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Abstract We prove that octants are cover-decomposable; i.e., any 12-fold covering
of any subset of the space with a finite number of translates of a given octant can be
decomposed into two coverings. As a corollary, we obtain that any 12-fold covering
of any subset of the plane with a finite number of homothetic copies of a given triangle
can be decomposed into two coverings. We also show that any 12-fold covering of the
whole plane with the translates of a given open triangle can be decomposed into two
coverings. However, we exhibit an indecomposable 3-fold covering with translates of
a given triangle.

Keywords Cover-decomposability · Geometric hypergraph coloring

1 Introduction

Let P = {Pi | i ∈ I } be a collection of geometric sets in R
d . We say that P is an m-

fold covering of a set S if every point of S is contained in at least m members of P .
A 1-fold covering is simply called a covering.

Definition A geometric set P ⊂ R
d is said to be cover-decomposable if there exists

a (minimal) constant m = m(P ) such that every m-fold covering of any subset of
R

d with a finite number of translates of P can be decomposed into two coverings
of the same subset. Define m as the cover-decomposability constant of P . We note
that in the literature the definition is slightly different and the notion defined here is
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sometimes called finite-cover-decomposable; however, to avoid unnecessary compli-
cations, we simply call it cover-decomposable.

The simplest objects to examine are the orthants of R
d . It is easy to see that a

quadrant (two-dimensional orthant) is cover-decomposable. Cardinal [4] noticed that
orthants in four and higher dimensions are not cover-decomposable as there is a plane
on which their trace can be any family of axis-parallel rectangles, and it was shown by
Pach, Tardos, and Tóth [12] that such families might not be decomposable into two
coverings. Cardinal asked whether octants (three-dimensional orthants) are cover-
decomposable. Our main result is an affirmative answer (the proof is given in Sect. 2).

Theorem 1 Octants are cover-decomposable; i.e., any 12-fold covering of any subset
of R

3 with a finite number of translates of a given octant can be decomposed into two
coverings.

The intersection of the translates of the octant containing (−∞,−∞,−∞) with
the x + y + z = 0 plane gives the homothetic copies of an equilateral triangle. Since
any triangle can be obtained by an affine transformation of the equilateral triangle we
obtain the following.

Corollary 2 Any 12-fold covering of any subset of the plane with a finite number of
homothetic copies of any given triangle can be decomposed into two coverings.

We say that a covering is locally finite if every compact set intersects only a finite
number of covering sets, i.e., homothetic copies of the given triangle, in our case.
Using standard compactness arguments, the previous corollary implies the following
(the proofs are given in Sect. 4).

Theorem 3 Any locally finite 12-fold covering of the whole plane with homothetic
copies of a triangle is decomposable into two coverings.

Theorem 4 Any 23-fold covering of the whole plane with homothetic copies of an
open triangle is decomposable into two coverings.

The analogs of Corollary 2 and Theorem 3 for translates of a given triangle were
proved with a bigger constant by Tardos and Tóth [17] using a more complicated
argument (the original proof gave m = 43, which was later improved by Ács [1] to
m = 19, which is still worse than our 12). Following their idea, using Theorem 3 for
translates of a given open triangle, we obtain the following.

Corollary 5 Any 12-fold covering of the whole plane with the translates of an open
triangle is decomposable into two coverings.

Our result brings the task to determine the exact cover-decomposability constant of
triangles in range. Tardos and Tóth state that they cannot even rule out the possibility
that the cover-decomposability constant of triangles is 3. To complement our upper
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bound, in Sect. 3 we show a construction proving that the constant is actually at
least 4.

Our proof of Theorem 1 in fact proves the following equivalent, dual form of
Theorem 1.

Theorem 6 Any finite set of points in R
3 can be colored with two colors such that

any translate of a given octant with at least 12 points contains both colors.

To see that Theorem 1 implies Theorem 6, assume that the octant we fixed is the
one containing (−∞,−∞,−∞) (the negative octant). Now for each vertex v, take
the octant V having apex v and containing (∞,∞,∞) (a positive octant). Now a
negative octant O contains v if and only if the positive octant V contains o, the apex
of O . As containment is preserved, coloring the positive octants with apices of the
original point set according to Theorem 1, the same coloring for the vertices gives
a valid coloring for Theorem 6. The reverse implication is similar; it again uses that
containment is preserved by this dualization (for more on dualization see the surveys
[14] and [11]).

Finally, we mention the dual of Corollary 2, which is not equivalent to Corollary 2
but follows from Theorem 6 in the same way as Corollary 2 follows from Theorem 1.

Corollary 7 Any finite planar point set can be colored with two colors such that any
homothetic copy of a given triangle that contains at least 12 points contains both
colors.

We finally note that in this paper in many theorems it does not matter whether the
respective underlying set (orthant, triangle, etc.) is open or not, and in the proofs, for
simplicity, we consider the sets to be open (unless otherwise stated). Also, although
the arrangement of the points is arbitrary, for simplicity, in the proofs we suppose
that the objects are in general position, as a slight perturbation only increases the
constraints that we have to satisfy.

For more about handling these issues and other results on cover-decomposability,
see the recent surveys [14] and [11] and the papers [2, 3, 5, 9, 10, 13, 15–17].

2 Proof of Theorems 1 and 6

Denote by W the octant with apex at the origin containing (−∞,−∞,−∞). We
will work in the dual setting; that is, we have a finite set of points, P , in the space,
that we want to color with two colors such that any translate of W with at least
12 points contains both colors. We call such a two-coloring of a point set in the
space a good coloring. If we can do such a coloring for any P , then it follows using
a standard dualization argument (see [14] or [11]) that W (and thus any octant) is
cover-decomposable. So from now on our goal will be to show the existence of such
a coloring.

For simplicity, suppose that no number occurs multiple times among the coordi-
nates of the points of P (otherwise, by a small perturbation of P we can get such a
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point set, and its coloring will also be good for P ). Denote the point of P with the
t th smallest z coordinate by pt and the union of p1, . . . , pt by Pt . First we will show
how to reduce the coloring of P to a planar and thus more tractable problem.

Denote the projection of P on the z = 0 plane by P ′. Similarly denote the projec-
tion of pt by p′

t , the projection of Pt by P ′
t , and the projection of W by W ′. Therefore,

W ′ is the quadrant with apex at the origin containing (−∞,−∞).
For such an ordered planar point set P ′ we say that a coloring with two colors is

a good coloring, if for any t and any translate of W ′ containing at least 12 points of
P ′

t , it is true that the intersection of this translate and P ′
t contains both colors. To see

why we use the same notation for two differently defined colorings, the next claim
shows that good coloring of a spatial point set and good coloring of the corresponding
planar point set are equivalent problems.

Claim 8 The planar point set P ′ has a good coloring if and only if the spatial point
set P has a good coloring.

Proof Clearly, if we take a translate of W with apex w having z coordinate bigger
than the z coordinate of pt and smaller than the z coordinate of pt+1, then the pro-
jection of the intersection of this translate with P is equal to the intersection of P ′

t

with the translate of W ′ having apex w′, the projection of w. Thus, having a good
coloring for one problem gives a good coloring for the other if we give pt and p′

t the
same color for every t . �

Now we will prove that any P ′ has a good coloring, thus establishing Theorem 6
and, since they are equivalent, also Theorem 1. To avoid going mad, we will omit
the apostrophe in the following, so we will simply write W instead of W ′ and so on.
Also, we will use the term wedge to denote a translate of W .

A possible way to imagine this planar problem is that in every step t we have a
set of points, Pt , and our goal is to color the coming new point, pt+1, such that we
always have a good coloring. We note that this would be impossible in an online
setting, i.e., without knowing in advance which points will come in which order. But
using the fact that we know in advance every pi makes the problem solvable.

We start by introducing some notation. If px < qx but py > qy then we say that
p is NW from q and q is SE from p. In this case we call p and q incomparable.
Similarly, p is SW from q (and q is NE from p) if and only if both coordinates of p

are smaller than the respective coordinates of q .
Instead of coloring the points, we will rather define on them a bipartite graph G,

whose proper two-coloring will give us a good coloring. Actually, as we will later
see, this graph will be a forest.

We define G recursively, starting with the empty set and the empty graph. At any
step j we define a graph Gj on the points of Pj and also maintain a set Sj of pairwise
incomparable points, called the staircase. Thus, before the t th step we have a graph
Gt−1 on the points of Pt−1 and a set St−1 of pairwise incomparable points. In the t th

step we add pt to our point set obtaining Pt , and we will define the new staircase, St ,
and also the new graph, Gt , which will have Gt−1 as a subgraph. Before the exact
definition of St and Gt , we make some more definitions and fix some properties that
will be maintained during the process.
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In any step j , we say that a point p is good if any wedge containing p already
contains two points of Pj connected by an edge of Gj ; i.e., at any time after j a
wedge containing p will contain points of both colors in the final coloring.

At any time j , consider the order of the points of Sj given by their x coordinates.
If two points of Sj are consecutive in this order, then we say that these staircase points
are neighbors. We note that this does not mean that they are connected in the graph.
A point s of the staircase is almost good if for at least one of its neighbors s′ it is true
that any wedge containing s and s′ contains two points of Pj connected by an edge
of Gj . Notice that the good points and the neighbors of the good points are always
almost good.

We say that a point p of Pj is above the staircase if there exists a staircase point
s ∈ Sj such that p is NE from s. If p is not above or on the staircase, then we say that
p is below the staircase. Now we can state the properties we maintain.

At any time j :

1. All points above the staircase are good.
2. All points of the staircase except the first and last are almost good.
3. All points below the staircase are incomparable.
4. If a wedge only contains points that are below the staircase, then it contains at

most 3 points.

For t = 0 all these properties are trivially true. Suppose that the properties hold
at time t − 1. Now we proceed with point pt according to the following algorithm
maintaining all the properties. During the process, we denote the current graph by G

and the current staircase by S.

Algorithm Step t

Set G = Gt−1 and S = St−1.

Step (a) If pt is above the staircase St−1, then we do the following; otherwise skip
to Step (b).

In this case St = St−1 and Gt = Gt−1 ∪ {e}, where e is an arbitrary edge
between pt and a point s of St−1 which is SW from pt . The properties will
hold trivially by induction; the only thing we need to check is if pt is a good
point, but this is again guaranteed as any wedge containing pt contains the
edge e. The algorithm terminates.

Note that we proceed further if and only if pt is below the staircase St−1.
Step (b) If there exist two points p and q that are below the staircase and p and q

are comparable, then we do the following; otherwise skip to Step (c).
Without loss of generality suppose that q is SW from p. Notice that

because of Property 3, either p or q is the last added point and there are no
points below the staircase that are NE from p. Now, define the new staircase,
S, as S minus the points of S that are NE from p, plus the point p. This
way the points of the staircase remain pairwise incomparable, as we added
p and deleted all the points that were comparable to p. Also, we add the
edge pq to the graph, i.e. G := G ∪ {pq}. For an illustration of repeated
application of this step, see Fig. 1 (edges of G are drawn red). Thus, any
wedge containing p contains the edge pq , i.e. p is a good point. Property 1
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Fig. 1 Repeated application of Step (b) of the algorithm

is true for the points that were above the old S by induction. All other points
above S are exactly the points that were deleted from the staircase in this
step. All such points are NE from p and thus any wedge containing them
contains the edge pq . Property 2 holds for p as it is a good point, and it
holds for the 2 neighbors of p as any point neighboring a good point is an
almost good point. For any other s from the staircase its neighbors remain
the same, so it remains almost good.

Go back to Step (b) until Property 3 is satisfied, then proceed to Step (c).
Step (c) If there exist 4 points below the staircase such that these 4 points are pair-

wise incomparable and there exists a wedge V such that V contains these 4
points but no points of the staircase, then do the following; otherwise skip
to Step (d).

Denote these 4 points by q1, q2, q3, q4 in increasing order of their x co-
ordinates. Notice that there are no points below the staircase that are com-
parable because of Step (b). Now define the new S as the old S minus the
points of S that are NE from q2 or q3, plus the points q2 and q3. This way
the points of the staircase remain pairwise incomparable as we added q2 and
q3 and deleted all the points that were comparable to them. Also, we add the
edges q1q2 and q3q4 to the graph, i.e. Gt = Gt−1 ∪ {q1q2, q3q4}. For an il-
lustration see Fig. 2(a). Property 1 is true for the points that were above the
old S by induction. All other points above the new S are exactly the points
that were deleted from the staircase in this step. It is easy to check if such
a point is either NE from both of q1 and q2 or it is NE from both of q3 and
q4 (we use that V was completely below the staircase, see Fig. 2(b)). Thus,
a wedge containing such a point contains the edge q1q2 or the edge q3q4,
and Property 1 will be true. If q2 has a preceding neighbor, then Property 2
is true for q2 and also for its neighbor which is not q3 as a wedge covering
them must cover q1 as well and thus the edge q1q2, i.e. they are almost good.
If q2 becomes the first point of the staircase, then we don’t need Property 2
to hold for q2. By symmetry q3 is either the last point of the staircase or q3

and its neighbor which is not q2 are also almost good. For any other s from
the rest of the staircase (except the first and last point), s remains almost
good by induction as its neighbors do not change.

Go back to Step (c) until Property 4 is satisfied, then proceed to Step (d).
Step (d) Set St = S and Gt = G and the algorithm terminates.
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Fig. 2 Application of Step (c) of the algorithm

Fig. 3 At most 11 points can be
in a monochromatic wedge

Adding pt below the staircase and proceeding as in Step (b) or Step (c) always
maintains Properties 1 and 2. As neither Step (b) nor Step (c) can be applied anymore,
Properties 3 and 4 must hold as well. Now let us examine the graph G.

Claim 9 The final graph G is a forest.

Proof We prove by induction a stronger statement, that G will be such a forest that
the components of the points below the staircase are disjoint trees.

When we add an edge in Step (a), then the newly added point that goes above the
staircase will be one of the endpoints; thus this property is maintained.

When we add an edge in Step (b) or (c), then it connects two points below the
staircase, one of which we immediately move to the staircase, so we are done by
induction. �

Claim 10 Any two-coloring of G is a good coloring of P .

Proof Take an arbitrary two-coloring of G. Take an arbitrary wedge V at time t that
contains at least 12 points of Pt . If V contains a point from above the staircase St , then
by Property 1 V contains points of both colors. If V contains at least 3 points from
the staircase, then V also contains 3 consecutive points; thus by applying Property 2
to the middle one V contains both colors (as it contains both neighbors of this middle
point). Finally, if a wedge V does not contain a point from above the staircase and
contains at most 2 points from the staircase, then all the points below the staircase that
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are covered by V can be covered by 3 wedges containing points only from below the
staircase (see wedges V1,V2, and V3 in Fig. 3). By Property 4 each of these wedges
cover at most 3 points; thus V can contain altogether at most 11 points (2 from the
staircase and 3 · 3 from below the staircase), a contradiction. �

The preceding claim finishes the proof of Theorem 6 and thus also of Theorem 1.
As noted by our anonymous reviewer, when applying this algorithm in the special

case of homothetic triangles in the plane, as the spatial point set is on the x+y+z = 0
plane, Step (a) can never occur during the algorithm. Also, as in this special case no
new point comes NE to a previous point, it is true for all edges of G that its end-
vertices can be contained in an octant that contains no other points. Thus, when in the
x +y +z = 0 plane, for all edges of G its end-vertices can be contained in a homothet
of the fixed triangle that contains no other points. In other words, the final forest is
a subgraph of the Delaunay-graph w.r.t. that fixed triangle (for direct applications of
different Delaunay-graphs for such problems, see, e.g., [7]).

3 Miscellany and a Lower Bound

We have seen in the Introduction that if the point set of Theorem 6 is from the
x + y + z = 0 plane, then the problem is equivalent to the cover-decomposability
of homothetic copies of an equilateral triangle. Another special case is if the point
set is on the x + y = 0 plane. The intersection family of the octants with this plane is
the family of bottomless axis-parallel rectangles (a set is a bottomless axis-parallel
rectangle if it is the homothetic copy of the set {(x, y) : 0 < x < 1, y < 0}). Bottom-
less rectangles were examined by the first author in [6], where it was proved that any
3-fold covering with bottomless rectangles is decomposable into two coverings and
also that any finite point set can be colored with two colors such that every bottom-
less rectangle containing at least 4 points contains both colors. It was also shown that
these results are sharp. We will use the ideas from [6] to prove the following claims,
the first of which is a strengthening of Theorem 6 in a special case and the second
giving a sharp lower bound for this special case, which also holds for the general
case.

Claim 11 If the projection of the original point set from R3 onto the z = 0 plane
yields a point set P having only pairwise incomparable points, then it admits a two-
coloring such that any translate of a given octant that contains at least 4 points
contains points with both colors.

Proof We use the same notation as in Sect. 2. Now at any time the points of Pt are
pairwise incomparable. Order them according to their x coordinate. We will maintain
a partial coloring such that, at any time t :

1. There are no two consecutive points in this order that are not colored.
2. The colored points are colored alternatingly.
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Fig. 4 Lower bound constructions

We start with the empty set and then in a general step we add the point pt . If in
the order it goes between two colored points, then we leave it uncolored. If it comes
next to an uncolored point, then we color these two points maintaining the alternating
coloring. At the end we color the remaining uncolored points arbitrarily. We claim
that at any time t any wedge covering at least 4 points covers points from both colors
already at step t of the coloring. Indeed, any wedge covers consecutive points; it
covers at least 2 (consecutive) colored points by Property 1, and any two consecutive
colored points are colored differently by Property 2. �

Claim 12 For any octant there exists a 10 point set P ⊂ R3 such that its projection
onto the z = 0 plane yields a point set having only pairwise incomparable points,
yet in any two-coloring of P there exists a translate of a given octant that contains 3
points with the same color and no other points.

Proof The point set on Fig. 4(a) has the needed properties (for simplicity, the pro-
jection of the point having the t th biggest z coordinate is denoted by t instead of pt ).
Indeed, suppose on the contrary that there exists a two-coloring with no monochro-
matic wedge covering exactly 3 points. It is easy to check that the triples (1,2,3),

(1,2,4), (1,2,5), (3,4,5), (6,2,5), (6,2,7), (6,2,8), (5,7,8), (6,1,2), (6,1,9),

(6,1,10), (2,9,10) can all be covered by some wedge at some time t . By the pigeon-
hole principle there are two points from (1,2,6) that have the same colors. If, e.g.,
1 and 2 are colored red, then by the first three triples 3,4, and 5 all must be colored
blue, but then the fourth triple is monochromatic, a contradiction. The analysis is sim-
ilar if 2 and 6 have the same color. Finally, if 1 and 6 are, e.g., red and 2 is blue, then
we obtain a contradiction from the last three triples, as 9 and 10 should be both blue
because of the penultimate and antepenultimate triples, but then the ultimate triple is
monochromatic. �
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This construction can be modified a bit to imply the same result for translates of a
given triangle.

Claim 13 There exists a 10 point set P ⊂ R2 and a given triangle T such that in
any two-coloring of P there exists a translate of T that contains 3 points of the same
color and no other points.

Proof The point set and the triangle on Fig. 4(b) have the needed properties; the proof
of this is exactly the same as that of the previous claim. �

Finally we note that this construction is a bit smaller than the one in [6], which
had size 12, so we obtain a smaller construction for that problem too by taking the
same points as in Claim 11 projected onto the y = 0 plane.

4 Coverings of the Whole Plane

In this section we prove Theorem 3, Theorem 4, and Corollary 5.
To prove Theorem 3, we need the following well-known lemma.

Lemma 14 (König’s Infinity Lemma, [8]) Let V0,V1, . . . be an infinite sequence of
disjoint nonempty finite sets, and let G be a graph on their union. Assume that every
vertex vn in a set Vn with n ≥ 1 has a neighbor f (vn) in Vn−1. Then G contains an
infinite path, v0v1 . . . with vn ∈ Vn for all n.

Proof of Theorem 3 We need to prove that any locally finite 12-fold covering of the
whole plane with homothetic copies of a triangle is decomposable into two coverings.
Take K1 ⊂ K2 ⊂ · · · compact sets such that their union is the whole plane. Let each
vn ∈ Vn be a possible coloring of those finitely many triangles that intersect Kn such
that every point of Kn is covered by both colors. In this case Vn is nonempty because
of Corollary 2. The function f is the natural restriction to the triangles that intersect
Kn−1. The infinite path gives a partition to two coverings. �

Proof of Theorem 4 We need to prove that any 23-fold covering of the whole plane
with homothetic copies of a triangle is decomposable into two coverings. First take a
compact set K1. Select T1, a family of finitely many homothetic copies of the triangle
that already give a 12-fold covering of K1. Denote by K ′

1 the (open) set that is 12-
fold covered by T1 and by K∗

1 the union of the triangles from T1. So we have K1 ⊂
K ′

1 ⊂ K∗
1 . Take any coloring of T1 such that every point of K ′

1 is covered by both
colors (such a coloring exists because of Corollary 2).

Now select a K2 compact set such that K∗
1 ⊂ K2. Select T2, a family of finitely

many homothetic copies of the triangle that already give a 12-fold covering of the
compact set K2 \ K ′

1. Note that such a family exists because the points outside K ′
1

are covered by at most 11 members of T1. Define K ′
2 as the set that is 12-fold covered

by T1 ∪T2 and by K∗
2 the union of the triangles from T1 ∪ T2. Take any coloring of T2

such that every point of K ′
2 is covered by both colors (such a coloring exists because

of Corollary 2).



608 Discrete Comput Geom (2012) 47:598–609

Similarly define K3, . . . such that their union is the whole plane. Since the Ti

families are disjoint, we get a good coloring. �

Finally, for completeness we show how Theorem 3 implies Corollary 5, using the
ideas from [17].

Proof of Corollary 5 We need to prove that any 12-fold covering of the whole plane
with translates of a triangle is decomposable into two coverings. Take any such cover-
ing T ; the integer grid defines a decomposition of the plane to integer squares. From
the compactness of each such closed square it easily follows that there is a finite sub-
set of T that is a 12-fold cover of this square. Take the union of such finite coverings
for all squares of the grid. It is easy to see that this subset T ′ of T is a 12-fold cover-
ing of the whole plane. We claim that T ′ is also locally finite. Indeed, for an arbitrary
compact set K , the translates of a given triangle that intersect K can intersect only
finitely many squares of the grid, and thus finitely many sets from T ′. �

5 Remarks

Several important questions remain open. Our method could only provide a decom-
position into two coverings. Is it possible to decompose any covering of the space
with octants/plane with homothets of a triangle into more than two coverings if the
original covering is thick enough? Only some weaker bounds are known for related
problems [18].

We still do not know anything about (infinite) coverings of the plane/space with
translates of closed polygons/octants. Is it possible to decompose such coverings?

For more related questions, see the recent surveys [14] and [11].
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