
 International Journal of 

Molecular Sciences

Review

Ocular Drug Delivery: Role of Degradable Polymeric
Nanocarriers for Ophthalmic Application

Cheng-Han Tsai 1 , Peng-Yuan Wang 2,3, I-Chan Lin 4,5, Hu Huang 6, Guei-Sheung Liu 7,8,9,*,†

and Ching-Li Tseng 1,10,11,*,†

1 Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering,

Taipei Medical University, Taipei 11031, Taiwan; m825105004@tmu.edu.tw
2 Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology,

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;

py.wang@siat.ac.cn
3 Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn,

VIC 3122, Australia
4 Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561,

Taiwan; ichanlin@gmail.com
5 Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University,

Taipei 11031, Taiwan
6 Aier Eye Institute; Aier School of Ophthalmology, Central South University, Changsha 410008, China;

huanghu@aierchina.com
7 Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
8 Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
9 Department of Ophthalmology, Jinan University, Guangzhou 510632, China
10 Institute of International PhD Program in Biomedical Engineering, College of Biomedical Engineering,

Taipei Medical University, Taipei 11031, Taiwan
11 International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine,

Taipei Medical University, Taipei 11031, Taiwan

* Correspondence: rickliu0817@gmail.com (G.-S.L.); chingli@tmu.edu.tw (C.-L.T.);

Tel.: +61-03-62264250 (G.-S.L.); +886-2736-1661 (ext. 5214) (C.-L.T.)

† These authors contributed equally to this work and should be regarded as equal senior authors.

Received: 2 August 2018; Accepted: 14 September 2018; Published: 19 September 2018
����������
�������

Abstract: Ocular drug delivery has been a major challenge for clinical pharmacologists and

biomaterial scientists due to intricate and unique anatomical and physiological barriers in the eye.

The critical requirement varies from anterior and posterior ocular segments from a drug delivery

perspective. Recently, many new drugs with special formulations have been introduced for targeted

delivery with modified methods and routes of drug administration to improve drug delivery efficacy.

Current developments in nanoformulations of drug carrier systems have become a promising attribute

to enhance drug retention/permeation and prolong drug release in ocular tissue. Biodegradable

polymers have been explored as the base polymers to prepare nanocarriers for encasing existing drugs

to enhance the therapeutic effect with better tissue adherence, prolonged drug action, improved

bioavailability, decreased toxicity, and targeted delivery in eye. In this review, we summarized

recent studies on sustained ocular drug/gene delivery and emphasized on the nanocarriers made by

biodegradable polymers such as liposome, poly lactic-co-glycolic acid (PLGA), chitosan, and gelatin.

Moreover, we discussed the bio-distribution of these nanocarriers in the ocular tissue and their

therapeutic applications in various ocular diseases.
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1. Introduction

The World Health Organization (WHO) announced that the total population worldwide in 2017

was around 7.5 billion, of which 253 million people suffer from vision impairment and 36 million are

blind (4.8%) [1]. More than 80% of people are aged 50 years or older [1]. Vision loss and blindness

are major health problems that cannot be ignored in the elderly population. The eye is the organ of

the visual system and an important tissue for vision. It is a globular structure with a diameter of

24 mm, and a mass of approximately 7.5 g in humans. From a lateral view of the eyeball (see Figure 1),

the cornea is located at the outer anterior segment of the human eye, followed by the anterior chamber,

pupil, iris, lens, and conjunctiva [2]. The posterior segment of the human eye includes the vitreous

humor, retina, macula, optic nerve, choroid, and sclera [2]. The retina plays a vital role in fine detailed

visual acuity and color vision. The primary function of the retina is to process visual information as

well as control image formation. The retina is a thin and light-sensitive tissue of approximately 0.5 mm

thickness with multiple cell layers including the ganglion layer, inner plexiform layer, inner nuclear

layer, outer plexiform layer, outer nuclear layer, photoreceptor layer, and retinal pigment epithelium

from the direction of light entry [3]. The choroid is a vast network of capillaries which supply nutrients

to the retina in the human eye through the central retinal artery and the choroidal vessels with the

greatest blood flow (65–85%). The eye is a slow blood circulation organ with many physiological

barriers (Figure 1), meant to keep the systemic circulation separate from ocular tissues. Furthermore,

the central nervous system, including the eye, brain, and spinal cord, is believed to be sealed from the

circulation [4], and thus the eye is considered ‘immune privileged’. The anatomical and physiological

barriers of the eye make it a highly protected organ shielded from the systemic circulation. Therefore,

when an ocular disease occurs, it is difficult to treat with medications, especially in the posterior

segment of the eye [5,6]. Currently, several drug delivery modalities such as intravitreal injection,

which is the gold standard method for posterior drug delivery, have been applied for treating posterior

ocular disease. Subretinal injection, subconjunctival injection, and topical administration are also used.

However, these are not satisfactory, thus a better approach still needs to be further explored [7].

 

Figure 1. Schematic diagram of the ocular structure with various ocular barriers. The ocular barriers

in the anterior segment area (I) tear film and corneal epithelium, and (II) aqueous humor. The ocular

barriers in the posterior segment are (III) sclera, (IV) choroid, and (V) vitreous humor. There are two

BRBs. The blood–aqueous barrier in the anterior segment, a part composed of the non-pigmented ciliary

epithelial cells and iris capillaries endothelial cells. The BRB, a tight-junction between non-fenestrated

capillaries of the retinal blood circulation and retinal pigment epithelial cells in the posterior segment

of the eye.
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The current treatment modality for most ocular diseases requires frequent intraocular injections,

with the concomitant risks associated with any invasive intraocular procedure. A non-invasive drug

delivery route could potentially eliminate the risks of injection into the eyes. However, non-invasive

drug delivery routes, such as topical delivery, have been a significant challenge due to the unique

anatomy and physiology of the eye. The invasive treatments include surgery, laser therapy, frozen

therapy, and drug administration by intraocular or periocular injection. Surgery, laser, and frozen

therapy can prevent disease deterioration, but with high recurrence rates [8]. The intraocular or

periocular injection delivery methods include subconjunctival, intravitreal, and subretinal injections.

These often require frequent injections to achieve therapeutic effects in the eyes and are usually

accompanied by complications, such as inflammation, high intraocular pressure, cataract, retinal

hemorrhage, and even retinal detachment [9,10]. Although intravitreal injection is currently a standard

method for posterior ocular drug delivery, the complications mentioned above may carry risks of

potential visual loss. Therefore, each treatment has its drawbacks or challenges that must be overcome,

and there is also an urgent need to develop a new therapy for increasing posterior ocular diseases

treatment such as glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD) [11].

Drug administration through non-invasive pathways, including oral medications, eye ointments

and topical eye drops, have been widely used to treat various eye diseases, but most of them are

ineffective, and only applicable to early mild symptoms [12]. Moreover, the physiological barriers of

the eye often limit the bioavailability of these non-invasive treatments. For instance, the blood–retinal

barrier (BRB) impedes the oral administration from getting into the systemic circulation [13], and the

corneal epithelial barrier reduces the drug concentration in the eye when ointments and eye drops are

administered on the ocular surface. The topical eye drop is rapidly removed from the ocular surface

leading a short drug retention time. Typically, less than 5% of the drug administered is retained on

the ocular surface as a result of the corneal epithelium barrier and nasolacrimal duct drainage [13,14].

Although these treatments were more acceptable to patients, the poor bioavailability due to ocular

barriers results in difficulties for topical drug delivery to the cornea and retina [15].

1.1. Barriers in the Anterior Part of the Eye

After topical instillation of a drug, the first and outermost barrier of the eye is the tear film on

the ocular surface. The flow of lacrimal fluid moves the drug to the nasolacrimal duct from the ocular

surface in a few minutes. The lacrimal turnover rate is approximately 1 µL/min. This tear drainage

mechanism results in the poor drug bioavailability of topical delivery [13,14,16]. Another barrier

is the cornea, as shown in Figure 1I, which is approximately 500 µm thick. The healthy cornea is

a transparent, clear, and avascular tissue consisting of five layers including the corneal epithelium,

Bowman’s layer, corneal stroma, Descemet’s membrane, and corneal endothelium [6,17]. The corneal

epithelium is lipophilic in nature with tight junctions, which leads to limitation of the permeation

of hydrophilic molecules. The highly organized corneal stroma consists of collagen fibers, closely

ranged together. It is not only an effective barrier to most microorganisms but also for drug absorption.

The innermost layer of the cornea is the corneal endothelium, which is a monolayer of hexagonal

endothelial cells to adjust water influx into the cornea and a barrier between the cornea and aqueous

humor (Figure 1II). These characteristics make the cornea a major barrier, and a challenge for drug

delivery to the anterior segment of the eye [17,18].

The conjunctiva is a mucous membrane consisting of vascularized epithelium, located at the

posterior surface of the eyelids and outer area of the cornea, which is involved in the formation and

maintenance of the tear film, and also protects the ocular surface from environmental pathogens [19].

Both corneal and conjunctival epithelia have tight junctions that restrict the entrance of substances into

the eye. Besides, the mucus layer in the eye blocks the entrance of not only particles but also medicines,

which are then removed through the lacrimal system. The other obstruction to drug delivery in the

anterior part of the eye is the blood–aqueous barrier (BAB), shown in Figure 1. The BAB includes the

ciliary epithelium and capillaries of the iris [3] and is composed of non-pigmented ciliary epithelial



Int. J. Mol. Sci. 2018, 19, 2830 4 of 20

cells of the ciliary body and endothelial cells in the iris’s vessels. The function of the BAB is preventing

unfettered passage of molecules from iridial vessels [20].

1.2. Barriers in the Posterior Part of the Eye

The sclera, which surrounds the outermost layer of the eye’s globe (Figure 1III), connects the

anterior and posterior parts of the eye. It is composed of extracellular matrix including collagen fibrils

and glycoproteins to maintain the ball shape. The sclera is easily permeable to hydrophilic molecules.

The choroid is a pigmented middle layer between the sclera and retina, as shown in Figure 1IV, and is

a highly vascularized coat covering 80% of the posterior external segment of the eye. The choroid also

contributes to maintaining the ocular equilibrium and intraocular pressure (IOP), since it provides the

blood containing oxygen and nutrition to the outer retina as well as the retinal pigmented epithelial

(RPE) layer [21].

As shown in Figure 1V, the vitreous body (about 4 mL volume) is composed mainly of a gel

structure in water (99%); non-collagenous proteins (fibrillin-1, opticin, and VIT1); types I, V, IX,

XI collagens; hyaluronic acid (HA); proteoglycans of chondroitin sulfate; and heparan sulfate [22].

The major function of the vitreous body is to maintain ocular completeness and transport nutrients

between the retina [22]. Since the vitreous humor is filled with viscous gel, the diffusion of molecules

from the vitreous humor to the retina is limited greatly. The big and charged molecules are difficult to

transport to retina, due to their aggregation behavior and may interact with negatively charged HA

and anionic collagens and finally cause molecules to precipitate in the vitreous humor [23].

The blood–retinal barrier (BRB), shown in Figure 1, is a specialized transport barrier between

the blood and the retina and has tight junctions between the monolayer of RPE cells (outer part of

BRB) and retinal capillary endothelial cells (inner part of BRB) of the retinal circulation [24]. As a

result of the anatomic position of the BRB, it effectively limits the transportation of molecules from the

choroidal blood circulation to the posterior segment of the eye [25]. Moreover, the BRB also plays an

important role in controlling the environment of the neural retina compared to the high blood flow

and leaky walls of choroidal vasculature where molecules easily enter into the choroidal extracellular

gap, but have difficulty passing through the RPE layer which is a firmly tight monolayer limiting the

transportation of molecules [20].

2. Methods for Ocular Drug Delivery

The physical barriers and blood–ocular barriers mentioned above are primary obstacles to limiting

ocular drug delivery, and how to overcome these barriers is a major challenge in ophthalmic drug

development. Barriers in ocular anatomy and physiology are inherent and unique, which can protect

the eye from the invasions of environmental toxicants and microorganisms. The blood–ocular barrier

also separates the interior portion of the eye from the blood circulation into the eye; however, it also

limits the bioavailability of drug during systemic administration [25].

For anterior drug delivery, eye drops, or ointment formulations are often used, but not for the

posterior part of the eye. As shown in Figure 2, there are some common approaches to deliver

ophthalmic medications to the posterior area of the eye. The major obstruction of retinal drug delivery

for systemic and topical eye drop administration are the physiological barriers such as the BRB and

corneal epithelium in the eye [26]. There are two pathways to deliver drugs to the posterior ocular

segment by topical administration (eye drops): firstly (Route 1), the drug diffuses to the conjunctiva

from the ocular surface, then penetrates the sclera pore to the choroidal circulation and the posterior

choroid, and finally reaches the RPE layer from the choroidal vessels. Second (Route 2), the drug

penetrates the eye through the corneal surface, anterior aqueous chamber, lens, and reaches the

vitreous body; then, the drug diffuses to the inner limiting membrane, then reaches inside the retina.

The subconjunctival injection delivery route (Route 3). After injection, drugs penetrate through the

sclera pores to the choroidal circulation and the posterior choroid lately; and then get to the RPE

layer from the choroidal vessels. Route 4 represents subretinal injection. The drug is injected into
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the posterior ocular segment directly and subsequently diffuses to the RPE layer and the inner retina.

The most used way for posterior ocular drug delivery is intravitreal injection, shown as Route 5.

The drug is injected into the vitreous humor, then diffuses in various directions, and crosses the inner

limiting membrane into the retina. Due to the complexity of the three-dimensional network of collagen

fibrils bridged by proteoglycan filaments in the vitreous body, the efficacy of retinal drug delivery

by intravitreal injection is significantly impaired [22]. Also, the colloidal state of the vitreous humor

prevents the drug from penetrating into the retina and results in a poor bioavailability of the drug.

Even if the drug can reach the retina, there is an internal limiting layer as a barrier to prevent drug

penetration into the retinal cells [27,28]. Lastly is Route 6, the drug reaches the RPE layer from the

systemic circulation via oral medication. Oral medications have a certain chance of delivering the drug

into the posterior segment of the eye; however, it is difficult to achieve an effective dose in some cases.

 

μ
μ

Figure 2. Methods of ocular drug administration and its delivery routes to the posterior segment.

Routs of drug transportation to the back of the eye via topical administration (1 and 2), subconjunctival

injection (3), subretinal injection (4), and intravitreal injection (5). The drug transportation from the

systemic circulation via oral medication (6).

3. Advantages of Nanocarriers for Ocular Drug Delivery

Recent advances in nanotechnology provide novel opportunities to overcome the limitations of

conventional drug delivery systems through the fabrication of nanostructures capable of encapsulating

and delivering small molecules. Nanoparticles are described as materials with a length of 1–1000 nm

in at least one dimension; By strict definition, nanomaterials are objects in the range of 1 and 100 nm

and exhibit dimension-dependent phenomena such as the quantum-size effect [29]. However, by

generalized definition, nanoparticles with drug loading have small sizes ranging from 1 to 1000 nm

and can be fabricated through chemical processes to control the release of therapeutic agents and

enhance their penetration through different biological barriers of the eye [29,30]. According to previous

studies of ophthalmological applications, the size of complex drug particles should be less than 10 µm

to avoid a foreign body sensation after administration [31]. Especially for ocular drug delivery, larger

sized particles (>1 µm) may potentially cause ocular irritation [32]. Based on these results, delivery

of ocular therapeutics via nanoparticles can be used to reduce the sensation and irritation of the

eye. The main advantages of using nanocarriers in the treatment of ocular diseases are to enhance

bioavailability of topical administration, achieve controlled release, targeted delivery, and ultimately
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improved therapeutic efficacy [25,33]. Moreover, studies have shown that drug-loaded nanocarriers

(nanomedicine) for treating anterior ocular diseases have the advantages of lower dosage requirements,

high drug retention rate, less dosing frequency, and high patient tolerance and acceptance. These

factors reveal the potential of nanomedicine to replace traditional eye drops as a primary option for

anterior ocular therapy in the near future [34,35].

3.1. Nanocarriers Can Overcome the Ocular Barriers

In recent years, several types of nanocarriers have been explored for ocular drug delivery

especially degradable nanoparticles (NPs) made with polymers, such as liposome, dendrimer, chitosan

nanoparticle, poly lactic-co-glycolic acid (PLGA) nanoparticle, and gelatin nanoparticles. These studies

suggest that properties of nanocarriers could influence their ophthalmic application in the anterior or

posterior segment of the eye [36].

3.1.1. Surface Charge of Nanoparticles Influence Ocular Tissue Interaction

In the anterior segment of the eye, scientists have made significant contributions to improving the

efficacy of treatments for ocular diseases by enhancing the duration of drug retention on the ocular

surface and increasing drug bioavailability [17,36]. For instance, the cornea and conjunctiva possess

negative surface charges, and it is expected that the cationic colloidal NPs can enhance the retention

time on negatively charged ocular tissues more efficiently than the anionic carriers, providing an

increased opportunity for the drug to enter the eye [37]. Tseng et al. 2013, proved that the topical

administration of positively charged gelatin nanoparticles could prolong the drug retention time on

the negatively charged ocular surface, compared to the free-form drug formulation [38]. Xu et al.

2013, found that NPs coated with different surface charges of polyethylene glycol (PEG) resulted in a

variant delivery efficacy in an ex vivo model of the bovine vitreous body. Since negatively charged

HA and glycosaminoglycan proteins exist in the vitreous body, those particles with positive charges

were fixed in the vitreous humor due to electrical attraction; however, the negatively charged particles

can diffuse through the vitreous body to deeper sites of the eye [39]. Similarly, Ying et al. 2013,

demonstrated that the surface charge has a great influence on intraocular drug transportation when

submicron-sized lipid emulsion is delivered to the retina [40]. This evidence suggests that the surface

charge of the NPs is a key factor in determining their distribution in different regions of the eye [36,41].

Besides, Koo et al. reported that the modified amphiphilic NPs could overcome the physical barrier

of the inner limiting membrane and improve the penetration into the deeper retina after intravitreal

injection [42]. Their study also indicates that intravitreal NP activity relies on the charged surface to

permit the vitreous diffusion and the penetration into the deeper retina. Another study reported by

Kim et al. 2009 found that cationic NPs of human serum albumin (HSA) interacted with the negatively

charged glycosaminoglycans in the vitreous, consequently impeding their diffusion in the vitreous

and penetration into the retina. Conversely, anionic HSA NPs tend to diffuse in the vitreous before

they penetrate into the retina. In this study, authors also emphasize that the vitreous acts as a static

barrier that limits drug delivery to the posterior segment and illustrates the role of NP surface charge

in hindering or facilitating the diffusion across the vitreous and into the retina [43].

3.1.2. Size Effect of Nanoparticles for Penetrating into Ocular Tissue

The size of NPs is also a key factor in ocular drug delivery. In order to achieve an effective drug

delivery, NPs need to be small enough in size to penetrate the ocular barriers [31]. Hagigit et al. 2012

showed that cationic nano-emulsion containing 1,2-dioleoyl-3-trimethylammonium-propane chloride

(DOTAP), of size around 95 nm and zeta potential about +56 mV, can effectively permeate the cornea

and the conjunctiva of a male albino rat eye through topical instillation [44]. Moreover, eye drop

formulations containing gelatin nanoparticles (GPs), around 180 nm showed a wide distribution in

rabbit corneal cryosection and can be retained for a longer time by uptake into cornea epithelium

cells [38]. The frequency of drug administration can also be reduced by the long-term release effect
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of NPs in the treatment of retinopathy and posterior ocular diseases. Indeed, various synthetic

NPs (chitosan, liposomes, PLGA, HA, albumin, etc.) have been explored for drug delivery to the

retina via intraocular injection [45–47]. In general, NPs less than 250 nm are usually taken up by

endocytosis [48,49]. Nanoparticles in the range of 50–350 nm possessing positive charges can be

transported or diffused through the vitreous body after intravitreal injection. When NPs are <350 nm,

the charge effect is the major factor influencing its distribution; lager then that, the size effect may play

a major role. Jo et al. 2011, reported that NPs could cross through BRB or other ocular barriers. [50].

A recent study reported by Bisht et al. 2018 also showed that the size of scleral water channels/pores

is about 30 to 300 nm. Nanoparticles smaller than these pores will be able to pass through the scleral

barrier and then diffuse into the vitreous humor [51].

How the size and charge of NPs influence their interaction with ocular tissues is summarized in

Table 1. A previous study has shown that size and surface charge affect molecular permeation through

the sclera layer simultaneously; the large and positively charged molecules experience more difficulty

entering the sclera and may also be captured by the negatively charged glycoproteins [23]. Several

studies have further explored the impact of size and surface charge of NPs on ocular penetration

after intravitreal injection. Variant NPs, the size of 230–350 nm but differing in surface properties,

were tracked with fluorescent dyes for their delivery from the vitreous to the retina after intravitreal

injection (Figure 3I) [42,43]. Polyethyleneimine (PEI) NPs with strong positive charges (+33.5 mV,

316 nm) were found to aggregate spontaneously before reaching the retina. Hyaluronic acid-based

NPs do not form aggregations in the vitreous due to their firm negatively charged surfaces (−26.2 mV,

213 nm), and most of these NPs penetrate the retina and enter the RPE cell layer (Figure 3I) [42]. Hybrid

combinations of NPs exhibit surface properties reflecting their constituents. For instance, HSA/glycol

chitosan hybrid NPs (−1.9 mV, 293 nm) was found to accumulate in the internal limiting membrane

and were unable to penetrate into deeper retinal structures. Interestingly, due to the pore size of the

external limiting membrane (3 and 3.6 nm), another type of NP, HSA NPs (−20.6 mV, 326 nm), is not

expected to overcome this barrier. However, it was found that HSA NPs penetrated all retinal layers

and quickly reached the outer retinal structures, including the photoreceptor and RPE layers [43].

Although HSA NPs are larger in molecular size, strong negative charges enhance their specific targeting

and penetration of both the nuclear layer and the outer plexiform layer (Figure 3II) [42].

Table 1. Summary of physical properties of nanoparticles influencing its delivery region in the eye.

Property Effect Ref.

Size

Anterior
- Particle size <200 nm can be easily taken up in the cornea and conjunctiva

[38,44]

Posterior
- Smaller particles (<350 nm) could reach the retina via intravitreal injection.
- Hydrophilic NPs (20~80 nm) can pass through the sclera pores, since the scleral
water channels/pores are 30~350 nm.
- NPs <250 nm are usually easily taken up by retinal cells via endocytosis.

[29,42]
[43,45]
[47,50]

[51]

Charge

Anterior
- Cationic NPs can be attracted to the cornea and conjunctiva due to electrical
attraction (Topical delivery)

[30,36]

Posterior
- Positively charged NPs tend to get clumped in the vitreous, without diffusing;
anionic NPs are able to diffuse to the retina (injection).

[28,33]
[38,42]
[46,47]
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I

HSA NPs distribution in retinaII

Figure 3. (I) Distribution of NPs with various surface properties in the different region of vitreous and

retina via intravitreal injection. (II) Distribution of HSA NPs (red channel) in the retina via intravitreal

injection. (A,D) Penetration of HSS NPs into the retina at 6 h post-injection, (E) scan of the whole retina,

and (F) colocalization with Müller cells (green channel). ILM: inner limiting membrane, NFL: nerve

fiber layer, GCL: ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer

plexiform layer, ONL: outer nuclear layer, PRL: photoreceptor layer, RPE: retinal pigment epithelium.

Image adapted from Koo et al. (2012) and reprinted with permission from Biomaterials (Koo et al.

2012) [42].

4. Polymeric Colloidal Nanocarriers for Ocular Drug Delivery

Due to the chronic nature of many ocular diseases and the unique anatomical location with a

barrier-filled environment in the eye, drug treatment usually requires frequent dosing. Biodegradable

polymeric NPs can serve as suitable nanocarriers for solving the problem of frequent administration

and protect the drug from contact with enzymes/proteins in the circulation, thereby increasing its

half-life. Drugs carried by NPs can also be sustained with controlled release at the desired area to

reduce the need for frequent dosing. By modifying size/charge, the delivery properties of the NPs

can be manipulated to target the desired region in the anterior/posterior region of the eye. The small
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size of these NPs can also help to overcome the blood–ocular barriers [25,52]. In the following

section, we summarize the application of various biodegradable polymeric nanocarriers in ocular

drug/gene delivery.

4.1. Liposome (Lipid)

Liposomes are tiny round shape bubbles with a phospholipid bilayer structure like a cell

membrane, and is suitable to carry hydrophilic or lipophilic drugs. Liposome NPs are the most

popular and well-studied vehicles for drug delivery. Karn et al. 2014, developed the cyclosporine A

(CsA)-encapsulated liposomes for dry eye syndrome (DES) treatment [53]. In this study, the male albino

rabbits were induced into DES and then treated with CsA-liposomes by topical delivery (eye drops)

compared with a commercially available CsA emulsion (Restasis®). The results indicate that the

CsA-liposomes result in lower ocular irritation and better therapeutic efficacy with higher tear amount

compared to the non-liposomes group. De Sá et al. 2015, used liposomal voriconazole (VOR) for fungal

keratitis treatment via topical administration [54]. VOR can be effectively encapsulated in liposomes

and can penetrate into bovine or porcine cornea ex vivo, releasing a fair amount of 47.85 ± 5.72 g/cm2

VOR into the cornea 30 min after instillation. Besides anterior ocular drug delivery, liposome-based

eye drops formulations have also been applied in posterior ocular delivery. Davis et al. 2014, reported

a topical application of the Annexin A5-associated liposomes with Avastin encapsulation for drug

delivery to the posterior ocular segment [55]. The study showed that the Annexin A5-liposomes

overcome biological barriers such as the corneal epithelial barriers in rats and rabbits, and then

successfully deliver Avastin to the posterior segment of the eye with the final concentration of 127 ng/g

acquired from rat eyes and 18 ng/g from rabbit retina after topical administration. Lajunen et al.

2014, developed the plasmid DNA encapsulated liposomes by using microfluidizer production [56].

With transferrin (Trf) modified on the liposome surface, it exhibits high penetration and targets the

RPE by topical instillation. The author also examined the size-dependent effect of these Trf-modified

liposomes. Compared with non-Trf modified liposomes, diameters less than 80 nm (68 nm and −36 mV)

penetrated the RPE layer, and 100 nm (100 nm and −36 mV) or larger were distributed in the choroidal

endothelium. These results indicate the size-dependent effect of liposomes distributed in different

areas of the posterior segment of the eye. This study also demonstrated that ligand-modified liposomes

have the potential to be used as drug carriers for the treatment of retinal diseases by topical instillation.

Natarajan et al. 2012, developed latanoprost-loaded egg-phosphatidylcholine (EggPC) liposomes

(the size of 109 nm and drug loading efficacy of 94%) for reducing IOP [57]. It was delivered to the

subconjunctival space in the superior temporal region of rabbit eye by a single subconjunctival injection,

latanoprost was sustainably released in the rabbit eye for up to 90 days, and no adverse side effects

were found. Intraocular pressure reduction was observed with a daily topical instillation of latanoprost

(reduction: 2.5 ± 0.9 mmHg); however, the single subconjunctival injection of latanoprost-loaded

EggPC liposomes showed a greater effect in lowering IOP (reduction: 4.8 ± 1.5 mmHg) at 90 days in the

rabbit eye. Clearly, subconjunctival delivery of liposomes can bypass ocular barriers, thereby allowing

these nanocarriers to be potentially used as a delivery platform for the sustained release of drugs in the

treatment of glaucoma [57]. Besides, Zhang et al. 2010, evaluated the therapeutic effect of tacrolimus

(FK506) encapsulated in liposomes in experimental autoimmune uveoretinitis (EAU) in rats via

intravitreal injection [58]. After intravitreal injection, tacrolimus (FK506)-encapsulated liposomes were

located in the vitreous body and internal limiting membrane of the retina. Liposomes had migrated

from the internal limiting membrane to the outer nuclear layer at 24 h, and reached the retina 7- and

14-days post-injection. Moreover, their results also showed that tacrolimus could still be detected in

the ocular fluids 14 days after injection (the concentration was higher than 50 ng/mL) and significantly

reduce intraocular inflammation without causing any side effects on retinal function as well as immune

rejection. Bevacizumab (AvastinTM) is a large molecular weight (149 kDa) recombinant humanized

monoclonal antibody that blocks neovascularization by neutralizing human vascular endothelial

growth factor (VEGF). Abrishami and colleagues synthesized the bevacizumab-loaded liposomes
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for intravitreal delivery. The bevacizumab-loaded particles were prepared using phospholipid and

cholesterol to form multilamellar liposomes in a 1:1 molar ratio. The efficiency of bevacizumab

encapsulated was 45% and it remained stable after liposomal process. Although authors claim the

bevacizumab loaded liposome is nanosized, data of particle size was not shown. Intravitreal injection

of bevacizumab-loaded liposomes in the rabbit eyes showed a higher drug concentration-time curve

and a slower clearance compared to the antibody solution [59].

4.2. Chitosan (Polysaccharide Based) Nanoparticles

Chitosan is a polysaccharide copolymer comprised of glucosamine and N-acetylglucosamine.

It can be obtained by deacetylation of chitin from crustacean shells, with different molecular weights

(50–2000 kDa), viscosities and degrees of deacetylation (40–98%) [60]. The advantages of using chitosan

drug carriers are their low production cost, biodegradability, biocompatibility, and U.S. Food and

Drug Administration (FDA) approved biomaterial. Especially as the drug carrier for ocular drug

delivery, chitosan has excellent tolerance and penetration of the corneal surface due to its mucoadhesive

property and ability to open tight junctions [61].

Many studies have explored the application of chitosan NPs for ophthalmic drug delivery.

For example, Nagarwal et al. 2010, developed the 5-fluorouracil (5-FU)-loaded chitosan NPs

(CH-DNPs) for ocular delivery [62]. The size of CH-DNPs is in the range of 192 nm with a zeta potential

of 42 mV positivity. After instilling CH-DNPs into the cul-de-sac of rabbit eye eyelids, no sign of

irritation and inflammation were observed on the ocular surface. The in vivo 5-FU concentration in the

aqueous humor of CH-DNPs-treated eyes was higher compared to the free-form 5-FU solution-treated

eyes. The prolonged retention time of 5-FU in the precorneal area resulted from the mucoadhesive

characteristic of chitosan within the tear film. Chitosan NPs are also used to deliver anti-infective

agents for the treatment of bacterial infections in the eye to overcome the difficulties of penetrating

the innate protective barriers in the ocular surface. Silva et al. 2015, prepared chitosan NPs with

daptomycin (a natural lipopeptide antibiotic) encapsulation against Gram-positive bacteria for the

treatment of intraocular infections such as endophthalmitis [63]. In this study, the antimicrobial activity

of daptomycin was preserved when the antibiotic was encapsulated into chitosan NPs. Authors further

indicated that chitosan NPs have a high antibacterial ability because the polycationic structure of

chitosan can bind to negatively charged bacterial cells through a higher positive charge, destroying the

bacterial cell membrane and causing bacterial cell death [63].

Chitosan can also be used as a non-viral gene carrier as it has several advantages, including

high transfection efficacy, less immunogenicity, and lack of mutational potential compared to virus

vectors [62]. Klausner et al. 2010, synthesized the oligomeric chitosan-DNA NPs the size of 98.2 nm

with a strong positive charge at 44.1 mV [64]. The efficacy of in vivo transfection was evaluated through

the injection of oligomeric chitosan-DNA NPs into rat corneal stroma. After 24 h of transfection,

the gene expression in the oligomeric chitosan-DNA NPs-injected group was 5.4-fold greater than that

in the group that had received polyethyleneimine-DNA NPs and was only observed in corneal stroma

and corneal fibroblasts. Therefore, the authors concluded that this oligomeric chitosan-DNA NPs can

be used as a promising drug carrier for the treatment of corneal diseases. In addition, Mitra et al. 2014,

developed the glycol chitosan NPs encapsulated plasmid DNA for posterior ocular gene delivery [65].

The results showed that the encapsulation of plasmid DNA into glycol chitosan NPs (size in the range

of 330 to 410 nm and surface charged at +24.17 mV.) did not affect its gene expression capacity. After

subretinal injection in adult mice for 14 days, a significant amount of green fluorescent protein (GFP)

proteins were expressed in the RPE layer of the eyes that had received glycol chitosan NPs-loaded GFP

plasmid DNA compared to the eyes that had received naked plasmid DNA or saline. Electroretinogram

further noticed no effect on the retinal function after 30 days of injection. These results suggest that

glycol chitosan NPs have excellent biocompatibility and high transfection efficacy, which are well suited

to be gene carriers for the treatment of RPE-associated genetic diseases. Moreover, the biodegradability

of chitosan in living organisms depends on the molecular weight and degree of deacetylation.
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The hydrolyze linkages between glucosamine–N-acetyl-glucosamine, glucosamine–glucosamine,

and N-acetyl-glucosamine–N-acetyl-glucosamine of chitosan can be degraded by enzymes such

as lysozyme. And, degradation of chitosan can be carried out by chitosanase, chitin deacetylase,

and β-N-acetylhexosaminidase [66,67]. Slow release of the drug due to degradation is one of the

benefits of using chitosan-based nanocarriers.

4.3. PLGA Nanoparticles

Poly lactic-co-glycolic acid (PLGA), a copolymer of poly lactic acid (PLA) and poly glycolic acid

(PGA), has been successfully developed and used in medical applications such as surgical sutures,

bone plate/screws, tissue engineering scaffold, and drug carrier systems [68,69], which is an FDA

approved biodegradable material. Poly lactic-co-glycolic acid is a highly biocompatible, biodegradable,

controllable material, with mechanical properties that can be modified by changing the PLA/PGA

ratio and molecular weight. PLGA undergoes hydrolysis in vivo to produce biodegradable metabolite

monomers, such as lactic acid and glycolic acid, which have very minor systemic toxicity associated

with the use of PLGA for drug delivery [70]. PLGA also has superior hydrophilicity and strong

physical strength, which make it an excellent controllable drug carrier for medical applications [71].

Several advantages have been noticed by the use of PLGA based-NPs for ophthalmic drug delivery,

including protection of encapsulated drugs from rapid inactivation, maintenance of slow drug

release due to polymer degradation, and targeting of specific regions or cells by surface modification.

Moreover, PLGA NPs have a high encapsulation efficiency for hydrophilic or hydrophobic drugs, even

macromolecules, proteins, peptides, and nucleic acids [72].

Cañadas et al. 2016, evaluated the delivery efficacy of PLGA NPs with pranoprofen (PF) (PF-F

NPs), a kind of non-steroidal anti-inflammatory drug, encapsulation (PF-F NPs) in the cornea via

topical instillation [73]. The size of PF-F NPs is around 350 nm and its surface charge is −7.41 mV with

80% PF encapsulation rate. An in vitro study was performed in the Y-79 human retinoblastoma cell

line to evaluate the cytotoxicity of PF-F NPs, and the results showed that blank PLGA NPs were not

toxic to the cells and could lower the cytotoxicity of PF. The study also examined the effect of PF-F

NPs on ex vivo corneal permeation, in vivo ocular tolerance and anti-inflammatory activity compared

to commercial eye drop formulations and free-form drug solutions in rabbits. It was found that the

corneal permeation coefficient of PF-F NPs was four times higher than that of other groups. The PF-F

NPs with PF loading had a rapid onset of anti-inflammatory action and showed prolonged retention

time on the cornea surface, which significantly reduced ocular edema. These results suggest that PF-F

NPs are a potential therapeutic alternative for the management of corneal diseases associated with

chronic inflammation. Similarly, Salama et al. 2016, also evaluated the therapeutic efficacy of PLGA

NPs encapsulated with the anti-inflammatory corticosteroid fluocinolone acetonide (FA-PLGA) via

topical installation for treating intermediate uveitis, posterior uveitis, and panuveitis [74]. The size of

FA-PLGA ranges from 85 to 160 nm with a negative charge of 5 mV, and the encapsulation efficiency of

FA can almost reach 100%. Moreover, to enhance the mucoadhesion ability of FA-PLGA, the surface of

the NPs was modified with 0.1% w/v chitosan. With chitosan surface modification, its size increased

to 779.5–1302.5 nm, and zeta potential moved to 1.9 mV. The chitosan-coated PLGA NPs showed a

greatly prolonged residence time of NPs on the ocular surface due to the positive zeta potential of

chitosan coating. The pharmacokinetic analysis of tears showed that the drug levels were highest

30 min after instillation therefore, chitosan coated PLGA NPs can be ideal nanocarriers for rapid and

sustained drug delivery to the cornea [75].

Bisht et al. 2018, encapsulated Connexin43 mimetic peptide (Cx43MP), which is a peptide that

inhibits the pathological opening of gap junction hemichannels, into PLGA NPs (Cx43MP-PLGA

NPs) and evaluated the capacity of posterior ocular delivery via intravitreal injection [76]. The size of

Cx43MP-PLGA NPs is in the range of 75.6–153.8 nm with a zeta potential in the range of (−9.4)–(−46)

mV. The study showed that Cx43MP-PLGA NPs is biocompatible since no apoptosis or cellular

death was noticed in the zebrafish and even the live embryos. Tahara et al. 2017, investigated the
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posterior ocular delivery of PLGA modified NPs via topical administration [77]. For enhancing the

mucoadhesive property, surface modified PLGA NPs with chitosan, glycol chitosan, or polysorbate

80 (P80) were evaluated. The size of unmodified PLGA NPs is approximately 224.5 nm with a

−41.3 mV surface charge. The size of P80-PLGA NPs is similar to the unmodified PLGA NPs. The size

of chitosan- and glycol chitosan-PLGA NPs are larger than other groups because the chitosan or glycol

chitosan molecules are adsorbed on the PLGA surface. Since chitosan and glycol chitosan are cationic

polymers, both chitosan- and glycol chitosan-PLGA NPs were modified to a weak negative charge

(−9.34 mV) and a strongly positive charge (39.9 mV) NPs, respectively. After topical administration,

it was found that surface modified PLGA NPs with chitosan or glycol chitosan or P80 could penetrate

mouse retina [77]. Mucoadhesive molecular modifications can enhance the interactions between PLGA

NPs and the cell surface and then improve the retinal penetration. Besides, the in vivo study has

also shown that the posterior ocular transport of PLGA NPs may occur through the non-corneal

route (from the conjunctiva, periocular tenon tissue, posterior sclera, posterior choroid, to the retina),

thereby surface-modified PLGA NPs are a promising carrier for retinal drug delivery via topical

instillation [77].

4.4. Gelatin Nanoparticles

Gelatin is a natural biopolymer prepared and purified from collagen (usually from porcine skin,

cow bone, or fish scale) via acid or alkaline hydrolysis. It has a triple helix structure and polyampholyte

(both cationic and anionic) property. Gelatin NPs (GPs) have been previously used as drug and gene

carriers with reported successful drug/gene delivery in ophthalmic application. Gelatin NPs exhibit

an excellent biocompatibility, biodegradability, low cost, and are easy drugs to manufacture [78,79].

The degradability of gelatin is due to the terminal amino residues of gelatin created during collagen

hydrolysis, these N-linked amino peptides can be cleaved into amino acid residues. Peptide bonds

involving amino groups of serine and threonine are particularly susceptible to acid and base hydrolysis.

The aspartic peptide in gelatin is only sensitive to acid hydrolysis. When the enzyme leaves in vitro or

in vivo with gelatin, degradation of gelatin is caused by enzymatic digestion. Gelatin peptide segments

can form configuration with enzymes, resulting in sensitivity to a range of proteolytic enzymes such as

papain, pepsin, chymotrypsin, and trypsin [80]. More importantly, it is an FDA-approved biomaterial.

Since collagen is the major component of corneal stroma, the use of gelatin NPs as the drug carrier in

eye drop formulations can improve the bioavailability of drugs or genes by interacting with corneal

and conjunctival glycoproteins [26,81].

Tseng et al. 2013, developed two different charged GPs and evaluated the biocompatibility in

the human corneal epithelium (HCE) cells in vitro as well as in the rabbit eye in vivo administrated

topically [38]. The positively charged GPs (GP(+)) were prepared with type A gelatin of 180.6 nm and

positive charge of 33.4 mV, and the negatively charged GPs (GP(−)) were prepared with type B gelatin

of 230.7 nm and surface charge at −44.2 mV. The intracellular GPs(+)/(−) accumulation in HCE cells

was confirmed, revealing that the intracellular fluorescence intensity of the cell lysates in the GP(+)

group was higher than the GP(−) group after 10 to 60 min cultivation. This result indicated that cationic

NPs could increase interaction with cells, consequently increasing bioavailability and transfection

efficiency. The GP(+) used as eye drop on rabbit eyes (100 µg/mL, 50 µL) was safe and caused no

irritation to the eyes of the all tested rabbits. No influence on corneal thickness and changes in IOP

were found as well [38]. In addition, the fluorescence of GP(+) in the cornea was widely distributed

and longer drug retention on the corneal surface was observed, possibly due to the positive charge

of GP(+) absorbed on the negatively charged cornea. Overall, GPs(+) have a great potential as the

drug/gene carriers for the treatment of corneal disease. In another study, Mahor et al. 2016, developed

the moxifloxacin-loaded GP (MGP) made with Type A as the anti-bacterial agent [82]. Moxifloxacin

is a type of fluoroquinolone antibiotic and a hydrophobic agent which could effectively act against

anaerobic and gram-positive microorganism activity. Moxifloxacin loaded GP has the size of 175 nm

with a positive charge of 24 mV. The efficacy of MGP delivered into the anterior segment of the eye
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via topical administration was evaluated in New Zealand albino rabbits. Similar to the commercial

anti-bacterial agent, MoxiGram®, MGP showed no irritation, was biocompatible, and was safe on the

rabbit cornea and conjunctiva. The anti-bacterial ability was further tested in cultured Staphylococcus

aureus, and MGP showed a greater effect on inhibition of microbial growth (diameter of the zone

of inhibition: 13.36 mm at 12 h and 15.46 mm at 24 h) than the commercial product (MoxiGram®)

(10.49 mm at 12 h vs. 12.52 mm at 24 h) [82].

Contreras-Ruiz et al. 2013, developed a nanocarrier to treat experimental dry eye (DED) [83].

The DED is usually accompanied by ocular inflammation, which leads to a reduction in mucin

production, influences the stability of the tear film, and reduces its capacity to act as a lubricant

on the corneal and conjunctival epithelial surfaces during blinking. Mucin 5AC (MUC5AC) is a

glycosylated mucin secreted by specialized epithelial cells of the conjunctiva to help improve mucin

production in DED. A DNA plasmid carrying MUC5AC gene (pMUC5AC) was loaded into cationized

gelatin and chondroitin sulphate to form pMUC5AC loaded GPs (pMUC5AC-GPs, 128 nm positively

charged at 37 mV). The gene expression and therapeutic effect of pMUC5AC-GPs for targeting ocular

inflammation via topical instillation was investigated in a mouse model of DED. No irritation or edema

in the mouse eye was found after topical administration of pMUC5AC-GPs and an improved function

of tear production was observed after the treatment [83]. Moreover, inflammatory cytokines, such

as interferon γ–induced protein-10 (IP-10) and tumor necrosis factor α (TNFα) were decreased and

associated clinical signs such as fluorescein staining and tear production improved. These results show

that pMUC5AC-GPs has a great potential as nanomedicine in the treatment of DED.

Recently, Chang et al. 2017, developed self-assembling NPs of type A gelatin and

epigalloccatechin-3-gallate (EGCG), a natural anti-angiogenesis component for treating corneal

neovascularization (CNV) [14]. To achieve specific targeting of blood vessels, the GPs were surface

modified with an arginine-glycine-aspartic acid (RGD) peptide-HA conjugated complex, named

GEH-RGD. The RGD peptides were used to direct GPs to target αvβ3 integrin expressed vascular

endothelial cells in CNV lesions. The size of GEH-RGD NPs was approximately 168.87 nm and zeta

potential was + 19.7 mV. The RGD-HA modified GPs were first tested on human umbilical vein

endothelial cells (HUVECs) in vitro. The GEH-RGD NPs were found to enhance cellular uptake and

inhibit HUVECs migration and tube formation. In the mouse CNV model, daily topical administration

of GEH-RGD NPs (twice a day) revealed fewer vessel formations in the cornea compared to the

EGCG solution and non-targeting (GEH) groups. These results suggest that GEH-RGD NPs have great

potential for being an active nanomedicine for treating CNV via topical administration [14].

In this section, four types of common polymeric carriers are introduced, and each has its own

advantages and drawbacks. For the anterior segment of the eye, the critical factors of drug delivery

to consider, regardless of the type of polymer used, should be nanosize, positive surface charge,

and mucoadhesive properties to achieve long-term retention on the ocular surface. While for the

posterior segment of the eye, more needs to be considered such as penetration ability and controlled

release (see as Table 1). The literature on liposome, chitosan, PLGA, and gelatin-based NPs for ocular

drug release is summarized in Table 2.
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Table 2. Summary of common colloidal biodegradable nanoparticles in ophthalmology.

Carriers Administration Methods Diseases Argument Ref.

Liposomes
Topical administration
Subconjunctival injection
Intravitreal injection

Dry eye syndrome
Fungal keratitis
Age-related macular
degeneration
Glaucoma
Autoimmune uveoretinitis

Phospholipid bilayer structure with high
biocompatibility, could carry both the hydrophilic or
lipophilic drugs, high transfection efficiency,
popular and well-researched vehicle.

[53–59]

Chitosan nanoparticles
Topical administration
Corneal stroma injection
Subretinal injection

Bacterial endophthalmitis
Inherited corneal diseases
RPE-associated genetic diseases

Low production costs, the mucoadhesive property
could prolonged the drug retention time on the
ocular surface, have the ability of breaking through
tight junction gaps to overcome the ocular barriers.

[61–67]

PLGA nanoparticles
Topical administration
Intravitreal injection

Corneal inflammatory disorders
Uveitis
Retinal inflammatory disorders

Well-researched material, superior hydrophilicity,
biodegradable and good biocompatibility, could
protect the drug from degrading quickly, controlled
o drug release.

[68,71–77]

Gelatin nanoparticles
Topical administration
Intravitreal injection

Anterior ocular bacterial disease
Dry eye syndrome
Corneal neovascularization

Low production costs, component of corneal stroma,
polyampholyte, good biocompatibility and
biodegradable, easy surface modification, easy and
efficient encapsulation of drug molecules or genes.

[14,36,38,78–83]
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5. Possible Routes for Topical Delivery of Polymeric Nanoparticles in the Eye

In addition to the physical properties of NPs, achieving better therapeutic efficiency in NPs-based

ocular drug delivery also depends on how it is delivered. Among all the delivery routes for ocular drug

administration (See as Figure 2), topical delivery is still the preferred way because it is non-invasive

and has high patient compliance. We have summarized the possible routes of topical delivery to the

retina as shown in Figure 4. After topical instillation, NPs are generally distributed through three

main pathways: tear turnover, cornea/anterior region, and nasolacrimal drainage. In order to get

to the posterior segment of the eye, the dugs will: (a) penetrate through the cornea to the aqueous

chamber, then go through the lens/iris to reach the vitreous, and eventually reach the retina. This

is a difficult pathway to deliver the agent to the retina. (b) Diffuse through the conjunctiva, sclera,

choroid, and finally arrive at the retina. (c) Diffuse horizontally from the cornea to the conjunctiva.

(d) Go through the nasolacrimal drainage, the conjunctival blood vessels or choroidal circulation to

prevent drugs going from the eye into the systemic circulation, and then returning to the RPE layer by

overcoming the BRB [26,49,51,56]. As mentioned earlier, nanoformulation can protect drug activity

during transport and achieve drug release in a controlled manner in the desirable ocular tissues [33,35].

However, as yet effective eye drops formulations to deliver drugs to the posterior segment have not

been achieved. Therefore, more research is needed to explore different materials and make better

nanoformulations for ocular drug delivery.

 

 
Figure 4. Possible routes of drug delivery to the retina via topical administration. After

topical instillation, NPs generally distribute through three main pathways: tear turnover, anterior

(cornea/conjunctiva), and the nasolarimal drainage system. RPE: retinal pigment epithelium;

BRB: blood–retinal barrier.
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6. Conclusions and Future Aspects

Blindness and visual loss impose substantial lost wellbeing and economic costs. The current

treatment modalities for most ocular diseases require frequent intraocular injections for life, with the

concomitant risks associated with any invasive intraocular procedure. A non-invasive drug delivery

system could potentially eliminate the risks of injection into the eyes. Research has been intensely

focused towards development of a new delivery method that can be practiced as a more effective,

less-invasive, and long-lasting therapeutic alternative to conventional therapies for ocular damage.

Based on these literature reviews, polymeric NPs exhibit a great potential as drug delivery vehicles

due to their nanoscale size, biocompatible constituents, and high loading potential for hydrophobic,

hydrophilic, and amphiphilic agents. They can potentially overcome the challenges and obstructions

of traditional ophthalmic drug applications. These advantages include (1) reducing the frequency

of drug administration; (2) overcoming the ocular barrier; (3) protecting the drug activity during

transport; and (4) achieving drug release in a controlled manner. Moreover, the targetable NPs can

be specifically used to reach the desired tissue or cells, and also minimize the side effects of the drug.

Overall, the degradable polymeric nanocarriers formulations come with the promise of some exciting

directions in ophthalmology. More clinical studies of degradable polymeric nanocarriers are necessary

to provide further information and insights into this great progress in ocular drug delivery.
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