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Diabetic retinopathy is among the leading causes of
blindness in the industrialised nations. The clinical
course of diabetic retinopathy has been described in
detail [1] and a grading system for the disease has
been elaborated [2, 3]. The mechanisms underlying
this severe complication of Type I (insulin-depen-
dent) and Type II (non-insulin-dependent) diabetes
mellitus are, however, still not clear. Whereas some
of the mechanisms which lead to proliferation in the
late stages of retinopathy have been explained, the
early processes, which lead to the onset of the disease
are still obscure. Several hypotheses have been pro-
posed including biochemical dysfunction linked to
hyperglycaemia, oxidative stress, humoral or genetic
factors, thickening of the capillary basement mem-
brane and rheological and haemodynamic factors.
The concept that altered retinal blood flow may
have a role in the development of diabetic retinopa-
thy was emphasised more than 20 years ago. Since
then haemodynamics of the retina in patients with di-
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abetes mellitus as well as in animal models of diabe-
tes has attracted considerable research interest.
Much less attention has been paid to the choroidal
circulation in diabetes, which is surprising as much
of the retinal oxygen is supplied from this vascular
bed. In part this may arise from the difficulties in as-
sessing choroidal blood flow in humans. A role for
the choroidal circulation in the pathogenesis of dia-
betic retinopathy has been proposed previously,
based on histological studies of the diabetic choroid
[4-6]. Excessive basement membrane thickening in
the choroid has been shown in human and experi-
mental diabetes [4, 5].

The exact nature of ocular blood flow abnormali-
ties in the different stages of diabetic retinopathy is
still a matter of controversy. This may at least partial-
ly be caused by the variety of techniques used to
assess haemodynamics of the eye. Hence we will
briefly review the different techniques used to assess
ocular haemodynamics in animals and humans and
discuss results from clinical and animal studies in dia-
betes.

Techniques for measurement of ocular blood flow
Anatomy and physiology

The human eye is supplied by two separate vascular
systems: the retinal blood vessels and the uveal blood
vessels. The uveal vessels include the vascular beds of
the iris, the ciliary body, and the choroid. The inner
layers of the retina are nourished by the retinal ves-
sels, whereas the outer retinal layers including the
photoreceptors are nourished by the choroid [7]. In
monkeys 65 % of oxygen consumed by the retina is
delivered by the choroid [8]. There are considerable
differences between the fine structure of the retinal
and the choroidal vasculature. Retinal capillaries
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have a diameter of 5 to 6 um only. The endothelial
cells are surrounded by a basement membrane. With-
in this basement membrane there are a large number
of intramural pericytes. Pericytes as well as endothe-
lial cells are assumed to have an important role in
the control of retinal blood flow. By contrast capillar-
ies in the choroid are much wider and do not contain
pericytes [7].

The perfusion rate in the choroid is much higher
than in the retina. As blood flow is given by perfusion
pressure:vascular resistance, the resistance of the ret-
ina is much higher than that of the choroid. The arte-
riovenous oxygen difference in the choroid is only
3-5%, whereas the oxygen content in arterial blood
of the retina is approximately 38 % higher than in
the veins. This could be related to the fact that the
retinal vasculature shows a strong vasoconstrictor re-
sponse to hyperoxia [9], whereas the choroid does
not [10]. The response of a vascular bed to changes
in arterial oxygen and carbon dioxide tension is
sometimes referred to as autoregulation. It is prefera-
ble to define autoregulation, however, as the ability
of a vascular bed to maintain blood flow despite
changes in perfusion pressure. In its strict sense this
behaviour can only be investigated in isolated organs,
because in vivo experiments to alter ocular perfusion
pressure always induce additional haemodynamic ef-
fects, regulation mechanisms or reflex responses,
which may affect ocular perfusion. In humans artifi-
cial changes in intraocular pressure (IOP), isometric
exercises and pharmacologically induced changes in
blood pressure have been used to show that the retina
has some autoregulatory capacity [11-14]. The auto-
regulatory capacity of the choroid by contrast is still
a matter of debate [7, 15, 16].

Considerable effort has been made to separately
investigate these two vascular beds. Although some
methods are capable of differentiating blood flow in
these vascular beds, validation of results is difficult
since a generally accepted criterion standard is not
available. As in other vascular beds ocular blood
flow is given as blood flow velocity multiplied by
cross-sectional area. Some of the techniques de-
scribed in this review only assess blood velocities. As
cross-sectional area is not known in these cases inter-
pretation of such data with respect to ocular blood
flow should be made with caution. The same holds
true if a technique only measures cross-sectional
area when no information on flow velocity is avail-
able. We will briefly summarise the most important
ocular blood flow techniques. For a more detailed re-
view on ocular blood flow techniques the reader is re-
ferred to a recent article [17].
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Ocular blood flow techniques in humans

Angiographic techniques. Fluorescein angiography
was originally introduced by Novotny and Alvis [18].
This method has become an important clinical tool
in the investigation of retinal blood flow, but normal-
ly only qualitative information can be extracted from
the angiograms. Several attempts have been made to
quantify retinal blood flow, whereby most approach-
es are based on the measurement of the time required
for the dye to pass through the retinal circulation.
Early techniques used densitometric measurements
on photographic images of retinal vessels [19]. Rela-
tive concentrations of fluorescein in vessels of the ret-
ina are calculated for each consecutive picture. Dye
dilution curves can then be derived for retinal arteries
and veins. The mean retinal circulation time, defined
as the difference between venous and arterial times,
is inversely proportional to retinal blood velocity. If
in addition retinal vessel diameters are measured an
estimate of retinal blood flow can be derived. This
technique has been adapted employing videoangiog-
raphy [20-22] and scanning laser ophthalmoscopy
[23-26]. The arterio-venous passage time, defined as
the time between the first appearance of the dye in a
retinal artery and in the corresponding vein [21], has
been used to assess haemodynamics of the retina as
an alternative to mean retinal circulation time.

Several limitations have to be considered when
this method is applied to clinical or experimental
studies [27]. Firstly, the technique assumes that all
the blood of an area supplied by one specific artery
is drained by the corresponding vein, which may not
hold true in all cases. Secondly, the sum of all vessel
diameters is thought to be directly related to retinal
blood volume. Whereas this assumption is perhaps
justified in normal subjects [27], in patients with dia-
betic retinopathy, where areas of retinal non-perfu-
sion exist, this relation seems improbable. A third
problem in diabetic patients arises from the leakage
of fluorescein from retinal vessels, which is more se-
vere in the later stages of retinopathy. Fourthly, va-
sodilation of the retinal vasculature increases the in-
travascular volume of distribution of the dye, which
results in an increased mean circulation time without
a change in blood flow. Fifthly, metabolic changes as-
sociated with diabetes may alter the fraction of pro-
tein bound fluorescein. Finally, an increased haemat-
ocrit may impair visualisation of the dye front.

An interesting approach to partially overcome
these problems is targeted dye delivery [28]. In exper-
imental animals a dye encapsulated in lipid vesicles is
given intravenously and local release of the dye in the
retina is achieved by a short heat pulse induced by la-
ser light. Macular blood flow velocities have also
been measured by tracking hyperfluorescent dots, as-
sumed to represent leucocytes within the retinal ves-
sels and hypofluorescent segments, assumed to pre-
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sent erythrocytes, as they pass through the perifoveal
capillaries [23, 24, 29], but doubts concerning the va-
lidity of this approach have been raised [30]. In addi-
tion, calculation of retinal blood flow is hampered be-
cause the diameters of the perifoveal capillaries can-
not be determined. Techniques used in animal exper-
iments to make leucocytes and erythrocytes visible
have been developed by reinjection of blood cells
stained ex vivo with fluorescent labels [31], which in-
dicate that the speed of leucocytes in capillaries is
considerably slower than that of erythrocytes [32].
Alternatively retinal leucocytes in animals can be
made directly visible using intravenous injection of
acridine orange [33].

Attempts have also been made to extract choroi-
dal haemodynamic data from angiographic measure-
ments; most of these techniques use indocyanine
green as a dye. Several image processing techniques
have been proposed to quantify choroidal blood
flow [34-36], but the validity of these techniques is
still to be shown. As in the retinal circulation it is pos-
sible to make leucocytes visible directly. This has
been achieved using indocyanine green in albino rab-
bits [37]. Alternatively laser-targeted local dye deliv-
ery can also be used for making the blood flow in cho-
riocapillaries visible [38].

Laser Doppler techniques. Another approach for
quantifying retinal, optic disc, and choroidal blood
flow is based on the optical Doppler effect. In laser
Doppler velocimetry (LDV) a single retinal vessel is
illuminated by a high coherence laser beam. This
beam is scattered on the vessel wall as well as the
moving erythrocytes. Hence the back-scattered light
consists of light at the frequency of the incident light
as well as of frequency shifted light. The power spec-
trum therefore consists of a range of frequency shifts
corresponding to the flow velocities within the vessel
under study. The maximum frequency shift corre-
sponds to the maximum centre velocity within the
vessel. Relative flow velocities in larger retinal ves-
sels used to be measured in canine and human retinal
vessels by means of this technique [39, 40]. Using bi-
directional LDV an absolute determination of maxi-
mum centre blood velocities in retinal arteries and
veins is possible [41]. From concomitant measure-
ment of retinal vessel diameter, cross-sectional area
volumetric blood flow can be calculated [42].
Calculation of total retinal blood flow from either
arteries or veins using LDV in combination with reti-
nal vessel size determination provides consistent re-
sults [42]. As mentioned above only the maximum
centre velocity in retinal vessels can, however, be de-
termined with this method. Quantitative information
on the velocity profile in retinal arteries and veins
cannot be extracted from the power spectrum. Hence
the calculation of total retinal blood flow is based on
a theoretical relation between maximum centre ve-
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locity and mean flow velocity within a vessel, which
has not yet been verified in vivo. An unresolved issue
with retinal LDV is that Riva and co-workers [42] de-
termined a total retinal blood flow of approximately
35 ul/min in healthy subjects, whereas Feke et al.
[43] found 80 ul/min in a similar study cohort using a
different instrument for measurement of the power
spectra. Several procedures have been proposed for
the measurement of retinal vessel diameters [44-47].
Obviously an accurate determination of arterial and
venous diameter is of critical importance for the cal-
culation of total volumetric blood flow.

Laser Doppler techniques can also be used to gain
information on optic disc and choroidal blood flow.
Based on the theory of light scattering in tissue [48]
blood flow in the optic disc [49] and the choroid [15,
50, 51] can be measured in relative units (laser Dopp-
ler flowmetry, LDF). This theory [48] assumes that
vascularised tissue is illuminated by coherent laser
light. Scattering on moving erythrocytes leads to a
frequency shift in the scattered light. In contrast, stat-
ic scatterers in tissue do not change light frequency
but lead to randomisation of light directions imping-
ing on erythrocytes. This light diffusing in vascularis-
ed tissue leads to a broadening of the spectrum of
scattered light. Assuming that scattering on the tissue
matrix leads to a total randomisation of light direc-
tions impinging on erythrocytes the mean corpuscu-
lar velocity, the blood volume and the blood flow
can be calculated from the Doppler shift power spec-
trum in relative units. Although LDF in the human
choroid is currently restricted to the region where
the retina lacks vasculature, this method has consid-
erable potential for the investigation of this vascular
bed [16]. The relative contribution of different capil-
lary layers in the optic disc and the choroid to the
Doppler signal is still, however, to be clarified. In ad-
dition it has not yet been shown that all assumptions
of the underlying theory are substantiated in these
vascular beds. Optic disc blood flow has also been in-
vestigated evaluating blood speed with LDV and
blood volume with fundus reflectometry [52].

Scanning laser Doppler flowmetry combines the
principles of LDF with laser scanning tomography
[53]. The commercially available Heidelberg retina
flowmeter can be used to investigate retinal and optic
disc blood flow. During the laser scanning process the
haemodynamic variables are calculated from the
backscattered light for each point. Hence a two-di-
mensional mapping of retinal and optic disc blood
flow can be obtained. The limitations of single point
LDF mentioned above also hold true for scanning la-
ser Doppler flowmetry. In addition, it has been shown
that the instrument has a considerable zero set-off
[54]. Information on very high and very low blood
speeds are possibly lost with this system because the
frequency band used for detection of the Doppler
shifts is narrow (125-2000 Hz, [55]).
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Colour Doppler imaging. The Doppler shift can also
be used to gain information on blood velocities in ex-
traocular vessels [56]. This technique is normally re-
ferred to as colour Doppler imaging (CDI). Doppler
spectra can be obtained from the central retinal arter-
ies, the posterior ciliary arteries and the ophthalmic
artery. Peak systolic velocity (PSV), end diastolic ve-
locity (EDV) and mean flow velocity are determined
with this technique. The resistance index (RI) is cal-
culated as RI = (PSV-EDV)/PSV and has been pro-
posed as a measure of distal vascular resistance for
organs that constantly demand oxygen such as the
brain and the eye [57]. Interpretation of RI as an indi-
cator of vascular resistance has, however, to be made
with caution [58] particularly in pharmacodynamic
studies [59]. One important limitation of CDI is that
no quantitative information on vessel diameter is ob-
tained. Hence calculation of total blood flow is not
possible with this method. Consequently it is often
difficult to decide whether an increase in blood veloc-
ities reflects an increase in blood flow through the ar-
tery or a constriction of the vessel.

Blue field entoptic technique. This method for the in-
vestigation of leucocyte dynamics in retinal perifo-
veal vessels is based on the entoptic phenomenon
[60, 61]. The blue field entoptic phenomenon can be
seen best by looking into a blue light with a narrow
optical spectrum at a wavelength of approximately
430 nm. Under these conditions many tiny corpuscles
can be seen flying around swiftly in an area of 10 to 15
degrees of arc radius centred at the fovea. Most prob-
ably the underlying phenomenon is that erythrocytes,
but not leucocytes absorb short wavelength light.
Thus the passage of a leucocyte is perceived as a fly-
ing corpuscle. For determination of retinal haemody-
namic variables a simulated particle field is shown to
the subjects under study. By comparison with their
own entoptic observation subjects can adjust the
number of leucocytes, the mean flow velocity and
the pulsatility of motion, from which the retinal blood
flow and the flow pulsatility can be calculated. An im-
portant limitation of this technique is its subjective
nature. Because of fatigue, the reproducibility of the
method is often poor when repeated measurements
are done in one subject. In addition, subjects with
poor visual acuity are unable to see their own leuco-
cytes in blue light. Whether measurement of leuco-
cyte velocity and density is a valid indicator of blood
flow abnormalities in diabetes is still to be estab-
lished.

Laser speckle technique. Another possibility for in-
vestigating the retinal microcirculation is the use of
the laser speckle phenomenon [62, 63]. Laser speckle
is an interference phenomenon that can be observed
when coherent light is scattered from a rough surface.
When the ocular fundus is illuminated the structure
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of the pattern varies rapidly. The rate of variation de-
pends on the erythrocyte velocity and can therefore
be used to quantify blood speed. Briers and Fercher
[62] developed a semi-quantitative method for the
mapping of human retinal blood flow based on laser
speckle photography. Tamaki et al. [63] presented an
apparatus for the assessment of retinal blood veloci-
ties in rabbits using an image sensor. Choroidal and
optic nerve head blood velocities have also been in-
vestigated with this method [64]. As vessel diameter
cannot be measured, calculation of volumetric blood
flow is not possible with this method. To date no
data on haemodynamics of the eye in diabetes are
available using this method, but it could have consid-
erable potential in the future.

Pulsatile ocular blood flow techniques. Assessment of
pulsatile ocular blood flow (POBF) has been pro-
posed by using pneumotonometry [65] and laser in-
terferometric measurement of ocular fundus pulsa-
tion [66]. Pneumotonometry measures changes in in-
traocular pressure (IOP) during the cardiac cycle.
When the inflow of blood through the ocular arteries
exceeds the outflow through the ocular veins, the oc-
ular volume and the intraocular pressure increases.
The maximum IOP change during a heart cycle is
called pulse amplitude. The relation between changes
in intraocular pressure and changes in intraocular
volume depends on the scleral rigidity, which cha-
racterises the mechanical properties of the eye coats.
A method for the calculation of POBF from the time
course of IOP changes during the heart cycle, which
is based on a hydrodynamic model eye assuming a
standard ocular rigidity for all eyes and a non-pulsa-
tile outflow of blood through the ocular veins has
been developed [65]. Whether this is justified in vivo
is not entirely clear.

Alternatively, POBF can be assessed by measuring
distance changes between cornea and retina during
the cardiac cycle [66, 67]. This phenomenon is called
ocular fundus pulsation and the maximum distance
change during the cardiac cycle is called fundus pul-
sation amplitude (FPA). The distance between cor-
nea and retina decreases during the systole and in-
creases during the diastole. Compared to pneumoto-
nometry the method provides a more direct measure
of ocular volume change. Fundus pulsation ampli-
tude is, however, a local measure because the parallel
laser beam which is used to illuminate the eye is fo-
cused on the retina. This enables investigation of ocu-
lar blood flow with a high spatial resolution but ham-
pers calculation of total POBF. Nevertheless there is
a high association between pneumotonometrically
determined POBF and FPA in the macula [68]. In
monkeys blood flow through the choroid as well as
blood volume in the choroid is much higher than in
the retina [7, 8]. Hence it is conceivable that POBF
and FPA are almost exclusively influenced by choroi-
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Table 1. Techniques for the assessment of haemodynamics of the eye in humans
Technique References Measured Vascular Measurement Main Financial
variable bed location limitations requirements

Fluorescein 20,22 Mean circulation Retina Main retinal Exact relation to High
angiography time vessels retinal blood flow

unclear
Fluorescein 21 Arterio-venous Retina Main retinal Exact relation to High
angiography passage time vessels retinal blood flow

unclear
Fluorescein 23,24 Erythrocyte and Retina Perimacular No informationon  Very high
angiography with leucocyte velocity retinal capillaries  vessel diameters
SLO
Laser Doppler 41,42 Blood flow Retina Main retinal Skilled operator Very high
velocimetry com- vessels necessary
bined with Fundus
photography
Laser Doppler 49, 51 Blood flow Optic nerve or Capillaries Sampling depth Very high
flowmetry choroid unknown
Scanning laser 53 Blood flow Retina or optic Capillaries Sampling depth High
Doppler flow- nerve unknown, exact
metry relation to blood

flow unclear
Colour Doppler 56 Blood velocities Central retinal Extraocular No informationon  Very High
imaging artery, posterior vessels vessel diameter

ciliary arteries,
ophthalmic artery

Blue field entoptic 60 Leucocyte velocity ~ Retina Perimacular Leucocyte move- Low
technique and density retinal capillaries  ment # blood flow,

subjective
Pneumotono- 65 Changes in intra- Choroid (mainly)  Global Only pulsatile flow  Low
metry ocular pressure component, stand-

during cardiac cycle ard ocular rigidity

assumed
Laser interfero- 66, 68 Changes in corneo-  Choroid (mainly)  High topical Only pulsatile flow  High
metric measure- retinal distance resolution component

ment of fundus

during cardiac cycle

pulsation

dal blood flow. An important limitation of both meth-
ods is that only the pulsatile component of blood flow
is assessed. The pulsatile fraction of choroidal blood
flow has not yet been determined in humans. Esti-
mates vary between 0.5 [69] and 0.8 [70].

Invasive ocular blood flow techniques in animals

Several methods for the investigation of ocular blood
flow have been developed, but these cannot be ap-
plied in humans due to their invasive nature. Radio-
actively labelled microspheres have widely been
used to measure blood flow in the retinal as well as
in the uveal vasculature [71]. Microspheres are inject-
ed into the left ventricle of the heart. Radiographic
measurement of microsphere density in the tissue of
interest allows estimation of blood flow after the ani-
mal has been killed. In tissues with low flow rates
such as the retina the small number of spheres trap-
ped in the tissue sample limits the sensitivity of the
method. The limitations of the method for choroidal

perfusion studies have recently be summarised by
Kiel [72]. In the optic nerve head, blood flow has
also been determined with coloured microspheres
[73].

Summary

All of the above-mentioned methods have consider-
able limitations for the assessment of ocular blood
flow. The choice of an optimal method for the assess-
ment of haemodynamics of the eye is dependent on
the aim underlying the study as well as on the design
and the study group included. In particular the repro-
ducibility and the sensitivity of each method has to be
taken into consideration. For some of the above-
mentioned methods specific investigations on these
variables exist [42, 53, 55, 61, 68, 74-79], whereas
they have received little attention in other techniques
(Table 1).
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Clinical and experimental studies of ocular blood flow
in diabetes

Effect of diabetes on ocular blood flow in humans

Fluorescein angiographic studies. One of the first
hints of altered retinal blood flow in patients with di-
abetes mellitus came from Kohner et al. [80]. Based
on measurements of mean retinal circulation time
from fluorescein angiograms they reported increased
retinal blood flow in patients with absent or mild,
but not with moderate or severe diabetic retinopathy.
Increased retinal blood flow in the early stages of ret-
inopathy and decreased retinal blood flow in prolifer-
ative retinopathy was also assumed based on fluoro-
photometry, a method related to fluorescein angiog-
raphy [81, 82]. By contrast, Blair et al. [83] did not ob-
serve an alteration of mean retinal circulation time in
early retinal damage but reported prolongation in
proliferative retinopathy using a modified fluorescein
dye dilution technique. Yoshida et al. [84] confirmed
these earlier reports of decreased mean circulation
time and reported increasing blood flow with the pro-
gression of background diabetic retinopathy. Con-
versely, increased arteriovenous passage time was
generally observed in patients with long-standing
Type I diabetes using a video fluorescein device [85].
In Type I diabetic patients with no apparent retinopa-
thy Bursell et al. [86] reported an increased mean cir-
culation time indicative of reduced retinal blood flow.
With advancing non-proliferative retinopathy the
same group found a sequential decrease in mean cir-
culation time [87].

Several studies have focused on flow velocities in
perimacular capillaries using a scanning laser oph-
thalmoscope. Generally, a reduction in flow velocities
was observed in diabetic patients [23, 29]. This re-
duced retinal capillary flow velocity is possibly associ-
ated with impaired rheological properties of blood
[88]. Patients with Type II diabetes also have reduced
perifoveal blood velocities as well as increased pe-
rifoveal intercapillary areas in the foveal avascular
zone [89]. Increased perifoveal intercapillary area
and the area of avascular zone show a negative asso-
ciation with visual acuity [90] and contrast sensitivity
in diabetic patients [91].

Laser Doppler velocimetry studies. Most data on reti-
nal blood flow in diabetes are available from LDV
studies. As mentioned above the technique has only
few limitations and therefore much of our knowledge
on retinal perfusion abnormalities derives from these
investigations. It has been shown by numerous inves-
tigators that patients with diabetic retinopathy have
increased venous and arterial vessel diameters
[92-97]. Blood velocities in retinal veins considerably
decrease, however, with progression of diabetic retin-
opathy [93]. As total blood flow is dependent on the
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cross-sectional area of the vessel as well as on flow
velocity the authors did not find any alterations in to-
tal retinal blood flow. The same group described that
in patients with background retinopathy under poor
glycaemic control, total venous cross-section and vol-
umetric blood flow rate was increased [94]. A study of
retinal blood flow in a large cohort of patients with
diabetic retinopathy has been done by Patel et al.
[95]. Increased retinal vessel diameter was observed
in patients with background, preproliferative, and
proliferative retinopathy, but not in diabetic patients
without retinopathy. By contrast, maximum erythro-
cyte velocity was not dependent on the stage of retin-
opathy. As a consequence total retinal blood flow in-
creased with progression of the disease, showing
highest values in patients with proliferative retinopa-
thy. In patients with proliferative retinopathy haemo-
dynamics of the retina depend, however, on the spe-
cific pathologic features [98]. Severe capillary non-
perfusion and vessel staining were associated with re-
duced retinal blood flow. By contrast, the authors ob-
served pronounced venous vasodilation in patients
with macular oedema.

Another LDV study focused on retinal flow pulsa-
tility defined as systolic flow velocity:diastolic flow
velocity in patients with Type I diabetes. Compared
with healthy subjects flow pulsatility was lower in pa-
tients with background retinopathy but higher in pa-
tients with proliferative retinopathy [92]. The same
group reported reduced blood speed, increased arte-
rial cross-section and reduced retinal blood flow in
Type I diabetic patients with no or background retin-
opathy [96]. A shift from decreased to increased reti-
nal blood flow was, however, observed with progres-
sion of the disease [99]. One potentially confounding
factor of these studies is that only a single artery was
used for assessment of haemodynamics of the retina
[100].

A recent study has shown that retinal perfusion is
already increased in patients with early Type I diabe-
tes with a diabetes duration of less than 4 years
[101]. None of the diabetic patients under study had
any clinical sign of retinopathy. Nevertheless vessel
diameter as well as total retinal blood flow was in-
creased in this study group as compared with a heal-
thy control group matched for age. Other results [97]
also indicate that retinal vasodilation may precede
development of other signs of retinopathy.

Colour Doppler imaging studies. A rise in Rl in the
ophthalmic artery, which is possibly indicative of an
increase in distal vascular resistance, has been ob-
served in diabetic patients with different degrees of
retinopathy [102]. An increase in RI along with a re-
duction in arterial flow velocities has also been ob-
served in the central retinal artery in patients with
proliferative retinopathy [103]. By contrast, Goebel
et al. [104] observed no alterations in the haemody-
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namics of the ophthalmic artery in diabetic patients
but reported a decrease in blood speed in the central
retinal arteries, which was more pronounced in the
late stages of retinopathy. Interestingly, central reti-
nal artery flow velocity appears to be reduced before
the clinical onset of diabetic retinopathy [105]. Sever-
al authors interpreted these results as a sign of de-
creased retinal perfusion in diabetic patients. It
should, however, be considered that reduced flow ve-
locity in extraocular vessels may arise from diabetes-
induced vasodilation and any estimation of total reti-
nal blood flow from these results is therefore not val-
id.

Knowledge on the choroidal circulation in diabe-
tes arises from CDI studies of the posterior ciliary ar-
teries. Both reduced [103] and unchanged [104] flow
velocities in these arteries supplying the choroid
have been observed in diabetic compared with heal-
thy control subjects.

Blue field entoptic studies. In patients with back-
ground diabetic retinopathy leucocyte velocity in the
perifoveal capillaries is higher than in normal control
subjects [106]. In the preproliferative group leucocyte
velocity was reduced, whereas patients with prolifera-
tive retinopathy had normal leucocyte velocities in
the retina. In a longitudinal study with a mean obser-
vation period of more than 30 months patients with
background and preproliferative retinopathy had a
fall in retinal leucocyte velocity within the study peri-
od [107]. Patients with Type I diabetes have a 25 % in-
crease in leucocyte capillary flow velocity along with a
37 % reduction in the density of leucocytes [108]. The
reduction in leucocyte density was more pronounced
in diabetic patients with retinopathy, but was poorly
associated with the degree of the disease. Comparing
these results with other clinical trails it has to be con-
sidered that erythrocyte and leucocyte velocities are
different in retinal capillaries [32]. Moreover, diabe-
tes does not necessarily influence leucocyte and
erythrocyte velocity to a similar degree [100].

Pulsatile ocular blood flow studies. The results of
pneumotonometric studies on pulsatile ocular blood
flow in diabetes are contradictory. Langham et al.
[109] observed a strong reduction in POBF in patients
with proliferative retinopathy compared with normal
subjects, but this result was not confirmed by others.
Becker et al. [110] observed no impact of diabetic ret-
inopathy on POBF. By contrast, MacKinnon et al.
[111] observed higher POBF values in diabetic than
in control subjects. Using laser interferometric mea-
surement of fundus pulsation Schmetterer et al. [112]
found a small reduction in fundus pulsation amplitude
in proliferative retinopathy but no change in the early
stages of the disease. All POBF studies in patients
with diabetes are hampered because flow pulsatility
is possibly altered in the diabetic choroid. Altered
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flow pulsatility in the retina [96] and evidence for al-
tered choroidal vascular rigidity in patients with
Type I diabetes [113] support this assumption.

Effect of interventions

Glycaemic control. Several reports indicate that gly-
caemic control has an important impact on retinal
perfusion. It has been shown in angiographic studies
that HbA,, is correlated with arteriovenous passage
time in adults with Type I [85] and patients with
Type II diabetes [114]. The effect of institution of
strict diabetic control has been investigated using the
LDV technique. This is of special interest because
soon after commencing intensified insulin therapy
some eyes show a rapid progression of retinopathy
[1, 115, 116]. A lack of decrease in retinal blood flow
5 days after institution of strict diabetic control has
been associated with progression of retinopathy
[117-119].

Effect of hyperoxia and autoregulation. The retinal
blood flow response to experimental hyperoxia, mea-
sured with LDV, is considerably reduced in patients
with diabetes [9, 94, 120]. This reduction in the re-
sponse to oxygen breathing is correlated with the de-
gree of retinopathy [94]. An abnormal response to
hyperoxia in diabetic patients was also evident in a
colour Doppler imaging study in the central retinal
artery and the ophthalmic artery [121]. By contrast,
Fallon et al. [122], using the blue field technique, ob-
served a blunted response to hyperoxia in patients
with non-proliferative retinopathy only.

The first evidence of altered retinal autoregulation
in diabetic patients came from Sinclair et al. [123]
who used the blue field technique after a rapid reduc-
tion in intraocular pressure. Retinal autoregulation in
diabetic patients was also investigated in a LDV
study inducing an increase in blood pressure by treat-
ment with tyramine [13]. An impairment in retinal
vascular autoregulation was observed, which was
more pronounced during hyperglycaemia than during
normoglycaemia. Whether impaired autoregulation
in diabetes is simply due to altered retinal basal tone
associated with the disease is not known.

Effect of photocoagulation. It has unequivocally been
shown that panretinal photocoagulation leads to a re-
duction in retinal blood flow and a reduction in reti-
nal vessel diameter. This has been shown by means
of LDV [124, 125], fluorescein angiography [126],
and measurement of retinal vessel diameter [127].
This reaction of the retinal vasculature to panretinal
photocoagulation could be caused by an improve-
ment in retinal oxygenation. This hypothesis is fur-
ther supported by the restoration of the retinal re-
sponse to experimental hyperoxia after panretinal
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Table 2. Haemodynamics of the retina in patients with diabetes®
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Cross-sectional Area Blood flow

Stage® Velocity

No retinopathy Normal/slightly reduced
Background retinopathy Normal/reduced
Pre-proliferative retinopathy Normal/reduced

Proliferative retinopathy

Slightly increased Slightly increased

Increased Increased

Increased Increased

Dependent on the clinical features

2 See references 23, 29, 93-95, 98, 101, 104
® The staging of diabetic retinopathy is not identical in all ocu-
lar haemodynamic studies. An investigation relating retinal

photocoagulation [124]. Regional laser treatment
produces only regional reduction in blood flow [128].
In eyes showing progression of retinopathy despite
photocoagulation no improvement in the retinal re-
sponse to hyperoxia was observed [125]. Interestingly
Bertram et al. [129] reported increased blood velocity
based on measurements of arteriovenous passage
time in response to panretinal photocoagulation. In
view of the above mentioned results this increased
blood speed could, however, reflect vasoconstriction
rather than an increase in retinal blood flow. Arterial
and venous vasoconstriction as well as an improve-
ment in retinal oxygenation has also been observed
in response to laser treatment for diabetic macular
oedema [130, 131]. Panretinal photocoagulation re-
duces POBF [132], which indicates that choroidal
blood flow falls after treatment in proliferative retin-
opathy. This is of importance because measurements
of panretinal oxygen tension in monkeys indicate
that the therapeutic effect underlying panretinal pho-
tocoagulation may lie in improved retinal oxygen-
ation from the choroid [133].

Effect of diabetes on ocular blood flow in animals

A variety of animal models of diabetes have been
proposed, which have greatly enhanced our under-
standing of the mechanisms underlying the disease.
It is still, however, not clear whether ocular haemody-
namic alterations in these animal models are relevant
to those in humans as the existence of important dif-
ferences between species cannot be ruled out. Never-
theless, as assessment of haemodynamics of the eye
in experimental animals is easier than in humans due
to the applicability of invasive methods, several ani-
mal studies have been done to explain ocular blood
flow abnormalities in diabetes. In addition, a number
of studies have focused on the effect of potential ther-
apeutic drugs on normalisation of diabetes-induced
haemodynamic alterations.

In streptozotocin (STZ) diabetic rats mean circu-
lation time is increased [22, 87, 134-136], which is
possibly indicative of reduced retinal blood flow. A
prolongation of mean circulation time has also been
observed in spontaneous diabetic Goto-Kakizaki

blood flow to the stages of the modified Airlie house classifica-
tion (2, 3) is still lacking

rats, a model Type II diabetes [25]. Normalisation of
retinal blood flow in STZ-induced diabetic rats was
achieved, when strict glycaemic control was initiated
using insulin pumps [134]. Prevention of abnormal
retinal blood flow induced by diabetes has also been
reported using acarbose, an o-glucosidase inhibitor
[135].

The data of this study group are quite different
from the observations of increased retinal blood
flow in STZ-induced diabetic rats as evidenced from
hydrogen clearance polarography [137]. Increased
blood flow to the retina and choroid in STZ-induced
diabetic rats has also been shown using radioactively
labelled microspheres [138-140]. Interestingly, this
study showed that choroidal blood flow is also in-
creased in rats treated with a single injection of nico-
tinamide, which induces a very mild form of diabetes
[138]. Impaired ocular vasoactivity to noradrenaline,
adrenaline, phenylephrine, prostaglandin F,,, and 5-
hydroxytryptamine has been shown in the perfused
eye of diabetic rats [141]. In a small group of allox-
an-induced diabetic dogs, retinal blood flow assessed
with radioactively labelled microspheres was reduced
compared with healthy dogs [142].

A decrease of choroidal blood flow after photoco-
agulation has also been shown in animal experiments
using radioactively labelled microspheres in monkeys
[143]. Aricidine orange digital fluorography was used
to investigate the effect of scatter photocoagulation
on leucocyte velocity in rats [144]. Immediately after
photocoagulation leucocyte velocities were reduced
but restored 28 days later.

Summary

There is evidence from a variety of studies that reti-
nal vasodilation occurs before the clinical onset of re-
tinopathy in patients with diabetes. Increased ocular
blood flow is observed in patients with background
retinopathy. In the late stages of diabetic retinopathy
the nature of ocular perfusion abnormalities appears
to strongly depend on glycaemic control as well as
on the specific pathologic features. An overview of
retinal perfusion abnormalities in the different stages
of retinopathy (Table 2) does, however, not as yet re-
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flect general acceptance because some studies have
contradictory results.

Pathophysiology of ocular blood flow abnormalities in
diabetic retinopathy

The role of hyperglycaemia

There is conclusive evidence from the Diabetes
Control and Complication Trial [115] that hypergly-
caemia has a key role in the development of vascu-
lar complications in diabetes. This is supported by
dog experiments, which indicate that euglycaemia
can almost prevent the onset of diabetic retinopathy
if it is achieved early after the onset of diabetes [145,
146]. By contrast, dogs that were under poor glycae-
mic control for 30 months and then switched to eu-
glycaemia for 30 months developed considerable ret-
inopathy although no retinopathy had been appar-
ent after 30 months in poor control. Hence, hitherto
unidentified retinal metabolic changes induced by
hyperglycaemia in diabetes eventually lead to retin-
opathy even if euglycaemia is achieved subsequently
by intensified insulin treatment. The results of this
animal experiment as well as the human epidemio-
logical data indicate that life-time exposure to hy-
perglycaemia is a major determinant of diabetic ret-
inopathy.

Animal studies in cats [147], dogs [148], minipigs
[149], normal rats [150], and in STZ-diabetic rats
[139, 140] show that short-term hyperglycaemia in-
duces a pronounced increase in retinal blood flow,
whereas short-term hypoglycaemia decreases retinal
blood flow [151]. In patients with Type II diabetes an
insulin-induced reduction in blood glucose leads to a
reduction in retinal blood flow assessed with LDV
[152]. In addition, normoglycaemia increased the ret-
inal vascular response to hyperoxia, although the re-
sponse was still impaired [120, 152]. Bursell et al.
[86] measured mean retinal circulation times during
hyperglycaemic clamp experiments. Their results in-
dicate that retinal blood flow is strongly dependent
on glucose plasma concentrations and that a twofold
increase in blood glucose leads to an increase in reti-
nal perfusion. All the above-mentioned studies fo-
cused on the effect of short-term hypoglycaemia or
hyperglycaemia on haemodynamics of the eye. The
effects on prolonged hyperglycaemia are still, howev-
er, to be established.

As hyperglycaemia appears to be the primary fac-
tor in the development of diabetic retinopathy, spe-
cial emphasis has been directed to the secondary met-
abolic pathways that lead to vascular dysfunction in
diabetes. It is now apparent that several intracellular
alterations are induced by glucose in the retina. The
importance of these potential secondary factors,
which include effects on the sorbitol pathway, non-
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enzymatic glycation, the nicotinamide adenine dinu-
cleotide redox status (NADH:NAD"), the diacylglyc-
erol/protein kinase C (DAG/PKC) pathway, endo-
thelial function, and protein expression is still to be
established.

The sorbitol pathway. Glucose can be converted to
sorbitol by aldose reductase in retinal cells [153].
During hyperglycaemia this may lead to intracellular
accumulation of sorbitol. Experimental modulation
of this specific pathway is possible because other al-
dose sugars such as galactose, which are normally
not involved in the glucose metabolism, can be used
as competitive substrates for aldose reductase. For
example, feeding galactose to non-diabetic animals
produced diabetic-like retinopathy in several experi-
ments [154-155], which suggests a role of sorbitol ac-
cumulation in the development of diabetic retinopa-
thy. Hence aldose reductase inhibitors, such as sorbi-
nil, which have been reported to prevent retinopathy
in animal models [156] can theoretically be useful
for prevention of diabetic complications. A clinical
trial did not show effective treatment by sorbinil in
diabetic patients [157]. It has, however, been argued
that the observation period in this clinical trial was
not sufficiently long to be conclusive [1] and that the
dose used was not adequate to normalise flux through
this pathway. Hence, the results of long-term clinical
outcome studies are required to gain conclusive infor-
mation.

The first evidence of an involvement of the polyol
pathway in the increase of ocular blood flow came
from the observation that galactose-fed rats develop
an increase in retinal blood flow similar to diabetic
rats [158]. Moreover, this increase in ocular perfusion
induced by galactose-enriched diets was prevented by
treatment with sorbinil. The same group showed that
in STZ-induced diabetic rats aldose reductase inhibi-
tors prevent ocular hyperperfusion, retinal albumin
permeation and the concomitant increase in regional
haematocrit [139, 140].

Non-enzymatic glycation. In the circulating blood,
haemoglobin and other lysine-containing proteins
are glycated through a non-enzymatic reaction of glu-
cose with lysine [159]. This leads to irreversible for-
mation of advanced glycation end-products [AGEs,
160], which is assumed to have a role in the develop-
ment of diabetic retinopathy [161]. Aminoguanidine,
which has been shown to retard the formation of
AGE:s [162], seems to inhibit the development of ex-
perimental diabetic retinopathy [161], although
some concerns regarding this study have been raised
[1]. Importantly, aminoguanidine also acts via inhibi-
tion of nitric oxide (NO) formation [163], which will
be discussed below. Hence, a possible role of AGEs
in the control of ocular blood flow is difficult to assess
on the basis of these studies because the normalisa-
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tion of ocular blood flow in aminoguanidine-treated
rats is mainly ascribed to the NO-synthase inhibiting
properties of the drug [164].

NADH:NAD* redox status. The ratio of
NADH:NAD" is also partially coupled to the sorbitol
pathway. As mentioned above glucose is first reduced
to sorbitol and then slowly oxidised to fructose
by sorbitol dehydrogenase. This may lead to an
increased ratio of the cofactor of this reaction
NADH:NAD*, which could further be enhanced
due to increased oxidation of non-esterified fatty ac-
ids and glucuronic acid pathway metabolites [165].
Normalisation of the NADH:NAD* ratio with pyru-
vate prevents the hyperglycaemia-induced increase
in ocular blood flow [150]. This redox imbalance pro-
motes free radical production including superoxide,
which is assumed to induce vasodilation by several
pathways [166]. A change in NADH:NAD" ratio is
also induced by hypoxia and ischaemia but the glu-
cose induced reductive stress appears to be indepen-
dent of tissue oxygenation, which prompted William-
son et al. [165] to call this phenomenon pseudohypox-
ia. The pseudohypoxia hypothesis [167] was recently
challenged by the experiments of Winkler et al. [168]
and the issue is still a matter of controversy [169].

The DAG/PKC pathway. The activation of PKC by
hyperglycaemia in diabetes mellitus is related to the
increase of DAG, an activator of PKC, and regulates
a number of vascular functions including vascular
permeability, basement membrane synthesis and
smooth muscle cell contractility. Diacylglycerol can
be activated from a number of pathways, which have
recently been reviewed [170]. Activation of PKC, in
particular the isoforms PKCf; and PKCf,, in parallel
with increased PKC concentrations, has been shown
in the rat retina [171].

High dose d-a-tocopherol (vitamin E) treatment
has been shown to normalise altered retinal mean
transit time in STZ-induced diabetic rats via normal-
isation of hyperglycaemia-induced activation of the
DAG/PKC pathway [172]. Preliminary data indicate
that vitamin E may also decrease mean circulation
time in patients with Type I diabetes [173]. Normal-
isation of abnormal haemodynamics of the retina
along with a reduction of PKC activation was also ob-
served when STZ-induced diabetic rats were treated
with a specific inhibitor of the B-isoform of PKC
[174]. Increased retinal blood flow in STZ-induced
diabetic rats, as determined by microsphere experi-
ments, was reduced after treatment with an inhibitor
of transcription factor binding to specific PKC-regu-
lated genes [175]. Curiously the investigators using
video-based fluorescein angiography refer to normal-
isation in rat retinal blood flow when a drug increases
blood flow of diabetic rats towards levels they ob-
serve in normal rats. Other research groups, however,
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using the microsphere technique refer to normalisa-
tion of retinal blood flow if a drug is able to reduce
the increased retinal blood flow in diabetic rats. Ob-
viously there is a need to clarify the exact nature of
retinal perfusion abnormalities in STZ-induced dia-
betic rats. Further experiments using both techniques
in the same group of rats are required in order to ex-
plain whether these differences are caused by meth-
odological problems in assessing haemodynamics of
the retina, by differences in animal preparation or by
the duration of diabetes.

The role of insulin and C-peptide

Insulin. The absence of endogenous insulin has been
shown to be unrelated to the frequency or severity
of diabetic retinopathy [176]. Insulin has, however,
recently been discovered as a direct vasodilator inde-
pendent of tissue metabolism [177]. This vasodilator
action is at least partially dependent on NO [178],
most likely via stimulation of the constitutive form
of NO synthase (NOS) [179].

Insulin also increases choroidal blood flow in hu-
mans by a NO dependent mechanism [180]. Direct
vasodilator action of insulin has been observed in iso-
lated retinal arteries [181]. To what extent insulin reg-
ulates retinal blood flow in man is still to be ex-
plained.

C-peptide. For a long time it has been assumed that
the only biological action of C-peptide resides in its
function as a split-off product in the breakdown of
proinsulin. Thus, C-peptide plasma concentrations
have been shown to be unrelated to the incidence
and progression of diabetic retinopathy [182]. There
is, however, recent evidence that treatment with C-
peptide prevents increased retinal blood flow in
STZ-induced diabetic rats [183]. Its role in ocular
blood flow regulation as well as its potential thera-
peutic effectiveness is, however, still to be further es-
tablished.

The role of tissue hypoxia

It has been observed in clinical studies that areas of
capillary non-perfusion are associated with the devel-
opment of neovascular proliferation [184]. This is
possibly related to regional tissue hypoxia associated
with capillary loss. The first haemodynamic evidence
for a hypoxic retina came from the altered retinal re-
sponse to hyperoxia in diabetic patients [9]. This con-
cept is supported by the finding that experimental hy-
peroxia improves contrast sensitivity in patients with
early diabetic retinopathy [185]. In addition, there is
recent evidence that oxygen consumption is in-
creased in early streptozotocin-induced diabetes in



L.Schmetterer, M. Wolzt: Ocular blood flow in diabetes

the rat [186], which in turn may lead to retinal hy-
poxia. Whether increased retinal blood flow in early
stage diabetic retinopathy is related to tissue hypoxia
is still, however, to be established.

The role of impaired blood rheology

Several reports indicate that blood rheological fac-
tors are impaired in patients with diabetes. Increased
plasma viscosity or increased erythrocyte rigidity has
been observed in Type I as well as in Type II diabetes
[88, 187, 188]. These factors have been hypothesised
to contribute to altered retinal blood flow in patients
with Type II diabetes [88]. In STZ-induced diabetic
rats haematocrit in arterial blood samples was no dif-
ferent from normal but regional haematocrit was
altered in ocular tissues [140]. A direct association
between alterations in blood rheology and altered
ocular perfusion has, however, not yet been estab-
lished.

The role of endothelial dysfunction

Increased ocular blood flow and endothelial dysfunc-
tion. The observation that retinal perfusion abnor-
malities are detectable in diabetic patients with no
clinical sign of retinopathy [29, 101] further support-
ed the hypothesis that increased retinal blood flow it-
self may have a pathogenic role in diabetic retinopa-
thy. In general there is overwhelming evidence that
retinal blood flow is increased in diabetic retinopathy
[100, 189]. This high level of retinal perfusion is as-
sumed to induce endothelial damage due to increased
shear stress [189]. Altered retinal autoregulation may
contribute to endothelial damage as induced by reti-
nal hyperperfusion. This hypothesis agrees with the
observation that systemic hypertension increases the
frequency and rate of progression of diabetic retinop-
athy [190].

Nitric oxide. Nitric oxide, which is synthesised by the
vascular endothelium from its precursor L-arginine,
is a potent vasodilator [191]. The oxidation of L-argi-
nine to form L-citrulline and NO is catalysed by nitric
oxide synthase (NOS).

Altered endothelium-dependent vasodilation has
been observed in animal models of Type I [192] and
Type 11 diabetes, although the exact nature of the ab-
normalities in the latter group remains controversial
[193, 194]. In humans altered reactivity to N©-
monomethyl-L-arginine (L-NMMA), an L-arginine
analogue that acts as an inhibitor of NOS, was first
observed in the forearms of patients with Type I and
patients with Type II diabetes [195, 196]. More re-
cently it has been shown that patients with Type I dia-
betes also have a reduced systemic pressor effect to
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intravenous L-NMMA [197]. The reason for this al-
tered response to NOS inhibitors is still a subject of
controversy. Several mechanisms including increased
and decreased basal NO production and altered NO
sensitivity have been assumed to contribute to this
phenomenon. A detailed discussion of our current
understanding of endothelial nitric oxide signalling
dysfunction is beyond the scope of this review and
the reader is referred to a recent review on this topic
[198].

It has been shown in several animal [199, 200] and
human experiments [180, 197, 201, 202] that endothe-
lium-derived nitric oxide is required to maintain the
high perfusion rate in the choroid. With respect to
the retina the situation is less clear. Most data from
in vitro studies indicate that nitric oxide has a role in
the regulation of retinal vascular tone [203, 204].
Studies using nitric oxide synthase inhibitors yielded
partially conflicting results, either showing no effect
on retinal blood flow [199, 205] or a decrease of up
to 50 % [206].

Recently it has been shown that the response of
the human choroidal vasculature to NOS inhibition
is blunted in patients with Type I diabetes [197].
Again the mechanism underlying this altered re-
sponse of ocular vessels in diabetes is still to be ex-
plained. Increased NOS activity in STZ-induced dia-
betic rat retinas compared with retinas of healthy
rats has recently been observed [207]. Interestingly,
this study also indicates that the NO generated by in-
ducible NOS contributes to the total NO release in
the diabetic retina. This is compatible with the find-
ing that aminoguanidine reverses increased ocular
blood flow in STZ-induced diabetic rats [164]. Am-
inoguanidine has been shown to inhibit NOS activity
probably due to its structural similarity to L-arginine
[163], but may also act via other mechanisms.

Endothelin. Endothelins are a number of potent va-
soactive peptides, which were first identified and
characterised by Yanagisawa etal. [208]. Among
these peptides endothelin-1, which is produced by
the vascular endothelium, is the most potent vasocon-
strictive substance known. Endothelins have been
seen in isolated samples of several tissues of the eye
including the retina and the choroid [209, 210]. Endo-
thelin-1 induces potent vasoconstrictor effects in iso-
lated ocular arteries [211, 212]. The importance of en-
dothelin in the control of retinal, optic disc and cho-
roidal blood flow was also determined by animal
[136, 213-215] and human studies [216, 217].
Increased endothelin-1 plasma concentrations
were observed in Type I diabetic patients [218] as
well as in Type II patients with diabetic retinopathy
[219]. More specifically, it has been shown in immun-
histochemical studies that endothelin-1 is increased
in retinal tissue of STZ-induced diabetic rats [220]
and BB/W rats [221]. Moreover, gene expression of
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endothelin-1 is augmented in the retina of chronically
diabetic BB/W rats [222]. In vivo, treatment with BQ-
123, a specific endothelin, receptor antagonist, pre-
vents the prolongation of mean transit time in the
STZ-induced diabetic rat [136]. The effect of endo-
thelin receptor antagonists on ocular complications
in experimental diabetes has not yet been studied.
An interesting issue is that endothelin-1 has been
suggested as having a role in hyperoxia-induced reti-
nal vasoconstriction [223]. Hence an alteration in the
retinal response to hyperoxia as observed in patients
with diabetic retinopathy [9] may at least partially be
linked to an altered endothelin system in these sub-
jects.

Vascular endothelial growth factor. Vascular endothe-
lial growth factor (VEGF), which has an important
role in the development of proliferative retinopathy,
has also been assumed to contribute to the retinal
perfusion abnormalities observed in diabetes [87].
Specific binding sites for VEGF have been identified
on retinal endothelial cells and pericytes [224] and
its inhibition has been reported to suppress retinal
neovascularisation [225]. In addition, VEGF expres-
sion increases in the early stages of diabetic retinopa-
thy [226] and is reduced to basal levels following pho-
tocoagulation [227].

The role of pericytes

The role of pericytes in retinal capillaries has not yet
been fully explained, but they are assumed to have a
role in the regulation to retinal blood flow [204, 228,
229]. Bovine retinal capillary pericyte contractility is
inhibited by high glucose concentrations. This again
indicates the importance of glucose plasma concen-
trations in the regulation of retinal blood flow [230].
Retinal pericyte loss in diabetes was described more
than 30 years ago [231], but neither the cause nor the
consequence for retinal blood flow regulation has
been explained.

Angiotensin. A possible role of the angiotensin-renin
system has been proposed based on increased angio-
tensin converting enzyme levels in diabetic patients
[232] and experimentally diabetic animals [233]. The
activity of these enzymes seems, however, to be re-
duced in diabetic rats and angiotensin is probably
not involved in the mechanisms underlying reduced
Na,K-ATPase activity in diabetes [234]. Angiotensin
binding sites have been found in retinal blood vessels
[235] and local infusion of angiotensin II produces
retinal vasoconstriction [236]. This is presumably re-
lated to the alteration in capillary pericyte contractil-
ity induced by angiotensin II [229]. The exact role of
the angiotensin-renin system in the regulation of reti-
nal blood flow is still not clear. The perfused rat eye
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Fig.1. Pathogenic mechanisms related to altered ocular blood
flow in diabetes. Particularly important pathways are high-
lighted. Dashed lines indicate pathways, which have not yet
been directly proven

shows, however, no vascular reactivity to angiotensin
II [141], and in the human choroidal vasculature an-
giotensin II does not appear to have a major role [59].

The role of Miiller cell changes

The Miiller cells are the principal glia cells of the ret-
ina [237]. Recently it has been shown that not only
vascular cells but also Miiller cells of the retina are af-
fected in patients with diabetes [238]. With respect to
ocular blood flow this is of importance as Miiller cells
express endothelin [222] as well as NO [237]. The role
of Miiller cells in the development of ocular perfusion
abnormalities and diabetic retinopathy is, however,
not yet established and additional investigations in
this field are necessary.

Conclusions

Obviously there is a lot of discrepancy between the
various clinical and experimental studies investigat-
ing ocular blood flow in diabetes. The variety of tech-
niques used for the investigation of haemodynamics
of the eye may certainly account, in part, for this
problem. In addition, considerable differences in ocu-
lar perfusion may exist between patients with Type 1
and Type II diabetes, which have not yet been sys-
tematically studied. In many cross-sectional studies
little attention has been drawn to actual glucose and
insulin plasma concentrations (although both may af-
fect ocular blood flow), to metabolic control or to the
duration of the disease. There is strong evidence that
retinal blood flow is, however, raised in the early stag-
es of diabetes even before the onset of diabetic retin-
opathy. The reason for this increase in retinal perfu-
sion is most probably coupled to the cellular and in-
tracellular alterations induced by glucose and to en-
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dothelial dysfunction (Fig.1). In addition, there is ev-
idence that increased retinal blood flow itself is detri-
mental for the development of diabetic retinopathy.
Altered ocular blood flow is therefore a surrogate
marker of early diabetic complications. As such it
has already been used in a variety of animal studies
to screen for drugs with therapeutic potential in the
treatment of diabetic retinopathy. This approach
should also be exploited in human studies in the
near future.
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