Our Search for the Best OCR Tool, and What 

We Found,” OpenNews, February 19, 2019 (https:// source. openn ews. org/ artic les/ so- many- ocr- optio ns/); 

Fabian Gringel, “Comparison of OCR tools: how to choose the best tool for your project,” Medium.com, 

January 20, 2020 (https:// medium. com/ dida- machi ne- learn ing/ compa rison- of- ocr- tools- how- to- choose- 

the- best- tool- for- your- proje ct- bd21f b9dce 6b); Manoj Kukreja, “Compare Amazon Textract with Tesser-

act OCR—OCR & NLP Use Case,” TowardDataScience.com, September 17, 2020 (https:// towar dsdat 

ascie nce. com/ compa re- amazon- textr act- with- tesse ract- ocr- ocr- nlp- use- case- 43ad7 cd487 48); Cem Dil-

megani, “Best OCR by Text Extraction Accuracy in 2021,” AIMultiple.com, June 6, 2021 (https:// resea 

rch. aimul tiple. com/ ocr- accur acy/).

https://source.opennews.org/articles/so-many-ocr-options/
https://medium.com/dida-machine-learning/comparison-of-ocr-tools-how-to-choose-the-best-tool-for-your-project-bd21fb9dce6b
https://medium.com/dida-machine-learning/comparison-of-ocr-tools-how-to-choose-the-best-tool-for-your-project-bd21fb9dce6b
https://towardsdatascience.com/compare-amazon-textract-with-tesseract-ocr-ocr-nlp-use-case-43ad7cd48748
https://towardsdatascience.com/compare-amazon-textract-with-tesseract-ocr-ocr-nlp-use-case-43ad7cd48748
https://research.aimultiple.com/ocr-accuracy/
https://research.aimultiple.com/ocr-accuracy/
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findings can help scholars identify better OCR solutions for their research needs. 

The test materials, which have been preserved in the openly available “Noisy OCR 

Dataset” (NOD), can be used in future research.

Design

The experiment involved taking two document collections of 322 English-language 

and 100 Arabic-language page scans, replicating them 43 times with different types 

of artificially generated noise, processing the full corpus of ~18,500 documents in 

each OCR engine, and measuring the accuracy against ground truth using the Infor-

mation Science Research Institute (ISRI) tool.

Processors

I chose Tesseract, Textract, and Document AI on the basis of their wide use, repu-

tation for accuracy, and availability for programmatic use. Budget constraints pre-

vented the inclusion of additional reputable processors such as Adobe PDF Services 

and ABBYY Cloud OCR, but these can be tested in the future using the same proce-

dure and test materials.3

A full description of these processors is beyond the scope of this article, but 

Table  1 summarizes their main user-related features.4 All the processors are pri-

marily designed for programmatic use and can be accessed in multiple program-

ming languages, including R and Python. The main difference is that Tesseract is 

open source and installed locally, whereas Textract and Document are paid services 

accessed remotely via a REST API.

Table 1  Features of Tesseract, Textract, and Document AI

Name Maintainer Installation Architecture Languages Cost

Tesseract Tesseract OCR Project Local LSTM 116 Free

Textract Amazon Web Services Server-based Undisclosed 6 $1.50 per 1000 pages

Document AI Google Cloud Services Server-based Undisclosed 60+ $1.50 per 1000 pages

3 As of September 2021, Adobe PDF Services charges a flat rate of $50 per 1000 pages (https:// www. 

adobe. io/ apis/ docum entcl oud/ dcsdk/ pdf- prici ng. html, accessed 3 September 2021). ABBYY Cloud costs 

between $28 and $60 per 1000 pages depending one’s monthly plan and the total number of documents 

(see https:// www. abbyy. com/ cloud- ocr- sdk/ licen sing- and- prici ng/, accessed 3 September 2021). By con-

trast, processing in Amazon Textract and Google Document AI costs $1.50 per 1,000 pages.
4 For documentation, see the product websites: https:// github. com/ tesse ract- ocr/ tesse ract, https:// aws. 

amazon. com/ textr act/, and https:// cloud. google. com/ docum ent- ai.

https://www.adobe.io/apis/documentcloud/dcsdk/pdf-pricing.html
https://www.adobe.io/apis/documentcloud/dcsdk/pdf-pricing.html
https://www.abbyy.com/cloud-ocr-sdk/licensing-and-pricing/
https://github.com/tesseract-ocr/tesseract
https://aws.amazon.com/textract/
https://aws.amazon.com/textract/
https://cloud.google.com/document-ai
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Data

For test data, I sought materials that would be reasonably representative of those 

commonly studied in the social sciences and humanities. This is to say historical 

documents containing extended text, as opposed to forms, receipts, and other busi-

ness documents, which commercial OCR engines are primarily designed for, and 

which tend to get the most attention in media and blog reviews.

Since many scholars work on documents in languages other than English, I also 

wanted to include test materials in a non-Western language. Historically, these have 

been less well served by OCR engines, partly because their sometimes more ornate 

scripts are more difficult to process than Latin script, and partly because market 

incentives have led the software industry to prioritize the development of English-

language OCR. I chose Arabic for three reasons: its size as a world language, its 

alphabetic structure (which allows accuracy measurement with the ISRI tool), and 

the complexity of its script. Arabic is known as one of the hardest alphabetic lan-

guages for computers to process ([14, 23]), so including it alongside English will 

likely provide something close to the outer performance bounds of OCR engines on 

alphabetic scripts. I excluded logographic scripts such as Hanzi (Chinese) and Kanji 

(Japanese) partly due to the difficulty of generating comparable accuracy measures 

and partly due to my lack of familiarity with such languages.

The English test corpus consisted of the “Old Books Dataset” ([2]), a collec-

tion of 322 colour page scans from ten books printed between 1853 and 1920 (see 

Fig. 1a and 1b and Table 2). The dataset comes as 300 DPI and 500 DPI TIFF image 

files accompanied by ground truth (drawn from the Project Gutenberg website) in 

TXT files. I used the 300 DPI files in the experiment.

The Arabic test materials were drawn from the “Yarmouk Arabic OCR Data-

set” ([8]), a collection of 4587 Wikipedia articles printed out to paper and colour 

scanned to PDF (see Fig.  1c,d). The dataset contains ground truth in HTML and 

TXT files. Due to the homogeneity of the collection, a randomly selected subset of 

100 pages was deemed sufficient for the experiment.

The Yarmouk dataset is suboptimal because it does not come from historical 

printed documents, but it is one of very few Arabic language datasets of some size 

with accompanying ground truth data. The English and Arabic test materials are 

thus not directly analogous, and in principle the latter poses a lighter OCR challenge 

than the former. Another limitation of the experiment is that the test materials only 

includes single-column text due to the complexities involved in measuring layout 

parsing accuracy.

Noise application

Social scientists and historians often deal with digitized historical documents that 

contain visual noise ([18, 47]). In practice, virtually any document that existed 

first on paper and were later digitized—which is to say almost all documents pro-

duced before around 1990 and many thereafter—is going to contain some kind of 
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Fig. 1  Sample test documents in their original state
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noise. Sometimes it is the original copy that is degraded; at other times the docu-

ment passed through a poor photocopier, an old microfilm, or a blurry lens before 

reaching us. The type and degree of noise will vary across collections and individual 

documents, but most scholars who use archival material will encounter this problem 

at least occasionally.

A key objective of the experiment was, therefore, to gauge the effect of differ-

ent types of visual noise on OCR performance. To achieve this, I programmatically 

applied different types of artificial noise to the test materials, so as to allow isolation 

of noise effects at the measurement stage. Specifically, the two dataset were dupli-

cated 43 times, each with a different type of noise filter. The R code used for noise 

generation is included in the Appendix.5

I began by creating a binary version of each image, so that there were two ver-

sions—colour and greyscale—with no added noise (see Fig. 2a and b). I then wrote 

functions to generate six ideal types of image noise: “blur,” “weak ink,” “salt and 

pepper,” “watermark,” “scribbles,” and “ink stains” (see Fig.  2c-h). While not an 

exhaustive list of possible noise types, they represent several of the most common 

ones found in historical document scans.6 I applied each of the six filters to both the 

colour version and the binary version of the images, thus creating 12 additional ver-

sions of each image. Lastly I applied all available combinations of two noise filters 

to the colour and binary images, for an additional 30 versions.

This generated a total of 44 image versions divided into three categories of noise 

intensity: 2 versions with no added noise, 12 versions with one layer of noise, and 

30 versions with two layers of noise. This amounted to an English test corpus of 

14,168 documents and an Arabic test corpus of 4400 documents. The dataset is pre-

served as the “Noisy OCR Dataset” ([12]).

Processing

The experiment aimed at measuring out-of-the-box performance, so documents 

were submitted without further preprocessing using the OCR engines’ default set-

tings.7 While this is an uncommon use of Tesseract, it treats the engines equally and 

helps highlight the degree to which Tesseract is dependent on image preprocessing.

The English corpus was submitted to all three OCR engines in a total of 42,504 

document processing requests. The Arabic corpus was only submitted to Tesseract 

and Document AI—since Textract does not support Arabic—for a total of 8800 pro-

cessing requests.

7 The only exception was the setting of the relevant language libraries in Tesseract.

5 There are other ways of generating synthetic noise, notably the powerful tool DocCreator ([15]). I 

chose not to use DocCreator primarily because it is graphical user interface-based, and I found I could 

generate realistic noise more efficiently with R code.
6 It would be possible to extend the list of noise types further, to include 10–20 different types, but this 

would increase the size of the corpus (and thus the processing costs) considerably, probably without 

affecting the broad result patterns. Since the main aim here is not to map all noise types but to compare 

processors, I decided on a manageable subset of noise types.
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Fig. 2  Sample test document (“Old Books j020”) with noise applied
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Fig. 2  (continued)
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The Tesseract processing was done in R with the package tesseract (v4.1.1). 

For Textract, it was carried out via the R package paws (v0.1.11), which provides 

a wrapper for the Amazon Web Services API. For Document AI, I used the R pack-

age daiR (v0.8.0) to access the Document AI API v1 endpoint. The processing was 

done in April and May of 2021 and took an estimated net total of 150–200 h to com-

plete. The Document AI and Textract APIs processed documents at a rate of approx-

imately 10–15 s per page. Tesseract took 17 s per page for Arabic and 2 seconds per 

page for English on a Linux Desktop with a 12-core, 4.3 Ghz CPU and 64GB RAM.

Measurement

Accuracy was measured with the ISRI tool ([30]) in Eddie Antonio Santos’s (2019) 

updated version—known as Ocreval—which has UTF-8 support. ISRI is a sim-

ple but robust tool that has been used for OCR assessment since its creation in the 

mid-1990s. Alternatives exist ([1, 5, 46]), but ISRI was deemed sufficient for this 

exercise.

ISRI compares two versions of a text—in this case OCR output to ground truth—

and returns a range of measures for divergence, notably a document’s overall char-

acter accuracy and word accuracy expressed in percent. Character accuracy is the 

proportion of characters in a hypothesis text that match the reference text. Any mis-

read, misplaced, absent, or excess character is considered an error and subtracted 

from the numerator. This represents the so-called Levenshtein distance ([20]), i.e., 

the minimum number of edit operations needed to correct the hypothesis text. Word 

accuracy is the proportion of non-stopwords in a hypothesis text that match those of 

the reference text.8

Character and word accuracy are usually highly correlated, but the former pun-

ishes error harder, since each wrong character detracts from the accuracy rate.9 In 

word accuracy, by contrast, a misspelled word counts as one error regardless of the 

number of wrong characters that contribute to the error. Moreover, in ISRI’s imple-

mentation of word accuracy, case errors and excess words are ignored.10

8 ISRI only has an English-language stopword list (of 110 words), so in the measurements for Arabic, 

stopwords are included in the assessment. All else equal, this should produce slightly higher accuracy 

rates for Arabic, since oft-recurring words are easier for OCR engines to recognize.
9 ISRI’s character accuracy rates can actually be negative as a result of excess text. OCR engines some-

times introduce garbled text when they see images or blank areas with noise, resulting in output texts 

that are much longer than ground truth. Since excess characters are treated as errors and subtracted from 

the numerator, they can result in negative accuracy rates. In the corpus studied here, this phenomenon 

affected 4.6 percent of the character accuracy measurements, and it occurred almost exclusively in texts 

processed by Tesseract.
10 This also means that ISRI’s word accuracy tool does not yield negative rates. As Eddie Antonio San-

tos explains, “The wordacc algorithm creates parallel arrays of words and checks only for words present 

in the ground truth. It finds ‘paths’ from the generated file that correspond to ground truth. For this rea-

son, it only detects as many words as there are in ground truth”; private email correspondence, 1 Sep-

tember 2021. However, the word accuracy tool returns NA when the hypothesis text has no recognizable 

words. This occurred in 9.4 percent of the measurements in this experiment, again almost exclusively in 

Tesseract output. These NAs are treated as zeroes in Figs. 4,5,6
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Figure 3 provides some examples of what character and word error rates may cor-

respond to in an actual text. I will return later to the question of how error matters 

for analysis.

Which of the two measures is better depends on the type of document and the 

purpose of the analysis. For shorter texts where details matter—such as forms and 

business documents—character accuracy is considered the more relevant measure. 

For longer texts to be used for searches or text mining, word accuracy is commonly 

used as the principal metric. In the following, I, therefore, report word accuracy 

rates, transformed to word error rates by subtracting them from 100. Character accu-

racy rates are available in the Appendix.

Results

The main results are shown in Fig. 4 and reveal clear patterns. Document AI had 

consistently lower error rates, with Textract coming in a close second, and Tesseract 

last. More noise yielded higher error rates in all engines, but Tesseract was signifi-

cantly more sensitive to noise than the two others. Overall, there was a significant 

performance gap between the server-based processors (Document AI and Textract) 

on one side and the local installation (Tesseract) on the other. Only on noise-free 

documents in English could Tesseract compete.

We also see a marked performance difference across languages. Both Document 

AI and Tesseract delivered substantially lower accuracy for Arabic than they did for 

English. This was despite the Arabic corpus consisting of Internet articles in a sin-

gle, very common font, while the English corpus contained old book scans in sev-

eral different fonts. An analogous Arabic corpus would likely have produced an even 

larger performance gap. This said, Document AI represents a significant improve-

ment on Tesseract as far as out-of-the-box Arabic OCR is concerned.

Disaggregating the data by noise type shows a more detailed picture (see Figs. 5 

and 6). Beyond the patterns already described, we see, for example, that both Tex-

tract and Tesseract performed somewhat better on greyscale versions of the test 

images than on the colour version. We also note that all engines struggled with blur, 

while Tesseract was much more sensitive to salt & pepper noise than the two other 

engines. Incidentally, it is not surprising that the ink stain filter yielded lower accu-

racy throughout since it completely concealed part of the text. The reason we see 

a bimodal distribution in the bin + blur” filters on the English corpus is that they 

yielded many zero values, probably as a result of the image crossing a threshold 

of illegibility. The same did not happen in the Arabic corpus, probably because the 

source images there had crisper characters at the outset.

Implications

When is it worth paying for better OCR accuracy? The answer depends on a range 

of situational factors, such as the state of the corpus, the utility function of the 

researcher, and the intended use case.
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Fig. 3  Examples of word error effects
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Much hinges on the corpus itself. As we have seen, accuracy gains increase with 

noise and are higher for certain types of noise. Moreover, if the corpus contains 

many different types of noise, a better general processor will save the researcher 

relatively more preprocessing time. Unfortunately we lack good tools for (ground 

truth-free) noise diagnostics, but there are ways to obtain some information about 

the noise state of the corpus ([10, 21, 28]). Finally, the size of the dataset matters, 

since processing costs scale with the number of documents while accuracy gains do 

not.
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The calculus also depends on the economic situation of the researcher. Aside 

from absolute size of one’s budget, a key consideration is labour cost, since cloud-

based processing is in some sense a substitute for Tesseract processing with addi-

tional labour input. The latter option will thus make more sense for a student than 

for a professor and more sense for the faster programmer.
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Last but not least is the intended use of the OCRed text. If the aim is to recre-

ate a perfect plaintext copy of the original document for, say, a browseable digi-

tal archive, then every percentage point matters. But if the purpose is to build a 

topic model or conduct a sentiment analysis, it is not obvious that a cleaner text 

will always yield better end results. The downstream effects of OCR error is a 
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complex topic that cannot be explored in full here, but we can get some pointers 

by looking at the available literature and doing some tests of our own.

Existing research suggests that the effects of OCR error vary by analytical toolset. 

Broadly speaking, topic models have proved relatively robust to OCR inaccuracy 

([6, 9, 26, 36]), with [40] suggesting a baseline for acceptable OCR accuracy as 

low as 80 percent. Classification models have been somewhat more error-sensitive, 

although the results here have been mixed ([6, 25, 34, 40]). The biggest problems 

seem to arise in natural language processing (NLP) tasks where details matter, such 

as part-of-speech tagging and named entity recognition ([11, 22, 24, 40]).

To illustrate some of these dynamics and add to the empirical knowledge of OCR 

error effects, we can run some simple tests on the English-language materials from 

our benchmarking exercise. The Old Books dataset is small, but similar in kind to 

the types of text collections studied by historians and social scientists, and hence a 

reasonably representative test corpus. In the following, I look at OCR error in four 

analytical settings: sentiment analysis, classification, topic modelling, and named 

entity recognition. I exploit the fact that the benchmarking exercise yielded 132 dif-

ferent variants (3 engines and 44 noise types) of the Old Book corpus, each with a 

somewhat different amount of OCR error.11 By running the same analyses on all text 

variants, we should get a sense of how OCR error can affect substantive findings. 

This said, the exercise as a whole is a back-of-the-envelope test insofar as it covers 

only a small subset of available text mining methods and does not implement any of 

them as fully as one would in a real-life setting.

Sentiment analysis

Faced with a corpus like Old Books (see Table  2), a researcher might want to 

explore text sentiment, for example to examine differences between authors or over 

Table 2  Composition of Old Books corpus

Title Author Year Pages Words

Engraving of Lions, Tigers, Panthers, 

Leopards, Dogs,&C.

Thomas Landseer 1853 8 (28) 3983

The Corset and the Crinoline William Barry Lord 1868 30 (254) 9633

Horton Genealogy George Firman Horton 1876 34 (316) 11744

Historical Sketches of Colonial Florida Richard Lewis Campbell 1892 30 (284) 4801

Half-Hours with the Highwaymen Charles George Harper 1908 34 (422) 7695

Betrayed Armenia Diana Agabeg Apcar 1910 39 (77) 15001

The Lusitania’s Last Voyage Charles Emelius Lauriat, Jr. 1915 23 (162) 3438

The Child of the Moat Ian B. Stoughton Holborn 1916 30 (408) 7844

Seat Weaving L. Day Perry 1917 57 (96) 12437

The Boy Apprenticed to an Enchanter Padraic Colum 1920 37 (168) 7420

11 In all of the below, “OCR error” refers to word error rates computed with the ISRI tool.
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time. Using the R package quantedas LSD 2015 and ANEW dictionaries, I gener-

ated document-level sentiment polarity and valence scores for all variants of the cor-

pus after standard preprocessing. To assess the effect of OCR error, I calculated the 

absolute difference between these scores and those of the ground truth version of the 

corpus. Figure 7a–d indicate that these differences increase only slightly with OCR 

error, but also that, for sentiment polarity, the variance is such that just a few percent 

OCR error can produce sentiment scores that diverge from ground truth scores by up 

to two whole points at the document level.

Text classification

Another common analytical task is text classification. Imagine that we knew which 

works were represented in the Old Books corpus, but not which work each document 

belonged to. We could then handcode a subset and train an algorithm to classify 
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Fig. 7  OCR error and sentiment analysis accuracy
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the rest. Since we happen to have pre-coded metadata we can easily simulate this 

exercise. I trained two multiclass classifiers—Random Forest and Support-Vector 

Machine—to retrieve the book from which a document was drawn. To avoid imbal-

ance, I removed the smallest subset (“Engraving of Lions, Tigers, Panthers, Leop-

ards, Dogs,&C.”) and was left with 9 classes and 314 documents. For each variant 

of the corpus I preprocessed the texts, split them 70/30 for training and testing, and 

fit the models using the tidymodels R package. Figure s 8a, b shows the results. 

We see that OCR error has only a small negative effect on classifier accuracy up to a 

threshold of around 20% OCR error, after which accuracy plummets.

Topic modelling

Assessing the effect of OCR error on topic models is more complicated, since they 

involve more judgment calls and do not yield an obvious indicator of accuracy. 

I used the stm R package to fit structural topic models to all the versions of the 

corpus. As a first step, I ran the stm::searchK() function for a k value range 

from 6 to 20, on the suspicion that different variants of the text might yield dif-

ferent diagnostics and hence inspire different choices for the number of topics in 

the model. Figure 9a shows that the k intercept for the high point of the held-out 

likelihood curve varies from 6 to 12 depending on the version of the corpus. Held-

out likelihood is not the only criterion for selecting k, but it is an important one, so 

these results suggests that even a small amount of OCR error can lead researchers to 

choose a different topic number than they would have done on a cleaner text, with 

concomitant effects on the substantive analysis. Moreover, if we hold k still at 8—

the value suggested by diagnostics of the ground truth version of the corpus—we 

see in Fig. 9b that the semantic coherence of the model decreases slightly with more 

noise.
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Named entity recognition

Our corpus is full of names and dates, so a researcher might also want to explore 

it with named entity recognition (NER) models. I used a pretrained spaCy model 

(en_core_web_sm) to extract entities from all non-preprocessed versions of the 

corpus and compared the output to that of the ground truth text. In the absence of 

ground truth NER label data, I treated spaCy’s prediction for the ground truth text 

as the reference point and calculated the F1 score (the harmonic average of precision 

and recall) as a metric for accuracy. For simplicity, the evaluation included only pre-

dicted entity names, not entity labels. Figure 10 shows that OCR error affected NER 

accuracy severely. In a real-life setting these effects would be partly mitigated by 

pre- and postprocessing, but it seems reasonable to suggest that NER is one of the 

areas where the value added from high-precision OCR is the highest.

Broadly speaking, these tests indicate that OCR error mattered the most in NER, 

the least in topic modelling and sentiment analysis, while in classification there 

was a tipping point at around 20 percent OCR error. At the same time, all the tests 

showed some accuracy deterioration even at very low OCR error rates.

Conclusion

This article described a systematic test of three general OCR processors on a large 

new dataset of English and Arabic documents. It suggests that the server-based 

engines Document AI and Textract deliver markedly higher out-of-the-box accu-

racy than the standalone Tesseract library, especially on noisy documents. It also 
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indicates that certain types of “integrated” noise, such as blur and salt and pepper, 

generate more error than “superimposed” noise such as watermarks, scribbles, and 

even ink stains. Furthermore, it suggests that the “OCR language gap” still persists, 

although Document AI seems to have partially closed it, at least for Arabic.

The key takeaway for the social sciences and humanities is that high-accuracy 

OCR is now more accessible than ever before. Researchers who might be deterred 

by the prospect of extensive document preprocessing or corpus-specific model train-

ing now have at their disposal user-friendly tools that deliver strong results out of 

the box. This will likely lead to more scholars adopting OCR technology and to 

more historical documents becoming digitized.

The findings can also help scholars tailor OCR solutions to their needs. For many 

users and use cases, server-based OCR processing will be an efficient option. How-

ever, there are are downsides to consider, such as processing fees and data privacy 

concerns, which means that in some cases, other solutions—such as self-trained 

Tesseract models or even plain Tesseract—might be preferable.12 Having baseline 
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Fig. 10  OCR error and named entity recognition accuracy

12 Amazon openly says it “may store and use document and image inputs [...] to improve and develop the 

quality of Amazon Textract and other Amazon machine-learning/artificial-intelligence technologies” (see 

https:// aws. amazon. com/ textr act/ faqs/, accessed 3 September 2021). Google says it “does not use any of 

your content [...] for any purpose except to provide you with the Document AI API service” (see https:// 

cloud. google. com/ docum ent- ai/ docs/ data- usage, accessed 3 September 2021), but it is unclear what lies 

in the word “provide” and whether it includes the training of the processor.

https://aws.amazon.com/textract/faqs/
https://cloud.google.com/document-ai/docs/data-usage
https://cloud.google.com/document-ai/docs/data-usage
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data on relative processor performance and differential effects of noise types can 

help navigate such tradeoffs and optimise one’s workflow.

The study has several limitations, notably that it tested only three processors on 

two languages with a non-exhaustive list of noise types. This means we cannot say 

which processor is the very best on the market or provide a comprehensive guide 

to OCR performance on all languages and noise types. However, the test design 

used here can easily be applied to other processors, languages, and noise types for a 

more complete picture. Another limitation is that the experiment only used single-

column test materials, which does not capture layout parsing capabilities. Most OCR 

engines, including Document AI and Textract, still struggle with multi-column text, 

and even state-of-the-art tools such as Layout Parser ([32]) require corpus-specific 

training for accurate results. Future studies will need to determine which processors 

deliver the best out-of-the-box layout parsing. In any case, we appear to be in the 

middle of a small revolution in OCR technology with potentially large benefits for 

the social sciences and humanities.
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