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Octupole deformation of nuclei near the spherical closed-shell configurations
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The origin of octupole deformation for even-even nuclei near the doubly-closed shell configurations
are investigated by means of the semiclassical periodic orbit theory. In order to focus on the change of
shell structure due to deformation, a simple infinite-well potential model is employed with octupole
shape parameterized by merging a sphere and a paraboloid. Attention is paid to the contributions
of the degenerate families of periodic orbits (POs) confined in the spherical portion of the potential,
that are expected to partially preserve the spherical shell effect up to considerably large value of
the octupole parameter. The contribution of those POs to the semiclassical trace formula plays an
important role in bringing about shell energy gain due to octupole deformation in the system with
a few particles added to spherical closed-shell configurations.

PACS numbers: 21.60.-n, 36.40.-c, 03.65.Sq, 05.45.Mt

I. INTRODUCTION

Atomic nuclei take various shapes with varying num-
bers of constituent protons and neutrons, and the single-
particle shell structures play the essential role in their
deformations and shape stabilities. In general, systems
with particle numbers sufficiently far from the spheri-
cal magic numbers will deform. The majority of the
ground-state shapes are known to be quadrupole type,
but some exotic shapes are found depending on the com-
binations of proton and neutron numbers, and the pos-
sible breaking of the reflection symmetry is one of the
fundamental problems in nuclear structure physics. The
ground-state octupole deformations are observed only for
a few nuclei, such as those around the neutron-rich Ba
region and Ra-Th region. These regions are located in
the “north-eastern” neighbors of doubly magic nuclei on
the (N,Z) plane of the nuclear chart, namely, they cor-
respond to the systems with a few particles added to
spherical closed-shell configurations [1]. Possible static
octupole shapes for even-even nuclei have been system-
atically investigated with various theoretical approaches
such as microscopic-macroscopic models [2], the gener-
ator coordinate method [3], density functional theories
[4, 5], and recently with the Hartree-Fock-BCS model
with three-dimensional Cartesian mesh representation
[6], which are consistent with the experimental data and
suggest promising regions of nuclei where octupole defor-
mation might be found.
As the origin of the ground-state octupole deforma-

tions for these nuclei, the octupole correlation within the
approximately degenerate ∆l = 3 pair of single-particle
levels is considered to play a significant role. Such pairs of
levels arise systematically above the spherical shell gaps
for systems with sharp surface potential. For example,
(2g7/2, 1j15/2) orbitals above the N(Z) = 126 gap and
(2f5/2, 1i13/2) orbitals above the N(Z) = 82 gap are ap-
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FIG. 1. Comparison of the single-particle spectra for spherical
harmonic oscillator (HO) potential model (left) and spherical
infinite-well (cavity) potential model (right). Nearly degen-
erate ∆l = 3 pairs of the single-particle levels in the cavity
model are indicated by braces. The italic numbers marked
on each energy gap represent the number of levels below the
gap, taking spin degeneracy into account.

proximately degenerate in the realistic nuclear mean field
potential.

Figure 1 compares the single-particle spectra of the
spherical harmonic-oscillator (HO) potential model and
the spherical infinite-well potential (cavity) model, which
have been referred to as schematic models for light and
heavy nuclei, respectively. In the cavity model, one
finds pairs of ∆l = 3 levels (enclosed by braces) above

http://arxiv.org/abs/2303.02701v2
mailto:arita@nitech.ac.jp


2

each shell gap, for instance, 2g and 1j levels above the
N = 138 gap, 2f and 1i levels above the N = 92 gap.
Thus, the cavity potential preserves important features of
the shell structure of the realistic nuclear mean field, al-
though the magic numbers are a little shifted from those
of the realistic ones due to the absence of spin-orbit cou-
pling.

Since one has large octupole matrix elements between
such ∆l = 3 levels, one of the levels is expected to
go down rapidly with increasing octupole deformation,
and the system just above the closed-shell configuration
which occupies this downward level would prefer octupole
shape[1]. The behavior of those levels with respect to per-
turbations of the octupole operators and their relation to
the octupole deformation energy have been examined in
Refs. [7, 8].

On the other hand, from the view point of the shell
correction method, shell energy is governed by the gross
shell structure[9] and it is not obvious whether the origin
of total shell energy can be attributed to the behavior of
specific orbitals. Moreover, there must be some simple
mechanism involved in the remarkable systematics in the
distribution of reflection asymmetry on the nuclear chart
found in the above numerical calculations.

In this paper, I analyze a simple cavity potential model
to reveal the essential mechanism of the nuclear octupole
deformation. As well as the behavior of ∆l = 3 pairs of
single-particle levels, I shall consider the effect of gross
shell structure from a semiclassical point of view; namely,
I examine the role of the classical periodic orbits (POs)
in the semiclassical single-particle level density.

The idea of this work was brought about by my re-
cent works with my colleagues, in which we discussed
the deformed shell effect of nuclei through the fission
path [10–12]. In the fission process, a nucleus is elon-
gated and a neck is formed which gradually separates
the system into two subsystems. Such subsystems are
called prefragments. The prefragment shell effect, asso-
ciated with each of the subsystems, is expected to come
up after the neck formation[13, 14], and it must be play-
ing a significant role in determining the fission path in
the deformation space and the resulting fragment mass
distribution. However, it is usually difficult to extract
the prefragment effect alone out of the total shell effect
since most of the single-particle wave functions are not
localized in each of the prefragments. To deal with this
problem, we have proposed a simple idea using the semi-
classical periodic orbit theory (POT)[11]. In the semi-
classical trace formula, shell energy is expressed as the
sum over contributions of classical POs. When the neck
is formed, one has families of POs confined in each of the
prefragments, and their contributions to the level den-
sity can be regarded as the prefragment shell effect. The
POs in the spherical (but truncated) prefragment make
a strong shell effect similar to (but a little smaller than)
that for a full spherical potential. Since the POs with
the same property have the same kind of contribution to
the shell energy, the prefragment PO should bring about

considerable shell-energy gain to the system when the
size of the prefragment is same as that of the spherical
magic nucleus. Such a condition for the sizes of prefrag-
ments is favored by the nucleus in the fission process, and
this provides a simple and intuitive explanation for the
mechanism of the asymmetric fission in actinide nuclei.
Although the cavity model employed in the above work is
unrealistic, especially just before the scission point for in-
stance, the essential mechanism for the prefragment shell
effect will be applicable in more realistic situations. In
the realistic density functional theory calculation, it has
been shown that the nucleon distributions in the pre-
fragments for the fissioning nucleus are very similar to
those of isolated nuclei[15, 16]. Then, one expects the
same mean field in a prefragment as that for an isolated
nucleus, and the semiclassical mechanism of the prefrag-
ment shell effect associated with the classical POs local-
ized in the prefragment seems to be justified. One can
expect the same situation in nuclei just above the spher-
ical shell closures.

Thus, the main issue of this paper is to show that the
above idea of the prefragment shell effect can be also
used in explaining the systematics of the octupole defor-
mation. For this aim, I employ a simple cavity potential
model whose surface shape is made of a sphere and a
paraboloid joined together. In the study of octupole de-
formation, the surface shape is usually expanded in terms
of spherical harmonics Ylm for convenience[2, 17]. On
the other hand, the way of introducing reflection asym-
metry in this work is based on the physical insight that
the nucleus would have shell energy gain associated with
the spherical subsystem, in the same way as the strongly
elongated nuclei in the fission processes. The compari-
son of this parametrization with the conventional one is
made in the separate paper[18].

Apart from the above objective, I would also like to
consider two other problems using this model. The first
is to answer the question whether the octupole deforma-
tion of the cavity boundary causes the parity mixing of
approximately degenerate ∆l = 3 levels in the same way
as the perturbation of the potential by the octupole op-
erator. It is a nontrivial question which cannot be simply
answered by the ordinary method of perturbation. The
second is to confirm the validity of the semiclassical trace
formula for the truncated spherical cavity which I have
developed[10].

This paper is organized as follows. In Sec. II, the
octupole cavity potential model employed in this work
is defined, and details of the shape parametrization are
discussed. Then, I investigate the parity mixing of the
∆l = 3 pair of single-particle levels. Next, in Sec. III,
I consider the evolution of gross shell structure with in-
creasing octupole deformation, and its role in explaining
the systematics of the octupole deformation is analyzed
with the use of the semiclassical POT. Section IV is de-
voted to the summary and concluding remarks.
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FIG. 2. Shape of the octupole surface defined by Eq. (1). A
sphere and a paraboloid are smoothly joined at z = z1. The
relative size of the “tip” part κ is considered as the octupole
parameter.

II. OCTUPOLE CORRELATION BETWEEN

THE ∆l = 3 PAIR OF LEVELS

As illustrated in Fig. 2, octupole deformation can be
induced by pinching one spot on the surface of the sphere.
Here, I shall use the term “octupole deformation” sym-
bolically as the shape with finite octupole moment. In
general, expansion of the reflection-asymmetric nuclear
surface shape into the spherical harmonics can contain
higher order multipole components (Ylm with l > 3) but
the main reflection-asymmetric component must be Y3m.
I shall parameterize the axially symmetric octupole shape
by merging a sphere and a paraboloid. Then, the surface
ρ = ρs(z) in the cylindrical coordinate (ρ, ϕ, z) is ex-
pressed as

ρ2s(z) =

{

a2 − z2, −a ≤ z ≤ z1,
2z1((1 + κ)a− z), z1 ≤ z ≤ (1 + κ)a,

z1 =
(

1 + κ−
√

(2 + κ)κ
)

a (1)

where the sphere and the paraboloid are smoothly
merged at z = z1. The thickness κ(≥ 0) of the paraboloid
“tip” relative to the radius a of the sphere part can be
regarded as the octupole parameter. The parameter a
is determined so that the volume conservation condition
is satisfied. Such shape parametrization is initiated to
obtain a shell effect originated from the contribution of
classical PO families confined in the spherical subsystem.
Let us first look at the single-particle shell structure in

the above octupole-deformed infinite-well potential

V (r) =

{

0 [ρ(z) ≤ ρs(z)]
+∞ [ρ(z) > ρs(z)]

(2)

Figure 3 shows the single-particle level diagram plotted
against the octupole parameter κ. The eigenvalue prob-
lem for the Laplace equation with Dirichlet boundary
condition can be solved, e.g., by the method described
in Ref. [19], which has been taken here. At above each
of the spherical gaps such as N = 92 and 138, one may
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FIG. 3. Single-particle level diagram. Broken and solid curves
represent K = 0 and K ≥ 1 levels, respectively. Thick broken
curves represent the pairs of ∆l = 3 levels with K = 0 that
are approximately degenerate in the spherical limit κ = 0.

find the levels rapidly go down with increasing κ. Let us
examine the reasons of such behavior. The most rapidly
decreasing level above the N = 92 (138) gap is the 2f
(1j) orbital with the magnetic quantum number K = 0,
and there are ∆l = 3 orbitals 1i (2g) just above it (see
also Fig. 1). These pairs are indicated by the thick bro-
ken curves in Fig. 3. Thus, the above behavior of the
levels seems to be related to the parity mixing of those
levels due to the octupole correlation.

Here let us review some basics on the breaking of re-
flection symmetry and parity mixing. Suppose that two
levels |1〉 and |2〉 with opposite parities are approximately
degenerate in the symmetric limit:

H0|1〉 = (ε− δ)|1〉, H0|2〉 = (ε+ δ)|2〉 (δ > 0),

P |1〉 = σ|1〉, P |2〉 = −σ|2〉 (σ = ±1), (3)

where P is the parity (space inversion) operator and
H0 is the reflection-symmetric Hamiltonian (H0P =
PH0). Consider the parity-violating perturbation λV
(PV = −V P ) which satisfies 〈1|V |1〉 = 〈2|V |2〉 = 0 and
〈1|V |2〉 = 〈2|V |1〉 = v > 0. Then, the parity mixing is
described by the 2× 2 Hamiltonian matrix

H = H0 + λV =

(

ε− δ λv
λv ε+ δ

)

. (4)

The solutions of the eigenvalue equation H |ψ±〉 =
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FIG. 4. Evolution of the wave functions of the ∆l = 3 pair
of single-particle levels just above the N = 138 gap. The
contour plots of the wave functions are shown. The energy
eigenvalue e of each level is given at the upper left of the
figure. The panels in the left and right columns are for the
lower and upper levels, originating from the negative-parity
1j and positive-parity 2g orbits, respectively, with increasing
octupole parameter κ from top to bottom.

E±|ψ±〉 are given by

E±(λ) = ε±
√

δ2 + (λv)2, (5)

|ψ−(λ)〉 = C

(

|1〉 − λv
√

δ2 + (λv)2 + δ
|2〉
)

,

|ψ+(λ)〉 = C

(

|2〉+ λv
√

δ2 + (λv)2 + δ
|1〉
)

, (6)

where C is the normalization constant. The parity dou-
blet |1〉 and |2〉 gradually mix and the energy splitting
grows with increasing λ. Finally, for λv ≫ δ, complete
mixing is achieved and one has the parity partner

|ψ±〉 ≃
1√
2
(|1〉 ± |2〉), P |ψ±〉 ≃ σ|ψ∓〉, (7)

where the energy splitting is given approximately by

∆E ∼ 2λv. (8)

The question here is whether the changes in wave func-
tions and eigenvalue energies as described above also ap-
ply to the cavity model against octupole deformation of
the potential surface. Figure 4 displays the evolutions of

the wave functions of a pair of single-particle levels with
increasing κ for the K = 0 states originating from the
∆l = 3 orbital pair 1j and 2g just above the spherical
gap N = 138. Each panel shows the contour plot of the
wave function. At κ = 0.01, each wave function is almost
entirely occupied by the parity eigenstate. With increas-
ing octupole deformation, a complete mixing seems to be
achieved already at κ ≈ 0.1, where one of the wave func-
tions is quite similar to a space inversion of the other as
shown in the second equation of (7). The behavior of the
energy splitting with increasing κ is also consistent with
Eq. (8) by assuming λ ∝ κ. The same properties also
hold for the K > 0 pairs of levels. Thus, it is confirmed
that the parity mixing of nearly degenerate ∆l = 3 levels
explains the behavior of the single-particle shell struc-
ture against the octupole deformation. This behavior is
expected to play a certain role in enabling the system to
achieve stable octupole deformation.

III. GROSS SHELL STRUCTURE IN TERMS OF

CLASSICAL PERIODIC ORBITS

The liquid drop model explains an average property of
nuclei, and the quantum fluctuation about it is essentially
given by the single-particle shell effect. In a liquid drop
picture, a nucleus is most stable in the spherical shape,
which minimizes the surface energy. The pronounced
shell structure in the spherical potential is advantageous
for the closed-shell configurations, and conversely, disad-
vantageous for the open-shell configurations. The spher-
ical shape becomes more unstable as the number of par-
ticles deviates from any magic number corresponding to
the closed-shell configuration, and the system will de-
form when the shell energy gain due to the deformation
surpasses the increase of liquid-drop surface energy.
The nuclear ground-state deformations are considered

to be of the quadrupole type in most cases. Another rea-
son why the quadrupole type deformation is most likely
to occur is the regularity of single-particle motion, which
contributes to the strong deformed shell effect. In a po-
tential with small quadrupole deformation, classical mo-
tion of a single particle is mostly regular (stable). How-
ever, the classical motion rapidly becomes chaotic (un-
stable) with increasing octupole-type deformation[20].
In general, quantum level repulsion occurs in a classi-
cally chaotic system, which makes the shell effect small
compared to systems where the classical motion is reg-
ular. For an exotic deformation to emerge, a consid-
erably strong shell effect is necessary which is usually
associated with dynamical symmetries, or resonances in
another word, arising locally in the system for specific
potential shapes[21–23]. A typical example is the so-
called superdeformed state, where the axis ratio is ap-
proximately 2:1. It is understood in analogy with the
pronounced degeneracy of levels found in a deformed os-
cillator potential with rational axis ratio.
In analyzing the origin of such gross shell effect, semi-
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classical POT provides us with a powerful tool[23–27]. In
general, distribution of single-particle energy eigenvalues
shows a regular oscillating pattern, but its origin cannot
be explained within the framework of pure quantum me-
chanics. To describe the above oscillation, Balian and
Bloch considered a semiclassical approximation and de-
rived an outstanding formula which expresses the quan-
tum level density

g(e) =
∑

i

δ(e− ei) (9)

as the sum over contributions from the classical POs[25].
The formula they have obtained is specific to the infinite-
well (cavity) potential systems, although it is applicable
to any dimension and shape. Independently of them,
Gutzwiller derived the same type of the formula from a
different semiclassical approach[24]. His formula, known
as the Gutzwiller trace formula, can be applied to Hamil-
tonian systems with more generic potentials, but is lim-
ited to the case where all classical motions are unstable
and the system has no continuous symmetries such as
rotational symmetries. In the opposite extreme with re-
spect to the stability of the classical motions, the trace
formulas for completely integrable (multiply periodic)
systems are derived by Berry and Tabor based on the
torus quantization condition of Einstein, Brillouin, and
Keller (EBK) [28]. The extension of the Gutzwiller
trace formula to systems with continuous symmetries
was made, e.g., in Refs. [9, 29]. The formulas appli-
cable to the stable orbits that encounter bifurcations,
for which Gutzwiller’s formula breaks down, have been
derived by the uniform approximations[30] and the im-
proved stationary-phase approximation[31, 32]. The gen-
eral version of the trace formula, incorporating all the
above, might be expressed as

g(e) = g0(e) + δg(e), (10)

δg(e) ≃
∑

PO

APO(e) cos
(

1
ℏ
SPO(e)− π

2µPO

)

, (11)

where g0 represents the average level density, equivalent
to the (extended) Thomas-Fermi approximation[26, 33,
34], and the oscillating component δg is expressed as
the sum over the contribution of classical POs. SPO =
∮

PO
p · dr represents the action integral along the PO,

µPO is the Maslov index related to the geometrical char-
acter of PO, and the amplitude APO is fully determined
by the classical properties (such as degeneracy, period,
and stability) of the orbit. Since the action integral is
generally a monotonically increasing function of energy e,
each contribution of PO in the right-hand side of Eq. (11)
gives a regularly oscillating function of e. The orbit with
shorter period TPO = dSPO/de gives the gross structure
of the level density and the longer orbits contribute to
the finer structures. In order to investigate the gross
shell structure, it is sufficient to consider the contribu-
tions of only a few shortest POs. If the single-particle
Hamiltonian has continuous symmetries, each PO gen-
erally forms a continuous family of several parameters.

    

   

S(2,1) S(3,1) S(4,1)

M(2,1) M(3,1) M(4,1)a M(4,1)b

FIG. 5. Some short classical POs in the octupole cavity
whose surface is given by Eq. (1) with the octupole parameter
κ = 0.2. The lower panels represent the meridian-plane orbits
M(v, w), and the upper panels represent the regular polygon
orbit families S(v,w) confined in the sphere part of the po-
tential. The indices v and w represent the number of vertices
and the winding number, respectively.

Such a family is called a degenerate orbit and the num-
ber of continuous parameters KPO for the family is called
the degeneracy. Note that the orbits with higher degen-
eracies make a more significant contribution to the level
density. Speaking in the context of semiclassical ℏ expan-
sion, the amplitude factor APO is of the order ℏ−KPO/2.

Looking at the level diagram in Fig. 3, one will find
an approximately degenerate cluster of levels below each
spherical shell gap, preserving strong shell effects up to
fairly large values of the octupole parameter κ . As I
show in the following, this strong shell effect under oc-
tupole deformation is related to the local symmetry of the
system, namely, the presence of the partially spherically
symmetric subsystem. In the smooth potential models,
dynamical symmetries play the same role. If the system
has such special local symmetry or dynamical symmetry
under the exotic shape, a strong deformed shell effect
is expected and the importance of such shape degree of
freedom might come into competition with that of the
quadrupole type.

Among the classical POs in the cavity model under
consideration, there are degenerate family of orbits local-
ized in the sphere part of the potential. Figure 5 displays
some short simple POs. The upper panels show the di-
ameter (K = 2) and regular polygon (K = 3) families of
orbits localized in the spherical part, and the lower pan-
els show the isolated (K = 0) linear symmetry-axis orbit
and the meridian-plane orbit families (K = 1). There
are also three-dimensional (non-planar) orbits that form
K = 1 families, but they are longer than the above ones
and contribute only to the finer shell structures.

One can see the contribution of these orbits to the
semiclassical level density using the Fourier transforma-
tion technique. Through the classical motion of the par-
ticle in the cavity potential, the magnitude of the mo-
mentum p is kept constant, and the action integral along
the orbit is simply given by the product of p and the ge-
ometric length LPO of the orbit. Thus, the level density
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in the wave-number variable k (p = ℏk) is expressed as

g(k) = g(e)
de

dk

= g0(k) +
∑

PO

aPO(k) cos(kLPO − π
2µPO). (12)

The simple k dependence of the above phase factor en-
ables us to estimate the contribution of each orbit by the
Fourier transformation of level density. Let us consider
the Fourier transform defined by

F (L) =

√

π

2

1

kc

∫

g(k)eikLe−(k/kc)
2/2dk. (13)

In this definition, a Gaussian cutoff factor is incorporated
into the integrand in order to exclude the high energy
part (k ≫ kc) of the level density which is numerically
inaccessible. The calculation of the Fourier transform of
the exact quantum level density is straightforward if one
has the quantum energy spectrum {ej = (ℏkj)

2/2m}.
Inserting g(k) =

∑

j δ(k − kj) into Eq. (13), one has

F (qm)(L) =

√

π

2

1

kc

∑

j

eikjLe−(kj/kc)
2/2. (14)

On the other hand, by inserting the semiclassical expres-
sion (12) into (13), one has

F (cl)(L) = F0(L) +
∑

PO

aPOe
−iπµPO/2e−{kc(L−LPO)}2/2

(15)
which is a function exhibiting peaks at the lengths of the
POs, L = LPO, with heights proportional to the am-
plitude aPO. In deriving Eq. (15), k dependence of the
amplitude aPO is ignored for simplicity. Taking into ac-
count the correct k dependence, one has another expres-
sion where the Gaussian is replaced by a different but
similar single-peaked function (see Fig. 11 of Ref. [10]).
In this way, one can extract information on the con-

tribution of classical POs by the Fourier transform of
the quantum level density. The summation in Eq. (14)
can be truncated at certain kmax if one takes kc suf-
ficiently smaller than kmax. kc determines the resolu-
tion ∆L of the orbit length by the uncertainty relation
∆L = 1/kc. Sufficiently large kc is required for a good
resolution of the orbit length, and I took kcR0 = 20 (R0

being the radius of the potential in the spherical limit)
and kmax = 3

2kc in the present calculation.
The upper panel of Fig. 6 displays the modulus of

quantum-mechanical Fourier transform |F (qm)(L;κ)| as
a function of the length variable L and the octupole pa-
rameter κ. In the lower panel, the length of the classi-
cal POs are plotted as functions of octupole parameter.
Solid curves represent the lengths of the regular polygon
POs confined in the sphere part of the potential, and
broken lines represent those of the meridian-plane orbits.
By comparing these two panels, it can be seen that the
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FIG. 6. In the upper panel (a), modulus of the Fourier trans-

form of the quantum level density |F (qm)(L;κ)| [see Eq. (14)]
is shown as a function of L and κ. In the lower panel (b),
lengths of the classical POs are plotted as functions of κ.
Solid lines represent the lengths of the regular polygon orbits
confined in the sphere part, and the broken lines are for the
meridian-plane orbits.

Fourier amplitude has strong peaks mainly along the or-
bit families confined in the sphere part. Particularly, the
peak corresponding to the triangular orbit S(3,1) is out-
standing. Thus, one can expect that the gross shell effect
is given mostly by the contribution of this triangular fam-
ily.
The effect of the shell structure on deformation should

be estimated by the shell energy, rather than the level
density. Using Eq. (11), one obtains the trace formula
for shell energy as[9, 26]

δE(N) =

∫ eF

(e− eF )δg(e)de

≃
∑

PO

ℏ
2

T 2
PO

APO(eF ) cos
(

kFLPO − π
2µPO

)

, (16)

where eF = (ℏkF )
2/2M is the Fermi energy satisfying

N =

∫ eF

g(e)de. (17)

The additional factor T−2
PO in Eq. (16) suppresses the con-

tributions of longer orbits, and accordingly one has only
to consider a few shortest POs with higher degeneracies.
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FIG. 7. Shell energy δE(N) multiplied by N−2/3 plotted

against N1/3, for the octupole parameter values κ = 0, 0.2,
and 0.5. Dotted curve represent the quantum result, and the
solid curve represent the semiclassical trace formula taking
into account the contribution of some short regular polygon
families confined in the sphere part of the cavity.

For the cavity model under consideration, the contri-
bution of the PO family confined in the sphere part can
be directly evaluated by the trace formula for a truncated
spherical cavity which has been derived for the study of
the nascent-fragment (prefragment) shell effect in nuclear
fission processes[10]. Figure 7 shows the results of shell
energies (16) for the octupole parameter values κ = 0,
0.2, and 0.5. For these relatively small octupole defor-
mations, quantum results are nicely reproduced by the
contribution of POs confined in the sphere part of the
potential. One finds that the oscillating pattern in case
of the spherical shape survives well in the octupole de-
formed system.

Keeping in mind that the shell effect is essentially de-
termined by the POs confined in the sphere part of the
potential, let us consider the condition for the system to
take the octupole shape by focusing attention on the PO
contribution. Because of the saturation property, volume
V surrounded by the potential surface is proportional to
the particle number N . According to the Weyl’s asymp-
totic formula[35], the leading term of the average level

density is given by1

g0(e) ≃
2M

ℏ2

V k

4π2
, (18)

with the volume

V =
4π

3
R3

0 =
4π

3
Nr30 , (19)

where R0 = N1/3r0 is the nuclear radius in the spherical
limit. From the relation between Fermi wave number kF
and particle number N , one obtains

N ≃
∫

ℏ
2k2

F /2M

0

g0(e)de =
V k3F
6π2

≃ 2N(kF r0)
3

9π
,

kF ≃
(

9π

2

)1/3

r−1
0 .

Thus, the value of the Fermi wave number kF is approx-
imately independent of the particle number N .
In the trace formula (16), let us introduce the reduc-

tion factor wPO of the PO family amplitude due to the
truncation, and assume that the Maslov indices are un-
changed by the truncation2

APO(eF ) = wPOA
(0)
PO(eF ), µPO ≃ µ

(0)
PO, (20)

where A
(0)
PO and µ

(0)
PO represent the amplitude and Maslov

indices for the PO family in the spherical cavity without
truncation. Inserting them into Eq. (16) and replacing
wPO with w31 of the dominant triangular orbit S(3,1),
one has

δE(N) ≃ w31

∑

PO

ℏ
2

T 2
PO

A
(0)
PO cos(kFLPO − π

2µPO)

= w31δE
(0)(N (0)(eF )), (21)

where δE(0) is the shell energy of the spherical cavity
without truncation. Since the number of the constituent
particles is proportional to the volume surrounded by the
potential surface under the fixed Fermi energy, one has

N (0)(eF )

N
=
Vsph
V

≡ f(κ), (22)

where V and Vsph are volumes of the total system and
that of the sphere composing the octupole surface (1),
Vsph = 4πa3/3. f(κ) is a monotonically decreasing func-
tion of κ as easily presumed from Fig. 2. As displayed
in Fig. 7, the expression of Eq. (21) explains the main
feature of the shell structure quite well.

1 The unit ℏ2/2M = 1 is used in Ref. [35].
2 To be precise, one has the small shifts of the Maslov indices due
to the contribution of the marginal orbits which correspond to
the higher-order quantum corrections[10].
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FIG. 8. Contour plot of the shell energies as functions of oc-
tupole parameter κ and particle number N . Solid and broken
contour curves represent negative and positive shell energies,
respectively. Thick curves show where the radius of the sphere
part of the potential is equal to the radius of the spherical
magic nuclei with particle numbers Nsph = 58, 92 and 138.

According to the rough but meaningful estimation dis-
cussed above, the shell energy described by the contri-
bution of PO in Eq. (16) is essentially governed by the
lengths LPO of the orbits in the sphere part of the poten-
tial. The contribution of those POs will then minimize
the shell energy when the radius of the sphere part is
identical to the radius of spherical magic nucleus. Fig-
ure 8 shows the contour plot of the shell energy in the
(κ,N) plane. The curves (22) for N (0) at some spherical
magic numbers Nsph are also drawn in the figure. One
will find that those curves successfully explain the shell
energy valleys.

IV. SUMMARY

Octupole deformation of nuclei above the spherical
magic configurations are investigated by the simple cav-
ity potential model, where the potential surface is pa-
rameterized by merging a sphere and a paraboloid. The
semiclassical trace formula for the truncated spherical
cavity is successfully applied to our model and gives us
a clear understanding of the properties of shell struc-
ture. The contribution of degenerate orbit family con-
fined in the spherical subsystem brings about a strong
shell effect similar to those in the spherical shape, and it
plays a significant role in stabilizing the octupole shape.

This mechanism nicely explains the systematics of the
octupole deformations on the nuclear chart.
This result is also related to the recent works on the

role of the octupole shape degree of freedom in fission
fragments[36, 37]. In the fission process, prefragments
take octupole shapes near the scission point, and the oc-
tupole shell effect controls the size of the fragment. Since
particle numbers a little above the spherical magic num-
ber prefer octupole deformation, it explains why the mass
number of heavier fragment is concentrated around 140,
a little larger than that of doubly magic 132Sn.
The current shape parametrization can be generalized

to spheroid+paraboloid, which enables us to investigate
the ground state shapes of nuclei, taking account of the
quadrupole and octupole shape degrees of freedom. Re-
sults of the systematic analysis with such an extension
will be discussed in a separate paper[18].
There have been various approaches to examine the

ground-state octupole deformation over the nuclear
chart, and in most of those analyses, axially symmet-
ric type of octupole deformation was the main consider-
ation. In this work, I have also limited myself to the
axially symmetric case. However, it should be men-
tioned that nonaxial octupole shape degrees of freedom
and the role of ∆l = 3 pair of levels in it were ana-
lyzed, and a pronounced bunching of levels was found
in the case of Y32 deformation, which has tetrahedral
symmetry[7, 8]. The theoretical search of tetrahedral
nuclei has been extensively carried out with the realistic
mean field model[38, 39]. Recently, all four types of oc-
tupole shapes and the role of the point-group symmetries
were examined in Pb and superheavy regions[40, 41].
In the present work, the axially symmetric octupole

deformation for the nuclei just above the spherical shell
closures is shown to be related to the dynamical symme-
try, which can be taken as a partial survival of the spher-
ical symmetry for special combination of quadrupole and
octupole deformations. On the other hand, a strong
tetrahedral shell effect is expected by the bifurcation
of PO on the way from spherical to larger tetrahedral
deformation[42]. It is an interesting subject to investi-
gate the systematics of nonaxial octupole deformations
over the nuclear chart and its semiclassical origin, which
is left for future work.
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