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 Introduction 

 The obligate intracellular protozoan parasite  Toxo-
plasma gondii  is an important opportunistic agent that 
infects all warm-blooded vertebrates including humans. 
Two major routes of infection exist. First, humans may 
become infected by oral ingestion of  Toxoplasma  oocysts, 
which are produced in the intestine of its specific host, the 
cat and other Felidae, and released by their feces into the 
environment. Second, infection occurs by oral uptake of 
 Toxoplasma  tissue cysts, which persist in skeletal muscles 
of intermediate hosts including pigs and sheep. Primary 
infection during pregnancy may result in fetal infection 
with fetal death, severe congenital malformation or, espe-
cially with infection at later stages of gestation, mild infec-
tion of neuronal tissue including the retina. However, 
more frequently, the pathogen is acquired postnatally, 
which also results in infection of neuronal tissues and, in 
most cases, takes a clinically asymptomatic course. It is 
considered the most frequent foodborne parasitic infec-
tion globally  [1] . Importantly, ocular involvement is a 
major pathology following both routes of infection and 
may cause legal blindness. Worldwide ocular toxoplas-
mosis is considered the most frequent cause of infectious 
posterior uveitis.
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 Abstract 

  Toxoplasma gondii  is an extremely successful opportunistic 

parasite which infects approximately one third of the human 

population worldwide. The impact of this parasite on human 

health becomes particularly manifest in congenital damage 

with infection and subsequent inflammation of neuronal tis-

sues including the retina. Although advances in our under-

standing could be achieved in ocular toxoplasmosis, large 

gaps still exist on factors influencing the epidemiology and 

pathophysiology of this potentially blinding disease. We are 

only at the beginning of understanding the complex biology 

of this parasite and its mechanisms of invasion, virulence and 

interaction with the host’s immune response. Since it is a 

preventable cause of blindness, it is necessary to assess fac-

tors that have the potential to control this disease in the fu-

ture. This mini review will focus on recent advances in post-

natal acquired ocular infection and the factors that may in-

fluence its prevalence and functional outcome. 
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  Epidemiology 

 Postnatally acquired ocular toxoplasmosis occurs in 
approximately 2 out of 100 seropositive individuals, sug-
gesting that 1 in 400 persons across the world will have 
posterior uveitis due to  T. gondii   [1] . The large burden on 
health care systems as a result of ocular toxoplasmosis is 
illustrated e.g. by an estimated 250,000 patient visits to 
ophthalmologists in the USA alone  [2] .

  Since ocular toxoplasmosis is a preventable cause of 
blindness, it is necessary to assess factors that have an im-
pact on human infection. Based on current observations, 
the risk of acquiring an infection varies geographically and 
largely depends on control of the release and distribution 
of oocysts into the environment, the animal reservoir, meat 
consumption, personal habits and climatic conditions. In 
many countries, the prevalence of  T. gondii  cysts in live-
stock and the consumption of their contaminated meat are 
major factors influencing the rate of human infections.

  The risk of infection by tissue cyst-containing meat is 
dependent on the animal species as well as the type of 
meat and its preparation and varies from country to 
country. In general, cysts survive in raw and undercooked 
but not in well-done prepared meat. With respect to the 
animal species, pigs and sheep are the dominant sources 
of  T. gondii  infections ( fig. 1 ). As a consequence of indus-
trialized meat production keeping livestock indoor, feed-
ing sterilized food and keeping stables free of contact with 
rodents and cats, the prevalence of  T. gondii  in pigs is be-
low 5% in Western countries  [3] . Therefore, the risk of 
infection and seroconversion has declined in most coun-
tries in which less meat was consumed and hygiene stan-
dards were increased  [4] .

  A significant decline in seroprevalence has been ob-
served in Europe – e.g. in the Netherlands, where it 
dropped from 35.2% in 1996 to 18.5% in 2006  [5] . Of par-
ticular importance is the seroprevalence in childbearing 
women. In France, the proportion of seropositive preg-
nant women declined from 80% in the 1960s to 44% in 
2003  [6] , indicating a significantly lower immune-medi-
ated protection for the unborn child.

  There is concern that the decline in exposure to  T. gon-
dii  may be reversed in the future. Improved animal wel-
fare and animal-friendly meat ‘production’ with outdoor 
containment are likely to increase the presence of  T. gon-
dii  in meat products and will subsequently put consumers 
at higher risk of contracting toxoplasmosis  [7] .

  Whereas in Western countries, a decrease in  T. gondii  
seroprevalence was observed, the opposite may be true in 
regions with strong population growth and urbanization 

trends, i.e. large parts of Asia  [8] . The risk of foodborne 
infection seems much higher e.g. in China, where an av-
erage of 31% seroprevalence of  T. gondii  was found in 
slaughter pigs  [9] . Large changes are expected for the fu-
ture in the light of increased meat consumption in devel-
oping countries. A significantly higher risk of acquiring a 
 T. gondii  infection has also been observed in Russia, Chi-
na and Indonesia  [9–11] .

  Also, exposure to other reservoirs containing  T. gon-
dii , such as fresh water, may become an increasing source 
of infection. The quality of water is known as an impor-
tant risk factor in human infection with oocysts. Con-
taminated water has repeatedly been a source of epidem-
ics with ocular toxoplasmosis  [12, 13] . Drinking unfil-
tered surface water bears a high risk of infection 
especially in countries with humid weather conditions. 
Since global climate changes are predicted in coming 
years, this may have an impact on the  T. gondii  prevalence 
in humans  [14] . Interestingly, also seawater and seafood 
such as mussels or oysters are frequently (45–100%) con-
taminated with  T. gondii  oocysts and may account for a 
still underestimated source of human infections  [15] .

  Pathophysiology 

 How and Why Does the Eye Become Affected? 
 It is probably not by chance that the three main im-

mune-privileged areas of the body, the placenta, the brain 

Cattle,
horses,
poultry

Game animals,
domestic rabbits,

pigeons, farm deer

Pigs, sheep, goats,
seafood, mussels

  Fig. 1.  Relative importance of food-related transmission of  T. gon-
dii  to humans. Adapted from the Report of the WHO Consultation 
on Public Health Aspects of Toxoplasmosis and from several stud-
ies  [7–9, 12–15] . 

http://dx.doi.org/10.1159%2F000363141


 Pleyer   /Schlüter   /Mänz   

 

Ophthalmic Res 2014;52:116–123
DOI: 10.1159/000363141

118

and the eye, are major targets of pathology in humans. 
The unique immunological milieu (e.g. high levels of 
TGF-β) may provide preconditions for a specific balance 
between parasite invasion and host resistance. Following 
primary infection of intestinal epithelial cells,  T. gondii  
disseminates via the bloodstream throughout the host 
and has the ability to cross vascular barriers, e.g. the 
blood-brain barrier, and to form local cysts  [16, 17] . Al-
though free tachyzoites have recently been observed in 
human blood samples, it is unlikely that these parasites 
are able to infect ocular tissue directly. It is the current 
understanding that dendritic cells and macrophages serve 
as ‘Trojan horses’ to guide the parasite throughout the 
body into the target organs  [17, 18] .

  Invasion of the host cell differs from other microor-
ganisms and is mainly an active parasite-driven process, 

based on the interaction of several parasite-host surface 
ligands. Following attachment, unknown triggers activate 
calcium-dependent protein kinases, which in turn regu-
late motility and parasite invasion ( fig. 2 )  [19] . In the host 
cell, the parasite protects itself from toxic host molecules 
in a parasitophorous vacuole. During invasion and intra-
cellular infection, the host cell remains astoundingly pas-
sive, with little change of the actin cytoskeleton or protein 
phosphorylation. This finding is considered to be due to 
the manipulation of intracellular signaling by the para-
site, which secretes immune modulators (e.g. ROP and 
GRA proteins) into the cytoplasm of the host cell. Nota-
bly, the parasite simultaneously provokes the production 
of proinflammatory IFN-γ and IL-12, but at the same 
time  T. gondii  suppresses a strong Th1 immune response. 
This balanced immune response allows the immunologi-
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  Fig. 2.   T. gondii -host cell interactions. (A) Innate immune re-
sponses are initiated by TLR and CCR5 recognition of  Toxoplas-
ma -derived factors. (B) Parasite invasion is accomplished by the 
release of micronemal adhesins that interact with host surface fac-
tors. This is then followed by rhoptry secretion that results in the 
formation of the moving junction and in the release of parasite 
factors (e.g. ROP2 family members, ROP16, ROP18) that either 
interact with the parasitophorous vacuole (PV; ROP2 family and 
ROP18) or are transported to the host cytoplasm (ROP16) or nu-
cleus. Some of these factors (ROP16 and ROP18) are polymorphic 
virulence factors. (C) Intracellular parasites reorganize host mito-
chondria and the endoplasmic reticulum (ER) as well as the host 

microtubule-organizing center (MTOC) and the cytoskeleton 
around the PV. Host microtubules associated with LDL-loaded 
cholesterol form membrane tubules that push into the PV and are 
wrapped with the dense granule protein GRA7. (D) Small soluble 
nutrients freely diffuse across the PV and then are taken up by the 
parasite, presumably by membrane transporters. (E) Host tran-
scription is regulated either by the parasite directly activating host 
transcription factors or by the parasite triggering host signaling 
cascades that culminate in activating the host transcription factors. 
Changes in host gene expression can act to either promote parasite 
growth, immune evasion, virulence or bradyzoite development. 
Reprinted with permission from Blader and Saeij  [19] . 
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cal control of the parasite and, in parallel, prevents an im-
munopathology. As an important regulatory component, 
Th17 cells have been identified as key contributors to this 
balance of immune pathological response in the eye 
( fig. 3 ). Th17 cells are characterized by the production of 
IL-17 mediated by IL-23 from dendritic cells and proba-
bly may have both protective and proinflammatory ef-
fects. Different roles in infectious and inflammatory 
events are likely to be related to the local (cytokine) envi-
ronment and the stage of the pathological process  [20–
22] .

  Recent clinical and experimental studies indicate in-
traocular overexpression of IL-17A in active ocular toxo-
plasmosis. Interestingly, in one study, the production of 
this signature cytokine occurred early in the course of in-
fection and was predominantly caused by resident retinal 
cells rather than infiltrating T cells  [23] . Since IL-17A is a 
well-known inducer of proinflammatory responses and 
autoimmune diseases, this may have direct pathogenic 
and therapeutic implications. In contrast, however, IL-17 
demonstrated strong neuroprotective properties by in-
hibiting intracellular calcium, maintenance of homeosta-
sis and prevention from apoptosis in active uveitis  [24] . 
The exact role of IL-17A in infectious diseases is therefore 
ambiguous, varying between antipathogenic activity and 
tissue destruction.

  It is increasingly clear that parasite- as well as host-
specific factors are important determinants of whether an 
infection results in ocular manifestation. This is likely the 
key to answering the question why some individuals de-
velop ocular disease, whereas others remain in an asymp-
tomatic stage.

  Parasite-Related Factors: Do  T. gondii  Strains 

Influence Clinical Features? 

 There is an ongoing discussion whether the infection 
and the severity of ocular toxoplasmosis are influenced by 
genotypic differences between infecting parasites.  T. gon-
dii  exists in three main clonal lineages (strains I, II and 
III), with type I strains being highly virulent and often 
lethal in mouse models of infection. Type II and III strains 
are only moderately virulent under identical experimen-
tal conditions  [25] . These differences observed in animals 
have a genetic basis and are linked to certain gene loci 
coding for rhoptry proteins (ROP18, ROP5 and ROP16) 
 [25, 26] . 

  Also in humans, type I strains have been reported to 
cause severe postnatally acquired ocular toxoplasmosis in 
Brazil  [27] . Further evidence for severe fulminant retini-
tis caused by  T. gondii  type I strains derives from vitreous 
humor samples of patients who underwent vitrectomy 
 [28] . Based on these studies, two subgroups of patients 
could be distinguished. All patients affected by type I 
strains were otherwise healthy and immune competent, 
whereas patients infected with type II and III strains were 
immune deficient  [28] . From these observations, it might 
be concluded that in immune-competent patients, the 
genotype of parasite dominates the clinical course of ocu-
lar toxoplasmosis, whereas in immune-deficient patients, 
host factors are more important and severe ocular toxo-
plasmosis can be caused by any parasite type.

  However, sexual recombination allows much larger 
parasite diversity, and currently more than 130 ‘atypical’ 
genotypes have been characterized  [29] . Differences in 
the virulence of these strains have again been shown for 
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  Fig. 3.  Simplified schematic graph of para-
site destruction and immune pathology 
during  T. gondii  infection. Whereas IL-12 
and IL-18 induce Th1 differentiation, 
TGF-β, IL-6 and IL-23 promote the expan-
sion and differentiation of Th17 cells. The 
regulatory functions of IL-10, TGF-β and 
IL-27 in supporting the immune responses 
are illustrated.     
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mice  [30] , but the role in humans is more difficult to es-
tablish. Unfortunately, it is difficult to detect these differ-
ences in patients, since intraocular parasite DNA in clin-
ical specimens from patients with ocular toxoplasmosis is 
often limited and frequently not detected. To partly over-
come this problem, ELISA methods have been developed 
that allow serotyping of parasites based on patients’ anti-
body repertoire directed against certain allelic peptide 
motifs  [31] . This serotyping approach has the advantage 
that it can be extended to a healthy seroconverted popula-
tion and no parasite isolation is needed. By serotyping, a 
dominance of type II-specific antibody response was ob-
served in positive but clinically asymptomatic Europeans 
 [32–35] . Interestingly, using this technique, an ‘atypical’ 
nonreactive serotype was significantly more frequently 
detected in sera of patients with ocular toxoplasmosis 
than in seroconverted individuals without ocular involve-
ment (p < 0.0001). Among ocular toxoplasmosis patients, 
those with this serotype experienced more frequent re-
currences (p = 0.037)  [36] . In line with these findings are 
results from a cohort of 193 patients with congenital toxo-
plasmosis in North America. Using the same detection 
method, the nonreactive serotype was associated with 
prematurity (p = 0.03) and severe disease at birth (p < 
0.01)  [37] .

  Host Genetic Factors: Do They Play a Role in 

the Susceptibility to and Severity of Ocular 

Toxoplasmosis? 

 Whether susceptibility to ocular toxoplasmosis differs 
between individuals remains an important question. At 
least five genes at the MHC locus have been associated 
with protection and resistance to otherwise lethal  T. gon-
dii  infection in experimental rodent models  [38] . With 
respect to humans, early studies have shown a significant 
association of the HLA-DQ3 genotype with congenital  T. 
gondii  encephalitis and hydrocephalus  [39]  but not with 
ocular involvement. However, more recent observations 
mainly focusing on congenital toxoplasmosis imply that 
a number of gene polymorphisms are linked to suscepti-
bility. 

  Both encephalitis and retinitis could be linked to the 
ABCA4-encoding genes that are selectively expressed in 
the choroid plexus throughout the development of the eye 
and brain and are closely related to hereditary retina dys-
trophies. This may suggest a possible role for ABCA4 in 
determining the simultaneous pathology in the brain and 
eye, as often seen in congenital toxoplasmosis  [40, 41] .

  In addition, Toll-like receptors (TLR) are important 
transmembrane proteins that recognize microbial com-
ponents and orchestrate an early immune defense, lead-
ing to the production of proinflammatory cytokines. Sup-
ported by a small family-based study in children with 
congenital ocular toxoplasmosis, a significant association 
between gene polymorphisms of TLR (TLR2, TLR5 and 
TLR9) was reported  [42] .

  Probably not unexpected, host cytokine gene poly-
morphisms have been a focus of interest in toxoplasmic 
retinitis. Cytokines, in particular IFN-γ and TNF-α, play 
an essential role in resistance to  T. gondii  infections 
( fig. 2 ). These cytokines activate macrophages, a major 
first defense line. Polymorphisms in genes encoding var-
ious cytokines have been shown to be connected with sus-
ceptibility to parasitic diseases. Indeed, individuals ho-
mozygous for the A allele (+874T/A) of the IFN-γ gene 
had a higher risk of ocular toxoplasmosis if they possessed 
the A/A genotype as compared to a negative control 
group  [43] . In addition, experimental data have demon-
strated a relevant role for the anti-inflammatory cytokine 
IL-10 in modulating acute ocular toxoplasmosis. An IL-
10 gene polymorphism (IL-10 –1082 A allele, AA+AG 
genotypes) could be associated with the occurrence of oc-
ular toxoplasmosis. More recently, a study conducted by 
Cordeiro et al.  [44]  similarly identified and associated an 
IL-6 polymorphism (–174 G/C) with the occurrence but 
not recurrence of ocular toxoplasmosis in Brazilian pa-
tients.

  An interesting finding bridges autoinflammatory and 
immunoregulatory mechanisms in patients with toxo-
plasmic retinochoroiditis. In children with congenital oc-
ular toxoplasmosis, an association with polymorphisms 
in the NOD2 gene, an intracellular pattern recognition 
receptor, could be detected  [45] . Of note, the results fur-
ther suggested that NOD2 influences the production of 
IL-17A by CD4+ T lymphocytes and likely contributed to 
the development of ocular toxoplasmosis.

  Taken together, a variety of gene polymorphisms are 
involved in (ocular) toxoplasmosis and may relate to an 
individual risk profile for a given patient. This may hope-
fully also open future avenues for studying host-parasite 
interaction and allow more specific preventive/therapeu-
tic modulation.

  Other Factors 

 A variety of other factors may influence the suscepti-
bility to and severity of ocular toxoplasmosis.
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  Patients’ Age 
 The role of patients’ age has been debated for decades. 

It is commonly observed that ocular toxoplasmosis is 
more prevalent and active in younger individuals and be-
comes initially manifest between the ages of 25 and 31 
years. This may suggest a higher risk at younger age; how-
ever, given the natural, steadily increasing seroconver-
sion over decades, this distribution may not be true. In-
stead, a critical evaluation identifies age at the extreme 
ends as a risk for the clinical manifestation of ocular toxo-
plasmosis. Not only patients with congenitally acquired 
infection but also those at older age seem to be at higher 
risk for the clinical manifestation of ocular toxoplasmo-
sis. Patients whose ocular toxoplasmosis was first diag-
nosed and presented recent seroconversion were sub-
stantially older (mean age: 50.6 years) than patients with 
a first manifestation of ocular toxoplasmosis with sero-
logic evidence of an infection some time ago (mean age: 
29.9 years)  [46] .

  Interestingly, the more advanced age of patients at first 
manifestation had an impact on the risk of recurrences as 
well. The relative risk for individuals aged  ≥ 40 years was 
significantly increased (p < 0.03) and presumably related 
to the waning immune defense in the aging host  [47] . The 
overall recurrence rate in Europe is up to 80% within 5 
years, with the highest rate during the first year following 
an active episode of retinochoroiditis  [46–49] . It has been 
postulated that recurrences are associated with the prolif-
eration of organisms that emerge from retinal tissue cysts. 
Over time, the viability of tissue cysts decreases and they 
eventually die, reducing the pool of organisms and risk of 
reactivation. Other factors that have been considered to 
influence recurrences are changes in tissue cysts with re-
duced release of parasites or antigens, trauma, endocrine 
fluctuations and transient humoral or cellular immunore-
activity  [50, 51] . However, none of these putative factors 
could be substantiated. Most notably, no association be-
tween recurrence and treatment, congenital infections ver-
sus postnatally acquired infections, primary lesions versus 
recurrent lesions and the size of lesions or antibody levels 
could be established (for a review, see Mänz et al.  [52] ).

  Patients’ Immune Status: Disease in 
Immunocompromised Individuals 
 Given the eminent role of the host immune system in 

ocular toxoplasmosis, an impact on the disease course can 
be expected in immunocompromised, e.g. HIV coinfect-
ed, individuals. Whether AIDS patients per se are at high-
er risk of primary acquired ocular toxoplasmosis is not 
clearly documented. Before the introduction of highly ac-

tive antiretroviral treatment, and even today without ad-
equate treatment, toxoplasmic encephalitis remains an 
initial AIDS-defining illness in up to 33% of all patients 
 [53] . It remains an important cause of neurological disor-
ders, leading to severe pathology including lethal conse-
quence  [54] . Also ocular involvement is far more severe, 
even when compared to other opportunistic infections of 
the retina in AIDS patients, e.g. cytomegalovirus retinitis. 
The essential role of the host immune response is under-
lined by the fact that patients are at particular risk when 
CD4+ T cell numbers are reduced below 200 cells/mm 3  
and, therefore, subsequent monitoring is advised  [55] . 
Often these individuals demonstrate an atypical fulmi-
nant clinical course of ocular toxoplasmosis and provide 
a great diagnostic challenge. Similar problems and atypi-
cal clinical presentations of ocular toxoplasmosis can be 
seen in patients receiving immunosuppressive drug ther-
apy, e.g. following organ or bone marrow transplantation 
 [56] . The prevalence of ocular toxoplasmosis in this pop-
ulation at risk is not known, but careful monitoring of 
infections in this increasing population is advised  [57] .

  Conclusions 

 Since a reliable animal model of ocular toxoplasmosis 
is still missing and will be hard to establish, the research 
focus on ocular toxoplasmosis is likely to remain clinical. 
Many questions concerning not only the epidemiology, 
impact of parasite strains and role of protective and im-
munopathological immune response but also therapeutic 
approaches are still unresolved. Close cooperation of 
ophthalmologists with parasitologists, microbiologists 
and immunologists are mandatory.
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