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Abstract

A neura network model for the self-organization of ocular dominance and
lateral connections from binocular input is presented. The self-organizing
process resultsin a network where (1) afferent weights of each neuron or-
ganize into smooth hill-shaped receptive fields primarily on one of thereti-
nas, (2) neuronswith common eye preference form connected, intertwined
patches, and (3) lateral connections primarily link regions of the same eye
preference. Similar self-organization of cortical structures has been ob-
served experimentaly in strabismic kittens. The model shows how pat-
terned lateral connections in the cortex may develop based on correlated
activity and explainswhy lateral connection patternsfollow receptive field
properties such as ocular dominance.

1 Introduction

Lateral connections in the primary visual cortex have a patterned structure that closely
matchestheresponse propertiesof cortical cells (Gilbert and Wiesel 1989; Maach et a.1993).
For example, in the normal visual cortex, long-rangelateral connectionslink areas with sm-
ilar orientation preference (Gilbert and Wiesel 1989). Like cortical response properties, the
connectivity pattern is highly plastic in early development and can be atered by experience
(Katz and Calaway 1992). In a cat that isbrought up squint-eyed from birth, the lateral con-
nections link areas with the same ocular dominance instead of orientation (Lowel and Singer
1992). Such patterned lateral connectionsdevel op at the same time asthe orientati on sel ectiv-
ity and ocular dominance itself (Burkhalter et a.1993; Katz and Callaway 1992). Together,
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these observations suggest that the same experience-dependent process drives the develop-
ment of both cortical response propertiesand lateral connectivity.

Several computational models have been built to demonstrate how orientation preference,
ocular dominance, and retinotopy can emerge from simple self-organizing processes (e.g.
Goodhill 1993; Miller 1994; Obermayer et d.1992; von der Malsburg 1973). These models
assume that the neuronal response properties are primarily determined by the afferent con-
nections, and concentrate only on the self-organization of the afferent synapses to the cor-
tex. Laterd interactions between neurons are abstracted into simple mathematical functions
(e.g. Gaussians) and assumed to be uniformthroughout the network; | ateral connectivity isnot
explicitly taken into account. Such models do not explicitly replicate the activity dynamics
of thevisual cortex, and therefore can make only limited predictions about cortical function.

We have previously shown how Kohonen's self-organizing feature maps (Kohonen 1982)
can be generalized to include self-organizing lateral connections and recurrent activity dy-
namics (the Laterally Interconnected Synergetically Self-Organizing Map (LISSOM); Sirosh
and Miikkulainen 1993, 19944), and how the algorithm can model the devel opment of ocu-
lar dominance columns and patterned lateral connectivity with abstractions of visual input.
LISSOM isalow-dimensional abstraction of cortical self-organizing processes and models a
small region of the cortex where al neurons receive the same input vector. This paper shows
how redlistic, high-dimensional receptive fields develop as part of the self-organization, and
scales up the LISSOM approach to large areas of the cortex where different parts of the corti-
cal network receive inputsfrom different parts of the receptor surface. The new model shows
how (1) afferent receptive fields and ocular dominance columns develop from simple reti-
nal images, (2) input correl ationsaffect the wavelength of the ocular dominance columnsand
(3) lateral connections self-organi ze cooperatively and simultaneously with ocular dominance
properties. The model suggests new computational rolesfor lateral connectionsin the cortex,
and suggeststhat the visual cortex maybe maintained in a continuoudy adapting equilibrium
with the visual input by coadapting lateral and afferent connections.

2 TheLISSOM M odel of ReceptiveFieldsand Ocular Dominance

The LISSOM network is asheet of interconnected neurons (figure 1). Through afferent con-
nections, each neuron receives input from two “retinas’. In addition, each neuron has recip-
rocal excitatory and inhibitorylateral connectionswith other neurons. Lateral excitatory con-
nections are short-range, connecting only close neighbors. Lateral inhibitory connectionsrun
for long distances, and may even implement full connectivity between neuronsin the network.

Neurons receive afferent connections from broad overlapping patches on the retina called

anatomical receptive fields, or RFs. The N x N network is projected on to each retina of

R x R receptors, and each neuron is connected to receptorsin a square area of side s around

the projections. Thus, neurons receive afferents from corresponding regions of each retina

Depending on the location of the projection, the number of afferents to a neuron from each
1

retinacould vary from 1s x s (at thecorners) to s x s (at the center).

The external and lateral weights are organized through an unsupervised learning process. At
each training step, neurons start out with zero activity. Theinitial response;; of neuron (i, j)
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Figurel: TheReceptive-Field LISSOM architecture. Theafferent andlateral connectionsof asingle
neuron in the LISSOM network are shown. All connection weights are positive.

isbased on the scalar product

Nij =0 Zfabﬂij,ab + chdmj,cd , (1)
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whereé,;, and &4 arethe activationsof retinal receptors («, b) and (¢, d) within the receptive
fields of the neuron in each retina, 14;; «» and p;; .4 are the corresponding afferent weights,
and o is a piecewise linear approximation of the familiar sigmoid activation function. The
response evolves over time through latera interaction. At each time step, the neuron com-
bines the above afferent activation > & with lateral excitation and inhibition:
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where E;; 1; isthe excitatory lateral connection weight on the connection from neuron (%, {)
to neuron (4, j), Ii; x: isthe inhibitory connection weight, and 7 (t — 1) is the activity of
neuron (&, ) during the previous time step. The constants 4. and ~; determine the relative
strengths of excitatory and inhibitory lateral interactions. The activity pattern starts out dif-
fuseand spread over asubstantid part of themap, and convergesiteratively into stablefocused
patches of activity, or activity bubbles. After the activity has settled, typically in afew iter-
ations of equation 2, the connection weights of each neuron are modified. Both afferent and
lateral weights adapt according to the same mechanism: the Hebb rule, normalized so that the
sum of the weightsis constant:

Wijmn (t) + anij Xmn

wheren;; standsfor theactivity of neuron (¢, ) inthefinal activity bubble, w;; .., istheaffer-
ent or lateral connectionweight (i, F or I), « isthelearning rate for each type of connection
(o, for afferent weights, « g for excitatory, and «; for inhibitory) and X, isthe presynaptic
activity (¢ for afferent, n for laterd).
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(a) Random Initial Weights (b) Monocular RF (c) Binocular RF

Figure2: Self-organization of the afferent input weightsinto receptivefields. The afferent weights
of aneuron at position (42, 39) ina60 x 60 network are shown before (a) and after self-organization
(b). This particular neuron becomesmonocular with strong connectionsto the right eye, and weak con-
nectionsto the left. A neuron at position (38, 23) becomeshinocular with appoximately equal weights
to both eyes(c).

Both excitatory and inhibitory lateral connections follow the same Hebbian learning pro-
cess and strengthen by correlated activity. The short-range excitation keeps the activity of
neighboring neurons correlated, and as salf-organization progresses, excitation and inhibi-
tion strengthen in the vicinity of each neuron. At longer distances, very few neurons have
correlated activity and therefore most |ong-range connectionsbecome weak. Such weak con-
nections are eliminated, and through wei ght normalization, inhibition concentratesin a closer
neighborhood of each neuron. As aresult, activity bubbles become more focused and locdl,
weights change in smaller neighborhoods, and receptive fields become better tuned to local
areas of each retina.

Theinput to the model consists of gaussian spotsof “light” on each retina:

(x—a)? + (y— yi)z)

(4)

where &, ,, isthe activation of receptor (z, y), u* is aconstant determining the width of the
spot, and (z;,y:): 0 < 2;, y; < Ritscenter. At each input presentation, one spot is randomly
placed at (z;,y;) in the 1€ft retina, and a second spot within aradiusof p x RN of (z;, 4;)
intheright retina. The parameter p € [0, 1] specifies the spatial correlations between spots
in the two retinas, and can be adjusted to simulate different degrees of correlations between
images in the two eyes.

Soy = exp(—

3 Simulation results

To see how correlation between the input from the two eyes affects the columnar structures
that develop, severa simulationswere run with different values of p. The afferent weights of
all neuronswereinitialy random (as shown in figure 2a), with thetotal strength to both eyes
being equal.

Figures 2b,c show the final afferent receptive fields of two typical neuronsin a simulation
with p = 1. In this case, the inputs were uncorrelated, simulating perfect strabismus. In
the early stages of such simulation, some of the neurons randomly develop a preference for
one eye or the other. Nearby neurons will tend to share the same preference because lateral



(a) Connections of aMonocular Neuron (b) Connections of a Binocular Neuron

Figure 3: Ocular dominanceand lateral connection patter ns. The ocular dominance of a neuronis
measured as the difference in total afferent synaptic weight from each eye to the neuron. Each neuron
is labeled with a grey-scale value (black — white) that represents continuously changing eye prefer-
encefrom exclusiveleft through binocular to exclusiveright. Small white dotsindicate the lateral input
connectionsto the neuron marked with abig white dot. (a) The surviving lateral connections of a left
monocular neuron predominantly link areas of the same ocular dominance. (b) Thelateral connections
of abinocular neuron come from both eye regions.

excitation keeps neural activity partially correlated over short distances. As self-organization
progresses, such preferences are amplified, and groups of neurons develop strong weightsto
one eye. Figure 2b shows the afferent weights of a typical monocular neuron.

The extent of activity correlations on the network determines the size of the monocular neu-
ronal groups. Farther on the map, where the activations are anticorrelated due to lateral in-
hibition, neurons will develop eye preferences to the opposite eye. As aresult, alternating
ocular dominance patches devel op over the map, as shown infigure 3.! In areas between oc-
ular dominance patches, neuronswill devel op approximately equal strengthsto both eyesand
become binocul ar, like the one shown in figure 2c.

The width and number of ocular dominance columnsin the network (and therefore, thewave-
length of ocular dominance) depends on the input correlations (figure 4). When inputsin the
two eyes become more correlated (p < 1), the activations produced by the two inputsin the
network overlap closely and activity correlations become shorter range. By Hebbian adapta-
tion, latera inhibition concentrates in the neighborhood of each neuron, and the distance at
which activations becomes anticorrelated decreases. Therefore, smaller monocular patches
develop, and the ocular dominance wavel ength decreases. Similar dependence was very re-
cently observed in the cat primary visual cortex (Lowe 1994). The LISSOM model demon-
stratesthat the adapting lateral interactionsand recurrent activity dynamicsregulatethewave-
length, and suggests how these processes help the cortex develop feature detectors at a scale

! For athorough treatment of the mathematical principles underlying the development of ocular dom-
inance columns, see (Goodhill 1993; Miller et al.1989; von der Malsburg and Singer 1988).



(a) Strabismic case (b) Normal case

Figure4: Ocular dominancewavelength in strabismic and normal models. In the strabismic case,
there are no between-eye correlations (» = 1), and broad ocular dominance columns are produced (a).
With normal, partial between-eye correlations (» = 0.45 in this example), narrower stripes are formed
(b). Asaresult, there are more ocular dominance columnsin the normal case and the ocular dominance
wavelengthis smaller.

that matches the input correlations.

As eye preferences develop, €ft or right eye input tends to cause activity only in the left or
right ocular dominance patches. Activity patternsin areas of the network with the same oc-
ular dominance tend to be highly correlated because they are caused by the same input spot.
Therefore, the long-range lateral connections between similar eye preference areas become
stronger, and those between opposite areas weaker. After the weak lateral connections are
eliminated, the initially wide-ranging connections are pruned, and eventually only connect
areas of similar ocular dominance as shown in figure 3. Binocular neurons between ocular
dominance patches will see some correlated activity in both the neighboring areas, and main-
tain connectionsto both ocular dominance columns (figure 3b).

The lateral connection patterns shown above closely match observations in the primary vi-
sual cortex. Lowel and Singer (1992) observed that when between-eye correlationsare abol-
ished in kittens by surgically induced strabismus, long-range lateral connections primarily
link areas of the same ocular dominance. However, binocular neurons, located between ocu-
lar dominance columns, retained connections to both eye regions. The receptive field model
confirmsthat such patterned lateral connectionsdevel op based on correlated neurona activity,
and demonstratesthat they can self-organi ze smultaneoudy with ocular dominance columns.
The model aso predictsthat the long-range connections have an inhibitory function.

4 Discussion

In LISSOM, evolving lateral interactions and dynamic activity patterns are explicitly mod-
eled. Therefore, LISSOM has several nove properties that set it apart from other self-
organizing models of the cortex.

Previousmodels(e.g. Goodhill 1993; Miller et a.1989; Obermayer et a.1992; vonder Mals-
burg 1973) have concentrated only on forming ordered topographic maps where clusters of
adjacent neurons assume similar response properties such as ocular dominance or orientation
preference. Thelateral connectionsin LISSOM, in addition, adapt to encode correl ations be-



tween theresponses.? This property can be potentially very useful in models of cortical func-
tion. Whileafferent connectionslearn to detect the significant featuresin theinput space (such
as ocularity or orientation), the lateral connections can learn correl ations between these fea-
tures (such as Gestalt principles), and thereby form a basis for feature grouping.

Asanillustration, consider asinglespot of light presented to theleft eye. The spot causes dis-
joint activity patternsin the left-eye-dominant patches. How can these multiple activity pat-
terns be recognized as representing the same spatially coherent entity? As proposed by Singer
et a.(1990), the long-range lateral connections between similar ocular dominance columns
could synchronize cortical activity, and form a coherently firing assembly of neurons. The
spatial coherence of the spot will then be represented by tempora coherence of neura activ-
ity. LISSOM can be potentially extended to model such feature binding.

Even after the network has self-organized, thelateral and afferent connectionsremain plastic
and in a continuously-adapting dynamic equilibrium with the input. Therefore, the receptive
field properties of neurons can dynamically readapt when the activity correlationsin the net-
work are forced to change. For example, when a small area of the cortex is set inactive (or
lesioned), the sharply-tuned afferent weight profiles of the neurons surrounding that region
expand in size, and neurons begin to respond to the stimuli that previously activated only the
lesioned area (Sirosh and Miikkulainen 1994b, 1994c). This expansion of receptive fieldsis
reversible, and when the lesion is repaired, neurons return to their original tuning. Similar
changes occur in response to retinal lesions as well. Such dynamic expansions of receptive
fields have been observed in the visua cortex (Pettet and Gilbert 1992). The LISSOM model
demonstrates that such plasticity is a consequence of the same self-organizing mechanisms
that drivethe development of cortical maps.

5 Conclusion

The LISSOM model shows how asingleloca and unsupervised self-organizing process can
beresponsiblefor thedevel opment of both afferent and lateral connection structuresinthe pri-
mary visua cortex. It suggeststhat thissame developmenta mechanism a so encodes higher-
order visual information such as feature correlationsinto the lateral connections. The model
forms aframework for future computationa study of cortica reorganization and plasticity, as
well as dynamic perceptual processes such as feature grouping and binding.
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