
Octopus-Man: QoS-Driven Task Management for

Heterogeneous Multicores in Warehouse-Scale Computers

Vinicius Petrucci∗1, Michael A. Laurenzano†, John Doherty†, Yunqi Zhang†, Daniel Mossé‡, Jason Mars†, Lingjia Tang†

Clarity Lab
†University of Michigan, Ann Arbor, MI, USA

{mlaurenz,johndoh,yunqi,profmars,lingjia}@umich.edu

∗Federal University of Bahia, Salvador, BA, Brazil

petrucci@dcc.ufba.br

‡University of Pittsburgh, Pittsburgh, PA, USA

mosse@cs.pitt.edu

Abstract— Heterogeneous multicore architectures have the po-
tential to improve energy efficiency by integrating power-efficient
wimpy cores with high-performing brawny cores. However, it
is an open question as how to deliver energy reduction while
ensuring the quality of service (QoS) of latency-sensitive web-
services running on such heterogeneous multicores in warehouse-
scale computers (WSCs).

In this work, we first investigate the implications of hetero-
geneous multicores in WSCs and show that directly adopting
heterogeneous multicores without re-designing the software stack
to provide QoS management leads to significant QoS violations.
We then present Octopus-Man, a novel QoS-aware task manage-
ment solution that dynamically maps latency-sensitive tasks to
the least power-hungry processing resources that are sufficient to
meet the QoS requirements. Using carefully-designed feedback-
control mechanisms, Octopus-Man addresses critical challenges
that emerge due to uncertainties in workload fluctuations and
adaptation dynamics in a real system. Our evaluation using
web-search and memcached running on a real-system Intel het-
erogeneous prototype demonstrates that Octopus-Man improves
energy efficiency by up to 41% (CPU power) and up to 15%
(system power) over an all-brawny WSC design while adhering
to specified QoS targets.

I. INTRODUCTION

The design methodology of modern warehouse-scale com-

puters (WSCs) [5] has been architecturally-homogeneous de-

signs [3], [6] that often exclusively use brawny (complex,

out-of-order) core types. As noted by recent works [17],

[42], commodity server grade chips such as Intel Xeons and

AMD Opterons comprise the entire fleet of Google’s and the

majority of Facebook’s WSC infrastructures as they are cheap

and easily replaceable. These brawny processors deliver high

performance, but at the cost of high power consumption.
While wimpy cores (simple, in-order architectures) offer

lower performance, they have significantly higher power effi-

ciency. There is a significant amount of prior work advocating

wimpy cores for WSC design in both industry [7], [21] and

academia [2], [26], [27], [38]. Although the energy efficiency

of commodity wimpy cores can be realized for batch and

throughput-oriented workloads hosted in WSCs, the resulting

performance and quality of service (QoS) degradation of

1Work was conducted as a postdoc fellow of Clarity Lab at the University
of Michigan.

latency-sensitive applications prohibits adopting wimpy cores

in production [24]. These latency-sensitive applications require

tight constraints on the QoS because they interact directly with

users. In particular, the tail of the latency distribution must

be kept below a QoS threshold [9]. Although wimpy cores

can provide advantages in power, cost, and performance per

dollar, web-service companies still primarily deploy and rely

on brawny cores to deliver high single-threaded performance

for complex latency-sensitive applications [24], [49].

Another architectural design point integrating both wimpy

and brawny cores may be promising for future server designs.

Examples of these heterogeneous multicore architectures in-

clude ARM’s big.LITTLE [21], for mobile platforms, and

Intel’s QuickIA prototype [7], for server platforms. In these

designs, wimpy and brawny cores share the memory address

space and are visible to a single operating system, enabling

fast task migration among the cores on a server. Prior work

on managing heterogeneous core resources is driven by either

hardware performance counters (e.g., instructions/cycle, cache

misses) [52] or CPU utilization [58]. Therefore, although

prior work has demonstrated the potential of heterogeneous

multicore systems, the proposed systems do not provide ex-

plicit QoS management or QoS guarantee for latency-sensitive

services in WSCs.

In this work, we first investigate the implications of lever-

aging heterogeneous multicore architectures for WSCs using

a real system prototype from Intel, the QuickIA platform [7],

and WSC workloads including web-search and memcached.

We find that simply replacing the underlying hardware for

heterogeneity without redesigning the system software stack

results in an unacceptable increase in QoS violations. In

addition, load fluctuations in WSCs, such as diurnal load

changes, present opportunities for energy efficiency that can

be exploited by migrating tasks between the heterogeneous

cores based on the dynamic load. Therefore, an intelligent

QoS-aware runtime system that manages brawny and wimpy

core resources to deliver energy efficiency gain while guaran-

teeing QoS is critical to a WSC composed of heterogeneous

multicores. Such a system must address two major design

challenges:

• Responsiveness - The QoS-aware runtime system needs to

readily respond to changes in the execution environment

such as time-varying load fluctuations and spikes, and

promptly adapt the system to meet the QoS targets in the

presence of these changes.

• Stability - The QoS-aware runtime needs to prevent oscil-

latory behavior that unnecessarily and frequently switches

between system configurations such as core mappings for

the latency-sensitive applications. Such oscillations can

negatively affect the application QoS.

In this paper, we design and prototype Octopus-Man,

a QoS-aware task management system that addresses these

challenges and dynamically manages tasks on heterogeneous

multicores. Driven by runtime QoS measurements, Octopus-

Man exploits load changes to allocate latency-sensitive tasks to

the least power-hungry processing resources that are sufficient

to meet the QoS requirements. By continuously monitoring

QoS changes and carefully expanding, contracting and mi-

grating between wimpy/brawny core resources, Octopus-Man

is able to meet tail latency requirements, while minimizing

power consumption and improving server energy efficiency.

Octopus-Man requires no extra hardware support beyond the

heterogeneous multicore substrate and no modification to the

host OS.
This work makes the following specific contributions:

• Investigation of Heterogeneous Multicore in WSCs —

We perform an investigation and describe the opportu-

nities and challenges of using heterogeneous multicore

servers for improving energy efficiency in WSCs. We find

that runtime task management is critical for meeting QoS

targets in latency-sensitive web services. (Section III)

• Octopus-Man Task Management — We present

Octopus-Man, an adaptive runtime system for managing

task assignment to heterogeneous core resources in WSCs

while reducing power consumption and ensuring that QoS

targets are met. (Section IV)

• Real System Prototype and Evaluation — We design

and deploy a functional prototype Octopus-Man along

with web-services including web-search (Apache Nutch)

and data-caching (memcached). The evaluation uses real

production load intensity traces from Google and real-

system prototype Intel’s QuickIA [7]. (Section V)

Our experimental results show that Octopus-Man reduces

CPU energy consumption by up to 41% and server-level

energy by up to 15%, while meeting the QoS targets on

tail latency as effectively as all-brawny WSC designs. We

also show that Octopus-Man can improve batch processing

throughput by 34% over the current all-brawny systems.

II. BACKGROUND

In this section, we first introduce the server selection

approaches, job scheduling techniques and quality of service

metrics that are commonly used in modern warehouse-scale

computers (WSCs). We then present an overview and discus-

sion on heterogeneous multicore architectures for WSCs.

A. Warehouse Scale Computers

Job Characteristics — WSCs host a fleet of machines

grouped into one or more clusters. Users submit jobs to the

cluster of machines, where a job consists of one of more

tasks [47]. There are two classes of jobs in WSCs: latency-

sensitive service jobs and throughput-oriented batch jobs.

Latency-sensitive jobs must meet certain QoS requirements

and often experience a time-varying pattern in their load. Batch

jobs, on the other hand, are typically throughput oriented and

do not have strict QoS constraints.

Cluster Scheduling — A cluster-wide scheduler is respon-

sible for placing and tracking the jobs on the available platform

resources [47], [53]. Each job’s required resources, such as the

number of processing cores and amount of memory needed,

is specified in a configuration file associated with the job.

Given the resource requirements, the cluster scheduler uses

a variant of the bin-packing algorithm to make job mapping

decisions [47], [53].

Quality of Service — QoS for service jobs in WSCs is

typically defined in the form of service level objectives (SLOs)

using statistical guarantees of application-level metrics such

as query latency. In addition to the average or median query

latency, quality of service often focuses on the tail distribution

of the latency to improve interactivity [9]. For example, a

quality of service target could be specified as “90% of the

search queries need to have a latency under 500 ms.”

B. Heterogeneous Multicore Architectures

Brawny vs. Wimpy — Although wimpy cores can be more

power efficient, most WSCs currently adopt homogeneous

brawny servers to ensure the quality of service for latency-

sensitive service jobs. This is because there are several limita-

tions in using wimpy cores that affect their broad adoption in

WSCs [24]. In some cases, single-threaded performance is still

important due to Amdahls’ law; the inherently serial computa-

tion by slow wimpy cores can dominate overall execution time.

Using wimpy cores requires additional parallelization efforts

to deal with many more subtasks. The variability in the tail of

latency distribution is also amplified with increased number of

computing units in the data center, since many more wimpy

cores would be needed to sustain the same performance as

that of brawny cores. This makes it more difficult to deliver

satisfactory latency requirements.

Heterogeneous multicores — Emerging heterogeneous

multicore designs [30] exploit the fact that applications’ re-

source requirements are different. Thus, by combining cores

that trade off performance with power to different degrees,

the resulting system can be more energy efficient than ho-

mogeneous systems. Several such architectures have come

to fruition, including ARM’s big.LITTLE [21] and Intel’s

QuickIA prototype [7]. QuickIA is a prototype for server-class

computing platforms that integrates Intel’s Atom and Xeon

cores. Given that our focus is on WSCs, in this paper we

focus our efforts on QuickIA (Section V).

III. HETEROGENEOUS MULTICORES IN WSCS:

OPPORTUNITIES AND CHALLENGES

In this section, we investigate the performance and energy

efficiency trade-offs for wimpy cores (Intel Atom) and brawny

cores (Intel Xeon) running a typical WSC workload (web-

search). We present the opportunities and challenges of using

20QPS 30QPS 45QPS

Q
P

S
/W

a
tt

 (
n
o
rm

a
li

z
e
d
)

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

5QPS 10QPS

Fig. 1: Throughput per watt of web-search on wimpy cores at

various load levels (normalized to brawny cores)

heterogeneous multicore servers for improving energy effi-

ciency in WSCs, highlighting the need for an intelligent QoS-

aware runtime system to achieve both satisfactory performance

and high energy efficiency.

A. Wimpy vs. Brawny for WSC Workloads

We first study the energy efficiency and performance trade-

offs between wimpy and brawny cores using Intel’s QuickIA

heterogeneous platform [7] and the web-search (Apache

Nutch) benchmark from CloudSuite [16].

Energy Efficiency — Figure 1 presents the energy ef-

ficiency in QPS/Watt (queries per second per Watt) of a

wimpy core running a web-search job at different load levels,

normalized to running on a brawny core. In this experiment

we account for the power consumption of each processor type

in isolation. More details about the experimental setup are

presented in Section V. Figure 1 demonstrates that wimpy

cores are much more energy-efficient than brawny cores for

web-search jobs at various loads. Note that, as the load in-

creases, the energy-efficient benefit of wimpy cores decreases.

In fact, wimpy cores are much more energy-efficient at low

load because wimpy cores have very low idle power and larger

difference between the idle and peak power (better energy

proportionality) than brawny cores [49].

Query Latency — Figure 2 presents the 90th percentile

query latency achieved by wimpy cores vs. brawny cores at

different load levels for web-search. As shown in the figure,

when the load is low, especially below 20 QPS, the 90th

percentile query latency for wimpy and brawny cores are

relatively similar, as the web-search job does not put a lot

of pressure on the system. However, as the load intensity

increases, the query latency on wimpy cores increases rapidly,

and the gap in latency between wimpy and brawny cores

becomes much larger. At 40 QPS, the 90th percentile latency

on wimpy cores is 13X longer than the 90th percentile latency

on brawny cores. Considering the 90th percentile query latency

at 500ms as the QoS target, a wimpy core can sustain up to

35 QPS, while a brawny core can support as many as 80 QPS.

This figure shows that while brawny cores clearly achieve

lower latency at all load levels, at low load the latency

delivered by the wimpy core can be adequate and comes at

a much lower power cost, making wimpy cores an attractive

alternative at low load. The need for both high performance

cores at high load and energy efficient cores at low load lends

itself to core heterogeneous designs, which offer both core

types in a single server.

Fig. 2: 90th percentile query latency of web-search on wimpy

vs. brawny cores at various load levels

0 12 24 36 48
0

20

40

60

80

100

Hour of the day

P
e
rc

e
n
t
o
f
M

a
x
 C

a
p
a
c
it
y

QPS

Server Power

Fig. 3: Load fluctuation and power consumption for web-

search running on Google servers, adapted from Meisner et

al. [46]

B. Energy Reduction Potentials of Heterogeneous Platforms

Figure 3, adapted from Meisner et al. [46], illustrates the

typical load intensity (in queries per second) and power

consumption for a web-search service running on Google

servers. This class of workload presents a wide dynamic load

range, experiencing long periods of low load. Moreover, during

the periods of low load, the power consumption of (current)

brawny servers is still relatively high; that is, the energy

consumption is not proportional to the amount of computation

accomplished by the brawny server [4].

Our insight is that the load varying nature of service jobs

coupled with the fact that, at low loads, the performance

of wimpy is sufficiently close to that of brawny, rendering

the core heterogeneous design point an attractive option.

Heterogeneous multicore architectures present the opportunity

to combine the best of both worlds by allowing tasks to

quickly migrate between wimpy and brawny cores at runtime

to meet the QoS target of service jobs and achieve high energy

efficiency.

C. Challenges of Adopting Heterogeneous Platforms

Despite the potential for energy optimization when employ-

ing core heterogeneous designs, QoS challenges arise when

directly adopting heterogeneous platforms in WSCs without an

effective task management runtime. To understand the need to

introduce such a QoS-aware runtime, we perform an analysis

of simply replacing current all-brawny cores with heteroge-

neous multicores without redesigning the system software

stack.

Figure 4 presents the number of QoS violations given

various latency targets for web-search queries. We compare a

WSC composed of homogeneous servers with 4 brawny cores

(Xeon) per server versus a WSC composed of heterogeneous

 0%

 10%

 15%

 20%

 25%

 30%

50ms 100ms 150ms

%
 o

f
q
u
er

ie
s

v
io

la
ti

n
g
 t

h
e

la
te

n
cy

 t
ar

g
et Bin−packing scheduling on Homogeneous Brawny Servers

Bin−packing scheduling on Hetero−CMP

 5%

Fig. 4: QoS violations for web-search for homogeneous

brawny servers vs. heterogeneous servers at various latency

targets.

servers with 2 brawny and 2 wimpy (Atom) cores per server.

In this experiment, each web-search task requires 2 cores and

is mapped to each server by the cluster scheduler using the

standard bin-packing algorithm commonly found in modern

WSCs [47], [53]. The bin-packing algorithm randomly assigns

each job to a machine that has at least as many available cores

as are needed by the job.

As shown in Figure 4, using a standard bin-packing algo-

rithm that is unaware of the heterogeneity or QoS causes sig-

nificantly more QoS violations with heterogeneous platforms.

For example, 17% of all queries on the heterogeneous platform

violate their QoS target of 100ms. For heterogeneous multicore

to be a viable option in WSC design, we must provide a

mechanism to allow latency-sensitive jobs to meet QoS targets

while optimizing for energy efficiency. This is the primary goal

of Octopus-Man.

IV. OCTOPUS-MAN

In this section, we introduce Octopus-Man, a runtime

system that manages brawny/wimpy core resources in WSCs,

adaptively allocating the necessary and the least power-hungry

core resources for latency-sensitive applications to ensure QoS

while maximizing energy efficiency.

A. Design Goals and Challenges

The major design goal of Octopus-Man is to ensure that the

QoS targets of latency-sensitive jobs are satisfied and to max-

imize the energy efficiency. Some WSCs co-locate latency-

sensitive applications (service jobs) and batch applications

(throughput-oriented jobs) on shared servers to improve server

utilization [42]. For the shared servers, Octopus-Man ensures

that the QoS target of latency-sensitive jobs is met while

maximizing the throughput of batch jobs.

Octopus-Man is designed to address the important chal-

lenge of achieving both responsiveness and stability. Firstly,

Octopus-Man must be able to detect and be responsive to

changes in the system’s execution environment such as work-

load fluctuations and co-location interferences. It must control

the system via migrating tasks to appropriate core resources

to ensure that the managed applications meet QoS goals

in the presence of these changes. Secondly, Octopus-Man

must prevent the server system from unnecessary oscillations

between core mappings, negatively affecting the QoS.

Heterogeneous server

Octopus-Man

QoS

Monitor

Octopus

Mapper

Wimpy cores

Brawny cores

Cluster scheduler

Batch-mode

jobs

Latency-sensitive

jobs

Fig. 5: Overview of Octopus-Man runtime system

B. Octopus-Man Overview

Octopus-Man is built upon two insights: 1) heterogeneous

multicores allow tasks within a server to be quickly migrated

between wimpy and brawny cores at runtime, and 2) the

latency difference between brawny and wimpy cores is sig-

nificantly smaller at low load. By leveraging load-fluctuations,

Octopus-Man migrates latency-sensitive applications to wimpy

cores during periods of low load to achieve high energy

efficiency without impacting user experience.

The Octopus-Man framework is depicted in Figure 5.

Octopus-Man consists of two main components: the QoS

Monitor and the Octopus Mapper.

QoS Monitor — The QoS monitor is responsible for

collecting job performance data from the heterogeneous server

using in-place continuous profiling. Existing runtime mon-

itoring systems are deployed in modern WSCs to continu-

ously gather detailed task performance information [50]. The

Octopus-Man system is designed to leverage these light-weight

monitoring systems. There are a number of performance

and QoS metrics available to Octopus-Man including the

application-level metrics (e.g., query latency for web-search)

and operating system/hardware performance counter metrics

(e.g., CPU utilization, instructions per cycle and cache misses).

Octopus Mapper — Based on dynamic performance

profiles collected by the QoS Monitor, the Octopus Mapper

makes job mapping decisions and adapts the heterogeneous

server system to improve energy efficiency. Figure 6 illustrates

an execution example of the Octopus-Man when managing

co-located batch jobs and a web-search (service job) on a

shared server following the fluctuating load of a typical diurnal

pattern. As shown in Figure 6-A, during the periods of low

utilization of the service job, the Octopus-Man system may run

web services on wimpy cores while turning off some power-

hungry brawny cores to minimize energy consumption (on a

dedicated server for latency sensitive applications) or using

the available brawny cores to accelerate batch processing (on

a shared server hosting both batch and latency-sensitive jobs).

When the service job experiences high load intensity, as seen

 Octopus-Man

Heterogeneous server

Wimpy cores

Brawny cores

Search job

 Octopus-Man

Heterogeneous server

Wimpy cores

Brawny cores

Batch jobs
 Run batch jobs
(or power gate cores)

Search job

(A) Contracting Octopus (B) Expanding Octopus

Fig. 6: Octopus-Man managing a web-search and batch jobs,

(A) contracting during low intensity load and (B) expanding

during high intensity load

in Figure 6-B, the Octopus-Man system allocates the high-

performance brawny cores to the latency-sensitive service job

to meet its specified QoS target.

In the rest of this section, we will describe in details

the design of Octopus-Man Mapper including its algorithms

to determine the appropriate task migration strategies. We

will first introduce the formal notations for core mappings

and transitions in Section IV-C. We will then present two

designs of the decision algorithms of Octopus-Man Mapper

in Sections IV-D and IV-E. Finally we will present how

Octopus-Man addresses two critical design challenges and the

implementation details in Sections IV-F and IV-G.

C. Core Mapping and Transition

A heterogeneous multi-core system has a discrete set of

core configurations. We consider N wimpy cores and M
brawny cores in a system, where the wimpy core set is

W = {w1, . . . , wi, . . . , wN} and the brawny core set is B =
{b1, . . . , bj , . . . , bM}. We then specify a resource allocation

set A, in ascending order based on the power consumption of

each core configuration as follows:

A = {{w1}, {w1, w2}, . . . , {w1, w2, . . . , wN}, {b1, . . . , bL},
{b1, . . . , bL, bL+1}, {b1, . . . , bL, bL+1, . . . , bM}}
When migrating a latency-sensitive job from wimpy to

brawny cores, we define L as the minimal number of brawny

cores necessary to provide the same processing capacity as N
wimpy cores. This ensures that the new job mapping does not

violate the service QoS target after the migration.

Octopus-Man determines the core mapping based on QoS,

for example, by increasing the core resources when QoS is

low. This methodology is general and can handle mappings

that include both wimpy and brawny cores. In our system we

do not consider a service task running simultaneously on both

wimpy and brawny cores because there is no noticeable QoS

improvement on our heterogeneous platform, Intel QuickIA,

for this mixed mapping over brawny/wimpy-only mappings. In

addition, allocation of CPU resources in modern data centers is

typically at the granularity of whole cores whereby each task

has a reservation of cores and do not timeshare with other

r
System

u(t)e(t)

y(t)

∑
-

+
∑

Controller

P Kp e(t)

I Ki ∑e(t)

D Kd de(t)/dt

+

+

+

Fig. 7: Basic elements of the PID control system

applications [11]. Therefore, we also do not consider service

and batch jobs sharing the same core.
Next, we present two designs for the mapping algorithm

used in the Octopus-Man mapper: (1) a Proportional-Integral-

Derivative (PID) control system [23] and (2) a deadzone state

machine. PID controller is a classic control loop feedback

algorithm widely used in industrial control systems [23]. Our

deadzone state machine is inspired by a real-time deadzone-

based scheme for voltage scaling and latency control in web

servers [25].

D. Design 1: PID Control System

We first investigate using PID control in Octopus-Man

to decide the appropriate task mapping and migration on a

heterogeneous multicore server. The goal of PID control is to

make sure that the underlying controlled system operates as

close as possible to a specified set point. In our case, PID

control aims to manage the underlying system, i.e., latency-

sensitive tasks executing on a heterogeneous multicore, so

that the achieved QoS of the system is as close as possible

to the specified QoS target. To this end, the PID controller

continuously monitors the system feedback, i.e., QoS of the

system, and adapts the system configurations, i.e., the task

mappings on the heterogeneous multicore accordingly over

time.
Figure 7 presents the basic structure of a PID controlled

feedback loop. As depicted in Figure 7, the PID control takes

a controller reference r as the desired QoS target (e.g., 90%-

ile latency at 500ms). The system feedback is given by the

controller error signal e(t), defined as the difference between

the QoS target r and the current monitored QoS value y(t)
at time t; that is, e(t) = r − y(t). Based on the control

error e(t), the PID control system calculates three terms:

the proportional (current error rate), the integral (overall net

errors) and the derivative (correction rate) of the error signal.

The PID controller equation u(t) then associates each term

with a weight (Kp, Ki and Kd) and sums up the three terms

as follows:

u(t) = Kpe(t) +Ki

tX

k=0

e(k)T +Kd

e(t)− e(t− 1)

T
(1)

The controller output u(t) from Equation 1 indicates the ap-

propriate system configuration for minimizing the error in the

next sampling interval error, e(t+1). In the case of Octopus-

Man, u(t) directly dicates the appropriate wimpy/brawny core

configuration the system should be adjusted to to achieve the

QoS target.

Since the PID control output u(t) has a continuous range

and our heterogeneous system has a discrete set of core

configurations, we use a mapping scheme that relates the

control output to the set of core configurations. We set the

minimum and maximum values of the controller output (e.g.,

min u = 0 and max u = 255), and any value between

the controller limits is linearly scaled to a position in the

set of wimpy/brawny core configurations (set A specified in

Section IV-C). The min u is mapped to one wimpy core {w1}
and max u is mapped to {b1, . . . , bL, bL+1, . . . , bM}} brawny

cores.

The controller’s sampling interval T specifies how often the

monitored QoS variables are sampled at runtime. The choice

of an appropriate sampling interval should be based on the

dynamics of the system being controlled, and Section IV-F

describes our methodology for deriving this parameter.

PID Controller Configuration — To carefully tune and

configure PID to achieve high-quality control, that is to

determine appropriate values for parameters Kp, Ki and Kd

in Equation 1, we employ the commonly used root locus

method [18].

To use root locus method to determine the suitable param-

eter values, we need to first identify a transfer function of

our system. The transfer function is a formal representation

of the input-output relationship for the system (i.e., input as

measured QoS of the system and output as core mappings).

Root locus method then conducts sensitivity analysis of the

parameters based on the transfer function to select suitable

parameter values for a high-quality, stable controller.

As in prior work [39], we use profiling data to build a model

to determine the transfer function of our system. We collect

the average latency of queries for each application at different

load levels and build a linear regression model that predicts

the QoS for a given system configuration (core mapping) as

shown in Equation 2. The system input (u) represents the core

configurations and (y) represents the corresponding system

output, i.e., the QoS of the system; where m represents the

time at which data is collected from the system and n is the

order of the equation modeling the system. We use n = 1 to

build our model that best represents our system. We model the

system using the differential equation [19] and use the least

squares [39] to determine the g and h parameters in Equation

2.

y(m) =

nX

i=1

giu(m− i) +

nX

i=1

hiy(m− i) (2)

Transforming Equation 2 into the discrete time domain, we

arrive at Equation 3. Combining Equation 3 and Equation 1,

we arrive at Equation 4, a combined representation of the

controller parameters and the controlled system in discrete

time domain.

P (z) =
y(z)

u(z)
=

h1

z − g1
(3)

C(z) =
u(z)

e(z)
= Kp +Ki

T

z − 1
+Kd(

z − 1

T
)2 (4)

1"

Wimpy&

Ini&alize"

2"

Wimpy&

N"

Wimpy&
…&

QoS"alert"

QoS"safe"

QoS"alert"

QoS"safe"

M51"

Brawny&

L+1"

Brawny&

L"

Brawny&
…&

QoS"alert"

QoS"alert"QoS"alert"

QoS"safe" QoS"safe"

QoS"safe"

M"

Brawny&

QoS"alert"

QoS"safe"

Fig. 8: State machine used in deadzone-based Octopus Mapper

G(z) =
C(z)P (z)

1 + C(z)P (z)
(5)

We then perform a root locus analysis using Equation 5 [18]

to narrow down an appropriate range of parameters (Kp, Ki

and Kd) for the PID controller for each latency-sensitive

application. Using root locus, we evaluate the behavior of

the PID controller when the gain Kp is adjusted; Ki and Kd

are tuned based on the values of the gain. The method helps

visualize the stability of the controller and observe the effects

of varying the gain. We then performed a parameter tuning

over that range to determine the parameters to achieve a stable

controller.

E. Design 2: Deadzone State Machine

Here we present a deadzone based design of Octopus-Man

mapper, which models the Octopus-Man’s task mapping algo-

rithm using a state machine. The Octopus-Man state machine,

illustrated in Figure 8, consists of a set of states and transitions

between those states. The available core configurations in

the controlled system are represented by the possible states.

Note that each element from the set of wimpy/brawny core

configurations A (Section IV-C) is mapped to a state in

the transition system. At any given time, the Octopus-Man

state machine is in only one state: the current state. The

transition from one state to another is initiated by triggering

conditions specified by QoS rules. Octopus-Man uses this

representation to map the latency-sensitive job to N wimpy

cores or M brawny cores to optimize for energy reduction or

job throughput while respecting latency constraints.

For each latency-sensitive job controlled by Octopus-Man,

we specify a QoS controlled variable as the percentile (e.g,

90th or 95th) of the monitored request latency and a QoS

target that the system needs to ensure. Then the QoS alert

trigger condition is defined as:

QoSvariable > QoStarget · UPthr

The QoS safe trigger is defined as:

QoSvariable < QoStarget ·DOWNthr

The QoS rules state that when the measured QoS latency

variable exceeds an upper bound (or drops below a lower

(A) Memcached workload (B) Web-search workload

Fig. 9: Detecting adequate settling times (gray area in the figures) due to core switching

bound), Octopus-Man expands (or contracts) the number of

cores allocated to the latency-sensitive job to meet its specified

QoS target. The rationale for the upper threshold is that,

for any two consecutive QoS measures from the workload

distribution, the following conditional probability as a function

of the UPthr must be satisfied [25]:

P (QoSk+1 > QoStarget|QoSk < UPthr ·QoStarget) <= QoSvio

The QoSvio is the maximum percentage of QoS violation

expected in the system (e.g., 5%). The upper threshold UPthr

is obtained empirically from the workload distribution as in

[25]. An adequate down threshold DOWNthr is then selected

to minimize oscillation while still delivering energy efficiency.

A sampling interval is used to periodically evaluate the QoS

trigger rules and potentially perform the state transitions in the

system. The details on selecting these parameters are discussed

in Section IV-F.

F. System Responsiveness and Stability

Here we describe how Octopus-Man addresses the following

two important challenges: Responsiveness and Stability.
Responsiveness — To meet the responsiveness criterion,

we need to determine the suitable sampling interval, which

specifies how often Octopus-Man should sample the monitored

QoS and decide whether to transition to a new task-to-core

mapping configuration.
We observe that typical WSC applications (e.g., web-search

and memcached) often exhibit short-term high-variability QoS

when subjected to excessively frequent dynamic core switch-

ing. The sampling interval thus should consider the time re-

quired for (A) performing task-to-core dynamic configuration

and (B) waiting for the updated QoS measurements to stabi-

lize; that is, reaching and remaining within a relatively small

range (e.g., 5%-10%) of the final stable QoS measure. This

waiting time is known as settling time in control systems [18].
We specify the sampling interval as the minimum moni-

toring interval provided by each latency-sensitive application

plus the required settling time. This allows Octopus-Man to

react quickly to fluctuating load without causing excessive

switching behaviors. The default monitoring (QoS reporting)

interval for Memcached is every second, whereas web-search

(Apache Nutch) typically requires about five seconds to update

the logs of query processing times. In both cases, the overhead

of switching cores on/off and migrating tasks are negligible (in

the order of microseconds to few milliseconds [8], [33], [40]).

To determine an appropriate settling time for each latency-

sensitive application, we perform an automatic profiling. In

the profiling, we change the core mapping to observe the

impact on the QoS over time. Figure 9 presents varying core

configurations for each application and its impact on QoS and

queries per second. The gray area in the figure represents

the settling time needed for memcached and web-search

application. This corresponds to the time interval from the

moment of a core switching until the slope of two consecutive

QoS measures stabilizes (less than 10% variation between

successive measurements).

Stability — Stability is an important issue for both PID

control and deadzone state machine designs. For PID control,

we rely on the root locus methodology to configure a stable

controller [18]. For the deadzone state machine, we notice

that the QoS trigger rules allow for (1) anticipating the QoS

violation by setting an upper threshold to quickly allocate

resources before QoS violations even occur, and 2) minimizing

oscillatory behavior by using the down threshold when deal-

locating resources. To achieve stability, we need to determine

the appropriate values for these thresholds, especially the down

threshold.

Figure 10 highlights the importance of selecting an adequate

threshold parameter to avoid the oscillatory behavior. In this

experiment, we notice that 46% of QoS violations are due to

excessive task migrations. We propose a solution to address

this issue by detecting such oscillatory behavior and adjusting

the threshold parameter to reduce the oscillation’s negative

impact on the application QoS.

Figure 11 illustrates our mechanism for the deadzone state

Fig. 10: Web-search execution when deadzone thresholds

are set as UP thr=0.8, DOWN thr=0.3. High QoS violations

occur due to oscillatory behavior caused by inappropriate

threshold values

Time

Up_thr = 0.8

QoS target

QoS alert! (increase
computing capacity)

With small probability (1%)
increase down_thr

Oscillatory behavior! (need to decrease down_thr)

Down_thr = 0.5

. . .

QoS safe, but just after a QoS alert

Down_thr = 0.6

Fig. 11: Illustration of dynamically selecting the deadzone

thresholds

machine to automatically select the down threshold parameter

for a given application. The idea is to identify an oscillatory

pattern characterized by a QoSalert event followed imme-

diately by a QoSsafe event and then followed by another

QoSalert. Once this oscillatory pattern is detected, Octopus-

Man adjusts the down threshold to accommodate the QoS

variability when adapting the system, for example, adjusting

the threshold from 0.6 to 0.5 as shown in the figure. This

works because increasing the service capacity (e.g., moving

a service job from wimpy to brawny cores) should not make

the QoS variable drop below the down threshold and trigger

an unnecessary new adaptation (e.g., moving the service job

back to wimpy cores) in the next sampling interval. We present

in Section V experiments evaluating our adaptive deadzone

technique.

G. Implementation Details

Octopus-Man is a user-level process running on Linux OS

that consists of monitor and mapper modules. The monitor

module collects runtime measurements of the query/request

latency via a log-file (in RAM filesystem) interface with

Wimpy core socket

Front side bus

Brawny core socket

Atom

L2 cache
(1MB)

Atom

Xeon Xeon

L2 cache
(6MB)

Memory

Fig. 12: Heterogeneous processor platform (Intel’s QuickIA)

Core type Peak power Idle power
Xeon 5450 18.75 W 9.625 W
Atom N330 2.15 W 0.7 W

TABLE I: Power consumption of heterogeneous cores [26]

running service jobs such as the Apache Nutch web server

and memcached server. The monitor module also reports the

aggregated IPS (instructions per second) by measuring the

hardware performance event retired_instructions of

each core on each monitoring interval [56]. We build an

instance of the monitor module for each latency-sensitive

application. The actuator module is responsible for binding

tasks to cores via Linux sched_setaffinity system call.

Octopus-Man quickly suspends/resumes the batch jobs via OS

signals (SIGSTOP and SIGCONT in Linux) to manage the

execution of batch jobs on the heterogeneous cores.

V. EVALUATION

We evaluate Octopus-Man on Intel QuickIA platform using

web-search (Apache Nutch) and data-caching (memcached)

workloads from CloudSuite [16].

A. Intel QuickIA Prototype

We use the Intel QuickIA platform [7] which integrates a

high-performance brawny processor (Xeon) and a low-power

wimpy processor (Atom) on the same platform (Figure 12).

This heterogeneous platform provides core types with different

micro-architecture designs (simple in-order vs. aggressive out-

of-order) but the same ISA.

Table I summarizes the CPU power consumption for the

Intel Xeon/Atom cores that comprise our Quick IA proto-

type [26], showing that the wimpy core has a very low idle

power and also consumes on average much less (9.7× less)

power than a brawny core.

We quantify CPU power using power measurements and

CPU utilization as in prior work [14], [51], [60], where

the power consumption is linearly approximated using CPU

utilization. This model is used to characterize the benefits of

(A) Static (always brawny cores) (B) Octopus-Man (PID Control) (C) Octopus-Man (Deadzone)

Fig. 13: Memcached execution on QuickIA. PID performs 10× more task migrations than Deadzone, and has more QoS

violations

(A) Static (always brawny cores) (B) Octopus-Man (PID Control) (C) Octopus-Man (Deadzone)

Fig. 14: Web-search execution on QuickIA. PID performs 2.5× more task migrations than Deadzone, and has more QoS

violations

core heterogeneity in the presence of core-level power gating

techniques found in modern CPUs.

We also provide system power measurement directly using

a WattsUp Pro power meter [12]. These measurements reflect

the power consumed by the entire machine (the power drawn

at the outlet), including the CPUs. We report the dynamic

power consumption by subtracting the power consumed when

the machine is completely idle.

B. Workload Configurations

We adapted the web-search workload generator (Faban) and

the memcached client generator (from Cloudsuite) to issue

query requests driven by a time-varying production load trace

using the workload profile as shown Figure 3 and described in

previous work [46]. We specify the target QoS for web-search

as 500ms (90th percentile query latency) as prescribed by

CloudSuite [16]. For memcached, we use 1ms (95th percentile

query latency) as the QoS target. This was determined by

measuring the latency achieved by the brawny cores on our

experimental platform at peak load (80% of the maximum

possible load). Note that this QoS target reflects the capability

of our experimental machine, and is actually much lower

than the QoS target (10ms) specified in Cloudsuite [16].

The maximum-capacity load issued by the load generator is

configured so that web-search and memcached running on

brawny cores can meet the specified query latency target.

C. QoS Guarantee and Energy Reduction

We evaluate the effectiveness of Octopus-Man on meeting

the QoS requirements of web-search and memcached, while

exploiting load fluctuations and mapping the tasks to the most

suitable heterogeneous cores in the system to achieve high

energy efficiency.

Memcached — Figure 13-A shows the performance of

the memcached workload using the baseline Static all-brawny

core mapping during a 48-hour period [46]; each hour in the

original workload corresponds to one minute execution in our

experiments. The top plot presents the 95th percentile QoS

behavior; the target is 1 ms indicated by the red line. The

middle plot presents mapping decisions and the bottom plot

shows the achieved throughput, requests per second (RPS).

Figures 13-B and 13-C show memcached managed by

Octopus-Man using the PID and Deadzone schemes, respec-

tively. Octopus-Man dynamically decides the core resources

allocated for memcached based on the measured QoS (95th

percentile query latency), migrating the job between brawny

and wimpy cores, while the Static mapping (Figure 13-A)

keeps memcached on brawny cores.

Octopus-Man’s mapping algorithm using PID or Deadzone

aims to adapt to the load and QoS changes. The PID control

works by monitoring the QoS and minimizing the controller

error; that is, keeping the measured QoS as close as possible

to the QoS target. However, we notice that this particular

Mapping QoS guarantee QoS tardiness Energy reduction (CPU) Energy reduction (System)
Static (Brawny) 99.9% 1.06 – –
Static (Wimpy) 34.6% 3.02 85% 40%

Octopus-Man (PID) 61.3% 1.66 49% 25%
Octopus-Man (Deadzone) 99.8% 1.06 41% 15%

TABLE II: Memcached QoS behavior and energy reduction

Mapping QoS guarantee QoS tardiness Energy reduction (CPU) Energy reduction (System)
Static (Brawny) 99% 1.29 – –
Static (Wimpy) 41% 4.52 90% 51%

Octopus-Man (PID) 45% 3.56 74% 19%
Octopus-Man (Deadzone) 91% 1.87 26% 9%

TABLE III: Web-search QoS behavior and energy reduction

behavior causes many oscillations in the system, as shown

in the middle plot of Figure 13-B. The large amount of

oscillations in turn incurs severe QoS degradation, as shown in

the top plot of Figure 13-B. On the other hand, Octopus-Man

using the deadzone strategy can help mitigate this oscillation

effect, as shown in Figure 13-C. We notice that from 0s to

250s, Octopus-Man adaptively adjusts the down threshold to

minimize the oscillatory behavior. The final stable threshold

found was UPthr = 0.8 and DOWNthr = 0.1. Compared

to PID, Octopus-Man (Deadzone) with dynamic adjustment

significantly reduced QoS violations.

Web-search — Figure 14-A shows the baseline Static all-

brawny core mapping, Figure 14-B the PID control and 14-C

the Deadzone scheme for the web-search workload. Similar

to the memcached workload, the static mapping provides the

best QoS, which is the upper bound for any dynamic mapping

method, while Octopus-Man’s mapping decisions performed

by PID and Deadzone aim to monitor the QoS target and

exploit the load fluctuations. The PID is more aggressive at

performing task mapping to reduce energy consumption, but

the excessive task switching activities have negative effects

on the application QoS. Deadzone mitigates this issue by

dynamically adjusting the QoS thresholds that trigger the re-

mapping. This leads to less oscillation and better QoS.

Results Summary — Table II and Table III summarize

the QoS behavior and energy reduction for memcached and

web-search using different mapping options: Static all-brawny,

Static all-wimpy, Octopus-Man (PID), Octopus-Man (Dead-

zone). We compare the QoS and energy consumption of each

mapping scheme to the static all-brawny mapping as baseline.

On each sampling interval we compute whether or not the

measured QoS violates the QoS target. The QoS guarantee is

the percent of the samples that the measured QoS is under

the target (1 - QoS violations%). In case there is a violation,

we compute the average QoS tardiness as the measured QoS

value divided by the QoS target, quantifying how intense the

QoS violation was.

As shown in Table II and Table III, Static all-wimpy cores

cannot meet the required QoS for memcached and web-search.

Octopus-Man using the PID control trades some power for

better QoS, but as discussed earlier (Figures 13 and 14),

the application QoS is degraded due to excessive dynamic

task adaptations/mappings (2.5× to 10× more adaptations).

Octopus-Man using deadzone is capable of delivering the

best trade-off between QoS guarantee and energy reduction.

 0.9x

 1x

 1.1x

 1.2x

 1.3x

 1.4x

 1.5x

 1.6x

ze
u
sm

p

g
ro

m
ac

s

ca
ct

u
sA

D
M

n
am

d

so
p
le

x

p
o
v
ra

y

ca
lc

u
li

x

sj
en

g

li
b
q
u
an

tu
m

to
n
to

lb
m

as
ta

r

m
ea

n

IP
S

 (
n
o
rm

al
iz

ed
)

Static−Mapping
Octopus−Man

Fig. 15: Throughput improvement using Octopus-Man with

batch job co-location

Octopus-Man deadzone meets the QoS at 99.8% for mem-

cached and at 91% for web-search with QoS tardiness close to

the static all-brawny mapping. The CPU energy consumption

is reduced by 41% for memcached and 26% for web-search.

The measured dynamic system power is reduced by 15% for

memcached and 9% for web-search.

It is worth noting that, in contrast to Octopus-Man, prior

work does not allow for QoS guarantees for latency-sensitive

services since they are driven by either hardware performance

counters (e.g., IPC, cache misses) [52] or CPU utilization [58]

without providing explicit QoS management. For example,

severe QoS degradation (95%-tile latency penalty of 254%

and 5,989%) is reported for two datacenter workloads in prior

work [58]. Such high latency degradations would likely violate

QoS guarantees.

D. Improving Batch Throughput While Meeting QoS

Another use of the servers during low load periods in data

centers is to co-locate batch jobs with service jobs on the

same server. In this section, we evaluate the effectiveness

of Octopus-Man (Deadzone) for improving the throughput of

batch jobs while guaranteeing QoS of service jobs when batch

jobs are co-located with web-search.

Throughput Improvement — Figure 15 presents the

throughput improvement achieved by Octopus-Man compared

to the Static mapping policy across 12 co-running batch appli-

cations from the SPEC CPU2006 benchmarks. Static keeps the

web-search job on the brawny cores and the batch applications

on the two wimpy cores. Octopus-Man, on the other hand, dy-

namically maps web-search and the batch applications across

the wimpy and brawny cores. At a particular point in time,

Distribution %−ile

0% 20% 40% 60% 80% 95%

Q
u

er
y

 L
at

en
cy

 (
m

s)

0

50

100

150

200

Octopus−Man

Static−Mapping

Fig. 16: Latency CDF of co-locating

web-search and calculix

Distribution %−ile

0% 20% 40% 60% 80% 95%

Q
u

er
y

 L
at

en
cy

 (
m

s)

0

50

100

150

200

Octopus−Man

Static−Mapping

Fig. 17: Latency CDF of co-locating

web-search and lbm

Distribution %−ile

0% 20% 40% 60% 80% 95%

Q
u

er
y

 L
at

en
cy

 (
m

s)

0

50

100

150

200

Octopus−Man

Static−Mapping

Fig. 18: Latency CDF of co-locating

web-search and namd

the number of batch jobs running on the system corresponds

to the number of cores not employed by the latency-sensitive

application. We use aggregated IPS (instructions per second)

to characterize the throughput of batch applications. Latency-

sensitive applications are measured using application-level

QoS metrics.

As shown in Figure 15, Octopus-Man always achieves

higher throughput than the static mapping. On average,

Octopus-Man achieves 34% throughput improvement for batch

applications over the static mapping. The maximum (51%)

throughput improvement is achieved when web-search is co-

running with calculix, and minimal (12%) improvement

when co-running with libquantum.

The throughput improvement is due to the fact that Octopus-

Man can dynamically determine the minimum core resources

needed by web-search for its satisfactory QoS, while using

the rest of the resources for batch applications to maximize

the throughput. For example, when web-search is experiencing

very low load, Octopus-Man determines that 1 wimpy core is

sufficient for its QoS target and reduces the core allocation

for web-search accordingly, dynamically mapping batch ap-

plications to the other 3 cores to maximize throughput. When

the load for web-search increases, Octopus-Man reallocates

brawny core resources to web-search to ensure acceptable

query latency during high/peak load.

QoS Guarantees — In addition to improving the batch

throughput, we demonstrate that Octopus-Man delivers satis-

factory QoS for web-search. Figures 16, 17, 18 present the

cumulative distribution function (CDF) of web-search’s query

latency when it is co-running with 3 different representative

batch jobs, respectively calculix, lbm, and namd. We selected

benchmarks calculix and lbm to present because they rep-

resent compute-intensive and memory-intensive applications.

Benchmark namd is selected because web-search experienced

the worst QoS degradation when co-running with it. In each

figure, the orange and red areas indicate the latency distri-

bution achieved by the Static mapping and Octopus-Man,

respectively. For example, in Figure 16, 60% of the queries

are served within 23ms by Octopus-Man (red line) and 22ms

by static mapping on Brawny (orange line). As long as the tail

latency at the vertical line is within the green shaded zone, the

QoS target is satisfied. As shown in these three figures, the

query latency distribution achieved by Octopus-Man is very

close to the static mapping, which always executes the web-

search on 2 brawny cores. In all cases, the tail latency by

Octopus-Man is shorter than the target, indicating satisfactory

QoS.

VI. RELATED WORK

The energy impact of warehouse-scale computers (WSCs)

is large and has received much attention in recent years. As

a result, there is a growing body of literature on the use of

green energy [1], [20], [32], the overall energy footprint [48]

and energy proportionality [4], [37], [41] in datacenters/WSCs.

Our work focuses on improving the energy efficiency and

proportionality of latency-sensitive applications in WSCs as

well as the throughput of batch applications by mapping

them to wimpy/brawny cores within a heterogeneous multicore

architecture.

The energy and performance trade-offs between different

types of general purpose processors are well-documented [13],

[29]. Heterogeneity between servers [43] and specialization

[34], [36] have been shown to produce efficient WSC designs.

In WSCs, node-level and cluster-level techniques have been

proposed [10], [22], [31], [42], [44], [45], [54], [55], [59],

[61] to take advantage of architectural heterogeneity between

servers and/or perform resource managment to improve effi-

ciency in WSCs. In this work, we go a step further and exploit

heterogeneity at the core-level within the server to deal with

QoS and load-aware task scheduling.

Other work has explored combining cores of different

capabilities within the server in WSCs. In [58], Wong et al.

propose an architecture that combines commodity processors

of varying capability as close together as a single board to cope

with long-term changes in system load and improve energy

proportionality. In contrast, our work utilizes architectures

whose cores are tightly coupled and share memory. This allows

for very fast task migration and responsiveness to changes

while providing strict QoS guarantees.

Scheduling for heterogeneous multicore architectures has

also been studied in prior work [8], [15], [28], [35], [52], [57].

Our scheduling approach is unique because it seeks to achieve

multiple objectives, guaranteeing strict QoS/latency constraints

for user-facing applications while improving throughput for

batch applications in WSCs.

VII. CONCLUSION

In this work we describe a task management solution,

Octopus-Man, that leverages a mixture of wimpy and brawny

cores on core-heterogeneous systems to deliver improve en-

ergy efficiency and workload throughput in Warehouse Scale

Computers (WSCs). Octopus-Man exploits the periods of low

load common among latency-sensitive jobs, mapping those

jobs to the least power-hungry processing resources that can

satisfy their QoS requirements, thus greatly improving energy

efficiency or freeing up high performance resources for other

work.
We designed, implemented, and evaluated Octopus-Man

on a real heterogeneous core platform (Intel QuickIA) ex-

perimenting on two different workloads – web-search and

memcached – using realistic workload profiles. We show

that Octopus-Man can improve energy efficiency over current

scheduling policies by up to 41% for CPU power and up to

15% for full-system power, or alternatively that it can improve

batch processing throughput by an average of 34%, all while

adhering to QoS constraints for latency-sensitive jobs.

VIII. ACKNOWLEDGMENTS

We thank our anonymous reviewers for their feedback and

suggestions. This research was supported by Google and by the

National Science Foundation under grants CCF-SHF-1302682

and CNS-CSR-1321047.

REFERENCES

[1] B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing, “Utilizing green
energy prediction to schedule mixed batch and service jobs in data
centers,” ACM SIGOPS Operating Systems Review, vol. 45, no. 3, pp.
53–57, 2012.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “FAWN: a fast array of wimpy nodes,” Commun. ACM,
vol. 54, no. 7, pp. 101–109, Jul. 2011.

[3] L. A. Barroso, J. Dean, and U. Holzle, “Web-search for a planet: The
google cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28,
2003.

[4] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[5] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
Lectures on Computer Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[6] L. A. Barroso and P. Ranganathan, “Guest editors’ introduction:
Datacenter-scale computing,” Micro, IEEE, vol. 30, no. 4, pp. 6–7, 2010.

[7] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty,
P. Brett, A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover,
X. Jiang, and R. Iyer, “QuickIA: Exploring heterogeneous architectures
on real prototypes,” in HPCA ’12.

[8] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous
multi-core architectures,” in ISLPED ’12.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[10] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling for
Heterogeneous Datacenters,” in ASPLOS ’13.

[11] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in ASPLOS’14.

[12] Electronic Educational Devices, “Watts Up PRO,” 2010.
[13] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley,

“Looking back on the language and hardware revolutions: measured
power, performance, and scaling,” in ASPLOS ’11.

[14] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA ’07.

[15] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto, “Maximizing power
efficiency with asymmetric multicore systems,” Commun. ACM, vol. 52,
December 2009.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in ASPLOS ’12.

[17] E. Frachtenberg, “Holistic datacenter design in the open compute
project,” Computer, vol. 45, no. 7, pp. 83–85, 2012.

[18] G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control
of Dynamic Systems, 4th ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2001.

[19] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control
of Dynamic Systems, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[20] Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol
and greenswitch: managing datacenters powered by renewable energy,”
in ASPLOS ’13.

[21] P. Greenhalgh, “Big.LITTLE processing with ARM CortexTM-A15 and
Cortex-A7,” White Paper, ARM, 2011.

[22] M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous
processors with market mechanisms,” in HPCA ’13.

[23] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[24] U. Holzle, “Brawny cores still beat wimpy cores, most of the time,”
IEEE Micro, 2010.

[25] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic voltage
scaling in multitier web servers with end-to-end delay control,” IEEE
Trans. Comput., vol. 56, no. 4, pp. 444–458, Apr. 2007.

[26] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: quantifying and mitigating the price of efficiency,”
in ISCA ’10.

[27] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21–
29, Mar. 2005.

[28] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in EuroSys ’10.

[29] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering
insights for large-scale online services,” IEEE Micro, vol. 30, no. 4, pp.
8–19, Jul. 2010.

[30] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in MICRO ’03.

[31] M. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean code:
Achieving near-free online code transformations for warehouse scale
computers,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), ser. MICRO-47. New York,
NY, USA: ACM, 2014.

[32] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi,
“Capping the brown energy consumption of internet services at low
cost,” in International Green Computing Conference, 2010, pp. 3–14.

[33] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power
gating,” IEEE Comput. Archit. Lett., vol. 8, no. 2, pp. 48–51, Jul. 2009.

[34] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P. Jouppi,
“System-level integrated server architectures for scale-out datacenters,”
in MICRO ’11.

[35] T. Li, P. Brett, R. C. Knauerhase, D. A. Koufaty, D. Reddy, and S. Hahn,
“Operating system support for overlapping-isa heterogeneous multi-core
architectures,” in HPCA ’10.

[36] K. Lim, D. Meisner, A. G. Saidi, and T. F. Wenisch, “Thin servers with
smart pipes: Designing soc accelerators for memcached.”

[37] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in ISCA ’14.

[38] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
out processors,” SIGARCH Comput. Archit. News, vol. 40, no. 3, pp.
500–511, Jun. 2012.

[39] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “Feedback
control architecture and design methodology for service delay guarantees
in web servers,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp.
1014–1027, Sep. 2006.

[40] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, “A case
for guarded power gating for multicore processors,” in HPCA ’11.

[41] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,
and M. Horowitz, “Towards energy-proportional datacenter memory
with mobile dram,” in ISCA ’12.

[42] J. Mars, L. Tang, and R. Hundt, “Whare-map: Heterogeneity in “homo-
geneous” warehouse-scale computers,” in ISCA ’13.

[43] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity,” Computer
Architecture Letters, vol. 10, no. 2, pp. 29–32, 2011.

[44] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), ser. MICRO-
44. New York, NY, USA: ACM, 2011, pp. 248–259. [Online].
Available: http://doi.acm.org/10.1145/2155620.2155650

[45] J. Mars, L. Tang, K. Skadron, M. L. Soffa, and R. Hundt, “Increasing
utilization in modern warehouse-scale computers using bubble-up,”
IEEE Micro, vol. 32, no. 3, pp. 88–99, May 2012. [Online]. Available:
http://dx.doi.org/10.1109/MM.2012.22

[46] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
ISCA ’11.

[47] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” SIGMETRICS ’10.

[48] P. Ranganathan, “Recipe for efficiency: principles of power-aware com-
puting,” Communications of the ACM, vol. 53, no. 4, pp. 60–67, 2010.

[49] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Mobile processors for
energy-efficient web search,” ACM Trans. Comput. Syst., vol. 29, no. 3,
pp. 9:1–9:39, Aug. 2011.

[50] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for datacenters,”
Micro, IEEE, vol. 30, no. 4, pp. 65–79, 2010.

[51] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-
level full-system power models,” in HotPower ’08.

[52] J. C. Saez, A. Fedorova, D. Koufaty, and M. Prieto, “Leveraging
Core Specialization via OS Scheduling to Improve Performance on
Asymmetric Multicore Systems,” ACM Trans. Comput. Syst., vol. 30,
no. 2, pp. 6:1–6:38, Apr. 2012.

[53] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
EuroSys’13.

[54] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa, “Reqos: Reactive
static/dynamic compilation for qos in warehouse scale computers,” in
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
ser. ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 89–100.
[Online]. Available: http://doi.acm.org/10.1145/2451116.2451126

[55] L. Tang, J. Mars, X. Zhang, R. Hagmann, R. Hundt, and
E. Tune, “Optimizing google’s warehouse scale computers: The numa
experience,” in Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), ser.
HPCA ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
188–197. [Online]. Available: http://dx.doi.org/10.1109/HPCA.2013.
6522318

[56] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
ICPPW ’10.

[57] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through Performance Impact
Estimation (PIE),” in ISCA ’12.

[58] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in MICRO ’12.

[59] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse
scale computers,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), ser. ISCA ’13. New
York, NY, USA: ACM, 2013, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485974

[60] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars, “Happy:
Hyperthread-aware power profiling dynamically,” in USENIX ATC ’14.

[61] Y. Zhang, M. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real system smt processors to improve utilization
in warehouse scale computers,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
ser. MICRO-47. New York, NY, USA: ACM, 2014.

