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Abstract. This work is devoted to the development of the octonion linear canonical
transform (OLCT) theory proposed by Gao and Li in 2021 that has been designated
as an emerging tool in the scenario of signal processing. The purpose of this work is
to introduce octonion linear canonical transform of real-valued functions. Further more
keeping in mind the varying frequencies, we used the proposed transform to generate
a new transform called short-time octonion linear canonical transform (STOLCT). The
results of this article focus on the properties like linearity, reconstruction formula and
relation with 3D-short-time linear canonical transform (3D-STLCT). The crux of this
paper lie in establishing well known uncertainty inequalities and convolution theorem for
the proposed transform.˙
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1. Introduction

The generalized integral transform called the linear canonical transform (LCT) has
been designated as an emerging tool in the scenario of signal, image and video processing
recently. The LCT provides a unified treatment of the generalized Fourier transforms in
the sense that it is an embodiment of several well-known integral transforms including
the Fourier transform, fractional Fourier transform, Fresnel transform. However, LCT
has a drawback. Due to its global kernel it is not suitable for processing the signals
with varying frequency content. The short-time linear canonical transform (STLCT) [18]
with a local window function overcome this drawback. For nonstationary signals STLCT
has been used widely and successfully in signal separation and linear time frequency
representation.

The hyper-complex Fourier transform(FT) is of the great interest in the present era. It
treats multi-channel signals as an algebraic whole without losing the spectral relations.
Presently, many hyper-complex FTs exists in literature which are defined by different ap-
proaches, see [1, 2]. The developing interest in hyper-complex FTs including applications
in watermarking, color image processing, image filtering, pattern recognition and edge de-
tection [3]-[8]. Among the various hyper-complex FTs, the most basic ones are the quater-
nion Fourier transforms(QFTs). QFTs are most widely studied in recent years because
of its wide applications in optics and signal processing. Various properties and applica-
tions of the QFT were established in [10]-[13]. The generalization of quaternion Fourier
transform (QFT)is quaternion linear canonical transform (QLCT), which is more effective
signal processing tool than QFT due to its extra parameters, see[14, 15, 16, 17, 19, 20, 22].
Later, the quaternion linear canonical transform (QLCT) with four parameters has been
generalized to short-time quaternion linear canonical transform (STQLCT) [29]. It is
useful in quaternion valued signals and is an alternative to 2D complex STLCT. Hence
has found wide applications in image and signal processing, see [23, 24, 25, 27].
On the other hand the Cayley-Dickson algebra of order 8 is known as octonion algebra
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which deserve special attention in the hyper-complex signal processing. The octonion
Fourier transform (OFT) was proposed by Hahn and Snopek in 2011[28]. From then
OFT is becoming the hot area of research in modern signal processing. Some proper-
ties and uncertainty relations and applications associated with OFT have been studied,
see[30, 31, 32, 33]. In 2021 Gao and Li [34] proposed octonion linear canonical trans-
form (OLCT) as a generalization of OFT by substituting the Fourier kernel with the
LCT kernel. They established some vital properties like inversion formula, isometry,
Riemann-Lebesgue lemma and proved Heisenberg’s and Donoho-Stark’s uncertainty prin-
ciples. Furthermore they [35] introduced octonion short-time Fourier transform, where
they established classical properties besides establishing Pitt’s, Lieb’s and uncertainty
inequalities. The generalization of OFT to other transforms is still in its infancy.

So motivated and inspired by this, we shall propose the novel octonion linear canonical
transform of real-valued functions. Further more keeping in mind that the OLCT takes
signals from time domain to the frequency domain but is unable to perform time-frequency
localization simultaneously due to its global kernel. So to overcome this drawback, we
used the proposed transform to generate a new transform called short-time octonion linear
canonical transform (STOLCT). The results of this article focus on the properties like lin-
earity, reconstruction formula and relation with 3D-short-time linear canonical transform
(3D-STLCT). The crux of this paper lie in establishing well known uncertainty inequali-
ties and convolution theorem for the proposed transform..
The highlights of the paper are pointed out below:

• To introduce a novel integral transform coined as the octonion linear canonical
transform (OLCT) for real-valued functions.

• To introduce short-time octonion linear canonical transform and decompose it in
to components of different parity.

• To study the properties like linearity and reconstruction formula.

• To study and establish the relationship between short-time octonion linear canon-
ical transform and 3D short-time linear canonical transform.

• To formulate several classes of uncertainty inequalities, such as the Hausdorff-
Young inequality, Lieb’s inequality and logarithmic uncertainty inequality.

• On the basis of classical convolution operation, we establish convolution theorem
for the proposed transform.

The rest of the paper is organized as follows: In Section 2, some general definitions and
basic properties of octonions are summarized. The definition and the properties of the
OLCT are studied in Section 3. The concept of STOLCT and its associated properties are
established in Section 4. In section 5, we develop a series of uncertainty inequalities such
as the Hausdorff-Young inequality, Leibs inequality and logarithmic uncertainty inequality
associated with the STOLCT. Also the convolution theorem for the STOLCT is obtained
in this section. The potential applications of the STOLCT are presented in Section 5. In
section 6, the conclusions of the proposed work are drawn.



2. Preliminaries

In this section, we collect some basic facts on the octonion algebra and the offset linear
canonical transform(OLCT), which will be needed throughout the paper.

2.1. Octonion algebra.

The octonion algebra denoted by O, [36] is generated by the eighth-order Cayley-Dickson
construction. According to His construction, a hypercomplex number o ∈ O is an ordered
pair of quaternions q0, q1 ∈ H

o = (q0, q1)

= ((z0, z1), (z2, z3))

= q0 + q1.µ4

= (z0 + z1.µ2) + (z2 + z3.µ2).µ4

(2.1)

which has equivalent form

o = so +

7
∑

i=1

siµi = s0 + s1µ1 + s2µ2 + s3µ3 + s4µ4 + s5µ5 + s6µ6 + s7µ7 (2.2)

that is o is a hypercomplex number defined by eight real numbers si, i = 0, 1, . . . , 7 and
seven imaginary units µi where i = 1, 2, . . . , 7. The octonion algebra is non-commutative
and non-associative algebra. The multiplication of imaginary units in the Cayley-Dickson
algebra of octonions are presented in Table I .[31]

Table I

Multiplication Rules in Octonion Algebra.

· 1 µ1 µ2 µ3 µ4 µ5 µ6 µ7

1 1 µ1 µ2 µ3 µ4 µ5 µ6 µ7

µ1 µ1 −1 µ3 −µ2 µ5 −µ4 −µ7 µ6

µ2 µ2 −µ3 −1 µ1 µ6 µ7 −µ4 −µ5

µ3 µ3 µ2 −µ1 −1 µ7 −µ6 µ5 −µ4

µ4 µ4 −µ5 −µ6 −µ7 −1 µ1 µ2 µ3

µ5 µ5 µ4 −µ7 µ6 −µ1 −1 −µ3 µ2

µ6 µ6 µ7 µ4 −µ5 −µ2 µ3 −1 −µ1

µ7 µ7 −µ6 µ5 µ4 −µ3 −µ2 µ1 −1

The conjugate of an octonion is defined as

o = s0 − s1µ1 − s2µ2 − s3µ3 − s4µ4 − s5µ5 − s6µ6 − s7µ7 (2.3)

Therefore norm is defined by |o| =
√
oo and |o|2 =

∑7
i=o si. Also |o1o2| = |o1||o2|, ∀o1, o2 ∈

O.
From (2.1) it is evident that every o ∈ O can be represented in quaternion form as

o = a+ bµ4 (2.4)

where a = s0 + s1µ1 + s2µ2 + s3µ3 and b = s4 + s5µ1 + s6µ2 + s7µ3 are both quaternions.
By direct verification we have following lemma.

Lemma 2.1. [31] Let a, b ∈ H, then
(1) µ4a = aµ4; (2) µ4(aµ4) = −a; (3) (aµ4)µ4 = −a;
(4) a(bµ4) = (ba)µ4; (5) (aµ4)b = (ab)µ4; (6) (aµ4)(bµ4) = −ba.



It is clear from above Lemma that, for an octonion a+ bµ4, a, b ∈ H, we have

a+ bµ4 = a− bµ4 (2.5)

and

|a+ bµ4|2 = |a|2 + |b|2. (2.6)

Lemma 2.2. Let õ, ô ∈ O. Then eõ.eô = eõ+ô iff õ.ô = ô.õ.

An octonion-valued function f : R3 −→ O has following explicit form

f(x) = f0 + f1(x)µ1 + f2(x)µ2 + f3(x)µ3 + f4(x)µ4 + f5(x)µ5 + f6(x)µ6 + f7(x)µ7

= f0 + f1µ1 + (f2 + f3µ1)µ2 + [f4 + f5µ1 + (f6 + f7µ1)µ2]µ4

= g(x) + h(x)µ4 (2.7)

where each fi(x) is a real valued functions, g, h ∈ H are as in(2.1) and x = (x1, x2, x3) ∈
R3.

For each real-valued function f(x) over Rk and 1 ≤ p <∞, the Lp−norm of f is defined
by

‖f‖Lp(Rk) =

(
∫

Rk

|f(x)|pdx
)

1

p

, (2.8)

where x = (x1, x2, ..., xk) ∈ Rd And for p = ∞, then the L∞-norm is defined by

‖f‖∞ = esssupx∈Rk|f(x)|. (2.9)

For any functions f(x), g(x) over Rk, the innear product is given by

〈f, g〉L2(Rk) =

∫

Rk

f(x)g(x)dx. (2.10)

Let f, g ∈ L2(Rk), the classic convolution operation is defined as

(f ∗ g)(x) =
∫

Rk

f(y)g(x− y)dy. (2.11)

2.2. Octonion Linear Canonical Transform of Octonion-valued Functions.

In 2021 Gao,W.B and Li,B.Z [34] introduced linear canonical transform in octonion
setting they called it the octonion linear canonical transform (OLCT) and defined it as
follows:
For f ∈ L1(R3,O), then the one dimensional OLCT with respect to the uni-modular
matrix A = (a, b, c, d) is given by

LAµ4{f}(w) =
∫

R

f(x)Kµ4
A (x, w)dx, (2.12)

where

Kµ4
A (x, w) =

1
√

2π|b|
e

µ4
2b

[

ax2−2xw−+dw2
−

π
2

]

, b 6= 0

with the inversion formula

f(x) =

∫

R

LAµ4{f}(w)K
−µ4
A (x, w)dx, (2.13)

where K−µ4
A (x, w) = Kµ4

A−1(w, x) and A−1 = (d,−b,−c, a).



And for octonion valued function f ∈ L1(R3,O) ∩ L2(R3,O), the three dimensional
OLCT with respect to the matrix parameter Ak = (ak, bk, ck, dk), satisfying det(Ak) =
1, k = 1, 2, 3 is defined as

LA1,A2,A3

µ1,µ2,µ4
{f}(w) =

∫

R3

f(x)Kµ1
A1
(x1, w1)K

µ2
A1
(x2, w2)K

µ4
A3
(x3, w3)dx (2.14)

where x = (x1, x2, x3), w = (w1, w2, w3), and multiplication in above integral is done from
left to right and

Kµ1
A1
(x1, w1) =

1
√

2π|b1|
e

µ1
2b1

[

a1x21−2x1w1+d1w2

1
−

π
2

]

, b1 6= 0

Kµ2
A2
(x2, w2) ==

1
√

2π|b2|
e

µ2
2b2

[

a2x22−2x2w2+d2w2

2
−

π
2

]

, b2 6= 0

and

Kµ4
A3
(x3, w3) =

1
√

2π|b3|
e

µ4
2b3

[

a3x23−2x3w3+d3w2

3
−

π
2

]

, b3 6= 0.

with the inversion formula

f(x) =

∫

R3

LA1,A2,A3

µ1,µ2,µ4
{f}(w)Kµ4

A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)K
µ1
A−1

1

(w1, x1)dx, (2.15)

where A−1
k = (dk,−bk,−ck, ak) ∈ R2×2, for k = 1, 2, 3.

3. Octonion Linear Canonical Transform of Real-valued Functions

According to the octonion Fourier transform(OFT)[30] of a real-valued functions of three
variables and octonion linear canonical transform for octonion valued functions[34] we
can obtain the definition of the octonion linear canonical transform(OLCT) of real valued
function f(x) in three variables as follows:

Definition 3.1. The 3D-OLCT of real-valued function f : R3 → R can be defined as

LA1,A2,A3

µ1,µ2,µ4
{f}(w) =

∫

R3

f(x)Kµ1
A1
(x1, w1)K

µ2
A1
(x2, w2)K

µ4
A3
(x3, w3)dx. (3.1)

where x = (x1, x2, x3), w = (w1, w2, w3), and kernel signals

Kµ1
A1
(x1, w1) =

1
√

2π|b1|
e

µ1
2b1

[

a1x21−2x1w1+d1w2

1
−

π
2

]

, b1 6= 0 (3.2)

Kµ2
A2
(x2, w2) ==

1
√

2π|b2|
e

µ2
2b2

[

a2x22−2x2w2+d2w2

2
−

π
2

]

, b2 6= 0 (3.3)

and

Kµ4
A3
(x3, w3) =

1
√

2π|b3|
e

µ4
2b3

[

a3x23−2x3w3+d3w2

3
−

π
2

]

, b3 6= 0. (3.4)

Since the octonion algebra is non-associative it should be noted that the multiplication
in the above integrals is done from left to right. Also we assume that the above signal
f is continuous and both signal and its OLCT are integrable(in Lebesgue sense) in this
paper.



Theorem 3.1 (Inversion). Let f : R3 → R be a continuous and square-integrable function
(in Lebesgue sense). Then the OLCT of f is an invertible, and its inverse if given by

f(x) = {LA1,A2,A3

µ1,µ2,µ4 }−1
(

LA1,A2,A3

µ1,µ2,µ4 {f}(x)
)

=

∫

R3

LA1,A2,A3

µ1,µ2,µ4
{f}(w)Kµ4

A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)K
µ1
A−1

1

(w1, x1)dx, (3.5)

where A−1
k = (dk,−bk,−ck, ak) ∈ R2×2, for k = 1, 2, 3.

Proof. Consider the octonion-valued function f : R3 → O, i.e.

f(x) = f0 + f1(x)µ1 + f2(x)µ2 + f3(x)µ3 + f4(x)µ4 + f5(x)µ5 + f6(x)µ6 + f7(x)µ7,

where fi : R
3 → R, i = 0, 1, 2, 3, 4, 5, 6, 7. we have by (2.15)

f(x) =

∫

R3

LA1,A2,A3

µ1,µ2,µ4
{f}(w)Kµ4

A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)K
µ1
A−1

1

(w1, x1)dx,

Thus for the special case f : R3 → R result follows.
Note the result also follows by using the procedure of Theorem 3.1[30]. �

Further, we can expand the kernel of the OLCT in the form

Kµ1
A1
(x1, w1)K

µ2
A2
(x2, w2)K

µ4
A3
(x3, w3) =

1

2π
√

2π|b1b2b3|
eµ1ξ1eµ2ξ2eµ4ξ3

=
1

2π
√

2π|b1b2b3|
(c1 + µ1s1)(c2 + µ2s2)(c3 + µ4s3)

=
1

2π
√

2π|b1b2b3|
(c1c2c3 + s1c2c3µ1 + c1s2c3µ2

+ s1s2c3µ3 + c1c2s3µ4 + s1c2s3µ5 + c1s2s3µ6 + s1s2s3µ7),

(3.6)

where ξk =
1

2bk

[

akx
2
k − 2xkwk + dkw

2
k − π

2

]

, ck = cos ξk and sk = sin ξk, k = 1, 2, 3.

Now using (3.6) OLCT of a real-valued function LA1,A2,A3

µ1,µ2,µ4 {f}(w) of three variables can
be expressed as octonion sum of components of different parity ([3, 28]):

LA1,A2,A3

µ1,µ2,µ4
{f}(w) = Leee + Loeeµ1 + Leoeµ2 + Looeµ3 + Leeoµ4

+Loeoµ5 + Leooµ6 + Loooµ7

(3.7)

where

Leee(w) =
1

2π
√

2π|b1b2b3|

∫

R3

feee(x) cos ξ1 cos ξ2 cos ξ3dx,

Loee(w) =
1

2π
√

2π|b1b2b3|

∫

R3

foee(x) sin ξ1 cos ξ2 cos ξ3dx,

Leoe(w) =
1

2π
√

2π|b1b2b3|

∫

R3

feoe(x, u) cos ξ1 sin ξ2 cos ξ3dx,

Looe(w) =
1

2π
√

2π|b1b2b3|

∫

R3

fooe(x) sin ξ1 sin ξ2 cos ξ3dx,

Leeo(w) =
1

2π
√

2π|b1b2b3|

∫

R3

feeo(x) cos ξ1 cos ξ2 sin ξ3dx,



Loeo(w) =
1

2π
√

2π|b1b2b3|

∫

R3

foeo(x) sin ξ1 cos ξ2 sin ξ3dx,

Leoo(w) =
1

2π
√

2π|b1b2b3|

∫

R3

feoo(x) cos ξ1 cos ξ2 sin ξ3dx,

Looo(w) =
1

2π
√

2π|b1b2b3|

∫

R3

fooo(x) sin ξ1 sin ξ2 sin ξ3dx.

Where flmn(x, u), l, m, n ∈ {e, o} are eight terms of different parity with relation to
x1, x2 and x3. In the above notation, we use subscripts e and o to indicate that a function
is either even (e) or odd (o) with respect to an appropriate variable, i.e. feeo(x) is even
with respect to x1 and x2 and odd with respect to x3.

Before moving forward we introduce the 3D-LCT.

Definition 3.2. [34] The 3D-LCT is defined by

LA1,A2,A3
{f}(w) = 1

2π
√

2π|b1b2b3|

∫

R3

f(x)eµ1ξ1eµ1ξ2eµ1ξ3dx. (3.8)

Lemma 3.1. The relation between OLCT and 3-D LCT is that

LA1,A2,A3

µ1,µ2,µ4
{f}(w) = 1

4

{

(LA1,A2,A3
{f}(w) + LA1,A2,A′

3
{f}(w))(1− µ3)

+(LA1,A′

2
,A3

{f}(w) + LA1,A′

2
,A′

3
{f}(w))(1 + µ3)

}

+
1

4

{

(LA1,A2,A3
{f}(w)−LA1,A2,A′

3
{f}(w))(1− µ3)

+(LA1,A′

2
,A3

{f}(w)− LA1,A′

2
,A′

3
{f}(w))(1 + µ3)

}

.µ5 (3.9)

where A′

k = (ak,−bk,−ck, dk), k = 1, 2.

Proof. The proof is similar to the Theorem 6[34]. �

3.1. Quaternion Short-Time Linear Canonical Transform.

The Quaternion Short-Time Linear Canonical Transform(QSTLCT) was introduced by
Zhu and Zheng, which is a generalization of the Short-Time Linear Canonical Trans-
form(STLCT) in the quaternion algebra setting[29]. Let µ1, µ2 and µ3 (or equivalently
i,j,k) denote the three imaginary units in quaternion algebra.

For Ai = (ai, bi, ci, di) ∈ R
2×2 be a matrix parameter satisfying det(Ai) = 1, for i = 1, 2.

Let φ ∈ L2(R2,H) be a non-zero quaternion window function. Then (QSTLCT) of a signal
f ∈ L2(R2,H) can be defined as

GA1,A2

φ f(w, u) =

∫

R2

f(x)φ(x− u)Kµ1
A1
(x1, w1)K

µ2
A2
(x2, w2)dx, (3.10)

where x = (x1, x2) ∈ R2, w = (w1, w2) ∈ R2, u = (u1, u2) ∈ R2 and Kµ1
A1
(x1, w1),

Kµ2
A2
(x2, w2) are given by equations (4.2) and (4.3) respectively.

4. Short-Time Octonion Linear Canonical Transform

In this section, we define the novel short-time octonion linear cananical transform
(STOLCT) of real valued function of three variables and discuss several basic proper-
ties of the STOLCT. These properties play important roles in signal representation.



Definition 4.1. Let Ai = (ai, bi, ci, di) ∈ R2×2 be a matrix parameter satisfying det(Ai) =
1, for i = 1, 2, 3. Let φ ∈ L2(R3) be a non-zero real-valued window function. Then
STOLCT of a real-valued signal f ∈ L2(R3) can be defined as

GA1,A2,A3

φ {f}(w, u) =
∫

R3

f(x)φ(x− u)Kµ1
A1
(x1, w1)K

µ2
A2
(x2, w2)K

µ4
A3
(x3, w3)dx, (4.1)

where x = (x1, x2, x3) ∈ R3, w = (w1, w2, w3) ∈ R3, and u = (u1, u2, u3) ∈ R3 and

Kµ1
A1
(x1, w1) =

1
√

2π|b1|
e

µ1
2b1

[

a1x21−2x1w1+d1w2

1
−

π
2

]

, b1 6= 0 (4.2)

Kµ2
A2
(x2, w2) ==

1
√

2π|b2|
e

µ2
2b2

[

a2x22−2x2w2+d2w2

2
−

π
2

]

, b2 6= 0 (4.3)

and

Kµ4
A3
(x3, w3) =

1
√

2π|b3|
e

µ4
2b3

[

a3x23−2x3w3+d3w2

3
−

π
2

]

, b3 6= 0. (4.4)

are kernel signals. w and u represent frequency and time respectively. Since φ is real-
valued so complex conjugate φ = φ. On the basis of classical convolution STOLCT defined
in (4.1) can be rewritten as

GA1,A2,A3

φ {f}(w, u) =
(

f(u)Kµ1
A1
(x1, w1)K

µ2
A2
(x2, w2)K

µ4
A3
(x3, w3)

)

∗
(

φ(−u)
)

.

Remark 4.1. It should be noted that the multiplication in the above integrals is performed
from left to right, as the octonion algebra is non-associative.

Remark 4.2. With the help of quaternion and octonion algebra the formula (4.1) can be
re written as

GA1,A2,A3

φ {f}(w, u) = 〈f,Φx,w,u〉,
where Φx,w,u = φ(x− u)Kµ4

A3
(x3, w3)

(

Kµ2
A2
(x2, w2)K

µ1
A1
(x1, w1)

)

is the kernel of the STOLCT.

Moreover Definition 4.1 can be expressed as

GA1,A2,A3

φ {f}(w, u) = LA1,A2,A3

µ1,µ2,µ4
{f(x)φ(x− u)}(w)

= LA1,A2,A3

µ1,µ2,µ4 {h}(w),
(4.5)

where h(x, u) = f(x)φ(x− u).
It is clear from (4.5) that STOLCT of a signal is a two step process. In first step signal

is multiplied by a window function and then in second step we obtain OLCT of multiplied
signal. Thus all the results for OLCT can be extended to the novel STOLCT, and vice
versa.

4.1. Decomposition of STOLCT in to components of different parity. The STOLCT
of a real-valued function GA1,A2,A3

φ {f}(w, u) of three variables can be expressed (using (3.6)
and (3.7)) as octonion sum of components of different parity :

GA1,A2,A3

φ {f} = Gφ
eee +Gφ

oeeµ1 +Gφ
eoeµ2 +Gφ

ooeµ3 +Gφ
eeoµ4

+Gφ
oeoµ5 +Gφ

eooµ6 +Gφ
oooµ7

(4.6)



where

Gφ
eee(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

heee(x, u) cos ξ1 cos ξ2 cos ξ3dx, (4.7)

Gφ
oee(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

hoee(x, u) sin ξ1 cos ξ2 cos ξ3dx, (4.8)

Gφ
eoe(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

heoe(x, u) cos ξ1 sin ξ2 cos ξ3dx, (4.9)

Gφ
ooe(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

hooe(x, u) sin ξ1 sin ξ2 cos ξ3dx, (4.10)

Gφ
eeo(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

heeo(x, u) cos ξ1 cos ξ2 sin ξ3dx, (4.11)

Gφ
oeo(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

hoeo(x, u) sin ξ1 cos ξ2 sin ξ3dx, (4.12)

Gφ
eoo(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

heoo(x, u) cos ξ1 cos ξ2 sin ξ3dx, (4.13)

Gφ
ooo(w, u) =

1

2π
√

2π|b1b2b3|

∫

R3

hooo(x, u) sin ξ1 sin ξ2 sin ξ3dx. (4.14)

Where h(x, u) = f(x)φ(x− u) is a real valued function and it can be expressed as sum
eight terms:

h(x, u) = heee(x, u) + heeo(x, u) + heoe(x, u) + heoo(x, u)

+hoee(x, u) + hoeo(x, u) + hooe(x, u) + hooo(x, u),

(4.15)

where hlmn(x, u), l, m, n ∈ {e, o} are eight terms of different parity with relation to x1, x2
and x3. Again using subscripts e and o to indicate that a function is either even (e) or
odd (o) with respect to an appropriate variable, i.e. heeo(x) is even with respect to x1
and x2 and odd with respect to x3.

Now, we discuss several basic properties of the ST-QOLCT given by (3.1). These prop-
erties play important roles in signal representation.

Theorem 4.3 (Linearity). Let f, g ∈ L2(R3) be two real-valued signals and φ be a real-
valued non-zero window function in L2(R3). Then for α, β ∈ R, we have

GA1,A2,A3

φ {αf + βg} = αGA1,A2,A3

φ {f}+ βGA1,A2,A3

φ {g}. (4.16)

Proof. This follows directly from the linearity of the product and the integration involved
in Definition 4.1. �

Lemma 4.1. Let φ ∈ Lp(R3), f ∈ L1 (R3). Then we have

‖GA1,A2,A3

φ {f}(w, u)‖Lp(R3) ≤
1

2π
√

2π|b1b2b3|
‖f‖L1(R3).‖φ‖Lq(R3). (4.17)



Proof. By the virtue of Minkowski’s inequality , we have

‖GA1,A2,A3

φ {f}(w, u)‖Lp(R3) ≤
∫

R3

(
∫

R3

∣

∣

∣
f(x)φ(x− u)Kµ1

A1
(x1, w1)K

µ2
A2
(x2, w2)

× Kµ4
A3
(x3, w3)

∣

∣

p
du

)1/p
dx

=
1

2π
√

2π|b1b2b3|

∫

R3

(
∫

R3

∣

∣

∣
f(x)φ(x− u)

∣

∣

∣

p

du

)1/p

dx.

On setting x− u = z in the above inequality, we obtain

‖GA1,A2,A3

φ {f}(w, u)‖Lp(R3) ≤ 1

2π
√

2π|b1b2b3|

∫

R3

(
∣

∣

∣
f(x)φ(z)

∣

∣

∣

p

dz
)1/p

dx

=
1

2π
√

2π|b1b2b3|

(
∫

R3

|φ(z)|pdz
)1/p ∫

R3

|f(x)|dx

=
1

2π
√

2π|b1b2b3|
‖f‖L1(R3).‖φ‖Lq(R3).

Which completes the proof. �

The next theorem guarantees the reconstruction of the input signal from the corre-
sponding STOLCT.

Theorem 4.4 (Reconstruction formula). Let φ ∈ L2(R3) be a non-zero window function,
then every real-valued signal f ∈ L2(R3) can be fully reconstructed by the formula

f(x) =
1

‖φ‖2L2(R3)

∫

R3

∫

R3

GA1,A2,A3

φ {f}(w, u)Kµ4
A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)

×Kµ1
A−1

1

(w1, x1)φ(x− u)dwdu. (4.18)

Proof. From (4.5),we have

GA1,A2,A3

φ {f}(w, u) = LA1,A2,A3

µ1,µ2,µ4
{f(x)φ(x− u)}(w). (4.19)

Applying Theorem 3.1 to (4.19), we get

f(x)φ(x− u) = {LA1,A2,A3

µ1,µ2,µ4
}−1

(

GA1,A2,A3

φ {f}
)

(x)

=

∫

R3

GA1,A2,A3

φ {f}(w, u)Kµ4
A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)K
µ1
A−1

1

(w1, x1)dw.(4.20)

On multiplying both sides of (4.20) from right by φ(x− u), we get

f(x)φ(x− u)φ(x−u) =
∫

R3

GA1,A2,A3

φ {f}(w, u)Kµ4
A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)K
µ1
A−1

1

(w1, x1)φ(x−u)dw.
(4.21)

Now integrating both sides of (4.22) with respect du and using Fubini’s theorem, we
obtain

f(x)

∫

R3

‖φ(x− u)‖2du =

∫

R3

∫

R3

GA1,A2,A3

φ {f}(w, u)Kµ4
A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)

×Kµ1
A−1

1

(w1, x1)φ(x− u)dwdu. (4.22)



Hence

f(x)‖φ‖2L2(R3) =

∫

R3

∫

R3

GA1,A2,A3

φ {f}(w, u)Kµ4
A−1

3

(w3, x3)K
µ2
A−1

2

(w2, x2)

×Kµ1
A−1

1

(w1, x1)φ(x− u)dwdu. (4.23)

Which completes the proof. �

Prior to the next theorem we define the 3D-STLCT corresponding to the 3D-STFT[?]
as

Definition 4.2. Let f, φ ∈ L2(R3) be a real-valued function, where φ is non-zero window
function. Then 3D-STLCT is defined by

VA1,A2,A3

φ {f}(w, u) = 1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ1ξ2eµ1ξ3dx. (4.24)

Now, we shall show that the STOLCT is related to 3D-STLCT.

Theorem 4.5. Let f, φ ∈ L2(R3) be a real-valued function, where φ is non-zero window

function. Let VA1,A2,A3

φ {f}(w, u) be the 3D-STLCT of function f with respect to φ. Then
the following equation is satisfied

GA1,A2,A3

φ {f}(w, u) =
1

4

{

(VA1,A2,A3

φ {f}(w, u) + LA1,A2,A′

3
{f}(w, u))(1− µ3)

+(VA1,A′

2
,A3

φ {f}(w, u) + VA1,A′

2
,A′

3

φ {f}(w, u))(1 + µ3)
}

+
1

4

{

(VA1,A2,A3

φ {f}(w, u)− VA1,A2,A′

3

φ {f}(w, u))(1− µ3)

+(VA1,A′

2
,A3

φ {f}(w, u)− VA1,A′

2
,A′

3

φ {f}(w, u))(1 + µ3)
}

.µ5

(4.25)

where A′

k = (ak,−bk,−ck, dk), k = 2, 3.

Proof. From Definition 4.2, we have

VA1,A2,A3

φ {f}(w, u) = 1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ1ξ2eµ1ξ3dx. (4.26)

Now for A′

2 = (a2,−b2,−c2, d2), then

VA1,A′

2
,A3

φ {f}(w, u) = 1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1e−µ1ξ2eµ1ξ3dx. (4.27)

By equivalent definition of sine and cosine functions, we obtain

1

2

(

VA1,A2,A3

φ {f}(w, u) + VA1,A′

2
,A3

φ {f}(w, u)
)

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1 cos ξ2e
µ1ξ3dx.

(4.28)



And

1

2

(

VA1,A′

2
,A3

φ {f}(w, u)− VA1,A2,A3

φ {f}(w, u)
)

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1(−µ1 sin ξ2)e
µ1ξ3dx.

(4.29)

On multiplying (4.29) from right by µ3 and using multiplication rules from Table 2.1, we
have

1

2

(

VA1,A′

2
,A3

φ {f}(w, u)− VA1,A2,A3

φ {f}(w, u)
)

µ3

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1(µ2 sin ξ2)e
−µ1ξ3dx.

(4.30)

Adding (4.28) and (4.30), we get

1

2

(

VA1,A2,A3

φ {f}(w, u) + VA1,A′

2
,A3

φ {f}(w, u)
)

+
1

2

(

VA1,A′

2
,A3

φ {f}(w, u)− VA1,A2,A3

φ {f}(w, u)
)

µ3

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ2ξ2e−µ1ξ3dx.

(4.31)

To simplify we introduce the following notation:

V
A1,A2,A3

A1,A′

2
,A3

(w, u) =
1

2

(

VA1,A2,A3

φ {f}(w, u) + VA1,A′

2
,A3

φ {f}(w, u)
)

+
1

2

(

VA1,A′

2
,A3

φ {f}(w, u)− VA1,A2,A3

φ {f}(w, u)
)

µ3.

(4.32)

Now for A′

3 = (a3,−b3,−c3, d3), then

V
A1,A2,A′

3

A1,A′

2
,A′

3

(w, u) =
1

2

(

VA1,A2,A′

3

φ {f}(w, u) + VA1,A′

2
,A′

3

φ {f}(w, u)
)

+
1

2

(

VA1,A′

2
,A′

3

φ {f}(w, u)− VA1,A2,A′

3

φ {f}(w, u)
)

µ3. (4.33)

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ2ξ2eµ3ξ3dx. (4.34)

By following similar steps as before we get

1

2

(

V
A1,A2,A3

A1,A′

2
,A3

{f}(w, u) + V
A1,A2,A′

3

A1,A′

2
,A′

3

{f}(w, u)
)

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ2ξ2 cos ξ3dx.

(4.35)



And

1

2

(

V
A1,A2,A3

A1,A′

2
,A3

{f}(w, u)− V
A1,A2,A′

3

A1,A′

2
,A′

3

{f}(w, u)
)

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ2ξ2(−µ1 sin ξ3)dx.

(4.36)

On multiplying (4.36) from right by µ5 and using multiplication rules from Table 2.1, we
have

1

2

(

V
A1,A2,A3

A1,A′

2
,A3

{f}(w, u)− V
A1,A2,A′

3

A1,A′

2
,A′

3

{f}(w, u)
)

µ5

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ2ξ2(µ4 sin ξ3)dx.

(4.37)

Adding (4.35) and (4.37), we get

1

2

(

V
A1,A2,A3

A1,A′

2
,A3

{f}(w, u) + V
A1,A2,A′

3

A1,A′

2
,A′

3

{f}(w, u)
)

+
1

2

(

V
A1,A2,A3

A1,A′

2
,A3

{f}(w, u)− V
A1,A2,A′

3

A1,A′

2
,A′

3

{f}(w, u)
)

µ5

=
1

2π
√

2π|b1b2b3|

∫

R3

f(x)φ(x− u)eµ1ξ1eµ2ξ2eµ4ξ3dx.

(4.38)

On substituting (4.32) and (4.33) in (4.38), we get the desired result. �

5. Uncertainty Inequalities for the STOLCT

We know that in signal processing there are different types of uncertainty principles in
the QFT, QLCT and QOLCT domains. In [34, 26] authors investigate Heisenberg’s uncer-
tainty principle and Donoho-Stark’s uncertainty principle, Pitt’s inequality, logarithmic
uncertainty inequality, Hausdorff-Young inequality and local uncertainty inequality for
the octonion linear canonical transform and octonion offset linear canonical transform.
Recently in [35] authors establish Pitt’s inequality, Lieb’s inequality and logarithmic un-
certainty principle for the STOFT. Considering that the STOLCT is a generalized version
of the OLCT, it is natural and interesting to study uncertainty principles of a real-valued
function and its STOLCT. So in this section we shall investigate some uncertainty in-
equalities for the STOLCT.

Lemma 5.1. Let f ∈ Lp(R3), φ ∈ Lq (R3) and 1
p
+ 1

q
= 1, we have

|GA1,A2,A3

φ {f}(w, u)| ≤ 1

2π
√

2π|b1b2b3|
‖f‖Lp(R3).‖φ‖Lq(R3) (5.1)



Proof. By the virtue of Hölders inequality , we have

|GA1,A2,A3

φ {f}(w, u)| =

∣

∣

∣

∣

∫

R3

f(t)φ(x− u)Kµ1
A1
(x1, w1)K

µ2
A2
(x2, w2)K

µ4
A3
(x3, w3)dx

∣

∣

∣

∣

≤
(
∫

R3

∣

∣

∣
f(t)φ(x− u)Kµ1

A1
(x1, w1)K

µ2
A2
(x2, w2)K

µ4
A3
(x3, w3)

∣

∣

∣
dx

)

=
1

2π
√

2π|b1b2b3|

(
∫

R3

∣

∣

∣
f(t)φ(x− u)

∣

∣

∣

)

dx

≤ 1

2π
√

2π|b1b2b3|

(
∫

R3

|f(t)|p dt
)1/p(∫

R3

∣

∣

∣
φ(t− u)

∣

∣

∣

q

dt

)1/q

=
1

2π
√

2π|b1b2b3|
‖f‖Lp(R3).‖φ‖Lq(R3).

Which completes the proof. �

Theorem 5.1. Let Ω be a measurable set ⊂ R3 × R3 and suppose that φ, f ∈ L2(R3) be
two signals with ‖f‖Lp(R3) = 1 = ‖φ‖Lq(R3), with ǫ ≥ 0 and

∫ ∫

Ω

|GA1,A2,A3

φ {f}(w, u)|2dwdu ≥ 1− ǫ. (5.2)

We have 2π
√

2π|b1b1b3|(1− ǫ) ≤ m(Ω), where m(Ω) is Lebesgue measure of Ω.

Proof. From Lemma 5.1, we have

‖GA1,A2,A3

φ {f}(w, u)‖L∞(R3) ≤
1

2π
√

2π|b1b2b3|
‖f‖Lp(R3).‖φ‖Lq(R3). (5.3)

On inserting (5.3) in (5.2), we obtain

1− ǫ ≤
∫ ∫

Ω

|GA1,A2,A3

φ {f}(w, u)|2dwdu

≤ m(Ω)‖GA1,A2,A3

φ {f}(w, u)‖L∞(R3)

≤ m(Ω)
1

2π
√

2π|b1b2b3|
‖f‖Lp(R3).‖φ‖Lq(R3)

=
m(Ω)

2π
√

2π|b1b2b3|
implies 2π

√

2π|b1b2b3|(1− ǫ) ≤ m(Ω). Which completes the proof. �

Theorem 5.2 (Lieb’s inequality fo the STOLCT). Let 2 ≤ p ≤ ∞ and φ ∈ L2(R3) be a
non-zero real-valued window function. For every real-valued signal f ∈ L2(R3), we have

‖GA1,A2,A3

φ {f}(w, u)‖Lq(R3) ≤
|b1b2|

−q

2
+1

(2π)q+
1

2 |b3|
1

2

Ep,q‖f‖L2(R3)‖φ‖L2(R3) (5.4)

where Ep,q =
(

4
q

)
1

q
(

4
p

)
1

p

and 1
p
+ 1

q
= 1.

Before proving this theorem we shall recall the following lemma.

Lemma 5.2 (Hausdorff-Young inequality for QLCT). [21] For 1 ≤ p ≤ 2 and 1
p
+ 1

q
= 1,

we have

‖LA1,A2

µ1,µ2,
{f}(w)‖q ≤

|b1b2|−
1

2
+ 1

q

2π
‖f(x)‖p. (5.5)



Lemma 5.3 (Hausdorff-Young inequality for OLCT). For 1 ≤ p ≤ 2 and 1
p
+ 1

q
= 1, we

have

‖LA1,A2,A3

µ1,µ2,µ4
{f}(w)‖q ≤

|b1b2|−
1

2
+ 1

q

(2π)
1

2q
+1|b3|

1

2q

‖f(x)‖p. (5.6)

Proof. We omit proof as it is similar to the proof of the Theorem 4.3[26]. �

Proof of main theorem

Proof. We have GA1,A2,A3

φ {f}(w, u) = LA1,A2,A3

µ1,µ2,µ4
{f(x)φ(x− u)}(w), by Lemma 5.3, we have

(
∫

R3

∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

q

dw

)
1

q

=

(
∫

R3

∣

∣

∣
LA1,A2,A3

µ1,µ2,µ4
{f(x)φ(x− u)}(w)

∣

∣

∣

q

dw

)
1

q

≤ |b1b2|−
1

2
+ 1

q

(2π)
1

2q
+1|b3|

1

2q

‖f(x)φ(x− u)‖p

=
|b1b2|−

1

2
+ 1

q

(2π)
1

2q
+1|b3|

1

2q

(
∫

R3

|f(x)φ(x− u)|pdx
)

1

p

then,
∫

R3

∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

q

dw

≤ |b1b2|
−q

2
+1

(2π)q+
1

2 |b3|
1

2

(

|f |p ∗ |φ̃|p(u)
)

q

p

,

where φ̃(x) = φ(−x) Thus

‖GA1,A2,A3

φ {f}(w, u)‖q =

(
∫

R3

(
∫

R3

∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

q

dw

)

du

)
1

q

≤ |b1b2|
−q

2
+1

(2π)q+
1

2 |b3|
1

2

(
∫

R3

(

|f |p ∗ |φ̃|p(u)
)

q

p

du

)
1

q

=
|b1b2|

−q
2
+1

(2π)q+
1

2 |b3|
1

2

∥

∥

∥
|f |p ∗ |φ̃|p

∥

∥

∥

1

p

L
q
p (R3)

If k = 2
p
, l = q

p
and 1

k
+ 1

k′
= 1, 1

l
+ 1

l′
= 1 then 1

k
+ 1

k
= 1 + 1

l
and |f |p ,|φ̃|p ∈ L2(R3) and

by Young inequality, we have
∥

∥

∥
|f |p ∗ |φ̃|p

∥

∥

∥

Ll(R3)
≤ B4

kB
2
l ‖|f |p‖Lk(R3)‖|φ̃|p‖Ll(R3),

where Bs =
(

s
1
s

s
′
1

s′

)

1

2

, 1
s
+ 1

s′
= 1. However

‖|f |p‖Lk(R3) =

(
∫

R3

|f(x)|p. 2pdx
)

p
2

= ‖f‖pL2(R3),

and

‖|φ̃|p‖Lk(R3) =

(
∫

R3

|φ(x− u)|p. 2pdx
)

p
2

= ‖φ‖pL2(R3).



Hence

‖GA1,A2,A3

φ {f}(w, u)‖q ≤ |b1b2|
−q

2
+1

(2π)q+
1

2 |b3|
1

2

∥

∥

∥
|f |p ∗ |φ̃|p

∥

∥

∥

1

p

L
q
p (R3)

≤ |b1b2|
−q

2
+1

(2π)q+
1

2 |b3|
1

2

(

B4
kB

′2
l ‖f‖pL2(R3)‖φ‖

p
L2(R3)

)
1

p

=
|b1b2|

−q

2
+1

(2π)q+
1

2 |b3|
1

2

B
4

p

k B
′
2

p

l ‖f‖L2(R3)‖φ‖L2(R3)

=
|b1b2|

−q

2
+1

(2π)q+
1

2 |b3|
1

2

Ep,q‖f‖L2(R3)‖φ‖L2(R3).

Which completes the proof. �

Lemma 5.4 (Logarithmic uncertainty principle for the OLCT). Let f ∈ S(R3), then the
following inequality is satisfied:

2π|b3|
∫

R3

ln |w|
∣

∣LA1,A2,A3

µ1,µ2,µ3
{f}(w)

∣

∣

2
dw +

∫

R3

ln |x||f(x)|2dx ≥ E

∫

R3

|f(x)|2dx (5.7)

with D = ln(2) + Γ′(1
2
)/Γ(1

2
).

Proof. We avoid proof as it follows by using the procedure of the Theorem 4.2[26]. Also
see Theorem 5[31]. �

Theorem 5.3 (Logarithmic uncertainty principle for the STOLCT). Let f, φ ∈ S(R3),
then the following inequality is satisfied:

2π|b3|
∫

R3

∫

R3

ln |w|
∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

2

dwdu+ ‖φ‖2L2(R3)

∫

R3

ln |x||f(x)|2dx

≥ E‖f‖2L2(R3)‖φ‖2L2(R3)

(5.8)

with D = ln(2) + Γ′(1
2
)/Γ(1

2
).

Proof. As f, φ ∈ S(R3) implies f(x)φ(x− u) = h(x, u) ∈ S(R3). Thus replacing f(x) by
h(x, u) in Lemma 5.4, we obtain

2π|b3|
∫

R3

ln |w|
∣

∣LA1,A2,A3

µ1,µ2,µ3
{h}(w)

∣

∣

2
dw+

∫

R3

ln |x||h(x, u)|2dx ≥ E

∫

R3

|h(x, u)|2dx. (5.9)

On integrating both sides of (5.9) with respect to du, we have

2π|b3|
∫

R3

∫

R3

ln |w|
∣

∣LA1,A2,A3

µ1,µ2,µ3
{h}(w)

∣

∣

2
dwdu+

∫

R3

∫

R3

ln |x||h(x, u)|2dxdu

≥ E

∫

R3

∫

R3

|h(x, u)|2dxdu.

(5.10)



Now using (4.5) in (5.10), we get

2π|b3|
∫

R3

∫

R3

ln |w|
∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

2

dwdu+

∫

R3

∫

R3

ln |x||f(x)|2|φ(x− u)|2dxdu

≥ E

∫

R3

∫

R3

|f(x)|2|φ(x− u)|2dxdu.

(5.11)

Which implies

2π|b3|
∫

R3

∫

R3

ln |w|
∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

2

dwdu+

∫

R3

|φ(x− u)|2du
∫

R3

ln |x||f(x)|2dx

≥ E

∫

R3

|f(x)|2dx
∫

R3

|φ(x− u)|2du.

(5.12)

Hence

2π|b3|
∫

R3

∫

R3

ln |w|
∣

∣

∣
GA1,A2,A3

φ {f}(w, u)
∣

∣

∣

2

dwdu+ ‖φ‖2L2(R3)

∫

R3

ln |x||f(x)|2dx

≥ E‖f‖2L2(R3)‖φ‖2L2(R3).

(5.13)

Which completes the proof. �

5.1. Convolution Theorem for the STOLCT. The convolution has wide has wide
range of applications in various areas of Mathematics like linear algebra, numerical anal-
ysis and signal processing. So in this subsection we establish the convolution theorem for
the STOLCT on the bases of the classical convolution operator (2.11).

Theorem 5.4 (Convolution). Let φ, ψ ∈ L2(R3) be two non-zero real-valued window
functions then for any real-valued functions f, g ∈ L2(R3), we have

GA1,A2,A3

φ∗ψ {f ∗ g}(w, u)

=

∫

R3

GA1,A2,A3

ψ {g}(w,m)Gφ
eee(w, u−m) +GA1,A2,A3

ψ {g}(t,m)Gφ
oee(w, u−m)µ1

+GA1,A2,A3

ψ {g}(s,m)Gφ
eoe(w, u−m)µ2 +GA1,A2,A3

ψ {g}(t,m)Gφ
ooe(w, u−m)µ3

+GA1,A2,A3

ψ {g}(w,m)Gφ
eeo(w, u−m)µ4 +GA1,A2,A3

ψ {g}(s,m)Gφ
oeo(w, u−m)µ5

+GA1,A2,A3

ψ {g}(t′, m)Gφ
eoo(w, u−m)µ6 +GA1,A2,A3

ψ {g}(t′, m)Gφ
ooo(w, u−m)µ7dm,

(5.14)

where t = (w1,−w2,−w3) ∈ R3, s = (w1, w2,−w3) ∈ R3, t′ = (−w1, w2,−w3) ∈ R3 and

Gφ
lmn, l, m, n ∈ {e, o} are given by equations (4.7) to (4.14).

Proof. By Definition 4.1 we have by classic convolution operator

GA1,A2,A3

φ∗ψ {f ∗ g}(w, u)

=

∫

R3

(
∫

R3

f(y)g(x− y)dy

)

.

∫

R3

(
∫

R3

φ(z)ψ(x− u− z)dz

)

×Kµ1
A1
(x1, w1)K

µ2
A2
(x2, w2)K

µ4
A3
(x3, w3)

(5.15)

�



Setting (q1, q2, q3) = q = x− y, (m1, m2, m3) = m = u+ z − y, in (5.15), we obtain

GA1,A2,A3

φ∗ψ {f ∗ g}(w, u)

=

∫

R9

f(y)g(q)φ(y − (u−m)).ψ(q −m)Kµ1
A1
(q1 + y1, w1)

×Kµ2
A2
(q2 + y2, w2)K

µ4
A3
(q3 + y3, w3)dqdydm

=

∫

R6

f(y)φ(y − (u−m))

(
∫

R3

g(q)ψ(q −m)Kµ1
A1
(q1 + y1, w1)

× Kµ2
A2
(q2 + y2, w2)K

µ4
A3
(q3 + y3, w3)dq

)

dydm

(5.16)

Now,
let

ξk =
1

2bk

[

akq
2
k − 2qkwk + dkw

2
k −

π

2

]

and

γk =
1

2bk

[

aky
2
k + 2akqkyk − 2y1w1

]

, k = 1, 2, 3

then

Kµ1
A1
(q1 + y1, w1)K

µ2
A2
(q2 + y2, w2)K

µ4
A3
(q3 + y3, w3)

=
1

2π
√

2π|b1b2b3|
eµ1(ξ1+γ1)eµ2(ξ2+γ2)eµ4(ξ3+γ3)

(5.17)

Now by applying multiplication rules of Table 2.1, we obtain

eµ1(ξ1+γ1)eµ2(ξ2+γ2)eµ4(ξ3+γ3)

= ((eµ1ξ1 . cos(γ1)).(e
µ2ξ2 . cos(γ2))).(e

µ4ξ3. cos(γ3))

+((eµ1ξ1.µ1 sin(γ1)).(e
µ2ξ2 . cos(γ2))).(e

µ4ξ3 . cos(γ3))

+((eµ1ξ1. cos(γ1)).(e
µ2ξ2 .µ2 sin(γ2))).(e

µ4ξ3 . cos(γ3))

+((eµ1ξ1.µ1 sin(γ1)).(e
µ2ξ2 .µ2 sin(γ2))).(e

µ4ξ3.(cos(γ3))

+((eµ1ξ1. cos(γ1)).(e
µ2ξ2 . cos(γ2))).(e

µ4ξ3 .µ4 sin(γ3))

+((eµ1ξ1.µ1 sin(γ1)).(e
µ2ξ2 . cos(γ2))).(e

µ4ξ3 .µ4 sin(γ3))

+((eµ1ξ1. cos(γ1)).(e
µ2ξ2 .µ2 sin(γ2))).(e

µ4ξ3 .µ4 sin(γ3))

+((eµ1ξ1.µ1 sin(γ1)).(e
µ2ξ2 .µ2 sin(γ2))).(e

µ4ξ3.µ4 sin(γ3))

(5.18)

On substituting (5.18),(5.17) in (5.16) and noting t = (w1,−w2,−w3) ∈ R3, s = (w1, w2,−w3) ∈
R3, t′ = (−w1, w2,−w3) ∈ R3, we get the desired result.

6. Potential Applications

As for as generalization of transformation in to octonion algebra, the OLCT transforms
a octonion 3D signal into a octonion-valued frequency domain signal, which is an effective
processing tool for signal, image and color analysis. The hypercomplex LCT that treats
the mutichannel signls as a algebraic whole without losing the spectral relations for color
image processing. But there is drawback that hypercomplex LCT canot reveal the local



information of a signal due to its global kernel. The STOLCT is a new tool for time
frequncy analysis which overcomes this drawback by using a sliding window. Another
potential application of STOLCT is that it can also reconstruct each monocomponent
mode from a multicomponent signal.
Moreover, the uncertainty principle makes a tradeoff between temporal and spectral res-
olutions unavoidable, i.e. the new uncertainty principles for the STOLCT describe the
relation of one octonion-valued signal in spatial and another octonion-valued signal in fre-
quency domain. They could further contribute to solving problems of signal processing,
optics, color image processing, quantum mechanics, electrodynamics, electromagnetism,
etc.
In addition, Lieb’s uncertainty principle for the STOLCT could analyze the non-stationary
signal and time-varying system, which has a significant application in the study of signal
local frequency spectrum.

7. Conclusions

In this paper, we introduce octonion linear canonical transform of real-valued func-
tions. Further more keeping in mind the varying frequencies, we used the proposed
transform to generate a new transform called short-time octonion linear canonical trans-
form (STOLCT). Then, the various properties of the proposed STOLCT are explored,
such as linearity, inversion formulas, decomposition into components of different parity
and relation with the 3D-STLCT. Furthermore, Lieb’s inequality, logarithmic uncertainty
inequality associated with the STOLCT are investigated. Also based on classical con-
volution operation, the convolution theorem for the STOLCT is derived. Finally, some
potential applications of the STLCT are presented.In our future works, we will discuss
the physical significance and engineering background of this paper.
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[9] T. Bülow , G. Sommer ,The hypercomplex signal-a novel extensions of the analytic signal to the
multidimensional case, IEEE Trans. Signal Process. 49 (11) (2001) 2844–2852

[10] H. De Bie , Fourier transforms in clifford analysis, Operator Theory edited by Daniel Alpay., Springer
Basel, 2015



[11] S.J. Sangwine , T.A. Ell , Hypercomplex Fourier transforms of color images, IEEE Trans. Image
Process. 16 (1) (2007) 22–35 .

[12] E. Bayro-Corrochano , N. Trujillo , M. Naranjo ,Quaternion Fourier descriptors for preprocessing
and recognition of spoken words using images of spatiotemporal representations, J. Math. Imaging
Vis. 28 (2) (2007) 179–190 .

[13] P. Bas , N. LeBihan , J.M. Chassery , Color image water marking using quater- nion Fourier trans-
form, in: Proceedings of the IEEE International Conference on Acoustics Speechand Signal and
Signal Processing, ICASSP, HongKong, 2003, pp. 521–524

[14] K.I. Kou , J. Ou , J. Morais , Asymptotic behaviour of the quaternion linear canonical transform
and the Bochner–Minlos theorem, Appl. Math. and Comp.247 (2014) 675–688

[15] Y. Yang , K.I. Kou , On uncertainty principles for hypercomplex signals in the linear canonical
transform domains, Signal Process. 95 (2014) 67–75 .

[16] Y.N. Zhang , B.Z. Li , Novel uncertainty principles for two-sided quaternion linear canonical trans-
form, Adv. Appl. Clifford Algebr. 28 (1) (2018) 1–14

[17] K.I. Kou , J. Ou , J. Morais , Uncertainty principles associated with quaternionic linear canonical
transforms, Math. Meth. Appl. Sci. 39 (10) (2016) 2722–2736

[18] K.I. Kou, R.U. Xu, Windowed linear canonical transform and its applications. Signal Processing
92(2012) 179-188.

[19] M.Y Bhat, A.H Dar, Wavelet packets associated with linear canonical transform on spectrum Int.
journal of wavelets ,Mult. and info. proc.(2021) DOI:10.1142/S0219691321500302

[20] M.Y Bhat, A.H Dar, Multiresolution Analysis for Linear Canonical S Transform Advances in Oper-
ator Theory.Adv. in Oper. Theory.(2021) DOI: 10.1007/s43036-021-00164-z.

[21] M. Bahri, R. Resnawati and S. Musdalifah, A Version of Uncertainty Principle for Quaternion Linear
Canonical Transform,Abstract and Applied Analysis, vol. 2018, Article ID 8732457, 7 pages, 2018.

[22] Gao W.B, Li B.Z :Uncertainty principle for the two-sided quaternion windowed linear canonical
transform. Circuits Systems and Signal Processing.DOI: 10.1007/s00034-021-01841-3(2021)

[23] M.Y Bhat, A.H Dar, The algebra of 2D Gabor quaternionic offset linear canonical transform and
uncertainty principles.The journal of AnalysisDOI:10.1007/s41478-021-00364-z(2021)

[24] M.Y Bhat, A.H Dar, Donoho Starks and Hardys Uncertainty Principles for the Shortotime Quater-
nion Offset Linear Canonical Transform .http://arxiv.org/abs/2110.02754v1(2021)

[25] M.Y Bhat, A.H Dar,Convolution and Correlation Theorems for Wigner-Ville Distribution Associated
with the Quaternion Offset Linear Canonical Transform.,http://arxiv.org/abs/2109.09682v1.(2021)

[26] M.Y Bhat, A.H Dar, Uncertainty Inequalities for 3D Octonionic-valued Signals Associated with
Octonion Offset Linear Canonical Transform.

[27] Haoui El.Y, Hitzer E. Generalized uncertainty principles associated with the quaternionic offset linear
canonical transform.Complex variables and elliptic equations DOI: 10.1080/17476933.2021.1916919
(2021)

[28] S. Hahn , K. Snopek , The unified theory of n-dimensional complex and hyper- complex analytic
signals, Bull. Polish Ac. Sci. Tech. Sci. 59 (2011) 167–181 .

[29] Zhu X., Zheng X.: Uncertainty principles for the two-sided offset quaternion linear canonical trans-
form.Mathematical Methods in the Applied Sciences.Circuits, Systems, and Signal Processing (2020)
39:4436–4458 https://doi.org/10.1007/s00034-020-01376-z

[30] L. Blaszczyk , K. Snopek , Octonion Fourier transform of real-valued functions of three variables-
selected properties and examples, Signal Process. 136 (2017) 29–37 .

[31] P. Lian , The octonionic Fourier transform: uncertainty relations and convolu- tion, Signal Process.
164 (2019) 295–300 .

[32] L. Blaszczyk , A generalization of the octonion Fourier transform to 3-D octo- nion-valued signals:
properties and possible applications to 3-D LTI partial dif- ferential systems, Multidimens. Syst.
Signal Process. 31 (4) (2020) 1227–1257 .

[33] L. Blaszczyk , Discrete octonion Fourier transform and the analysis of discrete 3-D data, Comput.
Appl. Math. 39 (4) (2020) 1–19 .

[34] Gao,W.B and Li, B.Z: The octonion linear canonical transform. Signal processing,188(2021)108233.
[35] Gao,W.B and Li, B.Z: Octonion short-time Fourier transform for time-frequency representation and

its applications. IEEE Transactions on signal processing.
[36] J.H. Conway , D.A. Smith , On Quaternions and Octonions: Their Geometry, Arithmetic, and

Symmetry, A K Peters Ltd, Natick, 2003

http://arxiv.org/abs/2110.02754v1(2021
http://arxiv.org/abs/2109.09682v1.(2021


[37] Xu S, Chai Y, Hu Y, Jiang C, Li Y. Reconstruction of digital spectrum from periodic nonuniformly
sampled signals in offset linear canonical transform domain. Optics Communications. 2015; 348:
59–65.

[38] K. I. Kou, J. Morais, Y. Zhang, Generalized prolate spheroidal wave functions for offset linear
canonical transform in clifford analysis, Mathematical Methods in the Applied Sciences 36 (9) (2013),
pp. 1028-1041. doi:10.1002/mma.2657.

[39] Heredia, C.J, Garcia,E.A and Espinosa,C.V.one dimensional octonion Fourier transform. journal of
Math. Control Sci. and Appl.7(1)2021

[40] Blaszczyk L, Snopek K. Octonion Fourier transform of real-valued functions of three variables -
selected properties and 227 examples. Signal Process. 2017, 136: 29-37.


	1.  Introduction
	2. Preliminaries
	2.1. Octonion algebra
	2.2. Octonion Linear Canonical Transform of Octonion-valued Functions

	3. Octonion Linear Canonical Transform of Real-valued Functions
	3.1. Quaternion Short-Time Linear Canonical Transform

	4. Short-Time Octonion Linear Canonical Transform
	4.1. Decomposition of STOLCT in to components of different parity

	5. Uncertainty Inequalities for the STOLCT
	5.1. Convolution Theorem for the STOLCT

	6. Potential Applications
	7. Conclusions
	References

