
Autonomous Robots (2013)
Preprint, final version available at DOI 10.1007/s10514-012-9321-0

OctoMap:
An Efficient Probabilistic 3D Mapping Framework Based on Octrees

Armin Hornung · Kai M. Wurm · Maren Bennewitz ·

Cyrill Stachniss · Wolfram Burgard

Received: 30 April 2012 / Accepted: 31 December 2012

Abstract Three-dimensional models provide a volumetric

representation of space which is important for a variety of

robotic applications including flying robots and robots that

are equipped with manipulators. In this paper, we present an

open-source framework to generate volumetric 3D environ-

ment models. Our mapping approach is based on octrees and

uses probabilistic occupancy estimation. It explicitly repre-

sents not only occupied space, but also free and unknown

areas. Furthermore, we propose an octree map compression

method that keeps the 3D models compact. Our framework

is available as an open-source C++ library and has already

been successfully applied in several robotics projects. We

present a series of experimental results carried out with real

robots and on publicly available real-world datasets. The re-

sults demonstrate that our approach is able to update the

representation efficiently and models the data consistently

while keeping the memory requirement at a minimum.

Keywords 3D · Probabilistic · Mapping · Navigation

1 Introduction

Several robotic applications require a 3D model of the en-

vironment. These include airborne, underwater, outdoor, or

extra-terrestrial missions. However, 3D models are also rel-

evant for many domestic scenarios, for example, for mobile

manipulation and also navigation tasks.

This work has been supported by the German Research Foundation

(DFG) under contract number SFB/TR-8 and by the European Com-

mission under grant agreement numbers FP7-248258-First-MM and

FP7-600890-ROVINA.

A. Hornung · K.M. Wurm · M. Bennewitz · C. Stachniss · W. Burgard

Department of Computer Science, University of Freiburg,

Georges-Koehler-Allee 74, 79110 Freiburg, Germany

E-mail: {hornunga,wurm,maren,stachnis,burgard}@informatik.uni-

freiburg.de

Although 3D mapping is an integral component of many

robotic systems, there exist few readily available, reliable,

and efficient implementations. The lack of such implemen-

tations leads to the re-creation of basic software components

and, thus, can be seen as a bottleneck in robotics research.

We therefore believe that the development of an open-source

3D mapping framework will greatly facilitate the develop-

ment of robotic systems that require a three-dimensional ge-

ometric representation of the environment.

Most robotics applications require a probabilistic rep-

resentation, modeling of free, occupied, and unmapped ar-

eas, and additionally efficiency with respect to runtime and

memory usage. We will now discuss these three require-

ments in detail.

– Probabilistic representation: To create 3D maps, mo-

bile robots sense the environment by taking 3D range

measurements. Such measurements are afflicted with

uncertainty: Typically, the error in the range measure-

ments is in the order of centimeters. But there may also

be seemingly random measurements that are caused by

reflections or dynamic obstacles. When the task is to

create an accurate model of the environment from such

noisy measurements, the underlying uncertainty has to

be taken into account probabilistically. Multiple uncer-

tain measurements can then be fused into a robust esti-

mate of the true state of the environment. Another im-

portant aspect is that probabilistic sensor fusion allows

for the integration of data from multiple sensors and of

multiple robots.

– Modeling of unmapped areas: In autonomous naviga-

tion tasks, a robot can plan collision-free paths only for

those areas that have been covered by sensor measure-

ments and detected to be free. Unmapped areas, in con-

trast, need to be avoided and for this reason the map

has to represent such areas. Furthermore, the knowledge

http://dx.doi.org/10.1007/s10514-012-9321-0

2 Armin Hornung et al.

Fig. 1 3D representations of a tree scanned with a laser range sensor (from left to right): Point cloud, elevation map, multi-level surface map, and

our volumetric (voxel) representation. Please note that our volumetric representation explicitly models free space but that for clarity only occupied

volumes are visualized.

about unmapped areas is essential during exploration.

When maps are created autonomously, the robot has to

plan its actions so that measurements are taken in previ-

ously unmapped areas.

– Efficiency: The map is a central component of any au-

tonomous system because it is used during action plan-

ning and execution. For this reason, the map needs to

be efficient with respect to access times but also with

respect to memory consumption. From a practical point

of view, memory consumption is often the major bottle-

neck in 3D mapping systems. Therefore, it is important

that the model is compact in memory so that large en-

vironments can be mapped, a robot can keep the model

in its main memory, and it can be transmitted efficiently

between multiple robots.

Several approaches have been proposed to model 3D en-

vironments in robotics. As an illustration, we compare our

approach to three common mapping approaches – a visu-

alization of the results is given in Fig. 1. In the example,

3D measurements are represented using point clouds, ele-

vation maps (Hebert et al., 1989), multi-level surface maps

(Triebel et al., 2006), and in a volumetric way using our

framework. None of the previous approaches fulfill all of

the requirements we set out above. Point clouds store large

amounts of measurement points and hence are not memory-

efficient. They furthermore do not allow to differentiate be-

tween obstacle-free and unmapped areas and provide no

means of fusing multiple measurements probabilistically.

Elevation maps and multi-level surface maps are efficient

but do not represent unmapped areas either. Most impor-

tantly, these approaches cannot represent arbitrary 3D en-

vironments, such as the branches of the tree in the example.

In this work we present OctoMap, an integrated frame-

work based on octrees for the representation of three-

dimensional environments. In our framework, we combine

the advantages of previous approaches to 3D environment

modeling in order to meet the requirements discussed above.

A central property of our approach is that it allows for effi-

cient and probabilistic updates of occupied and free space

while keeping the memory consumption at a minimum. Oc-

cupied space is obtained by the end points of a distance

sensor such as a laser range finder, while free space corre-

sponds to the observed area between the sensor and the end

point. As a key contribution of our approach, we introduce a

compression method that reduces the memory requirement

by locally combining coherent map volumes, both in the

mapped free areas and the occupied space. We implemented

our approach and thoroughly evaluated it using various pub-

licly available real-world robotics datasets of both indoor

and outdoor environments.

Our open source implementation is freely available

in form of a self-contained C++ library. It was re-

leased under the BSD-license and can be obtained from

http://octomap.github.com. The library supports several

platforms, such as Linux, Mac OS, and Windows. It has been

integrated into the Robot Operating System (ROS) and can

be used in other software frameworks in a straightforward

way. Since its first introduction in 2010 (Wurm et al., 2010),

the OctoMap framework was constantly improved and used

in an increasing number of robotics research projects.

This paper is organized as follows. After providing a

detailed discussion of related work in the area of 3D data

structures and mapping approaches in the next section, we

present our OctoMap framework in Sect. 3. Implementation

details are given in Sect. 4, followed by an evaluation of the

proposed framework in Sect. 5. Finally, case studies on how

OctoMap has been used in various areas of robotics demon-

strate the versatility and ease of integration in Sect. 6.

2 Related Work

Three-dimensional models of the environment are a key pre-

requisite for many robotic systems and consequently they

have been the subject of research for more than two decades.

A popular approach to modeling environments in 3D is

to use a grid of cubic volumes of equal size, called voxels, to

discretize the mapped area. Roth-Tabak and Jain (1989) as

well as Moravec (1996) presented early works using such a

http://octomap.github.com

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 3

representation. A major drawback of rigid grids is their large

memory requirement. The grid map needs to be initialized

so that it is at least as big as the bounding box of the mapped

area, regardless of the actual distribution of map cells in

the volume. In large-scale outdoor scenarios or when there

is the need for fine resolutions, memory consumption can

become prohibitive. Furthermore, the extent of the mapped

area needs to be known beforehand or costly copy operations

need to be performed every time the map area is expanded.

A discretization of the environment can be avoided

by storing 3D range measurements directly. The occupied

space in the environment is then modeled by the 3D point

clouds returned by range sensors such as laser range find-

ers or stereo cameras. This point cloud approach has been

used in several 3D SLAM systems such as those presented

by Cole and Newman (2006) as well as in the SLAM ap-

proach of Nüchter et al. (2007). The drawbacks of this

method are that neither free space nor unknown areas are

modeled and that sensor noise and dynamic objects cannot

be dealt with directly. Thus, point clouds are only suitable

for high precision sensors in static environments and when

unknown areas do not need to be represented. Furthermore,

the memory consumption of this representation increases

with the number of measurements which is problematic as

there is no upper bound.

If certain assumptions about the mapped area can be

made, 2.5D maps are sufficient to model the environment.

Typically, a 2D grid is used to store the measured height for

each cell. In its most basic form, this results in an elevation

map where the map stores exactly one value per cell (Hebert

et al., 1989). One approach in which such maps have been

demonstrated to be sufficient is the outdoor terrain naviga-

tion method described by Hadsell et al. (2009). Whenever

there is a single surface that the robot uses for navigation,

an elevation map is sufficient to model the environment,

since overhanging obstacles that are higher than the vehi-

cle, such as trees, bridges or underpasses, can be safely ig-

nored. The strict assumption of a single surface can be re-

laxed by allowing multiple surfaces per cell (Triebel et al.,

2006; Pfaff et al., 2007), or by using classes of cells which

correspond to different types of structures (Gutmann et al.,

2008). A general drawback of most 2.5D maps is that they

do not represent the environment in a volumetric way but

discretize it in the vertical dimension based on the robot’s

height. While this is sufficient for path planning and naviga-

tion with a fixed robot shape, the map does not represent the

actual environment, e.g. for localization.

To overcome this problem, a related approach was pro-

posed by Ryde and Hu (2010). The approach stores a list of

occupied voxels for each cell in a 2D grid. Although this rep-

resentation is volumetric, it does not differentiate between

free and unknown volumes. Dryanovski et al. (2010) store

lists of occupied and free voxels for each 2D cell in their

Multi-Volume Occupancy Grid approach. In contrast to our

approach, however, the map extent needs to be known be-

forehand, map updates are more computationally involved,

and there is no multi-resolution capability. Another potential

problem is that subsequent map updates cannot subdivide

existing volumes, leading to an incorrect model of the envi-

ronment. Similarly, Douillard et al. (2010) combine a coarse

elevation map for background structures with object voxel

maps at a higher resolution. In contrast to our work, this ap-

proach focuses on 3D segmentation of single measurements

and does not integrate several measurements into a model of

the environment.

In robotic mapping, octrees avoid one of the main short-

comings of fixed grid structures: They delay the initializa-

tion of map volumes until measurements need to be inte-

grated. In this way, the extent of the mapped environment

does not need to be known beforehand and the map only

contains volumes that have been measured. If inner nodes

of a tree are updated properly, the tree can also be used

as a multi-resolution representation since it can be cut at

any level to obtain a coarser subdivision. The use of octrees

for mapping was originally proposed by Meagher (1982).

Early works mainly focused on modeling a Boolean prop-

erty such as occupancy (Wilhelms and Van Gelder, 1992).

Payeur et al. (1997) used octrees to adapt occupancy grid

mapping from 2D to 3D and thereby introduced a proba-

bilistic way of modeling occupied and free space. A similar

approach was used by Fournier et al. (2007) and Pathak et al.

(2007). In contrast to the approach presented in this paper,

however, the authors did not explicitly address the issues of

map compression or bounded confidence in the map.

An octree-based 3D map representation was also pro-

posed by Fairfield et al. (2007). Their map structure called

Deferred Reference Counting Octree is designed to al-

low for efficient map updates, especially in the context

of particle filter SLAM. To achieve map compactness, a

lossy maximum-likelihood compression is performed peri-

odically. Compared to the compression technique used in

our approach, this discards the probability information for

future updates. Furthermore, the problem of overconfident

maps and multi-resolution queries are not addressed.

As a data structure, octrees are applied in a variety of

applications, most notably in the area of computer graphics

for efficient rendering (Botsch et al., 2002; Surmann et al.,

2003; Laine and Karras, 2010) and in the field of photogram-

metry to store and address large point clouds (Girardeau-

Montaut et al., 2005; Elseberg et al., 2011). Another popular

use case is the compression of static point clouds (Schnabel

and Klein, 2006) or point cloud streams (Kammerl et al.,

2012). While our framework is general enough to also store

raw point clouds, its main purpose is to integrate these point

clouds into a memory-efficient, volumetric occupancy map,

since point clouds as environment representation in robotics

4 Armin Hornung et al.

have a number of disadvantages as detailed at the beginning

of this section.

Yguel et al. (2007b) presented a 3D map based on

the Haar wavelet data structure. This representation is also

multi-resolution and probabilistic. However, the authors did

not evaluate applications to 3D modeling in-depth. In their

evaluation, unknown areas are not modeled and only a sin-

gle simulated 3D dataset is used. Whether this map structure

is as memory-efficient as octrees is hard to assess without a

publicly available implementation.

Surface representations such as the 3D Normal Dis-

tribution Transform (Magnusson et al., 2007) or Sur-

fels (Habbecke and Kobbelt, 2007) were recently used for

3D path planning (Stoyanov et al., 2010) and object model-

ing (Weise et al., 2009; Krainin et al., 2011). Similarly, an

accurate real-time 3D SLAM system based on a low-cost

depth camera and GPU processing was proposed by New-

combe et al. (2011) to reconstruct dense surfaces in indoor

scenes. Recently, this work has been extended to work in

larger indoor environments (Whelan et al., 2012). However,

surface representations are unable to distinguish between

free and unknown space, may require large memory partic-

ularly outdoors, and are often based on strong assumptions

about the corresponding environment. In mobile manipula-

tion scenarios, for example, being able to differentiate free

from unknown space is essential for safe navigation.

Finally, to the best of our knowledge, no open source im-

plementation of a 3D occupancy mapping framework meet-

ing the requirements outlined in the introduction is freely

available.

3 OctoMap Mapping Framework

The approach proposed in this paper uses a tree-based rep-

resentation to offer maximum flexibility with regard to the

mapped area and resolution. It performs a probabilistic oc-

cupancy estimation to ensure updatability and to cope with

sensor noise. Furthermore, compression methods ensure the

compactness of the resulting models.

3.1 Octrees

An octree is a hierarchical data structure for spatial subdi-

vision in 3D (Meagher, 1982; Wilhelms and Van Gelder,

1992). Each node in an octree represents the space contained

in a cubic volume, usually called a voxel. This volume is

recursively subdivided into eight sub-volumes until a given

minimum voxel size is reached, as illustrated in Fig. 2. The

minimum voxel size determines the resolution of the octree.

Since an octree is a hierarchical data structure, the tree can

be cut at any level to obtain a coarser subdivision if the in-

ner nodes are maintained accordingly. An example of an oc-

Fig. 2 Example of an octree storing free (shaded white) and occupied

(black) cells. The volumetric model is shown on the left and the corre-

sponding tree representation on the right.

Fig. 3 By limiting the depth of a query, multiple resolutions of the

same map can be obtained at any time. Occupied voxels are displayed

in resolutions 0.08 m, 0.64 , and 1.28 m.

tree map queried for occupied voxels at several resolutions

is shown in Fig. 3.

In its most basic form, octrees can be used to model a

Boolean property. In the context of robotic mapping, this

is usually the occupancy of a volume. If a certain volume

is measured as occupied, the corresponding node in the oc-

tree is initialized. Any uninitialized node could be free or

unknown in this Boolean setting. To resolve this ambigu-

ity, we explicitly represent free volumes in the tree. These

are created in the area between the sensor and the measured

end point, e.g., along a ray determined with raycasting. Ar-

eas that are not initialized implicitly model unknown space.

An illustration of an octree containing free and occupied

nodes from real laser sensor data can be seen in Fig. 4. Using

Boolean occupancy states or discrete labels allows for com-

pact representations of the octree: If all children of a node

have the same state (occupied or free) they can be pruned.

This leads to a substantial reduction in the number of nodes

that need to be maintained in the tree.

In robotic systems, one typically has to cope with sen-

sor noise and temporarily or permanently changing environ-

ments. In such cases, a discrete occupancy label will not

be sufficient. Instead, occupancy has to be modeled prob-

abilistically, for instance by applying occupancy grid map-

ping (Moravec and Elfes, 1985). However, such a proba-

bilistic model lacks the possibility of lossless compression

by pruning.

The approach presented in this paper offers means of

combining the compactness of octrees that use discrete la-

bels with the updatability and flexibility of probabilistic

modeling as we will discuss in Sect. 3.4.

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 5

Fig. 4 An octree map generated from example data. Left: Point cloud recorded in a corridor with a tilting laser range finder. Center: Octree

generated from the data, showing occupied voxels only. Right: Visualization of the octree showing occupied voxels (dark) and free voxels (white).

The free areas are obtained by clearing the space on a ray from the sensor origin to each end point. Lossless pruning results in leaf nodes of

different sizes, mostly visible in the free areas on the right.

In terms of data access complexity, octrees require an

overhead compared to a fixed-size 3D grid due to the tree

structure. A single, random query on a tree data structure

containing n nodes with a tree depth of d can be performed

with a complexity of O(d) =O(logn). Traversing the com-

plete tree in a depth-first manner requires a complexity of

O(n). Note that, in practice, our octree is limited to a fixed

maximum depth dmax. This results in a random node lookup

complexity of O(dmax) with dmax being constant. Therefore,

for a fixed depth dmax, the overhead compared to a corre-

sponding 3D grid is constant. Note that in all our experi-

ments a maximum depth of 16 was used, which is sufficient

to cover a cube with a vollume of (655.36 m)3 at 1 cm res-

olution. The exact timings for this setting are provided in

Sect. 5.5.

3.2 Probabilistic Sensor Fusion

In our approach, sensor readings are integrated using oc-

cupancy grid mapping as introduced by Moravec and Elfes

(1985). The probability P(n | z1:t) of a leaf node n to be oc-

cupied given the sensor measurements z1:t is estimated ac-

cording to

P(n | z1:t) = (1)
[

1+
1−P(n | zt)

P(n | zt)

1−P(n | z1:t−1)

P(n | z1:t−1)

P(n)

1−P(n)

]−1

This update formula depends on the current measure-

ment zt , a prior probability P(n), and the previous estimate

P(n | z1:t−1). The term P(n | zt) denotes the probability of

voxel n to be occupied given the measurement zt . This value

is specific to the sensor that generated zt . We provide de-

tails on the sensor model used throughout our experiments

in Sect. 5.1.

The common assumption of a uniform prior probabil-

ity leads to P(n) = 0.5 and by using the log-odds notation,

Eq. (1) can be rewritten as

L(n | z1:t) = L(n | z1:t−1)+L(n | zt), (2)

with

L(n) = log

[

P(n)

1−P(n)

]

. (3)

This formulation of the update rule allows for faster up-

dates since multiplications are replaced by additions. In case

of pre-computed sensor models, the logarithms do not have

to be computed during the update step. Note that log-odds

values can be converted into probabilities and vice versa

and we therefore store this value for each voxel instead of

the occupancy probability. It is worth noting that for cer-

tain configurations of the sensor model that are symmetric,

i.e., nodes being updated as hits have the same weight as the

ones updated as misses, this probability update has the same

effect as counting hits and misses similar to (Kelly et al.,

2006).

When a 3D map is used for navigation, a threshold on the

occupancy probability P(n | z1:t) is often applied. A voxel

is considered to be occupied when the threshold is reached

and is assumed to be free otherwise, thereby defining two

discrete states. From Eq. (2) it is evident that to change the

state of a voxel we need to integrate as many observations

as have been integrated to define its current state. In other

words, if a voxel was observed free for k times, then it has

to be observed occupied at least k times before it is con-

sidered occupied according to the threshold (assuming that

free and occupied measurements are equally likely in the

sensor model). While this property is desirable in static en-

vironments, a mobile robot is often faced with temporary or

permanent changes in the environment and the map has to

adapt to these changes quickly. To ensure this adaptability,

Yguel et al. (2007a) proposed a clamping update policy that

defines an upper and lower bound on the occupancy esti-

mate. Instead of using Eq. (2) directly, occupancy estimates

6 Armin Hornung et al.

are updated according to

L(n | z1:t) = (4)

max(min(L(n | z1:t−1)+L(n | zt) , lmax) , lmin),

where lmin and lmax denote the lower and upper bound on

the log-odds value. Intuitively, this modified update formula

limits the number of updates that are needed to change the

state of a voxel. Applying the clamping update policy in our

approach leads to two advantages: we ensure that the confi-

dence in the map remains bounded and as a consequence the

model can adapt to changes in the environment quickly. Fur-

thermore, we are able to compress neighboring voxels with

pruning (see Sect. 3.4). As we will discuss in Sect. 5.4, this

leads to a considerable reduction in the number of voxels

that have to be maintained. The compression achieved with

clamping is no longer completely lossless in terms of the full

probabilities, since information close to zero and one is lost.

In between the clamping thresholds, however, full probabil-

ities are preserved.

3.3 Multi-Resolution Queries

When measurements are integrated into our map structure,

probabilistic updates are performed only for the leaf nodes

in the octree. But since an octree is a hierarchical data struc-

ture, we can make use of the inner nodes in the tree to enable

multi-resolution queries. Observe that we yield a coarser

subdivision of the 3D space when the tree is traversed only

up to a given depth that is not the depth of the leaf nodes.

Each inner node spans the volume that its eight children oc-

cupy, so to determine the occupancy probability of an inner

node, we have to aggregate the probabilities of its children.

Several strategies could be pursued to determine the occu-

pancy probability of a node n given its eight sub-volumes ni

(Kraetzschmar et al., 2004). Depending on the application at

hand, either the average occupancy

l̄(n) =
1

8

8

∑
i=1

L(ni) (5)

or the maximum occupancy

l̂(n) = max
i

L(ni) (6)

can be used, where L(n) returns the current log-odds occu-

pancy value of a node n. Using the maximum child occu-

pancy to update inner nodes can be regarded a conservative

strategy which is well suited for robot navigation. By as-

suming that a volume is occupied if any part of it has been

measured occupied, collision-free paths can be planned and

for this reason the maximum occupancy update is used in

our system. Note that in an even more conservative setting,

L(n) can be defined to return a positive occupancy proba-

bility for unknown cells as well. An example of an octree

queried for occupied voxels at several resolutions is shown

in Fig. 3.

3.4 Octree Map Compression

In Sect. 3.1, we explained how tree pruning can reduce the

amount of redundant information in octrees with discrete

occupancy states in which a voxel can be either occupied

or free. The same technique can also be applied in maps

that use probabilistic occupancy estimates to model occu-

pied and free space. In general, however, one cannot expect

the occupancy probability of neighboring nodes to be iden-

tical, even if both voxel are occupied by the same physical

obstacle. Sensor noise and discretization errors can lead to

different probabilities and therefore interfere with compres-

sion schemes that rely on identical node information. A pos-

sible solution to this problem is to apply a threshold on the

voxel probability, for example 0.5, and in this way gener-

ate a discrete state estimation as suggested by Fairfield et al.

(2007). With that approach, however, individual probability

estimates cannot be recovered after the tree has been pruned.

In our approach, we achieve map compression by ap-

plying the clamping update policy given in Eq. (4). When-

ever the log-odds value of a voxel reaches either the lower

bound lmin or the upper bound lmax, we consider the node as

stable in our approach. Intuitively, stable nodes have been

measured free or occupied with high confidence. In a static

environment, all voxels will converge to a stable state after

a sufficient number of measurements have been integrated.

With the parameters chosen in our experiments, for exam-

ple, five agreeing measurements are sufficient to render an

unknown voxel into a stable voxel. If all children of an in-

ner tree node are stable leaf nodes with the same occupancy

state, then the children can be pruned. Should future mea-

surements be integrated that contradict the state of the cor-

responding inner node, then its children are regenerated and

updated accordingly. Applying this compression only leads

to a loss of information close to P(n) = 0 and P(n) = 1 while

preserving the probabilities in between. In our experiments,

combining octree pruning and clamping leads to a compres-

sion improvement of up to 44%.

In many robotic navigation tasks such as obstacle avoid-

ance or localization, only the maximum likelihood map con-

taining either free or occupied nodes is sufficient. In these

cases, a lossy compression based on the occupancy thresh-

old, as suggested by Fairfield et al. (2007), can be per-

formed. For this compression, all nodes are converted to

their maximum likelihood (clamped) probabilities, followed

by tree pruning. This yields an even greater compression and

less memory requirements.

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 7

Fig. 5 Detail of a volumetric indoor OctoMap containing color infor-

mation. The complete map covers an area of 7.3 m × 7.9 m × 4.6 m at

2 cm resolution.

3.5 Extensions

3.5.1 Maps with Rich Information

Octree nodes can be extended to store additional data to en-

rich the map representation. Voxels could, for example, store

terrain information, environmental data such as the temper-

ature, or color information. Each additional voxel property

requires a method that allows several measurements to be

fused. As an example, we extended our mapping framework

to store the average color of each voxel. This creates visual-

izations for the user and enables a color-based classification

of the environment or appearance-based robot localization

from virtual views (similar to (Einhorn et al., 2011; Mason

et al., 2011)). It can also be used as a starting point to cre-

ate colored, high-resolution surface meshes (Hoppe et al.,

1992). Figure 5 shows an octree map that was created by

integrating colored point clouds recorded with a hand-held

Microsoft Kinect sensor. The data is available in the se-

quence called freiburg1 360 of the RGBD-dataset (Sturm

et al., 2012) and was aligned using RGB-D SLAM (Endres

et al., 2012).

3.5.2 Octree Hierarchies

We developed an extension to our mapping approach that ex-

ploits hierarchical dependencies in the environment (Wurm

et al., 2011). This extension maintains a collection of

submaps in a tree-structure, where each node represents a

subspace of the environment. The subdivision applied in our

system is based on a user-defined segmentation of the in-

put and on a given spatial relation that expresses the relation

between segments.

Figure 6 gives an illustration of a hierarchy that is based

on the assumption that objects are located on top of support-

ing planes. In this application, we first estimated supporting

Fig. 6 Hierarchical octree model of a tabletop scene. Background (yel-

low), table (magenta), and objects (cyan) are represented by individual

octree maps of different resolutions.

planes in the input. Objects on top of these supporting planes

were then segmented in the input data and modeled in indi-

vidual volumetric submaps. As a result, the table is a submap

that is on top of the floor and several household objects are

in turn represented as submaps on top of the table.

Compared to a single, monolithic map of the environ-

ment, our hierarchical approach exhibits a number of advan-

tages: First, each submap is maintained independently and

mapping parameters such as the resolution can be adapted

for each submap. Second, submaps can be manipulated in-

dependently. For example, one of the submaps representing

an individual object can be moved while the rest remains

static. Third, hierarchical dependencies of submaps can be

encoded in the hierarchy. For example, all objects on a table

can be associated to this table and if the table is moved then

the objects are moved along with it.

The approach has been evaluated in the context of table-

top manipulation. Objects on a table were mapped at very

fine resolutions while the table and background structures

were mapped at lower resolutions. This approach led to

models that were about an order of magnitude more com-

pact than a single map that represents the complete scene.

4 Implementation Details

4.1 Memory-Efficient Node Implementation

In a straight-forward octree implementation, each node in

the tree stores in addition to the data payload the coordi-

nate of its center location, its voxel size, and pointers to its

children. This, however, can lead to a substantial memory

overhead. Since the node location and its voxel size can be

reconstructed while traversing the octree, we do not explic-

itly store this information in the nodes to reduce the memory

overhead.

In general, octree nodes need to maintain an ordered list

of their children. This can be directly achieved by using

eight pointers per node. If sparse data are modeled, the mem-

ory requirement of those pointers (8×4byte = 32byte on a

8 Armin Hornung et al.

32 bit architecture) will lead to a significant memory over-

head (Wilhelms and Van Gelder, 1992). We overcome that

by using one child pointer per node that points to an array of

eight pointers (Fig. 7, left). This array is only allocated if the

node indeed has children and is not allocated for leaf nodes.

Thus, any leaf node in the octree only stores the mapping

data itself (e.g., the occupancy probability) and one (null)

pointer. Inner nodes additionally store eight pointers to their

children. In the robotics-related datasets used in our evalua-

tion, 80% – 85% of the octree nodes are leafs. In our exper-

iments, the above-mentioned implementation saves 60% –

65% of memory compared to allocating 8 pointers for each

node.

To store a per-voxel occupancy probability, a single float

value (usually 4 byte) is sufficient to represent the log-odds

value. This results in a node size of 40 byte for inner nodes

and 8 byte for leafs on a 32-bit architecture. Note that most

compilers align member data in memory for runtime effi-

ciency, that is, the data of a node is padded to be multiples

of one word large (4 byte on a 32-bit architecture). 64-bit ar-

chitectures can address large amounts of memory at the cost

of pointers and words having twice the size. On such archi-

tectures, the memory size of inner nodes increases to 80 byte

and the size of leaf nodes to 16 byte. Note that the actual size

of the data structure (76 byte for inner nodes and 12 byte for

leaf nodes) is again padded to multiples of the word size (8

byte on a 64-bit architecture) by most compilers.

In our approach, the octree is homogeneous by design,

that is, all nodes have the same structure and store occu-

pancy. While inner nodes could potentially save 8 byte by

omitting occupancy information, maintaining it according

to Eq. (5) or (6) enables multi-resolution queries, where tree

traversal is stopped at a fixed depth.

Virtual inheritance between classes allows dynamic dis-

patch during run-time, at the cost of one extra pointer to the

virtual function table (vtable) for each object instance. To

minimize the memory footprint, we avoided this overhead in

the octree node implementation. We apply direct inheritance

and casts for the nodes, and use virtual inheritance only in

the octree classes. This method results in an overhead of the

size of only one pointer per octree map.

4.2 Octree Types

The most common octree and node types in our framework

are summarized in Fig. 8 as a UML diagram. The basic oc-

tree functionality is implemented in OcTreeBase, and the

basic node functionality is implemented in OcTreeDataN-

ode. OcTreeDataNode is templated over data that is stored in

the node while OcTreeBase is templated over the node type.

OccupancyOcTreeBase adds occupancy mapping function-

ality to the tree implementation, such as scan insertions and

data child ptr

...

0.9

0.9 0.2 0.1

Fig. 7 Left: The first nodes of the octree example from Fig. 2 in mem-

ory connected by pointers. Data is stored as one float denoting occu-

pancy. Right: The complete tree from Fig. 2 as compact serialized bit-

stream. All maximum-likelihood occupancy information can be stored

serially in only six bytes, using two bits for each of a node’s eight child

labels (00: unknown; 01: occupied; 10: free; 11: inner node with child

next in the stream).

Fig. 8 UML diagram of the most common octree and node classes.

ray casting. The main occupancy octree class OcTree de-

rives from OccupancyOcTreeBase using OcTreeNode for its

nodes. This structure allows for flexible extensions of our

framework at different levels, e.g., to extend nodes with cus-

tom data or to add new functionality to the octree. One ex-

ample is the implementation of ColorOcTree that uses Col-

orOcTreeNodes (illustrated in Fig. 5). These nodes store

color in addition to an occupancy estimate, as introduced

in Sect. 3.5.1.

The maximum tree depth is limited to 16 levels in our

current implementation. This enables fast tree traversals by

using computable voxel addresses. However, the depth limit

also poses a limit on the maximum spatial extent of the oc-

tree. At a resolution of 1 cm, for example, the map can cover

a maximum of 216 ×0.01m = 655.36m in each dimension.

While this is sufficient for most indoor applications, the im-

plementation can directly be extended to 32 depth levels,

allowing to cover 232 ×0.01m = 42949672.96m at a reso-

lution of 1 cm.

4.3 Map File Generation

Many robotic applications require maps to be stored in files.

This includes cases where a map is generated during a setup

phase and is later used by mobile robots for path planning

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 9

and localization. Another scenario is a multi-robot system

where maps are exchanged between robots. In either case,

a compact serialized representation is required to minimize

the consumption of disk space or communication band-

width.

The most compact files can be generated whenever a

maximum likelihood estimate of the map is sufficient for the

task at hand. In this case the per-node probabilities are dis-

carded. As motivated above, volumes in which no informa-

tion has been recorded can be of special interest in robotic

systems, for example, during exploration. For this reason,

we explicitly differentiate between free and unknown areas

and encode nodes as either occupied, free, unknown, or as

inner nodes in our map files. Using these labels, octree maps

can be recursively encoded as a compact bit stream. Each

node is represented only by the eight labels of its children.

Beginning at the root node, each child that is not a leaf is

recursively added to the bit stream. Leaf nodes do not have

to be added since they can be reconstructed from their label

during the decoding process. Figure 7 (right) illustrates the

bit-stream encoding. Each row represents one node with the

upper row corresponding to the root node. The last row only

contains leafs so no further nodes are added.

In this maximum likelihood representation, each node

occupies 16 bits of memory, 2 bits per child, resulting in a

compact map file. In our experiments, file sizes never ex-

ceeded 15 MB even for large outdoor environments at a fine

resolution (see Sect. 5.4 for details).

There exist applications in which all information in a

map needs to be stored and maintained. This includes cases

in which hard disk space is used as a secondary memory and

maps are temporarily saved to disk until they need to be ac-

cessed again. Another use case is the storage of additional

node data such as color or terrain information which would

be lost in a maximum likelihood encoding. In these cases,

we encode nodes by storing their data (occupancy and addi-

tional data) and eight bits per node which specify whether

a child node exists. This, however, results in considerably

larger files as we will show in the experiments.

Note that, analog to the octree representation in mem-

ory, the serialized stream does not contain any actual 3D

coordinates. To reconstruct a map, only the location of the

root node needs to be known. All other spatial relationships

between the nodes are implicitly stored in the encoding.

4.4 Our OctoMap Implementation

OctoMap is available as a self-contained C++ library. It is

released under the BSD-license and can be obtained from

http://octomap.github.com. The source code is thoroughly

documented and the library uses CMake to support several

platforms (Linux and Mac OS X with GCC, Windows with

Fig. 9 The OctoMap visualization application octovis

MinGW or Visual Studio). Within the Robot Operating Sys-

tem (ROS), OctoMap is available as a pre-compiled Debian

package, e.g., for the Ubuntu distribution1. Further ROS in-

tegration is available in the packages octomap ros and oc-

tomap msgs.

OctoMap can be easily integrated into any other frame-

work by compiling and linking against it with the help

of pkg-config, or with the find package mechanism in the

CMake build system.

An OpenGL-based 3D visualization application is avail-

able along with the library to view stored octree files and to

incrementally build up maps from range data, which eases

troubleshooting and map data inspection (see Fig. 9). It also

offers basic editing functionality.

4.4.1 Integrating Sensor Measurements

Individual range measurements are integrated using ray-

casting by calling the method insertRay(·) of the occupancy

octree class OcTree. This updates the end point of the mea-

surement as occupied while all other voxels along a ray to

the sensor origin are updated as free.

Point clouds, e.g., from 3D laser scans or stereo cameras

are integrated using insertScan(·). This batch operation has

been optimized to be more efficient than tracing each single

ray from the origin.

Finally, a single node in the octree can be updated with

a point measurement by calling updateNode(·).

4.4.2 Accessing Data

Individual octree nodes can be accessed by searching for

their coordinate. For efficient batch queries, our implemen-

tation provides iterators to traverse the octree analogous to a

standard C++ container class. With these iterators, all nodes,

1 http://www.ros.org/wiki/octomap

http://octomap.github.com
http://www.ros.org/wiki/octomap

10 Armin Hornung et al.

leaf nodes, or leaf nodes in a certain bounding box can be

queried or they can be filtered according to further criteria.

Ray intersection queries, i.e., casting a ray from an ori-

gin into a given direction until it hits an occupied volume,

are an important use-case for a 3D map in robotics. This kind

of query is used for visibility checks or to localize with range

sensors. Thus, we provide this functionality in the castRay(·)

method.

5 Evaluation

The approach presented in this paper has been evaluated us-

ing several real world datasets as well as simulated ones.

The experiments are designed to verify that the proposed

representation is meeting the requirements formulated in the

introduction. More specifically, we demonstrate that our ap-

proach is able to adequately model various types of environ-

ments and that it is an updatable and flexible map structure

that can be compactly stored.

For evaluation, we used the current implementation of

OctoMap 1.5.12. The evaluated datasets are available on-

line3 and can be converted from 3D point clouds into oc-

tree maps with the tool graph2tree, which also prints all

necessary statistics.

5.1 Sensor Model for Laser Range Data

OctoMap can be used with any kind of distance sensor, as

long as an inverse sensor model is available. Since our real-

world datasets were mostly acquired with laser range find-

ers, we employ a beam-based inverse sensor model which

assumes that endpoints of a measurement correspond to ob-

stacle surfaces and that the line of sight between sensor ori-

gin end endpoint does not contain any obstacles. The oc-

cupancy probability of all volumes is initialized to the uni-

form prior of P(n) = 0.5. To efficiently determine the map

cells which need to be updated, a ray-casting operation is

performed that determines voxels along a beam from the

sensor origin to the measured endpoint. For efficiency, we

use a 3D variant of the Bresenham algorithm to approximate

the beam (Amanatides and Woo, 1987). Volumes along the

beam are updated as described in Sect. 3.2 using the follow-

ing inverse sensor model:

L(n | zt) =

{

locc if beam is reflected within volume

lfree if beam traversed volume
(7)

Throughout our experiments, we used log-odds values of

locc = 0.85 and lfree = −0.4, corresponding to probabilities

of 0.7 and 0.4 for occupied and free volumes, respectively.

2 https://github.com/OctoMap/octomap/archive/v1.5.3.tar.gz
3 http://ais.informatik.uni-freiburg.de/projects/datasets/octomap

surface
sensor

surface
sensor

Fig. 10 A laser scanner sweeps over a flat surface at a shallow angle by

rotating. A cell measured occupied in the first scan (top) is updated as

free in the following scan (bottom) after the sensor rotated. Occupied

cells are visualized as gray boxes, free cells are visualized in white.

Fig. 11 A simulated noise-free 3D laser scan (left) is integrated into

our 3D map structure. Sensor sweeps at shallow angles lead to unde-

sired discretization effects (center). By updating each volume at most

once, the map correctly represents the environment (right). For clarity,

only occupied cells are shown.

The clamping thresholds are set to lmin =−2 and lmax = 3.5,

corresponding to the probabilities of 0.12 and 0.97. We ex-

perimentally determined these values to work best for our

use case of mapping mostly static environments with laser

range finders, while still preserving map updatability for oc-

casional changes. By adapting these changeable thresholds,

a stronger compression can be achieved. As we will evaluate

in Sect. 5.6, there is a trade-off between map confidence and

compression.

Discretization effects of the ray-casting operation can

lead to undesired results when using a sweeping laser range

finder. During a sensor sweep over flat surfaces at shallow

angles, volumes measured occupied in one 2D scan may be

marked as free in the ray-casting of following scans. This

effect is illustrated in Fig. 10. Such undesired updates usu-

ally creates holes in the modeled surface, as shown in the

example in Fig. 11. To overcome this problem, we treat a

collection of scan lines in a sensor sweep from the same lo-

cation as single 3D point cloud in our mapping approach.

Since measurements of laser scanners usually result from

reflections at obstacle surfaces, we ensure that the voxels

corresponding to endpoints are updated as occupied. More

precisely, whenever a voxel is updated as occupied accord-

ing to Eq. (7), it is not updated as free in the same measure-

ment update of the map. By updating the map in this way,

the described effect can be prevented and the environment is

represented accurately, as can be seen in Fig. 11 (right).

https://github.com/OctoMap/octomap/archive/v1.5.3.tar.gz
http://ais.informatik.uni-freiburg.de/projects/datasets/octomap

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 11

5.2 3D Models from Real Sensor Data

In this experiment, we demonstrate the ability of our ap-

proach to model real-world environments. A variety of dif-

ferent datasets has been used. Note that the free space was

explicitly modeled in the experiments but is not shown in

the figures for clarity.

The indoor dataset called FR-079 corridor was recorded

using a Pioneer2 AT platform equipped with a SICK LMS

laser range finder on a pan-tilt unit. We reduced odometry

errors by applying a 3D scan matching approach. The robot

traversed the corridor of building 079 at the Freiburg cam-

pus three times, resulting in 66 3D scans with 6 million end

points in total. When processing this dataset, we limited the

maximum range of the laser beams to 10 m. This removes

stray measurements outside of the building which were ob-

served through windows. Figure 12 shows the resulting map.

A fairly large outdoor dataset was recorded at the com-

puter science campus in Freiburg4. It consists of 81 dense

3D scans covering an area of 292m × 167m along a tra-

jectory of 723 m. This dataset contains a total of 20 mil-

lion end points. In a further experiment, we used laser range

data of the New College data set (Smith et al., 2009) (Epoch

C, 14 million end points in total). This data was recorded

in a large-scale outdoor environment with two fixed laser

scanners sweeping to the left and right side of the robot

as it advances. For this dataset, an optimized estimate of

the robot’s trajectory generated by visual odometry was

used (Sibley et al., 2009). The resulting outdoor maps are

shown in Fig. 13.

Finally, we integrated data of the freiburg1 360 RGBD-

dataset into our map representation with a total of 210

million end points from the Microsoft Kinect sensor (see

Sect. 3.5.1). The final map, visualized in Fig. 5, represents

an office environment at a resolution of 2 cm. In this map,

we additionally stored per-voxel color information.

5.3 Map Accuracy

This experiment demonstrates how accurate a 3D map repre-

sents the data that was used to build that map. Note that this

particular evaluation is independent of the underlying oc-

tree structure since our mapping approach is able to model

the same data as a 3D grid. We measure the accuracy as

the percentage of correctly mapped cells in all 3D scans. A

3D map cell counts as correctly mapped, if it has the same

maximum-likelihood state (free or occupied) in the map and

the evaluated 3D scan. The scan is hereby treated as if it

were inserted into the already-built map, i.e., endpoints must

be occupied and all cells along a ray between the sensor and

4 Courtesy of B. Steder, available at

http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

Map dataset Accuracy Cross-validation

FR-079 corridor (5 cm) 97.27% 96.00%

Freiburg campus (10 cm) 97.89% 95.80%

New College (Ep. C) (10 cm) 98.79% 98.46%

Table 1 Map accuracy and cross-validation as percentage of correctly

mapped cells between evaluated 3D scans and the built map. For the

accuracy, we used all scans for map construction and evaluation. For

cross-validation, we used 80% of all scans to build the map, and the

remaining 20% for evaluation.

the endpoint must be free. As a second measure, we cross-

validate the map by skipping each 5th scan when building

the map, and using these skipped scans to evaluate the per-

centage of correctly mapped cells.

The results in Table 1 show that our mapping approach

accurately represents the environment. The remaining error

is most likely due to sensor noise, discretization effects, or a

not completely perfect scan alignment. The cross-validation

results only lose little accuracy, which demonstrates that the

probabilistic sensor model yields realistic and predictive re-

sults.

5.4 Memory Consumption

In this experiment, we evaluate the memory consumption

of our approach. Several datasets were processed at vari-

ous tree resolutions. We analyzed the memory usage of our

representation with and without performing octree compres-

sion, as well as the maximum-likelihood compression that

converts each node to be either completely free or occupied.

For comparison, we also determined the amount of mem-

ory that would be required by an optimally aligned 3D grid

of minimal size that is initialized linearly in memory. Ac-

cording to Sect. 4.1, the memory consumption of occupancy

stored in an octree on a 32-bit architecture is given by

memtree = ninner ×40B+nleafs ×8B , (8)

where ninner is the number of inner nodes and nleafs the num-

ber of leaf nodes. The size of the minimal 3D grid storing the

same information (one float for the occupancy probability)

is given by

memgrid =
x× y× z

r3
4B , (9)

where x,y,z is the size of the map’s minimal bounding box

in each dimension and r is the map resolution.

We furthermore wrote each map to disk using the full

probabilistic model and the compressed binary format de-

scribed in Sect. 4.3, and evaluated the resulting file sizes.

The memory usage for exemplary resolutions is given

in Table 2. It can be seen that high compression ratios can

be achieved especially in large outdoor environments. Here,

http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

12 Armin Hornung et al.

Fig. 12 3D map of the FR-079 corridor dataset, as seen from the top. The structure of the adjacent rooms has been partially observed through the

glass doors (size of the scene: 43.7m×18.2m×3.3m).

Fig. 13 Resulting octree maps of two outdoor environments at 0.2 m resolution. For clarity, only occupied volumes are shown with height visual-

ized by a color (gray scale) coding. Top: Freiburg campus dataset (size of the scene: 292m×167m×28m), bottom: New College dataset (size of

the scene: 250m×161m×33m).

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 13

Memory w. octree compression [MB] File size [MB]

Map dataset Mapped area [m3] Res. [cm] Mem. 3D grid [MB] None Pruned Max. likelih. Full Lossy

FR-079 corridor 43.7×18.2×3.3 5 78.88 73.55 41.62 24.72 15.76 0.67

10 10.01 10.87 7.22 5.02 2.70 0.14

Freiburg campus 292×167×28 10 5162.90 1257.57 990.66 504.76 379.70 13.82

20 648.52 187.93 130.24 74.12 49.68 2.00

80 10.58 4.55 4.12 3.09 1.53 0.08

New College (Ep. C) 250×161×33 10 5058.76 607.92 395.42 230.33 148.75 6.40

20 633.64 91.33 50.57 35.95 18.65 0.99

80 10.13 2.34 1.79 1.69 0.63 0.05

freiburg1 360 (RGBD) 7.9×7.3×4.6 2 252.99∗ 159.97∗ 45.52∗ 20.05 21.59∗ 0.52

5 16.19∗ 11.24∗ 4.55∗ 2.52 2.11∗ 0.07

Table 2 Memory consumption of different octree compression types compared to full 3D occupancy maps (called 3D grid) on a 32-bit architecture.

Octree compression in memory is achieved by merging identical children into the parent node (called Pruned). A more efficient but more lossy

compression in memory is achieved by converting each node to its maximum-likelihood value (completely free or occupied) followed by pruning

the complete tree. A maximum-likelihood tree containing only free and occupied nodes can then be serialized to a compact binary file format

(called Lossy file). (∗): Voxels contain the full color information from the RGBD dataset.

pruning will merge considerable amounts of free space vol-

umes and areas of unknown space don’t use any memory.

Note that a 3D grid of the outdoor data sets with a resolu-

tion of 10 cm would not even fit into the addressable main

memory of a 32-bit machine. On the other hand, our map

structure is also able to model fine-graded indoor environ-

ments with moderate memory requirements. In very con-

fined spaces, an optimally aligned 3D grid may take less

memory than an uncompressed mapping octree. However,

this effect is diminished as soon as compression techniques

are used.

The evolution of memory consumption over time is

shown in Fig. 14. Memory usage grows when the robot ex-

plores new areas (scans 1–22 and 39–44 in FR-079 corridor,

scans 1–50 and 65–81 in Freiburg campus). In the remaining

time, previously mapped areas were revisited where mem-

ory usage remained nearly constant or even decreased due

to pruning.

As expected, memory usage increases exponentially

with the tree resolution. This effect can be seen in Fig. 15,

where we used a logarithmic scaling in the plot.

Table 2 gives the file sizes of the serialized binary max-

imum likelihood map (denoted as “Lossy”) and the full

probabilistic model (“Full”). Note that map files can be

compressed even further by using standard file compres-

sion methods. Even maps of the fairly large outdoor datasets

Freiburg campus and New College result in file sizes of less

than 14 MB.

5.5 Runtimes

In the following experiments, we analyzed the time required

to integrate and access data in our framework. All runtimes

10 20 30 40 50 60
0

50

100

Scan number

M
em

o
ry

[M
B

]
FR-079 corridor (5 cm res.)

Full 3D grid

No compression

Octree compression

ML octree compression

20 40 60 80
0

200

400

600

Scan number

M
em

o
ry

[M
B

]

Freiburg campus (20 cm res.)

Full 3D grid

No compression

Octree compression

ML octree compression

Fig. 14 Memory usage while mapping the two data sets FR-079 corri-

dor and Freiburg campus.

were evaluated on a single core of a standard desktop CPU

(Intel Core i7-2600, 3.4 GHz) for various map data sets.

5.5.1 Map Generation

First, we analyzed the time required to generate maps by

integrating range data. This time depends on the map res-

olution and the length of the beams that are integrated. We

processed the FR-079 corridor and Freiburg campus datasets

both with the full laser range (up to 50 m) and with a limited

14 Armin Hornung et al.

0.1 0.2 0.4 0.8 1 2

10
0

10
1

10
2

10
3

Resolution [m]

M
em

o
ry

[M
B

]

Full 3D grid

No compression

Octree compression

ML Octree compression

Fig. 15 Effect of resolution on memory usage of the Freiburg campus

dataset. Note that a logarithmic scaling is used.

maximum range of 10 m for several resolutions. The average

insert times for one beam are given in Fig. 16.

In our experiments, 3D scans usually consisted of about

90 000 – 250 000 valid measurements. Typically, such a scan

could be integrated into the map in less than a second. This

demonstrates that our current implementation can cope even

with the demanding data of RGBD-cameras that output up

to 300 000 points at fast frame rates, albeit at shorter ranges.

With long measurement beams and large outdoor areas

as in Freiburg campus dataset, a speedup can be obtained by

limiting the map update range. Indoors, however, where only

few sensor beams reach far, there is no noticeable speedup

by limiting the sensor range.

5.5.2 Map Queries

We evaluated the time to traverse all leaf nodes (free or oc-

cupied) in an existing map using iterators (see Sect. 4.4.2).

The depth of a query can be limited during run time which

in our data structure is equivalent to a map query in a coarser

map. This allows for more efficient tree traversals in those

cases when a coarser resolution is sufficient.

Figure 17 shows the time to traverse several maps to

their maximum tree depth of 16 corresponding to the full

map resolution (depth cutoff=0). The plot furthermore gives

the times to query all leaf nodes when the query depth is

limited. Each increment in the depth cutoff doubles the edge

length of the smallest voxels and speeds up the traversal by a

factor of about two. It can be seen that map traversals are ef-

ficient. Even at full map resolution, the large map of the Frei-

burg campus containing 1 087 014 occupied and 3 377 882

free leaf nodes can be traversed within 51 ms.

5.6 Clamping parameters

Finally, we analyzed the impact of the clamping thresholds

on map accuracy and compression. Since these thresholds

provide a lower and upper bound for the occupancy prob-

ability, information close to P = 0 and P = 1 is lost com-

pared to the full map with no clamping. A clamped map

0.1 0.2 0.4 0.8 1
0

2.5

5

7.5

10

·10
−3

Resolution [m]

T
im

e
[m

s]

Freiburg campus

Freiburg campus, trunc.

FR-079 corridor

FR-079 corridor, trunc.

Fig. 16 Average time to update an octree map by inserting one data

point for the datasets Freiburg campus and FR-079 corridor. The trun-

cated versions insert rays up to a maximum sensor range of 10 m only.

0 1 2 3 4

10

20

30

40

50

Depth cutoff

T
im

e
[m

s]

Freiburg campus (20 cm)

New College (20 cm)

FR-079 corridor (5 cm)

Fig. 17 Time to traverse all octree leaf nodes in several maps. By lim-

iting the depth of the query (called depth cutoff) a coarser map is tra-

versed.

represents an approximation of the full map, thus we use the

Kullback-Leibler divergence (KLD) summed over the com-

plete map as measure. Since occupancy is a binary random

variable with the discrete states free and occupied, the KLD

of a clamped map Mc from the full map M f can be computed

by summing over all map nodes n:

KLD(M f ,Mc) = (10)

∑
n

(

ln
(

P(n)
Q(n)

)

P(n)+ ln
(

1−P(n)
1−Q(n)

)

(1−P(n))
)

,

where P(n) is the occupancy probability of node n in M f ,

and Q(n) in Mc.

The results for a series of occupancy ranges

from [0 : 1] (no clamping, lossless) to [0.4 : 0.6] (strong

clamping, most loss) and different maps can be seen

in Fig. 18. The values for our chosen default thresh-

old [0.12 : 0.97] are shown as thin horizontal lines, dashed

blue for the memory consumption and red for the KLD.

This clamping range was chosen primarily to work best in

the context of laser-based mapping and occasional changes

in the environment, such as people moving through the

scans or doors closing. As can be seen, a stronger compres-

sion can be achieved with higher clamping, at the cost of

losing map confidence. In the most degenerated case, one

sensor update can be enough to mark a voxel as completely

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 15

[0:

1]

[0.05:

0.95]

[0.1:

0.9]

[0.15:

0.85]

[0.2:

0.8]

[0.25:

0.75]

[0.3:

0.7]

[0.35:

0.65]

[0.4:

0.6]

0

2

4

6

8

·10
5

Occupancy range

K
L

D

FR-079 corridor (5 cm res.)

KLD

Memory

Memory with clamping

[0.12:0.97]

KLD with clamping [0.12:0.97] 30

40

50

60

M
em

o
ry

[M
B

]

[0:

1]

[0.05:

0.95]

[0.1:

0.9]

[0.15:

0.85]

[0.2:

0.8]

[0.25:

0.75]

[0.3:

0.7]

[0.35:

0.65]

[0.4:

0.6]

0

2

4

6

8

·10
5

Occupancy range

K
L

D

Freiburg campus (20 cm res.)

KLD

Memory

Memory with clamping

[0.12:0.97]

KLD with clamping

[0.12:0.97] 80

100

120

M
em

o
ry

[M
B

]

[0:

1]

[0.05:

0.95]

[0.1:

0.9]

[0.15:

0.85]

[0.2:

0.8]

[0.25:

0.75]

[0.3:

0.7]

[0.35:

0.65]

[0.4:

0.6]

0

1

2

·10
6

Occupancy range

K
L

D

New College (20 cm res.)

KLD

Memory

Memory with clamping [0.12:0.97]

KLD with clamp-

ing [0.12:0.97] 40

60

80

M
em

o
ry

[M
B

]

Fig. 18 Effect of different clamping ranges on map compression and

accuracy in our three datasets. A higher clamping, resulting in a

smaller occupancy range, increases the efficiency of the octree com-

pression (memory consumption, dashed blue). The Kullback-Leibler

divergence (KLD, red) measures the information loss between the un-

clamped map with full probabilities in [0:1] and a clamped representa-

tion. Our default clamping range [0.12:0.97] is shown for comparison

by horizontal lines in blue (dashed) for memory consumption and red

for the KLD.

free or occupied, losing any ability to filter noise with a

probabilistic update. Note that, while clamping is beneficial

for map compression, even with no clamping the lossless

compressed maps are smaller than a 3D grid (cf. Table 2).

6 Case Studies

Since its first introduction in 2010 (Wurm et al., 2010), the

OctoMap framework received a considerable interest and

has been used in several applications. These include 6D lo-

calization (Hornung et al., 2010), autonomous navigation

with air vehicles (Heng et al., 2011; Müller et al., 2011),

autonomous navigation with humanoid robots (Oßwald

et al., 2012; Maier et al., 2012), 3D exploration (Shade

and Newman, 2011; Dornhege and Kleiner, 2011), 3D

SLAM (Hertzberg et al., 2011), 3D arm navigation (Cio-

carlie et al., 2010), semantic mapping (Blodow et al., 2011),

and navigation in cluttered environments (Hornung et al.,

2012).

In the following, we will describe some of these use

cases in more detail in order to demonstrate the versatility

and ease of integration of the OctoMap library.

6.1 Localization in 3D

In our previous work (Hornung et al., 2010), we developed

a localization method based on OctoMap as 3D environ-

ment model. In this approach, the 6D torso pose of a hu-

manoid robot in a complex indoor environment is tracked

with Monte Carlo localization based on 2D laser range

measurements, as well as IMU and joint encoder data.

For the particle filter observation model, we first used the

endpoint model and later an optimized ray-casting method

in combination with visual observations for local refine-

ment (Oßwald et al., 2012). The resulting localization is

highly accurate and even enables the humanoid to climb spi-

ral staircases. Our implementation is available open-source5

and uses the ray-casting functionality in OctoMap (see

Sect. 4.4.2). This enables the re-use for other robot local-

ization systems.

6.2 Tabletop Manipulation

The ROS collider package6 builds a collision map based

on 3D point clouds. Sensor data from several sources, such

as a tilting laser and a stereo camera, are fused using Oc-

toMap. Octree nodes were extended to store a time stamp

attribute that allows to gradually clear out nodes in dynam-

ically changing environments. This new collision map en-

ables the ROS arm navigation and grasping pipeline (Cio-

carlie et al., 2010) to dynamically react to changes and to

cope with sensor noise. In contrast to the previous fixed-size

voxel grid, the new implementation allows for an initially

unbounded workspace, the integration of data from multiple

sensors, and it is more memory-efficient.

5 http://www.ros.org/wiki/humanoid localization
6 http://www.ros.org/wiki/collider

http://www.ros.org/wiki/humanoid_localization
http://www.ros.org/wiki/collider

16 Armin Hornung et al.

6.3 Navigation in Cluttered Environments

OctoMap was furthermore used to create a navigation mod-

ule for mobile manipulation. In this project, a PR2 robot

picked up large objects from one table with two arms and

carried it to another table through narrow passages (Hor-

nung et al., 2012). The system integrates 3D sensor data

in OctoMap. The resulting 3D occupancy map is then used

to perform collision checks based on the robot’s full kine-

matic configuration and the attached objects. Multi-layered

projected 2D maps and an anytime planner using mo-

tion primitives allow for planning in almost real time with

bounded sub-optimality. The navigation system and incre-

mental mapping framework based on OctoMap are both

available open-source in ROS7.

7 Conclusion

In this paper, we presented OctoMap, an open source frame-

work for three-dimensional mapping. Our approach uses

an efficient data structure based on octrees that enables a

compact memory representation and multi-resolution map

queries. Using probabilistic occupancy estimation, our ap-

proach is able to represent volumetric 3D models that in-

clude free and unknown areas. The proposed approach uses

a bounded per-volume confidence that allows for a loss-

less compression scheme and leads to substantially reduced

memory usage. We evaluated our approach with various

real-world data sets. The results demonstrate that our ap-

proach is able to model the environment in an accurate way

and, at the same time, minimizes memory requirements.

OctoMap can easily be integrated into robotic systems

and has already been successfully applied in a variety of

robotic projects. The implementation is available as BSD-

licensed C++ source code. Data sets are available online to

verify our experimental results and to compare against them.

Acknowledgements The authors would like to thank J. Müller,

S. Oßwald, R.B. Rusu, R. Schmitt, and C. Sprunk for the fruitful dis-

cussions and their contributions to the OctoMap library.

References

Amanatides J, Woo A (1987) A fast voxel traversal algorithm for ray

tracing. In: Proceedings of Eurographics, Amsterdam, The Nether-

lands

Blodow N, Goron L, Marton Z, Pangercic D, Ruhr T, Tenorth M, Beetz

M (2011) Autonomous semantic mapping for robots performing ev-

eryday manipulation tasks in kitchen environments. In: Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)

7 http://www.ros.org/wiki/3d navigation

and http://www.ros.org/wiki/octomap server

Botsch M, Wiratanaya A, Kobbelt L (2002) Efficient high quality ren-

dering of point sampled geometry. In: EGRW ’02: Proc. of the 13th

Eurographics workshop on Rendering, pp 53–64

Ciocarlie M, Hsiao K, Jones EG, Chitta S, Rusu RB, Sucan IA (2010)

Towards reliable grasping and manipulation in household environ-

ments. In: Intl. Symposium on Experimental Robotics (ISER)

Cole D, Newman P (2006) Using laser range data for 3D SLAM in

outdoor environments. In: Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA)

Dornhege C, Kleiner A (2011) A frontier-void-based approach for au-

tonomous exploration in 3D. In: IEEE International Symposium on

Safety, Security and Rescue Robotics (SSRR)

Douillard B, Underwood J, Melkumyan N, Singh S, Vasudevan S,

Brunner C, Quadros A (2010) Hybrid elevation maps: 3D surface

models for segmentation. In: Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS)

Dryanovski I, Morris W, Xiao J (2010) Multi-volume occupancy grids:

An efficient probabilistic 3D mapping model for micro aerial vehi-

cles. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS)

Einhorn E, Schröter C, Groß HM (2011) Attention-driven monocu-

lar scene reconstruction for obstacle detection, robot navigation and

map building. Robotics & Autonomous Systems 59(5):296–309

Elseberg J, Borrmann D, Nüchter A (2011) Efficient processing of

large 3d point clouds. In: Proc. of the XXIII Int. Symp. on Infor-

mation, Communication and Automation Technologies (ICAT ’11)

Endres F, Hess J, Engelhard N, Sturm J, Cremers D, Burgard W (2012)

An evaluation of the RGB-D SLAM system. In: Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA)

Fairfield N, Kantor G, Wettergreen D (2007) Real-time SLAM with

octree evidence grids for exploration in underwater tunnels. Journal

of Field Robotics

Fournier J, Ricard B, Laurendeau D (2007) Mapping and exploration

of complex environments using persistent 3D model. In: Computer

and Robot Vision, 2007. Fourth Canadian Conf. on, pp 403–410

Girardeau-Montaut D, Roux M, Marc R, Thibault G (2005) Change

detection on points cloud data acquired with a ground laser scanner.

International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences 36:30–35

Gutmann JS, Fukuchi M, Fujita M (2008) 3D perception and environ-

ment map generation for humanoid robot navigation. Int J Rob Res

27(10):1117–1134

Habbecke M, Kobbelt L (2007) A surface-growing approach to multi-

view stereo reconstruction. In: Proc. of the IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR)

Hadsell R, Bagnell JA, Hebert M (2009) Accurate rough terrain esti-

mation with space-carving kernels. In: Proc. of Robotics: Science

and Systems (RSS)

Hebert M, Caillas C, Krotkov E, Kweon IS, Kanade T (1989) Ter-

rain mapping for a roving planetary explorer. In: Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA)

Heng L, Meier L, Tanskanen P, Fraundorfer F, Pollefeys M (2011) Au-

tonomous obstacle avoidance and maneuvering on a vision-guided

MAV using on-board processing. In: Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA)

Hertzberg C, Wagner R, Birbach O, Hammer T, Frese U (2011) Expe-

riences in building a visual slam system from open source compo-

nents. In: Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA)

Hoppe H, DeRose T, Duchamp T, Mcdonald J, Stuetzle W (1992)

Surface reconstruction from unorganized points. SIGGRAPH Com-

puter Graphics 26(2):71–78

Hornung A, Wurm KM, Bennewitz M (2010) Humanoid robot local-

ization in complex indoor environments. In: Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS)

http://www.ros.org/wiki/3d_navigation
http://www.ros.org/wiki/octomap_server

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees 17

Hornung A, Phillips M, Jones EG, Bennewitz M, Likhachev M,

Chitta S (2012) Navigation in three-dimensional cluttered environ-

ments for mobile manipulation. In: Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA)

Kammerl J, Blodow N, Rusu RB, Gedikli S, Beetz M, Steinbach EG

(2012) Real-time compression of point cloud streams. In: Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA)

Kelly A, Stentz A, Amidi O, Bode M, Bradley DM, Diaz-Calderon

A, Happold M, Herman H, Mandelbaum R, Pilarski T, Rander P,

Thayer S, Vallidis N, Warner R (2006) Toward reliable off road

autonomous vehicles operating in challenging environments. J of

Robotics Research 25(5-6):449–483

Kraetzschmar G, Gassull G, Uhl K (2004) Probabilistic quadtrees for

variable-resolution mapping of large environments. In: Ribeiro MI,

Victor SJ (eds) Proc. of the 5th IFAC/EURON Symposium on Intel-

ligent Autonomous Vehicles, Lisbon, Portugal

Krainin M, Henry P, Ren X, Fox D (2011) Manipulator and object

tracking for in-hand 3d object modeling. J of Robotics Research

30(11):1311–1327

Laine S, Karras T (2010) Efficient sparse voxel octrees. In: ACM SIG-

GRAPH Symposium on Interactive 3D Graphics and Games

Magnusson M, Duckett T, Lilienthal AJ (2007) Scan registration

for autonomous mining vehicles using 3D-NDT. Journal of Field

Robotics 24(10):803–827

Maier D, Hornung A, Bennewitz M (2012) Real-time navigation in 3d

environments based on depth camera data. In: Proc. of the IEEE-

RAS Int. Conf. on Humanoid Robots (Humanoids)

Mason J, Ricco S, Parr R (2011) Textured occupancy grids for monoc-

ular localization without features. In: Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA)

Meagher D (1982) Geometric modeling using octree encoding. Com-

puter Graphics and Image Processing 19(2):129–147

Moravec H (1996) Robot spatial perception by stereoscopic vision and

3D evidence grids. Tech. Rep. CMU-RI-TR-96-34, Robotics Insti-

tute, Pittsburgh, PA

Moravec H, Elfes A (1985) High resolution maps from wide angle

sonar. In: Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), St. Louis, MO, USA, pp 116–121

Müller J, Kohler N, Burgard W (2011) Autonomous miniature blimp

navigation with online motion planning and re-planning. In: Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)

Newcombe R, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison

A, Kohli P, Shotton J, Hodges S, Fitzgibbon A (2011) KinectFu-

sion: Real-time dense surface mapping and tracking. In: Mixed and

Augmented Reality (ISMAR), 2011 10th IEEE International Sym-

posium on, IEEE, pp 127–136

Nüchter A, Lingemann K, Hertzberg J, Surmann H (2007) 6D

SLAM—3D mapping outdoor environments: Research articles. J

Field Robot 24(8-9):699–722

Oßwald S, Hornung A, Bennewitz M (2012) Improved proposals for

highly accurate localization using range and vision data. In: Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)

Pathak K, Birk A, Poppinga J, Schwertfeger S (2007) 3D forward sen-

sor modeling and application to occupancy grid based sensor fusion.

In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-

tems (IROS)

Payeur P, Hebert P, Laurendeau D, Gosselin C (1997) Probabilistic oc-

tree modeling of a 3-d dynamic environment. In: Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA)

Pfaff P, Triebel R, Stachniss C, Lamon P, Burgard W, Siegwart

R (2007) Towards mapping of cities. In: Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Rome, Italy

Roth-Tabak Y, Jain R (1989) Building an environment model using

depth information. Computer 22(6):85–90

Ryde J, Hu H (2010) 3D mapping with multi-resolution occupied voxel

lists. Autonomous Robots 28(2):169–185

Schnabel R, Klein R (2006) Octree-based point-cloud compression. In:

Symposium on Point-Based Graphics 2006, Eurographics

Shade R, Newman P (2011) Choosing where to go: Complete 3D ex-

ploration with stereo. In: Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA)

Sibley G, Mei C, Reid I, Newman P (2009) Adaptive relative bundle

adjustment. In: Proc. of Robotics: Science and Systems (RSS)

Smith M, Baldwin I, Churchill W, Paul R, Newman P (2009) The

new college vision and laser data set. International Journal for

Robotics Research (IJRR) 28(5):595–599, DOI http://dx.doi.org/10.

1177/0278364909103911

Stoyanov T, Magnusson M, Andreasson H, Lilienthal AJ (2010) Path

planning in 3d environments using the normal distributions trans-

form. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS)

Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A

benchmark for the evaluation of RGB-D slam systems. In: Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

http://cvpr.in.tum.de/data/datasets/rgbd-dataset/download

Surmann H, Nüchter A, Hertzberg J (2003) An autonomous mobile

robot with a 3d laser range finder for 3d exploration and digital-

ization of indoor environments. Robotics and Autonomous Systems

45(3):181–198

Triebel R, Pfaff P, Burgard W (2006) Multi-level surface maps for out-

door terrain mapping and loop closing. In: Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS)

Weise T, Wismer T, Leibe B, Van Gool L (2009) In-hand scanning with

online loop closure. In: ICCV Workshops

Whelan T, Kaess M, Fallon M, Johannsson H, Leonard J, McDonald

J (2012) Kintinuous: Spatially extended KinectFusion. Tech. rep.,

URL http://hdl.handle.net/1721.1/71756

Wilhelms J, Van Gelder A (1992) Octrees for faster isosurface genera-

tion. ACM Trans Graph 11(3):201–227

Wurm KM, Hornung A, Bennewitz M, Stachniss C, Burgard W (2010)

OctoMap: A probabilistic, flexible, and compact 3D map represen-

tation for robotic systems. In: Proc. of the ICRA 2010 Workshop on

Best Practice in 3D Perception and Modeling for Mobile Manipula-

tion

Wurm KM, Hennes D, Holz D, Rusu RB, Stachniss C, Konolige K,

Burgard W (2011) Hierarchies of octrees for efficient 3d mapping.

In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-

tems (IROS), San Francisco, CA, USA

Yguel M, Aycard O, Laugier C (2007a) Update policy of dense maps:

Efficient algorithms and sparse representation. In: Field and Service

Robotics, Results of the Int. Conf., FSR 2007, vol 42, pp 23–33

Yguel M, Keat CTM, Braillon C, Laugier C, Aycard O (2007b) Dense

mapping for range sensors: Efficient algorithms and sparse repre-

sentations. In: Proceedings of Robotics: Science and Systems

http://cvpr.in.tum.de/data/datasets/rgbd-dataset/download
http://hdl.handle.net/1721.1/71756

	Introduction
	Related Work
	OctoMap Mapping Framework
	Implementation Details
	Evaluation
	Case Studies
	Conclusion

