
UNLV Retrospective Theses & Dissertations

1-1-1996

OCRspell: An interactive spelling correction system for OCR errors OCRspell: An interactive spelling correction system for OCR errors

in text in text

Eric Stofsky
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation

Stofsky, Eric, "OCRspell: An interactive spelling correction system for OCR errors in text" (1996). UNLV

Retrospective Theses & Dissertations. 3222.

http://dx.doi.org/10.25669/t1t6-9psi

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F3222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/t1t6-9psi
mailto:digitalscholarship@unlv.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter &ce, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OCRSpell: An Interactive Spelling Correction System
for OCR Errors in Text

by

Eric Stofsky

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master o f Science
in

Computer Science

Department of Computer Science
University of Nevada, Las Vegas

August 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1381045

UMI Microform 1381045
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, Ml 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The thesis of Eric Stofsky for the degree o f Master of Science in
Computer Science is approved.

Chairperson, Kazem Taghva, Ph.D

.IféÀ ŷy
Examining Committee Member, Thomas A. Nartker, Ph.D.

Examining Committee Member, John T. Minor, Ph.D.

A- _____________Graduate Faculty Representative, Shahram Latifi, Ph.D.

Graduate Dein, Ronald W. Smith, Ph.D.

University o f Nevada, Las Vegas
August, 1996

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this thesis we describe a spelling correction system designed specifically for OCR

(Optical Character Recognition) generated text that selects candidate words through the

use of information gathered from multiple knowledge sources. This system for text

correction is based on static and dynamic device mappings, approximate string matching,

and n-gram analysis. Our statistically based, Bayesian system incorporates a learning

feature that collects confusion information at the collection and document levels. An

evaluation of the new system is presented as well.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract ...iii
Acknowledgments ... v

1 Introduction ... 1

2 Preliminaries ... 4
2.1 Background... 4
2.2 Influences ... 6
2.3 Effects of OCR Generated Text on IR Systems7
2.4 Implementation... 9

3 Parsing OCR Generated Text ...11

4 Organization of the Lexicon.. 20

5 Design ...22
5.1 System Design .. 22
5.2 Algorithms and Heuristics U sed .. 23
5.3 Performance Issues.. 32

6 Features .. 37
6.1 Simplicity .. 37
6.2 Extendibility .. 38
6.3 Flexibility .. 38

7 OCRSpell Trainer .. 39

8 Evaluation .. 42
8.1 OCRSpell Test 1 42
8.2 OCRSpell Test 2 .. 45
8.3 Test Results Overview .. 46

9 Conclusion and Future Work .. 48
Bibliography .. 49

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to thank Dr. Kazem Taghva and the rest of the Text Retrieval group at

ISRI. I would also like to thank Julie Borsack for her help in the development of the

OCRSpell system. Her suggestions for potential OCRSpell options and subsequent

testing of the system was invaluable. Also, Jeff Gilbreth aided in the implementation of

the confusion generator, and Andrew Bagdanov proofread the original draft of this

thesis. I am also very grateful to Dr. Thomas Nartker, Dr. John Minor, and Dr. Shahram

Latifi for serving on my graduate committee.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
Introduction

Research into algorithmic techniques for detecting and correcting spelling errors in text

has a long, robust history in computer science. As an amalgamation of the traditional

fields of artificial intelligence, pattern recognition, string matching, computational linguis­

tics, and others, this fundamental problem in information science has been studied from

the early 1960’s to the present [12]. As other technologies matured, this major area of

research has become more important than ever. Everything from text retrieval to speech

recognition relies on efficient and reliable text correction and approximation.

While research in the area of correcting words in text encompasses a wide array of

fields, in this thesis we report on OCRSpell, a system which integrates many techniques

for correcting errors induced by an OCR (optical character recognition) device. This

system is fundamentally different from many of the common spelling correction

applications which are prevalent today. Traditional text correction is performed by

isolating a word boundary, checking the word against a collection of commonly

misspelled words, and performing a simple four step procedure: insertion, deletion,

substitution, and transposition of all the characters in the string [14]. While the

“corrective engine” in this approach may seem overly simplistic, it works quite well for

standard applications. In fact, Damerau [6] reported that 80% of all misspellings can be

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corrected by the above approach. However, this sample contained errors that were

typographical in nature. For OCR text, the above procedure can not be relied upon to

deliver corrected text for many reasons:

* In OCR text, word isolation is much more difficult since errors can include

the substitution and insertion of numbers, punctuation, and other nonalpha-

betic characters.

* Device mappings are not guaranteed to be one-to-one. For example, the sub­

stitution of I1Ï for m is quite common. Also, contrary to Pollock and Zamora’s

[16] statement that OCR errors are typically substitution based, such errors

conunonly occur in the form of deletion, insertion, and substitution of a

string of characters [19].

* Unlike typographically induced errors, words are often broken. For example,

the word program might be recognized as pr-' gram.

* In contrast to typographical errors caused by common confusions and trans­

positions produced as artifacts of the keyboard layout, particular OCR errors

can vary from device to device, document to document, and even from font to

font This indicates some sort of dynamic confusion construction will be nec­

essary in any OCR-based spell checker.

Many other differences also demonstrate the need for OCR-based spell checking

systems. Cur system borrows heavily from research aimed at OCR post-processing

systems [11, 18, 19, 22] and is statistical in nature. It is our belief that the ability to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interactively train OCRSpell for errors occurring in any particular document set results

in the subsequent automatic production of text of higher quality. It is also important to

note that it is also our belief that for some applications, fully automatic correction

techniques are currently infeasible. Therefore, our system was designed to be as

automatic as possible and to gain knowledge about the document set whenever user

interaction becomes necessary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2
Preliminaries

2.1 Background

When designing any automated correction system, we must ask the all important question,

'‘What sort o f errors can occur and why?" Since most of the errors produced in the docu­

ment conversion process are artifacts of the procedure used, we can trace most of the

problems associated with OCR generated text to the basic steps involved in the conversion

process itself. Figure 1 shows the typical process. The procedure involves four standard

steps;

1. scanning the paper documents to produce an electronic Image

2. zoning the document page to Identify and order the various regions of text

3. the segmentation process breaks the various zones Into their respective

components (zones are decomposed Into words and words are decomposed

Into characters)

4. the classification of characters Into their respective ASCII characters

Each of the preceding steps can produce the following errors as artifacts of the

process used:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HARDWARE OCR DEVICE

< >ClassificationScannning Zoning Segmentaüon

Figure 1: The Standard OCR Procedure

* Scanning

Problems can be caused by poor paper/print quality of the original

document, poor scanning equipment, etc. The results of such errors can lead to errors in

every other stage of the conversion process.

* Zoning

Automatic zoning errors are generally caused by incorrect

decolumnization. This can greatly affect the word order of the scanned material and

produce an incoherent document.

* Segmentation

Segmentation errors can be caused by an original document containing

broken characters, overlapping characters, and nonstandard fonts. Segmentation errors

can be divided into three categories. Table 1 contains a list of the segmentation error

types and the respective effects of such errors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TYPE PROBLEMS EXAMPLES

TYPE I Single characters recog­ m -> m
nized as multiple characters n -> ii

TYPER Multiple characters recog­ cl -> d
nized as one character iii -> m

TYPEm Division and concatenation cat -> c at
of words the cat -> thecat

Table 1: Types and Results of Segmentation Errors

* Classification

Classification errors are usually caused by the same problems as

segmentation errors. Typically they result in single character replacement errors where

the correct character is replaced by a misrecognized character, but other effects can be

seen as well.

OCRSpell was designed to remedy classification errors, all the classes of

segmentation errors, and to help reduce the number of scarming errors remaining in the

resulting documents. Zoning errors are not handled by the system due to their very

nature. Manual or semi-automatic zoning usually resolves such errors in document

collections prone to this effect.

2.2 Influences

There has been considerable work done in the areas of OCR generated text correction and

spell checking in general over the years [6, 7, 11, 12, 14, 15, 18, 19, 22, 23, 24, 25, 26].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The seminal work in the field is perhaps [6]. String matching and correction are classical

computer science problems which also have a very long history [1, 2, 4, 9, 24]. Our sys­

tem can be viewed as an amalgamation of many of these fields and relies on many of their

concepts, heuristics, and algorithms. The exact nature of the origin of many of the compo­

nents of the system will be discussed as they are presented.

The motivation for this work is obvious. Recent advances in optical character

recognition and computer technologies in general have lead to OCR’s widespread use in

preparing large scale collections of documents for both presentation and for text retrieval

purposes. The inherent limitations of OCR technologies present the need for software

which allows for the semi-automatic correction of device generated text.

2.3 Effects of OCR Generated Text on IR Systems

It is easy to see how OCR generated errors can affect the overall appearance of the text in

question. The effects of such errors on information retrieval systems is less obvious.

After all, if the image of the original document is saved by the retrieval system for later

display and the performance of the query engine applied to the OCR generated text is not

affected by the confusions in the document’s text, correction systems such as ours would

not be necessary for IR systems. Here we begin by introducing some basic IR terminology

then proceed to explain why a system like OCRSpell may significantly increase the per­

formance of text retrieval systems that rely on OCR output for their input.

The goal of information retrieval (IR) technology is to search large textual databases

and return documents that the system considers relevant to the user’s query. Many

distinct models exists for this purpose and considerable research has been conducted on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

all of them [20,21]. Most of the commercial IR applications are based on these models.

In order to establish the effectiveness of any IR system, two notions are generally

used:

„ ,, numberof documents retrieved that are relevantRecall = —
total number o f relevant documents

„ . . number of documents retrieved that are relevantPrecision = ----------------------:------------------------ :

-

— ----------------------------------
total number of retrieved documents

From [20], we know that, in general, average precision and recall are not

significantly affected by OCR errors in text. We also know, however, that other

elements of retrieval systems such as document ranking, handling of special terms, and

relevance feedback may be affected considerably. Another consideration is the increase

in storage space needed to store index terms created from OCR generated text.

Other problems may result if non-stopwords are misrecognized as stopwords,

traditionally ignored in information retrieval systems. Also, systems based on

nonprobabilistic models typically have no means of factoring the probabilities of words

occurring in the collection being misrecognized. Moreover, words with low frequency

in the collection are weighted high in the ranking scheme. If such words are also rare in

the document(s) they occur in and are misrecognized, obviously, the IR system will be

affected negatively. This may not occur enough to change the system’s overall recall

and precision but can have catastrophic effects if queries typically take on this sort of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flavor.

Thus, depending on the collection to be processed and the purpose and needs of the

users, some sort of correction system may be needed prior to a documents insertion into

a text retrieval system. Furthermore, if confidence in such a system is to be maximized,

a semi-automatic system such as ours may prove to be the best option in many instances.

2.4 Implementation

OCRSpell was designed to be a tool for preparing large sets of documents for either text

retrieval or for presentation. It was also developed to be used in conjunction with the

MANICURE Document Processing System [22]. The Hypertext Markup Language

(HTML) feature makes OCRSpell an excellent tool for correcting documents for display

on the World-Wide Web [3]. The system is designed around common knowledge about

typical OCR errors and dynamic knowledge which is gathered as the user interactively

spell checks a document. Approximate string matching techniques [24, 23] are used to

determine confusions. Consider the following misspelling:

mountain

It is easy to see that the confusions m->m and ii->n have occurred. We refer to the

above confusions as device mappings. Whenever OCRSpell fails to provide an adequate

choice for a misspelled word, the system isolates the new confusions that have occurred

and adds them to the device mapping list. This ensures that future misspellings

containing the same confusions will have corrections offered by the spelling engine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

OCRSpell allows a user to set default statistics or to develop statistics for a particular

document set. This ensures that the statistics used by the spelling engine will be

adequate to find corrections for most of the errors in the document with minimal user

interaction. Segmentation errors (resulting in splitting words) can also be handled

interactively through the use of the join next and Join previous options.

Conceptually, the system can be seen as being composed of 5 modules:

1. a parser designed specifically for OCR generated text

2. a virtual set o f domain specific lexicons

3. the candidate word generator

4. the global/local training routines (confusion generators)

5. the graphical user interface

The actual implementation of the system closely follows this model. Each of these

components will be discussed in the following chapters. Issues affecting the creation of

domain specific lexicons will be addressed in Chapter 4.

At the heart of the system is a statistically-based string matching algorithm that uses

device mapping frequencies along with n-gram statistics pertaining to the current

document set to establish a Bayesian ranking of the possibilities, or suggestions, for each

misspelled word. This ensures that the statistically most probable suggestions will occur

at the beginning of the choices list and allows the user to limit the number of suggestions

without sacrificing the best word alternatives. The algorithms and heuristics used in this

system are presented in detail in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Parsing OCR Generated Text

Just as the method for candidate word generation is important in any spelling correction

system, an effective scheme for parsing the text is essential to the success of the system.

For our system, we chose to implement the OCR generated text parser in Emacs LISP [13]

due to its robust set of high level functions for text searching and manipulation. Rather

than designing many parsing algorithms for different types of working text, we chose to

make the parser as general as possible and provide the user with a robust set of filtering

and handling functions.

The unique attributes of OCR generated text necessitate a unique parser. The

distictness of the parser can be seen in its word boundary code. It is reported in [12] that

for essentially all spelling correction techniques, word boundaries are defined by

whitespace. The inherent characteristics of the text output from OCR prevent such a

simplistic approach and demand fundamentally different approaches to many of the

standard techniques for dealing with text in a spell checker. Everything from the

treatment of whitespace and punctuation characters, to the treatment of hyphens and

other combining symbols used in the creation of compound words has to be handled in a

manner that is quite distinct to OCR generated text.

At the highest level, the file to be spell checked is loaded into an Emacs buffer and

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

processed one line at a time. Before the line is sent to the word generation module (a

self contained executable), markup, non-document character sequences, and other strings

which the user does not wish to be spell checked are filtered out. Since text in general

varies so much between specific subject domains and styles we allowed for user

controlled parser configiuration. This can easily be seen in the dichotomy that exists

between a mathematical paper and a short story.

macs@little-chai1ie.ISRI.UNLV.EDUi

Buffers Files Tools Edit Search Help

Unit Costs fo r Overpacks. Racks, Sleeves and Plugs - Once-Through Cycle
Repositories
</sentence>
</paragraph>
<paragraph id*"18">
<sentence id="56">
U nit Hole D r il l in g and Trenching Costs - Once-Through Cycle
Repositories ♦ ♦ ♦
</sentence>
<sentence id="57">
Unit Sleeve Emplacement Costs - Once-Through Cycle Repositories Total
Operating Costs fo r Spent Fuel Repositories in M illio n s of 1976 Dollars
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
</sentence>
</paragraph>
<paragraph id="19">
<sentence id="58">
nHBWWWBBHBBIBB and Shaft Sealing Costs fo r Once-Through Fuel Cycle
Repositories ♦ ♦
</sentence>
<sentence id="59">
Levelized Unit Cost Estimate fo r Spent Fuel Repositories, Accelerated
Mining, V kg HH *
</sentence>
</paragraph>
<paragraph id="20">
(sentence id="60">
Levelized Cost Estimates fo r Spent Fuel Repositories Continuous Mining,
i /k g HM Resource Commitments Waste Packages Waste Receiving Repository
Area Contents o f A lte rn a tive F irs t Repositories Mining and Rock
Handling Re«|uirements Shaft Depths and Diameters, m Mine V e n tila tio n
Summary ♦
(/sentence)
(sentence id="61">

Te t F i l l
SPC to leave unchanged. Character to replace word t i , r , j ,b , g , o |] i

Figure 2: The OCRSpell User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

We probably would not want to query the generation module on every occurrence of

a numeric sequence containing no alphabet characters in the math paper, while such an

effect may be desired in the short story. Included in the implementation are filter

mechanisms allowing for skipping number words (words containing only numbers),

filtering HTML mark-up, and general regular expressions.

The EMACS text parser also aides in word boundary determination. Our approach is

fundamentally different from the standard approach. Rather than using the traditional

methods of defining word boundaries via whitespace or non-alphabetic characters, we

use a set of heuristics for isolating words within a document. In our system, if the

heuristic word boundary toggle switch is on, the parser tries to determine the word

boundary for each misspelling which makes the most sense in the context of the current

static device mappings.

If the switch is off, a boundary which starts and ends with either an alphabetic or a

tilde (“~”) character is established. Essentially the parser tries to find the largest possible

word boundary and passes this to the word generator. The word generator then

determines the most likely word boundary from the interface’s delivered text. The

generator delivers the new candidate words formed from static mappings of spelling

errors to the parser in the form:

& <inlsspelIed-word> <number*of-candidates> <offset> :

<candidate-list>

The <inisspeUed-word> field contains the entire misspelled word. This is used by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

the parser to determine what part of the text to delete when inserting any candidate

selection or manual replacement.

The <number>of-candidates> field contains a non-negative integer indicating the

number of words generated by the static device mappings of the word generator.

The <offset> field contains the starting position of the misspelled word (the lower

word boundary).

The <candldate>Ust> is the list of words generated by static mappings. Words in the

<candidate-Iist> are delimited by commas and contain probabilistic information if that

is desired.

The parser then receives this information and uses the <offeet> as the left starting

point of the boundary of the misspelled word. Futhermore, the parser invokes the

dynamic confusion generator and the unrecognized character heuristic, if required. The

above process is much different from many of the general spell checkers which

determine word boundary through the use of a set of standard non-word forming

characters in the text itself. In our system, non-alphabet characters can be considered as

part of the misspelling and as part of the corrections offered. Also, if the word boundary

is statistically uncertain, then the parser will send the various probable word boundaries

to the word generator and affix external punctuation, as necessary, to the words of the

candidate list so that the text to be replaced will be clearly defined and highlighted by the

user interface. The internals of OCRSpell’s word generation will be discussed in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Chapter 5.

To further illustrate the differences between our system and traditional spell

checkers, consider the following misspellings:

(A)legal

(B) (iiiount@in)

(C) -fast”

(D) D-ffer-ces

(E) In trcduc tion

In example (A), typical spell checkers would query for a correction corresponding to

the word “ega.” Our system, however, determines that the character “1” is on the left

hand side of several of the static device mappings and appropriately queries the word

generator with “ legal” which generates a singleton list containing the highly ranked

word “legal”. Furthermore, since the left offset contains the index of either the leftmost

alphabet character or the leftmost character used in a device mapping, the <offset>

returned for this instance is 0. Also, since the entire string was used in the generation of

the candidate, the string “legal” will occur in the <inisspelled-word> field in the list

returned by the word generator. This means that the string “legal” will replace the string

“ legal” in the buffer. This is important because even if the correct word could have

been generated from “ega,” after insertion, the resulting string in the buffer would have

been “llegall” which is incorrect in this context.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Example (B) demonstrates that confusions can be a result of a sundry of mapping

types. The parser’s role in determining the word boundary of “(iiiount@in)” is as

follows. The parser grabs the largest possible word boundary, which in this case is the

entire string and passes it to the word generator. The word generator produces the

singleton list containing the word “mountain”. The <of!set> field is set to 1 since the

first alphabet character and the first character used in the transformation occurs at

character position 1 in the string. Subsequently, since the first and the last character are

not used in any applied device mapping, the <misspelled-word> is “iiiount@in.”

Hence, the final correction applied to the buffer would be “(mountain).” Since the

beginning and trailing punctuation were not involved in the generation process they are

left intact in the original document.

In example (C), we see how the tilde character takes precedence in our procedure.

Since the string “-fast”” contains a correct spelling, “fast” surrounded by punctuation, in

the typical context the parser would simply skip the substring. Since the tilde character

has special meaning (unrecognized character) in OCR generated text, whenever we parse

a string containing this character we automatically attempt to establish a word boundary.

The parser sends the entire constructed string to the word generator. Assume that the

candidate list is null due to the current configuration of static mapping statistics. This

may or may not be true, depending only on the preprocessing training. The word

generator would return a null list. Next the parser would evoke the dynamic device

mapping generator. If we assume that this error (i.e. - > “) has occurred in the current

document set before then, the locally created confusions will be inserted into the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

misspelling and offered as candidates. Also, the unrecognized character heuristic

(discussed in Chapter 5) will be invoked. The most probable results of the above

procedure would be the word list

(1) “fast (2) fast

Also note that if no mappings for the quote character exists, the above list will be

offered as replacements for the string “-fast"." Here the heuristic word boundary

procedure has indicated that the trailing quote is not part of the word.

The fourth example, (D), demonstrates how the parser deals with a series of

unrecognized characters in a stream of text. Once again we will assume that the word

generator returns a null list. Also we will assume this time that no dynamic mappings for

the character will produce a word in the current lexicon. Now the unrecognized

character heuristic is called with the string “D-ff-er~ces.” The heuristic, discussed in

Chapter 5, is applied. After candidate word pluralization and capitalization, the parser

replaces the misspelling with “Differences.”

(E), the last example, demonstrates the semi-automatic nature of the parser. It

consists of the text stream, “In trcduc tion.” When the parser firsts attempts to process

this stream it determines that the word “In” is correct. Next, the subsequent string

“trcduc” is isolated as a distinct word boundary. At this point the normal procedure is

followed. If the user uses the (backward join) feature the string “In trcduc” is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

replaced with “Intrcduc” and that string is passed to the word generator. Since that

string does not occur in the lexicon, a word list consisting of “Introduce” is offered by

the word generator. If the user selects this choice it will be inserted into the buffer.

However, if the user uses the <j> (forward join) feature, the entire original text

substream is sent to the generator with no whitespace and replacement “Introduction” is

offered. This string is once again passed to the word generator, but since the word

occurs in the lexicon, the parser continues along the text stream. Other similar situations

rely on the semi-automatic nature of the parser as well.

The parser also handles hyphenated text. In the context of OCR generated text,

hyphens and other word combining symbols such as “/” present many unique problems.

Once again, by examining large samples of text of various styles from various domains

we came to the conclusion that no one parsing technique would be generally adequate.

Obviously, in text rich in hyphenation, such as scientific scholarly text, querying the user

at each occurrence of such symbols would become tedious. On the other hand, in

collections with light hyphenation such a practice may be very desirable. The problem

lies in the fact that the hyphens and other word combining symbols can be the result of

recognition errors and, hence, be the left hand side of static or dynamic device

mappings. The situation is further complicated by the fact that most standard electronic

dictionaries do not include words containing such combining symbols. If we make any

sequence of correctly spelled words combined with such symbols correct by convention,

in many circumstances the system would perform erroneously. For these reasons we

designed the parser with toggle switches that control how hyphenation is handled.

In its default setting OCRSpell treats hyphens as standard characters. This means

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

that hyphenated words are treated as single words, and the hyphens themselves may be

included in mappings. Candidate words are generated for the entire sequence with

dynamic mappings being established in the same manner as well. This mode is intended

for OCR generated text where light hyphenation is expected.

For text that is hyphen intensive, a second mode that essentially treats hyphens as

whitespace is included in the parser as well. This mode has the advantage that each

word in a hyphenated sequence of words is spell checked individually. Also, in the

previous setting if a misspelling occurred in a combined sequence of words, the entire

sequence is queried as a misspelling. In this schema only the term which does not occur

in the lexicon is queried. The parser filters out the hyphens prior to sending the current

line of text to the static word generator to prevent the hyphens from affecting either static

device mappings or word boundary determinations. Dynamic device mappings on

hyphen symbols are still generated and applied by the parser when confusions are known

to have occurred. Choosing between the two parsing methods involves the classical

dilemma of efficiency versus quality. The best results will always be achieved by using

the parser in its default setting, but sometimes the frequency of necessary, naturally

occurring hyphens in the collection makes this method too time consuming.

The OCRSpell parser was designed to be efficient, expandable, and robust enough to

handle most styles of document sets effectively. The system’s treatment of word

boundaries, word combining symbols, and other text characteristics is essential to the

overall success of the system. The other components of the system rely heavily on the

parser to make heuristically correct determinations concerning the nature of the current

text being processed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Organization of the Lexicon

Another important issue to address prior to the development of any candidate word selec­

tion method is the organization of the lexicon, or dictionary, to be used. Our system

allows for the importation of Ispell [26] hashed dictionaries along with standard ASCII

word lists. Since several domain specific lexicons of this nature exist, the user can prevent

the system from generating erroneous words that are used primarily in specific or techni­

cal unrelated domains. Stemming is applied to the word list so only non-standard deriva­

tives need to be included in any gathered lexicon. OCRSpell also allows the user to add

words at any time to the currently selected lexicon.

It is important for any spelling correction system to have an organized, domain

specific, dictionary. If the dictionary is too small, not only will the candidate list for

misspellings be severely limited, but the user will also be frustrated by too many false

rejections of words that are correct. On the other hand, a lexicon that is too large may

not detect misspellings when they occur due to the dense “word space.” Besides over

acceptance, an overly large lexicon can contaminate the candidate list of misspellings

with words that are not used in the current document’s domain. According to [15], about

half of a percent of all single character insertions, deletions, substitutions, and

transpositions in a 350,000 word lexicon produced words in the lexicon. In a device

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

mapping system like ours, an overly large dictionary could prove catastrophic.

Other studies indicate that, contrary to popular opinion, there is no need for vast

electronic dictionaries. For example Walker and Amsler [25] determined that 61% of

the terms in the Merriam-Webster Seventh Collegiate Dictionary do not occur at all in an

8 million word sample of the New York Times newspaper. They also determined that

64% of the words in the newspaper sample were not in the dictionary.

Our system does not solve the lexicon problem; however, it does provide an

infrastructure that is extremely conducive to lexicon management. Since the system

allows for the importation of dictionaries, they can be kept separate. Optimally, each

collection type (i.e. newspaper samples, sociology papers, etc.) would have its own

distinct dictionary that would continue to grow and adapt to new terminolgy as the user

interactively spell checks documents from that collection. The only problem to this

approach is the vast disk space that would be required since most of the various

dictionaries would contain identical terms. So once again a careful balance must be

reached. It is clear that automatic dictionary management is a problem that deserves

considerable research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5
Design

5.1 System Design

The OCRSpell system consists of three parts:

1. A two-level statistical device mapping word generator which is used to

generate possibilities for misrecognized words (implemented in the C

programming language).

2. The confusion generator which is used to determine the longest common

subsequence and the subsequent confusions for words that have been

manually replaced (implemented in the C programming language).

3. The user interface which combines (1) and (2), and adds many options and

features to insure an easy to use, robust system. This interface was written

in Emacs LISP and was designed to run under Emacs Version 19.

The interface can be controlled by a series of meta commands and special characters.

Figure 2 shows the overall design of the OCRSpell interface. Many of the commonly

used interface options can be selected directly from the menu. The user can join the

current word with the previous or next word, insert the highlighted word or character

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

sequence into the lexicon, select a generated choice, or locally/globally replace the

highlighted text by a specified string. If the user chooses to replace the text, the

confusion generator is invoked and the subsequent confusions are added to the device

mapping list. This means that any errors occurring later on in the document with the

same confusions (e.g. m -> m) will have automatically generated choices in the

interface’s selection window. Of course, this means the effectiveness of OCRSpell

improves as it gains more information about the nature of the errors in any particular

document set. Table 2 contains a list of all of the interactive features of the system.

Key OCRSpell Feature

[i] insert highlighted word into lexicon

[r] replace word, find confusions

[b] backward join (merge previous word)

Ü1 forward join (merge next word)

[g] global replacement

[<space>] skip current word or highlighted region

[<character>] replace highlighted word with generated
selection

[q] quit the OCRSpell session

Table 2; OCRS pell’s Interactive Features

5.2 Algorithms and Heuristics Used

The OCRSpell system integrates a wide array of algorithms and heuristics. We start our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

description of the overall algorithmic design of the system by introducing some key terms,

algorithms, and heuristics. The overall integration of these concepts can be seen in Fig­

ures 5 and 6 which visually demonstrate how these various components fit together.

• A simple level saturation technique is used to generate new words firom static con­

fusions. This technique relies heavily on a Bayesian ranking system that is applied

to the subsequent candidate words. The mapping process and Bayesian ordering

are as follows:

A successful word mapping generation is defined as:

A+ -> B+ -> C+

where A'*', B \ and C*" are strings of 1 or more characters. A"*" doesn't occur in the

lexicon, and B^ or occurs in the current lexicon. String B^ is generated by applying

one mapping to A^. String is generated by applying one mapping to B^.

Character or device mappings are of the form:

M q —> M ̂

where Mq and Mj consists of a sequence of 0 or more characters, and

The Bayesian candidate function is defined as:

 ̂ % I = —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

where the probability P (T. —> X) is the statistical probability that the string X was

mapped from string Yj, given the current state of the static device mapping list of

confusion probabilities. Yj can be thought of as being bounded by trigram space.

The Bayesian ranking function is defined as:

P(K|X) = Max n P{Yj) P{ X. -^Yp

P (%,)

where the product is taken over every device mapping (X ̂—> Yp used in the

transformation, and P(Yj) and P(Xj) are determined through an n-gram analysis of the

character frequencies in the current document set. Y may be generated from X by

intermediate transformations X%, X2,...,X„, where n is greater than 0. The maximum of

the product is taken so that if multiple distinct mappings produce the same result, the

statistically most probable will be selected. In our implementation n is bound to be no

greater than 2.

The collocation frequency between any word pair is measured as [10]:

F { X a Y) =

where P(X) and P(Y) are the statistical frequencies of words X and Y in the current

document set and P(X,Y) is the frequency of word X and Y occurring as consecutive

words in the current document set. The words need not be in the current lexicon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

The n-gram (character) analysis of the document set is performed as follows:

For each string X of length L,

(ù (L X) = o f occurances of string X
total number o f strings of length L

where L, the string length, currently takes on the values 1, 2, and 3 (i.e. unigram,

bigram, and trigram) for all to (L X), L = |X |.

The device mapping statistics are normalized upon success with the following n-

gram function:

u (|B |.S)

(0 (|A |4)

where A, B, and Xj are strings of characters of length between 0 and 3. This function

is used in conjunction with the Bayesian functions above to produce normalized statistics

pertaining to any particular mapping instance. The numerator of the above function

determines the statistical likelihood that the string B occurs in the current document set

(i.e. its frequency of occurrence in the current document set). The denominator is the

product of all other current static device mapping instances from A multiplied by the

probability that the correct string is in fact A.

In our approach, static device mappings are implemented as an ordered list of three

dimensional vectors of type (string, string, real) that contain (generated-string, correct-

string, mapping frequency) of the associated device mapping. We limit the number of

mappings in any transformation to two for two reasons. First, empirical evidence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

suggest that the words generated after two applications of mappings are usually

erroneous. Secondly, if this transformation process is left unbounded, the procedure

becomes quite time consuming.

• The ranking of word suggestions is achieved using the above statistical equations.

After the probabilities of each of the word suggestions is computed, the list is

sorted so that the words are offered in decreasing order of likelihood. The process

is as follows:

Misspelling Suggestions Ranking

the the 0.336984
th-c 0.002057
rho 0.000150
tic 0.000001
thy 0.000001
th 0.000001

mount® in mountain 0.000010

Mineral Mineral 0.013608

illegal illegal 0.000460

iiieii men 0.000491

Table 3: Example of Static Mapping Word Generation Rankings

First, all the suggestions using the static device mappings are generated with their

statistical ranking calculated as above. These words are then ordered from most

probable to least. Next, the same procedure is performed on the word with the dynamic

device mappings. This list is then ordered and inserted at the beginning of the candidate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

list generated in step 1. Next, words are generated using the unrecognized character

heuristic, if at least one unrecognized character is present in the word. If no words are

generated using this heuristic, the word is iteratively stemmed, and the selected root is

processed using the same heuristic. Any candidate words subsequently generated from

this stemming process are concatenated with the suffix obtained from the original

misspelling. These words are sorted alphabetically and appended to the end of the

candidate list. Throughout the process capitalization and pluralization is performed as

necessary. After this word list generation process is complete, duplicates are removed

by merging high. Table 3 contains a few examples of misspellings with the

corresponding ranking of each member of the candidate list generated by the static

device mappings of a sample document set.

One of the more interesting effects of the above procedure is that often the candidate

list consists of a single high probability suggestion. Also, treating the words generated

through each distinct process separately increases the performance of the system. It

weighs dynamically gathered information higher than static information. Furthermore,

since the words generated by the unrecognized character heuristic cannot be ranked

statistically, appending them to the end of the list preserves that statistical integrity of the

rest of the candidate list. An evaluation of the OCRSpell system can be found is Chapter

8.

The confusion generator was developed to use the dynamic programming longest

common subsequence algorithm. This algorithm was chosen so that heuristically

optimal subsequences would be selected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

The method used here is from [4]. If we let X[I...i] represent the prefix in the string

X[l...m] of length i and c[i, j] be the length of an LCS for sequences X[l...i] and Y[l...j]

for two strings X[l...m] and Y[l...n]. Then we can define c[i, j] recursively as:

0 if i = 0 or j = 0
C[<V1 = j c [i - l j - l] + l ifi,j>OandX[i] =Y[j]

1̂ 1) if i, j>OandX[i] # Y|j]

After the longest common subsequence has been calculated, the character sequences

not in the LCS are correlated and saved as dynamic device mappings. The time required

to compute dynamic confusions can be improved by using a more efficient LCS

algorithm such as [1] or [2]. Also, confusions can be computed by other means entirely

as demonstrated by [9]. The creation of dynamic device mappings from the LCS of two

distinct strings of text can be seen in Figure 3.

SI

S2

m

t
y

DM {/// -4 m} {(op ciy

Figure 3: Example of dynamic device mapping construction from LCS. The word
occurring in the document (S2) is iiiount@in. The user manual replacement (SI) is
mountain. The new device mappings created are {iii -> m}, {@ > a>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Dynamic device mappings are created and applied by the user interface in much

the same way that static device mappings are applied in the level saturation gener­

ation process. A longest common subsequence process is invoked whenever the

user manually inserts a replacement to a misspelling.

• We implemented an intelligent number handling feature as an extension of our

device mapping generator. After detecting the word boundary of a given misspell­

ing we parse the left and right hand side of the isolated word. If we encounter

characters with static device mappings associated with them, we include them in

the word generation process as well. Hence, the same n-gram and device mapping

analysis takes place.

As an example of how this process works consider the following scenario. Assume a

static device mapping for the character “1” exists. If the word “legal” occurs in the

document, then, using the above approach, the word boundary which is isolated will

include the entire string. Hence all candidate words will be generated from the string

“ legal.” The likely result of this process will be a candidate word list including the

word “legal.”

• Stemming on misspellings and words occurring in the lexicon is performed in a

heuristic manner. If there is an apparent common suffix in a misspelling where

OCRSpell offers no suggestions, the suffix is removed, and the root is recon­

structed. The suggestions, if any, subsequently offered by OCRSpell are then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

unstemmed.

The stemming procedure used here can be described as a very nonaggressive “Porter­

like” stemmer [5]. Since it is not important that the words generated in conflation are in

fact related to the root, the process of stemming is significantly relaxed. Furthermore,

since all nonstandard forms are assumed to occur in the lexicon, the only problems

associated with this process are:

1. Legitimate words that are not recovered in the stemming process

2. Illegitimate words that are generated in the stemming process

Problem 1 is eased by allowing for the importation of a wide variety of lexicons.

Since these lexicons differ in the various word forms they contain, the odds of the

lexicons not containing either the word or a stem-able root of the word is reduced by

using domain specific dictionaries. As the user processes any coherent collection of

documents and inserts new terms into the working lexicon, occurrences of the first

problem should drastically decrease. Problem 2 is less easy to deal with. Since it is

impossible to determine what is a legitimate word that is not in the lexicon set and what

is the result of excessive conflation, we do not attempt to deal with this problem here.

Empirical evidence suggest that often times human beings perform excessive conflation

as well, necessitating the offering of words generated in this class to be offered as

suggestions by the OCRSpell system.

• A new heuristic was developed to handle unrecognized characters. Essentially,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

whenever a word with at least one tilde is spell checked, not only is the typ­

ical device mapping analysis performed but a heuristic lookup function is called as

well. Figure 4 contains the algorithm that generates the candidate words using this

heuristic.

The overall organization of this collection of algorithms and heuristics can be seen in

Figures 5 and 6. Figure 5 pictorially demonstrates the overall OCRSpell word

generation process. Here static and dynamic device mappings are applied to the word

boundary using the current user selected lexicon(s). The use of the unrecognized

character heuristic in this procedure is also demonstrated along with its required

auxiliary stemming functions. Figure 6 diagrams the user verification process, or ffont-

end, of the system. The interactive LCS construction of dynamic confusions can be seen

within the larger picture of the user verification process. These two figures comprise the

whole of the system we have developed at a very high level. Chapter 7 is devoted to the

training of the system which has not been covered in detail here.

5.3 Performance Issues

All of the algorithms used in this system are polynomial in nature. The most time expen­

sive procedure used in the system is the level saturation word generation. This technique

basically takes n device mappings and applies them to some particular string of length m.

Since only two mappings can be applied to any particular string, this procedure is still

polynomial in nature. Although this mapping list can grow quite large, it typically con­

tains sparse mappings when applied to any particular word. As stated before improve­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

ments can, however, be made by substituting the quadratic confusion generation routines

for a more optimal linear time approach. Possible algorithms for improving the confusion

generator can be seen in [2] and [1].

Other improvements in speed and efficiency can be made in the area of the lexicon

access and organization. This will be addressed in Chapter 9. Many of these

improvements can be used in the future to help compensate for the expensive overhead

of running the application under Emacs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Algorithm Generate-Words-From-Unrecognized (string original-word)

string lookup-word;
Int max-Iength;
array of string word-list;

{for grep regular expression}
{heuristic word reject length}
{structure to store new candidates}

max-length = length (original-word) 4-
no-of-unrecognized-chars (original-word);

lookup-word = original-word;
replace all ~’s in lookup-word with *’s;
word-list = grep of lookup-word in lexicon;
if word-list = nil then

lookup-word = stem of lookup-word;
lookup-stern = suffix of lookup-word;
word-list = grep of lookup-word in lexicon;
word-list =» unstem (word-list, lookup-stem);

fi
if first char of lookup-word is uppercase then

word-list = upper (word-list)
fi
if lookup-word appears plural then {i.e. ends in “s”,

word-list = plural (word-list)
fi
remove all words w from word-list where length (w) > max-length
sort word-list lexicographically
end

‘es”, etc.}

where the functions stem and suffix return the root and the rest of the string
respectively, function unstem heuristically removes the stem it is passed as the
second argument from all the words it is passed in the first parameter word-list,
the function upper simply capitalizes each of the words in the word-list, and the
function plural heuristically pluralizes each of the words in word-list and returns
the list constructed. No-of*unrecognized-chars returns the number of tildes in
the string.

The call to grep simply looks up the new term in the lexicon, returning all
terms that match the regular expression where each can match zero or more
of any alphabet character.

Example:
Generate-Words-From-Unrecognized(“D~ff~rences”)

singleton word list containing only the word “Differences.”
produces a

Figure 4; Unrecognized character heuristic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Spell Checking
~^ proxim âtë Strmg~Mitcfilng

Unrecognized
Character
Heuristic

GUI Verification

Lexicon

Stemming

Reverse Stemming

Pluralization

Capitalization

Static
Device

Mappings

Dynamic
Device

Mappings

Ordered
Candidates
Merge High

Static device
mapping word

generator

Dynamic device
mapping word

generator

Word Boundary

Determination

OCR generated text

Figure 5: Overall OCRSpell Generation Process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

<char><i>

 <j> Back to word
\ generation

<r> <g>

Back to word
generation

<r> <g>

LCS

USER insert
selection

forward
join

backward
join

query for
replacement

lexicon
insertion

candidate list
highlighted word boundary

replace globally
query user at each

occurrence

insert replacement
into word
boundary

append
new

confusions
to dynamic
mappings

Figure 6: OCRSpell User Verification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Features

6.1 Simplicity

The OCRSpell Emacs interface was designed with ease of use in mind. All operations can

be performed by a single keystroke. The interface invokes all of the other aspects of the

system, so they are transparent to the user. Some of the options included are the ability to:

* Create a file.choices buffer, which records all changes to a document in a

buffer in the form original -> replacement.

* Skip non-document markup in tagged text. Currently only the Hypertext

Markup Language (HTML) (derived from SGML [8]) is supported.

* Load and save dynamic confiision/session files. This allows the user to apply

the information gathered in a current OCRSpell session at some future time.

* Specify the use of alternate dictionaries and static confusions files.

* Process various types and styles of document sets.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Extendibility

The design of the system leads itself to easy expandability. In fact there are plans to

implement clustering [7,19] in the system. Also, the nature of the system’s design allows

new code to be written in either the C programming language or in Emacs LISP.

6.3 Flexibility

OCRSpell gives the user the ability to control most of the higher elements of how any par­

ticular document is spell checked right from the interface. The maximum number of

choices for any misspelled word can be set with the statistically most probable selections

being delivered. Also, the user can specify how numbers, hyphens, and punctuation

should be handled in the spelling process.

In addition, the modularity of the Emacs LISP code allows for the easy addition of

new features. Processing modes for any current or future markup language can easily be

written. Futhermore, the statistical model that the system follows is easily modifiable.

Also, due to the manner in which the program allows for the importation of new

dictionaries, the system can be easily modified to allow for spell checking languages

other than English. It is the authors’ hope that this system will be viewed as a prototype

to be expanded by others.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Chapter 7

OCRSpell Trainer

A primitive statistical trainer was developed for the OCRSpell system. It is different from

that of the interface in that it is fully automatic with new device mappings becoming static

in nature. The trainer currently works by accepting extracted word tuples in the form of

ground truth and recognized words and adjusting the global static statistics accordingly. A

future version of the system will allow for more advanced statistical training at the docu­

ment level.

The current statistical trainer allows the initial dynamic confusions construction for a

document to be less dependent on the user since all of the common non-standard

confusions would have been added to the list in the training phase. Figures 7 and 8 show

the two distinct methods of training the system. Figure 9 demonstrates how these two

distinct learning steps can be used together. So the entire system can be viewed as an

adaptive process where the knowledge base of the system is refined as the user processes

documents from any particular collection.

All of information gathered from either training method can be saved to and loaded

from a file. This allows users to develop statistics for more than one collection type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Dynamic
Device

Mappings
Word

Generator

GUIUSER Confusion
Generator

Figure 7; User Interface Training. This figure demonstrates the typical construction of
dynamic confusions at run time. Confusions are collected as the user interactively uses
the graphical user interface (GUI).

USER Word
Generator

Confusion
Generator

Static
Device

Mappings

Figure 8; Static Confusion Training. This figure pictorially represents how new static
confusions are formed in the training phase. Word tuples are sent to the confusion
generator via the word generator, and static device mappings are statistically adjusted or
created.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Word
Generator

GUI

Dynamic
Mapping
Training

Static
Mapping
Training

Document
Set

Figure 9: Use of Static and Dynamic Training. In the typical OCRSpell training process,
dynamic and static device mappings are collected by using both methods in conjunction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Evaluation

OCRSpell was evaluated in two distinct tests. The first test consisted of selecting, at ran­

dom, word tuples from the ISRI DOE text sample.

The tuples were of the form {incorrect word, correct word). A retired sample from

1994 was selected for the test, and the incorrect words were selected from the collection

of generated text produced by the Calera Wordscan and Recognita Plus DTK. These

two devices were chosen due to the fact that they had the highest and lowest,

respectively, word accuracy rates of the 1994 ISRI test [17]. The second test consisted

of selecting two SIGIR Proceedings papers and interactively OCRSpelling them and

calculating the increase in word accuracy and character accuracy.

8.1 OCRSpell Test 1

As stated above, the first test of the OCRSpell system consisted of extracting words from

the ground truth of the ISRI DOE sample and the corresponding device generated text.

These words were assembled into a large collection and the following steps were applied

as a precursor to the test.

* All tuples where the generated words occurred in the lexicon were excluded.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

* All tuples where the correct word consisted of a character sequence that was

not in the current lexicon were excluded.

* All tuples where the generated or correct words consisted of entirely nonal-

phabetic characters were excluded.

* All tuples where the correct or incorrect word was split were excluded in this

test

After these steps were followed, 600 word tuples were selected at random from both

the Calera Wordscan and the Recognita Plus DTK. Tables 4 and 5 contain the results of

these automated tests. Here we use the term hit to indicate that the correct word was

offered as the first suggestion by OCRS pell. Near miss is used to indicate that the correct

word was in fact offered by OCRSpell (but not the first word offered). Finally, a

complete miss indicates that OCRSpell failed to generate the correct word. Each of these

classes were defined to be case insensitive. An automated front end was constructed for

OCRSpell to ease the process of conducting this test. Since these tests were fully

automated, the dynamic confusion generated was invoked at each complete miss. This

means that word was calculated as a complete miss and any new device mappings were

appended afterward.

The hit ratio is defined as:
number of hits

total number of words

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

The near miss ratio is define as:

number of near misses
total number of words

The complete miss ratio is defined as:

number of complete misses
total number of words

All of these ratios are rounded to the nearest one-hundredth in Tables 4 and 5.

Statistics Subsample A Subsample B Subsample C Subsample D

of Attempted 150 words 150 words 150 words 150 words

of Hits 99 words 85 words 117 words 71 words

of Near Misses 21 words 49 words 23 words 39 words

of Complete Misses 30 words 16 words 10 words 40 words

Hit Ratio 0.66 0.57 0.78 0.47

Near Miss Ratio 0.14 0.33 0.15 0.26

Complete Miss Ratio 0.20 0.11 0.07 0.27

Table 4: Recognita Plus DTK (1994)

Statistics Subsample A Subsample B Subsample C Subsample D

of Attempted 125 words 125 words 125 words 125 words

of Hits 70 words 62 words 74 words 57 words

of Near Misses 40 words 37 words 46 words 28 words

of Complete Misses 15 words 26 words 5 words 40 words

Hit Ratio 0.56 0.50 0.59 0.46

Near Miss Ratio 0.32 0.30 0.37 0.22

Complete Miss Ratio 0.12 0.21 0.04 0.32

Table 5: Calera WordScan (1994)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

8.2 OCRSpell Test 2

To test the performance of OCRSpell on entire documents we chose two papers at random

from the current ISRI Text Retrieval Group’s SIGIR electronic conversion project. This

project involves converting the proceedings of various ACM-SIGIR conferences into

electronic form (HTML) using the MANICURE Document Processing System [22]. Two

documents that had been automatically processed, manually corrected and proofread were

chosen at random. The following steps were then applied to ensure a fair test.

* The text in the OCR generated file that was replaced in the ground truth file

by images was removed.

* The OCR generated file was then loaded into Emacs and spell checked by a

single user using the OCRSpell system.

* The changes in word accuracy and character accuracy were recorded.

V/ord accuracy and character accuracy was determined as defined by [17].

Word accuracy is defined as:

number of words recognized correctly
total number of words

where words are defined to be a sequence of one or more letters.

Character accuracy is defined as:

n - \errors\
n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

where n is the number of correct characters and [errors! indicates the

number of character insertions, deletions, and substitutions needed to correct the

document.

The results of these tests can be seen in Table 6. All of the percentages are rounded

to the nearest one-hundredth in this table. As can be seen, the OCRSpelled documents

demonstrate a substantial improvement in both character accuracy and word accuracy.

Document
Name

Original Word
Accuracy

Original Char­
acter Accuracy

New Word Ac­
curacy

New Character
Accuracy

Miller 98.18 99.30 99.70 99.79

Wiersba 98.46 97.57 99.87 99.85

Table 6: SIGIR Test Results

8.3 Test Results Overview

While the two tests performed on OCRSpell do demonstrate a lower baseline of perfor­

mance, they do not demonstrate typical usage of OCRSpell. The system was designed to

be used on large homogeneous collections of text. Such a test was not feasible for this the­

sis. We can, however, see from the above tests the improvement of OCRSpell over typical

spell checkers when dealing with OCR generated text. The main problem with testing a

semi-automatic system like OCRSpell is that the user is central to the whole process. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

our system in particular, the user’s responses are responsible for the creation and the main­

tenance of the dynamic device mappings. The artificial front end we constructed for the

first test is not comparable to typical human interaction. Regardless of these issues, the

above two tests do indicate some level of the performance improvement for our system on

OCR generated text.

Further testing of the system is necessary. Future tests could include an evaluation of

other conventional spell checkers on the same samples. Also, a larger sample taken from

many subject domains could provide interesting results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9
Conclusion and Future Work

Although OCRSpell was first intended to be a component of the ISRI Post Processing Sys­

tem [22], it has evolved into a project of its own. An evaluation is currently underway to

establish the overall performance of this system on OCR text.

Word clustering, and perhaps the introduction of a stochastic grammatical parser to

provide some pseudo contextual information are currently being considered as potential

additions to the OCRSpell system. Also, new routines are being added to allow the

system to be less dependent on an external spell checker.

Other improvements, mentioned in the previous chapters, can be made to improve the

efficiency of the system. Also, the trainer can be improved to allow for the processing of

full documents or even sets of documents.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. Apostolico, S. Browne, and C. Guerra. Fast Linear-Space Computations
of Longest Common Subsequences. Theoretical Computer Science,
92(1992), 3-17.

[2] Richardo A. Baeza-Yates. Searching Subsequences. Theoretical Computer
Science, 78(1991), 363-376.

[3] Tim Bemers-Lee et al. The World-Wide Web. Communications o f the ACM,
37(8):76-82, August 1994.

[4] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Press, tenth edition, 1993.

[5] W. Bruce Croft and Jinxi Xu. Corpus-Specific Stemming using Word Form
Co-occurrence. In Proceedings o f the Fourth Annual Symposium on
Document Analysis and Information Retrieval, 147-159,1995.

[6] F. J. Damerau. A Technique for Computer Detection and Correction of
Spelling Errors. Communications o f the ACM, (3): 171-176, March 1964.

[7] Yaacov Choueka. Looking for Needles in a Haystack. In Proceedings o f
RAIO, 609-613,1988.

[8] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[9] Patrick A. V. Hall and Geoff R. Dowling. Approximate String Matching.
ACM Computing Surveys. 12(4):382-402, December 1980.

[10] Tao Hong and Jonathan J. Hull. Degraded Text Recognition Using Word
Collocation. Document Recognition. SPIE Vol. 2181, 1994.

[11] Mark A. Jones, Guy A. Story, and Bruce W. Ballard. Integrating Multiple
Knowledge Sources in a Bayesian OCR Post-Processor. In Proceedings

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

ofIDCAR-91 (St. Malo, France), 925-933.

[12] Karen Kukich. Techniques for Automatically Correcting Words in Text.
ACM Computing Surveys, 24(4):377-439, December 1992.

[13] Bil Lewis, Dan Laliberte, and the GNU Manual Group. The GNU Emacs
Lisp Reference Manual, Edition 1.05, Free Software Foundation, 1992.

[14] James L. Peterson. Computer Programs for Detecting and Correcting
Spelling Errors. Communications o f the ACM, 23(12):676-687,
December 1980.

[15] James L. Peterson. A Note on Undetected Typing Errors. Communications o f
the ACM, 27(7), July, 1986,633-637.

[16] Joseph J. Pollock and Antonio Zamora. Automatic Spelling Correction in
Scientific and Scholarly Text. Communications o f the ACM, 27(4):358-
368, April 1984.

[17] Stephen V. Rice, Junichi Kanai, and Thomas A. Nartker. An Evaluation of
OCR Accuracy, Technical Report, Information Science Research
Institute, University of Nevada, Las Vegas, April 94.

[18] Kazem Taghva, Julie Borsack, and Allen Condit. An Expert System for
Automatically Correcting OCR Output. Document Recognition, In
Proceedings o f the International Society for Optical Engineering,
2181:270-278,1994.

[19] Kazem Taghva, Julie Borsack, Bryan Bullard, and Allen Condit. Post-editing
through Approximation and Global Correction. International Journal o f
Pattern Recognition and Artificial Intelligence, Vol. 9, No. 6 (1995) 911-
923.

[20] Kazem Taghva, Julie Borsack, and Allen Condit. Results of Applying IR to
OCR Text. In Proceedings o f the Seventeenth Annual International ACM!
SIGIR Conference on Research and Development in Information
Retrieval, pages 202-211, Dublin, Ireland, July 1994.

[21] Kazem Taghva, Julie Borsack, and Allen Condit. Evaluation of Model-Based
Retrieval Effectiveness with OCR Text, ACM Transactions on
Information Systems, 14(1), January 1996, 64-93.

[22] Kazem Taghva, Allen Condit, Julie Borsack, John Kilburg, Changshi Wu,
and Jeff Gilbreth. The MANICURE Document Processing System,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Technical Report, Information Science Research Institute, University of
Nevada, Las Vegas, April 1995.

[23] H. Takahashi, N. Itoh, T. Amano and A. Yamashita. A Spelling Correction
Method and its Application to an OCR System. Pattern Recognition 23(3/
4):363-377, 1990.

[24] Robert A. Wagner and Micheal J. Fischer. The Sting-to-String Correction
Problem. Journal o f the Association for Computing Machinery 21(1): 168-
173, January 1974.

[25] D. E. Walker and R.A. Amsler. The Use of Machine-Readable Dictionaries
in Sublanguage Analysis. In Analyzing Language in Restricted Domains:
Sublanguage Description and Processing. Lawrence Erlbaum, Hillsdale,
N.J., 69-83.

[26] Pace Willisson, R.E. Gorin, Walt Beuhring, Geoff Keunning, et al. Ispell, a
free software package for spell checking files. The UNIX community,
1971-present.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	OCRspell: An interactive spelling correction system for OCR errors in text
	Repository Citation

	tmp.1558394644.pdf.qU5Cg

