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ODAR: Aerial Manipulation Platform Enabling
Omnidirectional Wrench Generation

Sangyul Park , Jeongseob Lee, Joonmo Ahn, Myungsin Kim, Jongbeom Her, Gi-Hun Yang ,
and Dongjun Lee

Abstract—We propose a novel aerial manipulation plat-
form, an omnidirectional aerial robot, that is capable of om-
nidirectional wrench generation with opportunistically dis-
tributed/aligned Sectional rotors. To circumvent the tight
thrust margin and weight budget of currently available ro-
tor and battery technologies, we propose a novel design
optimization framework, which maximizes the minimum-
guaranteed control force/torque for any attitude while in-
corporating such important and useful aspects as interro-
tor aerointerference, anisotropic task requirement, gravity
compensation, etc. We also provide a closed-form solution
of infinity-norm optimal control allocation to avoid rotor sat-
uration with the tight thrust margin. Further, we elaborate
the notion of electronic speed controller induced singularity
and devise a novel selective mapping algorithm to substan-
tially subdue its destabilizing effect. Experiments are per-
formed to validate the theory, which demonstrate such ca-
pabilities not possible with typical aerial manipulation sys-
tems, namely, separate translation and attitude control on
SE(3), hybrid pose/wrench control with downward force of
60 N much larger than its own weight (2.6 kg), and peg-in-
hole teleoperation with a radial tolerance of 0.5 mm.

Index Terms—Aerial manipulation, design optimization,
fully actuated platform, reversible electronic speed con-
troller (ESC), selective mapping.

I. INTRODUCTION

M
ULTIROTOR unmanned aerial vehicles (UAVs) or sim-

ply drones have received booming interests from the

research community and the general public alike due to their
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capacity/promise to extend our sensory and manipulation ability

to the three-dimensional (3-D) space without being bound to the

ground. This flourishing field of drones is enabled by the recent

advancement and maturation of many background technologies,

including material/manufacturing (e.g., carbon fiber and mag-

nesium alloy), sensors (e.g., microelectromechanical systems,

inertial measurement unit (IMU), sonar, cameras, etc.), actuators

(e.g., brushless direct current (BLDC) motors, on-board com-

puting and communication, and algorithms (e.g., sensor fusion,

localization, control, image processing, etc.), to name just a few.

The most successful applications of the drones so far are

mostly “seeing” applications, including aerial photography, geo-

surveying, traffic monitoring, etc. However, to truly extend the

usefulness of the drones to the 3-D space, it is necessary to

endow them with the ability of aerial manipulation, and for

that, drone-manipulator systems (i.e., drone with multidegree-

of-freedom (DOF) robotic arm) are most intensively investi-

gated [1]–[4]. This drone-manipulator system, yet, suffers from

the following two crucial limitations stemming from the under-

actuation of the drone (i.e., it cannot control its position and

orientation at the same time with all axes of rotors parallel): it

would not be able to maintain contact or continue manipulation

task when there blows a side-way gust, since it cannot hold its

orientation in the presence of lateral disturbance, particularly

given that the attached robotic arm is typically of only low-

DOF due to the payload limitation of the drone; and it cannot

exert downward force larger than its own weight and can do

so only by turning off its rotors, since, for typical drones, all

the rotors are aligned upward and driven by unidirectional elec-

tronic speed controllers (ESCs), although this downward force

is very important for many practical applications. These limi-

tations, we believe, are because the multirotor drone platforms

are designed/optimized for ease of flying, not for manipulation.

To overcome these limitations of the conventional multi-

rotor drones, in this paper, we propose a novel flying plat-

form for aerial manipulation, the omnidirectional aerial robot

(ODAR), as shown in Fig. 1. By utilizing opportunistically

aligned/distributed bidirectional rotors (with reversible ESC and

bidirectional props), this system can attain omnidirectional mo-

tion (i.e., arbitrary position/orientation) or produce omnidirec-

tional wrench (i.e., arbitrary force/torque). This full-actuation in

SE(3) allows for such practically useful behaviors not possible

with other typical aerial operation systems:

1) exerting force/torque in all directions, particularly push-

ing from the top (e.g., structure maintenance/repair);
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Fig. 1. ODAR system with eight nonaligned bidirectional rotors as
obtained from the design optimization (4). Also shown are the in-
ertial, body, and ith rotor coordinate frames {O} := {N O , EO , DO },

{B} := {N B , EB , DB }, and {Ui} := {XU i , Y U i , ZU i }, i ∈ {1, ..., 8};
and the orientation, position, and reaction momentum vectors of the
ith rotor ui ∈ S2, ri ∈ ℜ3, and γσiui ∈ ℜ3.

2) pointing to any direction, while maintaining its posture

against side-way wind (e.g., 360◦ camera shooting and

fire-fighting hose operation); and

3) flying while adjusting its attitude at the same time (e.g.,

navigation in a pipe-cluttered environment).

The key challenge for this system is the very tight thrust

margin and weight budget under the currently available motor

and battery technologies, while being required to be fully func-

tioning with all the components on-board and no power cable

tethered to the ground. For this, on top of using lightweight/stiff

carbon-fiber structures and weight-reducing 3-D-printed parts,

we propose a general design optimization framework for the

ODAR system, which optimizes the pose of the rotors to maxi-

mize the minimum-guaranteed omnidirectional force and torque

generation with such an important aspect as interrotor aerody-

namic interference and task-specific anisotropy incorporated.

We also propose a novel selective mapping algorithm to sub-

stantially subdue the destabilizing effect of “ESC-induced sin-

gularity,” i.e., temporary loss of thrust when the reversible rotor

changes its rotating direction due to the lack of position sens-

ing (i.e., sensorless BLDC), which, if not treated properly, can

render the ODAR system behavior fairly shaky, unstable, and

even resulting in a crash. With all these implemented, we also

perform experiments, in which our eight-rotor ODAR system

can exert downward force larger than 60 N much larger than

its own weight (around 2.6 kg), can control its tip position and

force at the same time (i.e., hybrid position/force control) while

fixing its attitude, and can even attain a peg-in-hole task of its

circular bar-end of 20 mm diameter into a 21 mm diameter hole

via bilateral teleoperation. All these levels of aerial manipula-

tion performance, we believe, are reported in this paper for the

first time.

There have been proposed several new designs of flying plat-

forms to overcome the issue of under-actuation [5]–[14]. The

works of [5]–[8] advocate the use of extra actuators to tilt

the direction of some or all of the rotors to overcome the is-

sue of underactuation. However, adding those extra actuators,

possibly as many as the rotors, can substantially increase the

system complexity and also result in further reduction of the

already fairly tight payload of the systems. The work of [9]

presents a new aerial platform, the so-called spherically con-

nected multiquadrotor (SmQ) system, which is actuated by

multiple drones connected by passive spherical joints to the

platform, thereby, can deal with both the underactuation and

payload problems. This SmQ system, yet, still cannot exert a

downward force larger than its own weight due to the unilateral

thrust generation of the standard drones. More closely related

to our proposed ODAR system are the designs of [10]–[14],

where rotors attached with nonparallel directions are used to

attain the full-actuation on SE(3) with no extra actuation. The

works of [10]–[12] however optimize (or adjust) only the di-

rection of the six rotors in S1 while leaving their positions to

be the same as those of the standard hexarotors. Although their

designs achieve the full-actuation on SE(3), since their search

space (i.e., S1 of each rotor) is much narrower than ours (i.e.,

ℜ3 × S2 of each rotor), given the tight weight budget and thrust

margin of currently available motor and battery technologies,

they would generate much less force/thrust omnidirectionally

than our ODAR system, which may be adequate for just stan-

dalone flying in a mild environment (e.g., microgravity [12]),

yet, likely substantially lacking for the manipulation tasks as

demonstrated in this paper. The work of [13] optimizes both the

S2-orientation and the position of the rotors as done here, yet,

their goal is not to maximize the wrench generation but to min-

imize the system size under the full-actuation constraint. Thus,

similar as for [10]–[12], its wrench generation would be likely

deficient for the manipulation tasks of this paper. In fact, the

implementation of this design [13] (and also [11], [12]) has not

been reported yet. Most closely related to our ODAR system is

the design of [14], which also maximizes the omnidirectional

wrench generation. However, it does not take into account the in-

terrotor aerodynamic interference, which not only significantly

affects the rotor performance but also results in infeasibility of

their design, i.e., positions of some rotors are overlapped, thus

heuristically relocated to some vertices of a cube in [14]. In

contrast, we optimize both the position and the orientation of

each rotor, while fully incorporating such important aspects as

the interrotor aerointerference and gravity compensation. Fur-

thermore, to our knowledge, the level of performance of the

aerial manipulation tasks demonstrated in this paper (e.g., max-

imum downward force larger than 60 N; aerial peg-in-hole with

radial tolerance of 0.5 mm) is unprecedented. We also believe

that the issue of ESC-induced singularity is addressed in this

paper for the first time with the selective mapping algorithm to

substantially alleviate its destabilizing effect.

Some portions of this paper were presented in [15], which

yet was only for the tethered ODAR system with six rotors and

the manipulation experiment was limited only for the down-

ward pushing task. In this paper, we extend the result of [15]

to the untethered eight-rotor ODAR system while fully elabo-

rating how to resolve and utilize its actuation redundancy with

the closed-form expression of infinity-norm optimal control al-

location. The peculiar issue of ESC-induced singularity and its

stabilizing selective mapping are also presented here for the first
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time, along with the hybrid pose/wrench control experiment and

the teleoperated peg-in-hole experiment, which have not been

reported elsewhere either.

The rest of the paper is organized as follows. Mechani-

cal design and design optimization of the ODAR system are

presented in Section II, and its dynamics modeling and con-

trol methods are briefly explained in Section III. The infinity-

norm optimal control allocation and the selective mapping al-

gorithm to stabilize the ESC-induced singularity are delineated

in Section IV. Hardware setup and experiment results are pre-

sented in Section V, and some concluding remarks are given in

Section VI.

II. MECHANICAL DESIGN

A. Design Description

We design the ODAR system to be of the bar shape (see

Fig. 1); since, first, it can conveniently hold or attach on it-

self tools commonly used for many operation and manipulation

tasks (e.g., screw-driver, drill, inspection probe, etc.) while ef-

fectively resisting the reaction moment of the tool through its

longitudinal length and, second, it can also mitigate the ground

effect stemming from the fluid–structure interaction when the

task takes place in a proximity of structures (e.g., close to

wall, under the bridge girder, etc.), as the half of the actuators

are located far from the interacting plane, it can still produce

ample correcting wrench to subdue such a ground effect (see

Section V). Of course, depending on task objectives, other

shapes (e.g., spherical or disc shapes) would be desirable, for

which the framework proposed in this paper can also be applied.

To construct the ODAR system, with an inspiration from

the design of conventional drones, we adopt each pair of two

symmetrically attached rotors as the basic actuator unit. More

precisely, see Fig. 1, where the rotors 1 and 5 constitute such

an actuator unit, with their rotor directions u1 = u5 ∈ S2 to be

the same and their attachment locations r1 = −r5 ∈ ℜ3 sym-

metric w.r.t. the mainframe origin, while they rotate in different

direction (e.g., their rotor types σ1 = 1 and σ5 = −1). With this

symmetry, each rotor pair can then generate a 1-D control force

(e.g., (λ1 + λ5)u1, where λi is the rotor thrust output) and 1-D

control torque (e.g., (λ1 − λ5)[r1 × u1 + γσ1u1], where γ > 0

is the thrust–yaw ratio caused by the drag force), independently

and separately. This then implies that we can render the ODAR

system fully actuated on SE(3) by using the three rotor pairs.

This adoption of the rotor pairs as actuator units turns out to

significantly simplify the process of design optimization (see

Section II-B).

For the ODAR system to be omnidirectional, we also adopt

reversible ESCs with the reversible propellers composed of two

unidirectional props (i.e., with four blades) stacked together

in the opposite direction (see Fig. 1). We also experimentally

checked (see Fig. 7) that our stacked props, even with the inter-

props flow interference, can still retain about 92% of the thrust

production capability of a single unidirectional prop (with two

blades). This reversible thrust generation is crucial particularly

for aerial manipulation, since, only with that, we can exert a

downward pushing force larger than the weight of the system

itself, an impossible feat with typical multirotor drones with

unidirectional rotors.

One of the foremost challenges of the ODAR design is that,

under the current available motor and battery technologies, the

weight–thrust budget of the ODAR is fairly tight, particularly

for untethered operation. This in fact spurs us to adopt the eight-

rotor design of Fig. 1 for untethered operation in this paper in-

stead of the six-rotor design for tethered operation in [15], since,

with batteries, electronics, cables, etc., all on-board, we could

not find some a commercially available rotor–battery combi-

nation to fly our ODAR system with enough omnidirectional

wrench-exerting capability. This eight-rotor design provides the

actuation redundancy, which can be utilized, e.g., to better al-

locate control actuation to each rotor or to ameliorate the issue

of zero-crossing of the reversible ESC (see Section IV). With

this tight weight–thrust budget constraint, it turns out to be of

paramount importance to optimize the pose of the rotors as best

as possible to maximize omnidirectional wrench generation,

which is the topic of Section II-B.

B. Wrench-Maximizing Design Optimization

The goal of our design optimization here is to de-

cide the attaching location ri ∈ ℜ3 and the thrust gener-

ation direction ui ∈ S2 of each rotor, i = 1, .., n, all ex-

pressed in the body frame {B}, to maximize omnidirectional

wrench generation (see Fig. 1). Using each pair of sym-

metrically attached rotors as an actuator unit as stated in

Section II-A, we first define the sets of ui and ri s.t.

U :=
{

ui ∈ S2 |uj = uj+ n
2
, i = 1, . . . , n, j = 1, . . . ,

n

2

}

R :=
{

ri ∈ Rmax | rj = −rj+ n
2
, i = 1, . . . , n, j = 1, . . . ,

n

2

}

where n is the total number of rotors, which is assumed to be

even, and Rmax is the maximum allowable volume for all the

rotor locations defined by

Rmax :=

{

r ∈ ℜ3 |
√

r2
y + r2

z ≤ Rmax , |rx | ≤
Lmax

2

}

where r = [rx ; ry ; rz ] expressed in {B}, and Rmax and Lmax

are the maximum radius and length of the bar shape ODAR

system, respectively. The type of rotors (i.e., left-handed or

right-handed) is also considered as the optimization variable,

since it affects the control torque generation via drag-induced

reaction moment. For this, we define the set of rotor types as the

optimization variable s.t.

S :=
{

σi ∈ {1,−1}|σj = −σj+ n
2
, i=1, . . . , n, j =1, . . . ,

n

2

}

where σi = 1 means that the rotor generates upward thrust when

rotating in clockwise direction (i.e., left-handed), and σi = −1

when in counterclockwise direction (i.e., right-handed). The

search space of our design optimization is then given by U ×
R× S.

Let us denote the torque generation of the jth rotor with the

unit thrust generation (i.e., λj = 1) by

tj := rj × uj + γσjuj ∈ ℜ3 (1)
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Fig. 2. Feasible control force and torque volume (VF , VM) of the opti-
mally designed eight-rotor ODAR system in Fig. 1.

where γ ≈ 0.02 for our case, according to experiments. We

can then see that, under the definitions of (U ,R,S) mentioned

above, tj = −tj+n/2, implying that each pair of the rotors j
and j + n

2
can produce the 1-D control force (λj + λj+ n

2
) · uj

and the 1-D control torque (λj − λj+ n
2
) · tj independently by

adjusting their thrust outputs λj and λj+ n
2

, as stated in Sec-

tion II-A. With this design symmetry, the search space for the

optimization becomes square root of the nonsymmetric one,

thereby substantially reducing the complexity of solving the

design optimization.

Our design optimization then boils down to the problem of

finding (uj , rj , σj ) of each rotor pair to maximize the feasible

control force volume VF and feasible control torque volume VM

defined as follows:

VF :=

{

f ∈ ℜ3 | f =

n
∑

i=1

λiui , λmin ≤ λi ≤ λmax

}

VM :=

{

τ ∈ ℜ3 | τ =

n
∑

i=1

λiti , λmin ≤ λi ≤ λmax

}

where λi is the thrust output of the ith rotor; λmin , λmax ∈ ℜ are

the minimum and maximum thrusts, respectively, for each rotor

with λmax = −λmin ≥ 0. Here, we assume uniformity among

all the rotors. The sets VF and VM are both convex, since λiui

and λiti each constitutes a convex set (see Fig. 2).

The ODAR system is purposed to be omnidirectional. Thus,

it is desired to maximize the minimum force and torque genera-

tion by the system for any attitude. Of particular importance is to

generate force for any attitude larger than its own weight so that

the system can fly in any attitude. For this, we define the guar-

anteed minimum control force for any orientation (generated

collectively by all the rotors) s.t., with Nh := {1, 2, ..., n/2},

Fmin(U) := min
i,j∈Nh

∑

k∈Nh

2λmax
|(ui × uj )

T uk |

||ui × uj ||
(2)

which is the maximum radius of spheres centered at the origin

and fully contained within the volume VF . More specifically,

consider the plane on VF spanned by ui , uj . Then, similar to the

procedure developed for cable-driven robots in [16], the distance

from the origin to this plane along its normal vector ui × uj can

be written as, with i, j ∈ Nh ,

dFF i j
=

∑

k∈S i j

2λmax
(ui × uj )

T uk

||ui × uj ||
+

∑

k∈S̃ i j

2λmin
(ui × uj )

T uk

||ui × uj ||

where Sij , S̃ij are defined by

Sij := {k|(ui × uj )
T uk ≥ 0 , k ∈ Nh}, S̃ij := Nh \ Sij

and the multiplication by 2 of the right-hand side in the expres-

sion of dFF i j
is from our adoption of the rotor pairs. Then, since

VF is convex with the origin in its interior as stated above, and

further, symmetric w.r.t. the origin due to λmax = −λmin , we

have Fmin(U) = mini,j∈Nh
dFF i j

, from which (2) follows.

Nominally, the ODAR system is aimed to be omnidirectional.

However, depending on task objectives or its shape, it may be

more advantageous to endow it with the ability of anisotropic

force/torque generation ability so that its performance along

the more often-used attitude is enhanced, while that for the less-

trotted attitude relaxed. For instance, the bar shape of our ODAR

system naturally leads to the idea of using it more often with

its pitch-yaw rotations (i.e., orientation about E-axis or D-axis

in Fig. 1) instead of with its roll-rotation. In this case, it would

be more desirable to “shape” the force generation capability

in such a way that the force generation is maximized in the

(N, D)-plane (i.e., sagittal plane) while relaxing along the E-

axis expressed in {B}. Note that, even so, such roll-directional

operations as screwdriving or drilling can still (and more con-

veniently) be achieved by simply attaching a rotating-tool with

reaction moment succumbed to by the ODAR control torque

generation.

This “anisotropic shaping” of the force generation can be

attained by using the following weighted FW
min(U) in the place

of Fmin(U) in (2):

FW
min(U) := min

i,j∈Nh

∑

k∈Nh

2λmax
|(W−1ui × W−1uj )

T W−1uk |

||W−1ui × W−1uj ||

where W := diag[Wx , Wy , Wz ] is the weight matrix with 0 <
W⋆ ≤ 1 (with (x, y, z) corresponding to (N, E, D) of {B}).

Here, note that, if W⋆ < 1, VF will be stretched by 1/W⋆ along

that direction,FW
min(U) will be strengthened along that direction

as compared to Fmin(U), thereby relaxing the force generation

requirement along that direction. For instance, for our bar shape

ODAR, we choose W = [1, 0.4, 1] (see Table 1) so that the

force generation requirement along the body-fixed E-axis is re-

laxed while retaining that for the (N, D)-plane. Although the

ODAR system can still operate with W = [1, 1, 1], we how-

ever found that this W = [1, 0.4, 1] provides us a better-tuned

ODAR system for the operations with more pitch/yaw-rotations

as experimented in Section V.

On the other hand, for the control torque generation opti-

mization, similar to (2), we can define the guaranteed minimum

control torque for all the orientation (generated collectively by

all the rotors) s.t.

Mmin(U ,R,S) := min
i,j∈Nh

∑

k∈Nh

2λmax
|(ti × tj )

T tk |

||ti × tj ||
(3)

or its weighted version MV
min(U ,R,S) similar to FW

min stated

above with the weight matrix V := diag[Vx , Vy , Vz ] to attain the

anisotropic torque generation capability. For our design below,

we choose V = [1, 1, 1].
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Fig. 3. Anemometer measurement of wind velocity distribution down-
stream the rotor generating thrust required for hovering with the rest pose
(RO B = I) with the ra -function also marked with interference-threshold
wind speed to be 4 m/s.

We can then formulate the design optimization problem as a

constrained optimization problem for (ui , ri , σi) s.t.

max
R,S

MV
min(arg max

U
FW

min(U),R,S) (4)

s.t. uT
i ui = 1, ri ∈ Rmax (5)

FW
min(U) ≥ mg, daero(U ,R) ≥ D (6)

where (5) are to constrain ui ∈ S2 and to constrain the vol-

ume of the ODAR system; (6) are to ensure that the ODAR

system can fly while overcoming its own weight (with the re-

laxation endowed by W = [Wx , Wy , Wz ] as discussed above)

and reducing the interrotor aerodynamic interference by en-

suring that the gap between the flow stream of each rotor

(i.e., Ca,i) and other rotors (i.e., rj ) be larger than a certain

value D, i.e., daero(U ,R) := mini,j ||ca,i − rj || ≥ D, ca,i ∈
Ca,i , where i, j ∈ {1, 2, ..., n}, i �= j and Ca,i(ri , RBU i

) :=

{c ∈ ℜ3|c = RBU i
v + ri ,

√

v2
x + v2

y ≤ ra(vz )} is the flow

stream volume of the ith rotor, with RBU i
∈ SO(3) being the ro-

tation matrix from {B} to {Ui} (see Fig. 1), v := [vx ; vy ; vz ] ∈
ℜ3 a position vector in {Ui}, and ra : ℜ → ℜ being the axial

shape function of the aerodynamic space also similarly used in

[13]. To identify this flow-axial function ra , we perform an ex-

periment to measure wind velocity distribution downstream the

rotor generating thrust required for hovering with the rest pose

(ROB = I). See Fig. 3, from which we obtain the ra -function

to be a tapered cylinder as marked therein. For this, we choose

the interference-threshold wind velocity to be 4 m/s (i.e., gentle

breeze according to the Beaufort scale, known to be adequate

for drone flying).

We solve this constrained optimization (4)–(6), and the ob-

tained optimal ODAR design is illustrated in Fig. 1 with its fea-

sible control force and torque volumes VF and VM also shown

in Fig. 2. Since the optimization problem (4)–(6) is nonconvex

and has a complex form of objective and constraints, the solu-

tion is obtained with the grid search method. Note also from (4)

that we first determine the thrust directions ui ∈ S2 of all the

rotors, and then solve for their attaching location ri ∈ ℜ3 and

their types σi given the obtained ui ∈ S2. This sequential for-

mulation turns out to significantly speed up the solving process

of the optimization (4)–(6) while still providing an adequate

design as experimentally validated in Section V.

Design parameters and optimized design variables are sum-

marized in Table I, where only those of the rotors 1–4 are

given due to the symmetric design of the ODAR system. For

this optimization, we also assume λmax = 9.7 N according to

the specification of the rotors used in the implementation (see

TABLE I
DESIGN OPTIMIZATION PARAMETERS AND OPTIMIZED VALUES

Section V-A). With this rotor thrust, the ODAR system can

overcome its weight along the (N, D)-plane, as the minimum

guaranteed control force within this sagittal (N, D)-plane is

F xz
min(U) = 37.35 N, whereas the weight of the ODAR system is

25.48 N (i.e., 2.6 kg—see Section V-A). Here, note that the om-

nidirectionally guaranteed minimum force Fmin(U) = 17.97 N

is less than the weight of the system, even if we enforce (6).

This is because we use the weight W = [1, 0.4, 1] to relax the

force generation along the body-fixed E-axis as our ODAR sys-

tem will be used mostly with minimal roll-rotation as stated

above and also experimentally validated in Section V. With

W = [1, 1, 1], we can ensure Fmin(U) > 25.48 N, yet with de-

terioration of the force generating capability in the sagittal plane.

See Fig. 2 also for the feasible control force and torque volumes

VF and VM with the metric information endowed by λmax with

the omnidirectionally guaranteed minimum control torque to be

8.67 N·m.

III. SYSTEM MODELING AND CONTROL DESIGN

With the design optimization of Section II-B, which deter-

mines ui , ri , and σi to maximize the guaranteed minimum force

FW
min and torque MV

min for any attitude, we can model the

ODAR system as a fully actuated rigid body s.t.

mẍ = ROB Bf λ − mge3 + fe

Jω̇ + ω × Jω = Bτ λ + τe (7)

where m > 0 is the mass with x ∈ ℜ3 being the center-of-mass

position expressed in {O}, J ∈ ℜ3×3 is the inertia matrix with

ω ∈ ℜ3 being the angular velocity expressed in {B}, and g is

the gravitational constant with e3 = [0; 0; 1](see Fig. 1). Also,

λ = [λ1; λ2; · · · ; λn ] ∈ ℜn is the collection of the thrust inputs

of all rotors, and Bf , Bτ ∈ ℜ3×n are the mapping matrices from

the thrust inputs to the control force and control torque, with their
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ith column respectively specified by Bi
f := ui , Bi

τ := ti where

ui , ti ∈ ℜ3 are the 1-D space of the thrust and torque generation

of the ith rotor (see Section II-B).

For notational convenience, we define
(

f

τ

)

:=

[

ROB 0

0 I3×3

] [

Bf

Bτ

]

λ =: R̄Bλ (8)

where f, τ ∈ ℜ3 are the translation and orientation controls re-

spectively expressed in {O} and {B}, R̄ := diag[ROB , I3×3] ∈
ℜ6×6, and B := [Bf ;Bτ ] ∈ ℜ6×n is the mapping matrix, which

is to be full row rank, as the design optimization in Section II-B

enforces the full-actuation of the ODAR system on SE(3). This

then means that we can design the control wrench (f, τ) ∈ ℜ6

for various control objectives as if the system is fully actuated

on SE(3), and then allocate this (f, τ) ∈ ℜ6 to λ ∈ ℜn while ex-

ploiting the redundancy for some other purposes (e.g., to avoid

thrust saturation and thrust loss when rotors cross zero speed

(see Section IV).

In this paper, the following three control objectives are imple-

mented: pose trajectory tracking on SE(3), hybrid pose/wrench

control, and bilateral teleoperation for peg-in-hole task. Since

the control design of fullyactuated rigid systems on SE(3) is

a well-studied subject, we only provide here a brief explana-

tion for each of these. For the pose trajectory tracking on SE(3),

we adopt the standard proportional-integral-derivative control in

E(3) and also that for SO(3) as proposed in [17] to avoid singu-

larity in SO(3) during the omnidirectional motion of the ODAR

system. This pose tracking control can also serve as the basis of

impedance control, as the ODAR system is back-drivable. For

the hybrid pose/wrench control, we use the standard approach

as presented in [18] along with the momentum-based observer

[19] to estimate the external wrench exerted on the system.

For the teleoperation, we utilize the passive set-position mod-

ulation (PSPM [20], [21]) at the ODAR-side along with the

pose tracking PD-control, which turns out to significantly im-

prove the overall teleoperation stability by smoothly modulating

abrupt changes of the human command. At the master-side, a

simple combination of tracking error and external wrench sim-

ilar to that in [21] for UAVs is provided to the user as the

haptic feedback. Here, even with the PSPM only inserted at the

ODAR-side, the teleoperation stability can be ensured, since

the communication delay is negligible and the force feedback

gain not so aggressive. This teleoperation, particularly with its

haptic feedback and 3-D visual information, turns out crucial

to attain precision peg-in-hole task by exploiting human learn-

ing of the full dynamics of the ODAR system, which is too

complicated to be modeled (e.g., aerodynamics, fluid–structure

interaction, etc) and, thus, cannot be controlled with such apre-

cision in a fully autonomous manner(see Section V).

IV. CONTROL ALLOCATION WITH SELECTIVE MAPPING

A. Infinity-Norm Minimization

Once the desired control wrench w := [f ; τ ] ∈ ℜ6 is cal-

culated as stated in Section III, it needs to be distributed

among the n-rotor commands λ = (λ1, λ2, ...,λn ) ∈ ℜn to

produce U = Bλ, where U := [RT
OB f ; τ ] = R̄−1w ∈ ℜ6 from

(8). Here, we assume n ≥ 8 as stated in Section II-A; thus, the

actuation redundancy should be addressed as well. The most

commonly used method for this is to minimize the two norm

of λ ∈ ℜn i.e., λo = B†U , where B† := BT (BBT )−1 ∈ ℜn×6.

Although also adopted in [14] and relevant to power efficiency

to some extent, this two-norm optimization is not so suitable for

the ODAR system, since, with the rotor actuation margin fairly

tight, only one rotor saturation can simply result in instability

and even crash, which is not captured by the two-norm opti-

mization. To address this issue, here, we adopt the infinity-norm

optimization for (8), which can be written by

λα := B†U + NB ξ′

ξ′ := arg min
ξ∈ℜn −6

||B†U + NB ξ||∞ (9)

where λα ∈ ℜn is the thrust vector to be used, NB ∈ ℜn×(n−6)

is the kernel of the mapping matrix B, and ξ′ ∈ ℜn−6 is the null

vector component. This infinity-norm optimization has been ex-

tensively studied for many applications (e.g., for robot manipu-

lators [22]), yet is known in general not to assume a closed-form

solution.

For the eight-rotor ODAR system optimally designed as

shown in Fig. 1, it turns out that we can attain the closed-form

of the infinity-norm optimization (9) with a slight modification

of the design. More precisely, we change σ1 in Table I from

σ1 = 1 to σ1 = −1. With this σ1 = −1, we then have the

same optimal design of Table I for (4)–(6) , except T =
{t1 = [−0.18;−0.16; 0.21], t2 = [−0.18; 0.38; 0.01], t3 =
[−0.18;−0.38;−0.01], t4 = [−0.18; 0.16;−0.21]}. With this

modified design, the minimum guaranteed control force

remains the same (since U is not changed), whereas the

minimum guaranteed control torque is reduced only by 3.6%.

Further, the design then satisfies the following condition with

ν = [1;−1;−1; 1], which is used for the computation of a

closed-form solution as summarized in Proposition 1

Bf ,⋆ν := 0, Bτ ,⋆ν = 0, Bf ,r = Bf ,l , Bτ ,r = −Bτ ,l

ν := [ν1; ν2; ν3; ν4] , |νi | = 1 , i ∈ Nh (10)

where ⋆ ∈ {r, l} (with r-side with rotors 1–4 and l-side

with rotors 5–8; see Fig. 1) and B =: [Bf ,r Bf ,l ;Bτ ,r Bτ ,l ],
Bf ,⋆ , Bτ ,⋆ ∈ ℜ3×4.

Proposition 1: Consider the mapping matrix B ∈ ℜ6×8 of

(8) for the ODAR system with n = 8. If this B-matrix satisfies

the properties (10), the solution of the infinity-norm optimiza-

tion (9) is given by

λα = B†U + NB

[

ξ′r

ξ′l

]

ξ′⋆ = − 1
2
(λν

⋆,max + λ
ν
⋆,min) (11)

where ⋆ ∈ {r, l}, λ
ν
⋆ := diag(ν)λo,⋆ ∈ ℜ4 with λo := B†U =

[λo,r ; λo,l ] ∈ ℜ8; and λ
ν
⋆,max , λ

ν
⋆,min are the maximum and min-

imum component of λ
ν
⋆ .
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Fig. 4. (Left) Plot of input PWM to the ESC and resultant force gen-
erated by the bidirectional rotor when the desired direction of force is
suddenly changed (around 9 and 14.5 s). (Right) Slicing of S2-sphere by
the zero-thrust lines of the rotor pairs of the eight-rotor ODAR system.
Note that two pairs of the rotors simultaneously become zero-thrust only
at certain points on S2.

Proof: Under the properties of (10), the kernel matrix of the

B-matrix can be written as

NB =

[

ν 0

0 ν

]

∈ ℜ8×2 (12)

where ν = [1;−1;−1; 1] ∈ ℜ4. We can then attain, from (11),

that

|λα,⋆,i | = |λo,⋆,i + νiξ
′
⋆ | = |νiλo,⋆,i + ξ′⋆ | (13)

where ⋆ ∈ {r, l}, i ∈ Nh , ξ′⋆ ∈ ℜ, and λα =: [λα,r ; λα,l ]. Then,

the infinity-norm of λα,⋆ is given by

||λα,⋆ ||∞ = max(|max(λα,⋆)|, |min(λα,⋆)|)

= max(|λν
⋆,max + ξ′⋆ |, |λ

ν
⋆,min + ξ′⋆ |)

which is minimized when ξ′⋆ is selected s.t.

λ
ν
⋆,max + ξ′⋆ = −(λν

⋆,min + ξ′⋆)

Finally, note that ||λα ||∞ = max(||λα,r ||∞, ||λα,l ||∞), which

is also minimized with the above selection of ξ′⋆ , since the

kernel matrix NB has the block-diagonal structure and ξ′r , ξ
′
l

only affects ||λα,r ||∞, ||λα,l ||∞, respectively. �

We will use this solution of (11) as a basis of the con-

trol allocation for further adjustment of λi to mitigate the is-

sue arising from the zero-crossing of the rotor as stated in

Section IV-B.

B. ESC-Induced Singularity and Selective Mapping

Once we applied the allocated thrust input λα of (11) to the

ODAR system for the hovering, at certain attitudes, the system

behavior becomes fairly shaky and, in some cases, even goes

unstable and results in a crash. This we found stems from the

phenomenon that the BLDC motors of the rotors slow-down

and re-rotate when they are commanded to suddenly change

their rotation direction (see Fig. 4), where the rotors “hesitate”

when changing their rotating directions (around 9.5 and 14.5 s).

This hesitation is due to the lack of position sensing of the

BLDC rotor motors, i.e., typical off-the-shelf drone rotor ESCs

are not equipped with position sensors (e.g., hall sensor) and

instead rely on the back electromotive force to estimate the rotor

position for their control, which becomes not so useful when the

rotor speed gets close to zero. Typical ESCs in fact utilize their

own certain “bootstrapping” algorithm to start rotation due to

this lack of position sensing. Even though position sensors can

be embedded into the rotor BLDC motors, in this paper, we

consider the case of the sensorless BLDC rotors, since, to our

knowledge, all the commercially available drone ESCs are all

sensorless, likely due to the added complexity and cost of extra

hall sensors.

Shown in Fig. 4 is the slicing of S2 (pitch and yaw) by the

zero-thrust lines of some rotor pairs when the eight-rotor ODAR

of Fig. 1 stays hovering quasi-statically while changing its atti-

tude, where the two rotors of each pair experience the zero thrust

at the same time due to the symmetry of the ODAR design and

the hovering operation. Fig. 4 then shows that the zero-crossing

of some rotors is likely inevitable for any omnidirectional op-

eration of the ODAR system, since the system needs to sweep

through arbitrarily on this S2-sphere. When the system passes

through these zero-thrust lines, some of its rotors would not be

properly functioning, possibly resulting in deterioration of the

performance, loss of full-actuation on SE(3) and even unstable

behavior as stated above. Due to this reason, given a task, we

call the zero-thrust points on SO(3) of the ODAR system as

“ESC-induced singularity.”

Now, for this ESC-induced singularity, we propose a novel

selective mapping algorithm, which, by exploiting the actuation

redundancy of the ODAR system, can “propel” at least six ro-

tors far from this singularity and map the desired control wrench

U ∈ ℜ6 of (11) to these six rotors to maintain the full-actuation

on SE(3) while deactivating the control mapping to the (at most)

two rotors that are allowed to be close to the zero-thrust point by

the algorithm with some interpolation to enhance the smooth-

ness of this process. Here, we choose to propel only the six

rotors away from the singularity rather than all the eight rotors,

since pushing all the eight rotors away from the zero-thrust point

necessitates more thrust generation of all the rotors, which turns

out too large to be accommodated by our ODAR system with

its rotor thrust-generation margin already so tight and six rotors

can still provide the full-actuation on SE(3).

More precisely, for the modified eight-rotor ODAR system as

stated in Section IV-A, we first modulate λα of (11) such that

the thrust magnitude of at least three rotor pairs is larger than a

certain thrust margin ǫ1 > 0 from the zero-thrust line

λβ := B†U + NB (ξ′ + ξ′′(λα )) (14)

ξ′′⋆ (λα ) = arg min
ξ⋆ ∈ℜ

|ξ⋆ − ξ′′⋆,pre|

s.t.

4
∑

i=1

sgn (|λo,⋆,i + νi(ξ
′
⋆ + ξ′′⋆ )| − ǫ1) ≥ 3 (15)

where ⋆ ∈ {r, l}, ξ′′(λα ) := [ξ′′r ; ξ′′l ] ∈ ℜ2, ξ′′⋆,pre ∈ ℜ is the so-

lution from the previous step, and expression (15) comes from

the structure of (13) with ν = [1;−1;−1; 1]. Here, note that the

modulation of ξ′′ is done along the column space of the null ma-

trix NB , which has the form of (12) with ν = [1;−1;−1; 1] for

the modified ODAR system of Section IV-A. This then implies

that the optimization of (14) is always feasible, since, by increas-

ing |ξ′′⋆ |, we can always “propel” λα,⋆ along the lines specified

by νr = [1;−1] and νl = [−1; 1] outside the set |λα,⋆,i | < ǫ1
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Fig. 5. (Left) Geometric structure of the λβ -modulation (14): the
r-side λβ ,r = (λβ ,1, λβ ,2, λβ ,3, λβ ,4) is propelled from the black dots
along νr = [1;−1] and νl = [−1; 1] so that only |λβ ,3| < ǫ1 with the other
three larger than ǫ1. (Right) Thrust thresholds 0 < ǫ0 < ǫ1 to gradually
switch from the full-use if |λβ ,j | > ǫ1 to the complete-disuse if |λβ ,j | < ǫ0

with a linear interpolation between them.

(see Fig. 5). This optimization (14) can be quickly solved, since

the objective function and the constraint are all based on linear

functions.

Once the λβ -modulation of (14) is performed, for each r-side

and l-side of the ODAR system, we have at most one rotor with

its thrust magnitude less than ǫ1, while the other (at least) three

rotors guaranteed to be away from the zero-thrust point farther

than ǫ1. To avoid the ESC-induced singularity, it is then better

to stop using those rotors with near-zero thrust, yet, it is not

desirable either to suddenly stop using them in view of control

smoothness. For this, we define ǫ0 with 0 < ǫ0 < ǫ1 to gradually

switch from the full-utilization of the jth rotor if |λβ ,j | ≥ ǫ1 to

its complete-disuse if |λβ ,j | < ǫ0, with a smooth interpolation

between them (see Fig. 5).

For the modified eight-rotor ODAR system as stated in

Section IV-A, this gradually switching selective mapping can

be written as follows. For this, suppose first that the jth and kth

rotor in the r-side and the l-side of the ODAR system in Fig. 1,

respectively, are designated as the “near-zero” rotors via (14),

i.e., |λβ ,j | < ǫ1 and |λβ ,k | < ǫ1 with the thrust magnitude of all

the other six rotors larger or equal to ǫ1. Here, we allow j = ∅
or k = ∅. Then, we further modulate λβ of (14) s.t.

λγ := B̄†(λβ )U + N̄B (λβ )(ξ′ + ξ′′(λα )) (16)

with

B̄†(λβ ) :=

[

erB
†
r + (1 − er )B

†
r\{j,k}

elB
†
l + (1 − el)B

†
l\{j,k}

]

∈ ℜ8×6

N̄B (λβ ) :=

[

erν 0

0 elν

]

∈ ℜ8×2

and

e⋆ :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if |min
i∈Nh

(|λβ ,⋆,i |)| > ǫ1

min
i∈Nh

(|λβ ,⋆,i |) − ǫ0

ǫ1 − ǫ0

if ǫ1 ≥ |min
i∈Nh

(|λβ ,⋆,i |)| > ǫ0

0 if ǫ0 ≥ |min
i∈Nh

(|λβ ,⋆,i |)|

for ⋆ ∈ {r, l}, where B†
r , B

†
l ∈ ℜ4×6 are defined by [B†

r ;B
†
l ]

:= B† ∈ ℜ8×6, and B†
r\{j,k}, B

†
l\{j,k} ∈ ℜ4×6 by B†

\{j,k} =:

[

B†
r\{j,k};B

†
l\{j,k}

]

∈ ℜ8×6, where B†
\{j,k} := I\{j,k}B

T

(BI\{j,k}B
T )−1 is the reduced mapping matrix excluding

the jth and kth rotors with I\{j,k} ∈ ℜ8×8 being the identity

matrix with the jth and kth diagonal elements set to be zero.

Here, (BI\{j,k}B
T )−1 is nonsingular from the structure of

Br , Bl ∈ ℜ3×4 and BB†
\{j,k} = I .

When the properties of (10) are granted, as true for the mod-

ified eight-rotor ODAR system explained in Section IV-A, we

then have the following “decoupling” property:

B†
r\{j,k} = B†

r\j , B†
l\{j,k} = B†

l\k (17)

where B†
r\j , B

†
l\k ∈ ℜ4×6 are defined by

B†
\j =:

[

B†
r\j ;B

†
l

]

, B†
\k =:

[

B†
r ;B

†
l\k

]

(18)

where B†
\i := I\iB

T (BI\iB
T )−1. Here, if j = ∅ or k = ∅,

B†
r\j = B†

r (with er = 1) or B†
l\k = B†

l (with el = 1). This then

means that the selective mapping matrix B†
⋆\{j,k} for (16) can

be computed for the r-side (i.e., B†
r\j ) and the l-side (i.e., B†

l\k )

as if they are decoupled from each other. This decoupling prop-

erty (17)–(18) also turns out crucial to render the gradually

switching selective mapping (16) to be exact (i.e., produce the

desired control wrench U regardless of er , el), as summarized

in Proposition 2.

Proposition 2: Consider the mapping matrix B ∈ ℜ6×8 of

(8) for the eight-rotor ODAR system. Then, if the properties of

(10) are satisfied, the following statements hold.

1) The decoupling property (17)–(18) is grant.

2) The mapping (16) is exact, i.e., Bλγ = U , ∀er , el .

Proof: Write B† = [B†
r,f B†

r,τ ;B†
l,f B†

l,τ ], where B†
⋆,∗ ∈

ℜ4×3, ⋆ ∈ {r, l} and ∗ ∈ {f, τ}. By using the Sherman–

Morrison formula, B†
\{j,k} in (17)–(18) can be expanded s.t.

B†
\{j,k} = I\{j,k}B

T (BI\{j,k}B
T )−1

= I\{j,k}
(

B† − B†BI{j,k}S
−1I{j,k}B

†
)

(19)

where I{j,k} := I8×8 − I\{j,k} ∈ ℜ8×8 and S := I8×8 + I{j,k}
B†BI{j,k}.

Here, we first show that B†B is block diagonal. For this, we

write

B†B =
1

2

[

B†
⋆,f Bf ,⋆ + B†

⋆,τ Bτ ,⋆ B†
⋆,f Bf ,⋆ − B†

⋆,τ Bτ ,⋆

B†
⋆,f Bf ,⋆ − B†

⋆,τ Bτ ,⋆ B†
⋆,f Bf ,⋆ + B†

⋆,τ Bτ ,⋆

]

due to the property of (10), where ⋆ ∈ {r, l}. Further, since they

share the same null-vector ν ∈ ℜ4 in (10), we can write

Bf ,⋆ = Bf ,⋆\aL, Bτ ,⋆ = Bτ ,⋆\aL

where a ∈ Nh is an index s.t. νa �= 0; Bf ,⋆\a , Bτ ,⋆\a ∈ ℜ3×3 are

matrices obtained by discarding the ath column from Bf ,⋆ , Bτ ,⋆ ,

and L ∈ ℜ3×4 is the constant matrix specified by ν of (10). Here,

since Bf ,⋆ , Bτ ,⋆ are designed to be full row-rank (i.e., 3) for the

full-actuation on SE(3), Bf ,⋆\a and Bτ ,⋆\a are also full rank

and invertible. We can then obtain B†
⋆,f Bf ,⋆ =B†

⋆,τ Bτ ,⋆ ==
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Fig. 6. Selective mapping process: λα ,i (thrust value after infinity-norm
minimization), λβ ,i (thrust value after full-actuation preserving modula-
tion), and λγ ,i (thrust value after excluding zero-crossing rotors) during
the pitching rotation motion. Only λ⋆ ,i of the r-side rotors are shown for
brevity.

LT (LLT )−1L, and further

B†B = diag[LT (LLT )−1L, LT (LLT )−1L].

Then, since B†B is block diagonal and also only the jth and

kth rows of I{j,k}S
−1I{j,k}B

† are nonzero, the upper four rows

of B†
\{j,k} in (19) are the same as those of B†

\j , whereas its lower

four rows are the same as those with B†
\k . If we set k = ∅ or

j = ∅, B†
\{j,k} = B†

\j or B†
\{j,k} = B†

\k , which still retain the

same structure of B†
\{j,k}. This completes the proof of the first

item.

For the second item, recall that BB† = BrB
†
r + BlB

†
l = I .

Also, from the decoupling property (17)–(18), we have

BB†
\j = BrB

†
r\j + BlB

†
l = I

where B†
\j = I\jB

T (BI\jB
T )−1 with (BI\jB

T )−1 being in-

vertible from the structure of Br , Bl as stated above for B†
\{j,k}.

This, and the similar derivation for BB†
\k , implies that

BrB
†
r = BrB

†
r\j , BlB

†
l = BlB

†
l\k

with which we have

BB̄† = erBrB
†
r +(1 − er )BrB

†
r\j +elBlB

†
l +(1 − el)BlB

†
l\k

= I + er (BrB
†
r − BrB

†
r\j ) + el(BlB

†
l − BlB

†
l\k ) = I

completing the proof of the second item. �

The infinity-norm optimization (11) and the selective map-

ping process (14) and (16) are shown in Fig. 6, where λα,i ,

λβ ,i , and λγ ,i are plotted during a pitching rotation simulation

of the modified eight-rotor ODAR system, which in fact passes

through the intersection of the two zero-thrust lines in Fig. 4.

Only those for the r-side rotors are shown here with that of the

l-side omitted for brevity. From Fig. 6, we can then see that,

first, (λβ ,1, λβ ,3) split around 3 and 14 s, whereas (λβ ,2, λβ ,4)
around 8 s, preventing simultaneous zero-crossing of multiple

rotors and allowing only for one rotor thrust magnitude to be

less than ǫ1, while that of the other three larger than ǫ1, thereby

ensuring the full-actuation on SE(3); and, second, through the

process of (16), the λγ ,i behaves around near-zero boundary

Fig. 7. Thrust generation of the rotor with one single unidirectional prop
(dashed line) and with two unidirectional props stacked in the opposite
direction (solid line).

more smoothly than λβ ,i , while the rotors with near-zero thrust

are gradually switched to disuse and, when |λβ ,i | < ǫo , their

thrust is set to zero according to (16) (e.g., λγ ,1 = 0 around 3

and 16 s). See also Fig. 11 for the experimental result of this

selective mapping.

It is worthwhile to mention that, even if it is exact as proved in

Proposition 2, this selective mapping, in general, can only allevi-

ate the effect of the ESC-induced singularity and does not com-

pletely eliminate it, although it can stabilize the ESC-induced

singularity through all of our experiments and simulations. This

is because the selective mapping formulates “dynamic” ESC-

induced singularity as “static” entities, i.e., it decides its action

only based on the rotor thrust input λα,i(t), although the real

rotor thrust λi(t) is the output of the ESC bootstrapping control-

logic (with its own dynamics) given λα,i(t) ≈ 0 (see Fig. 4).

Due to this reason, the ODAR system should be designed in

such a way that the target operations mostly take place as far

from the ESC-induced singularity as possible, and that crossing

zero-thrust lines is permitted with the selective mapping, yet

only in a reserved manner. How to incorporate the ESC-induced

singularity with its full dynamics and nonlinearity is a topic of

active research by itself (i.e., control optimization with dynamic

constraint) and is a topic of our future research as well.

V. EXPERIMENTS

A. System Setup

As stated in Sections II-B and IV-A, we implement the mod-

ified eight-rotor ODAR as shown in Fig. 1, whose main bar-

frame is constructed by using a commercial carbon fiber pipe of

20 mm diameter and 1.5 mm thickness, making the length of the

total system to be 1.2 m. Eight BLDC motors (MN3508-KV700

from T-Motor) are attached to the mainframe via 3-D-printed

parts, according to the design optimization of Section II-B. To

achieve bidirectional rotors, we stack two unidirectional props

(each with two blades, diameter 10 in and pitch 4.7 in) in the

opposite direction and drive them together by a reversible ESC

(DYS-XMS30A with BLHeli firmware). We also perform an

experiment to check the thrust generation of this bidirectional

rotor and achieve the result as shown in Fig. 7, which shows that

this bidirectional rotor can produce thrust about 92% of that of

the single prop, which is up to 9.7 N for both the upward and

downward directions. To provide enough current to all the eight

rotors, we adopt a four-cell Li-Po battery (14.8 V, 4000 mAh,

45 C) along with a switching battery eliminator circuit (SBEC)

to power up other modules (e.g., computing, communication,

etc.) with 5 V. For the computing, a microcontroller unit (MCU)

board equipped with Cortex-M4 CPU (STM32F429IG from
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STMicroelectronics) is used. The central vacancy of the main-

frame contains these battery, MCU, and other modules to make

the geometric center coincident to the mass center as close as

possible. With all these, the final ODAR system is achieved as

shown in Fig. 1 with a weight of 2.6 kg. See also Section II-B

for the other system specifications.

The MCU board then receives the pose data from a motion

capture system (VICON Bonita-B3) via WiFi (2.4 GHz) with

125 Hz, which is fused with the gyroscope measurement of

an IMU sensor (MPU-9250) with 200 Hz via I2C to obtain

the attitude of the ODAR system through the SO(3) nonlin-

ear complementary filter [23]. The desired pose for the control

is computed in the MCU board, or, in the case of teleopera-

tion, received from a 6-DOF haptic device (Phantom Premium

6DOF) via WiFi with 125 Hz. External wrench is estimated

with a wrench estimator [19] and also measured with a six-

axis F/T sensor (RFT40-SA01, Robotous) as ground truth for

the hybrid pose/wrench control. For teleoperation, we use the

F/T sensor to avoid the implementation issue of communica-

tion (i.e., sending estimated wrench from MCU to the master

device significantly slows down WiFi from MOCAP to MCU

as well). With all the information as stated above, the MCU

board calculates the desired control wrench (f, τ), as stated in

Section III, and allocates it to the eight rotors via the infinity-

norm optimization (see Section IV-A) modulated by the selec-

tive mapping (see Section IV-B) with 1 kHz, which is then con-

verted to pulsewidth modulation (PWM) signal and sent to each

reversible ESC.

B. Experimental Results

Using the ODAR system constructed as in Section V-A, we

conduct the validating experiments of the three control laws of

Section III: pose trajectory tracking; hybrid pose/wrench con-

trol; and PSPM-based peg-in-hole teleoperation. We also per-

form an experiment to show the efficacy of the selective mapping

of Section IV-B for the pitching rotation with four rotors experi-

encing the ESC-induced singularity. Due to the page limit, here,

we only present the (partial) results of the experiments men-

tioned above, compressively showing the indispensable results

to explain the contributed works. We then refer readers to the

accompanied video for full experimental results1 including re-

sults of pose trajectory tracking, hybrid control, and peg-in-hole

teleoperation with other attitude to thoroughly demonstrate the

performance of the system.

The results of the hybrid pose/wrench control are shown in

Fig. 8, where the modified eight-rotor ODAR system tracks the

circular trajectory of 60 cm diameter with the angle-sweeping

rate of 9◦/s, while maintaining the vertical attitude and pushing

down the horizontal board with 10 N. The RMS errors of the

position, angle, and force tracking are obtained to be 3.04 cm,

1.01◦, and 0.82 N. For this, we can clearly see that the ODAR

system is fully actuated on SE(3). We also find that the system

can fairly stably interact with the board even with substantial

ground-flow effect, which we believe is due to its bar-shape. We

1Also, available at https://youtu.be/S3i9NspWtr0

Fig. 8. Hybrid pose/wrench control: pose tracking error and contact
force regulation performance (fe ,z and fd ,z denote measured and de-
sired applied forces in the z-direction) while drawing the circle on the
horizontal plane.

Fig. 9. Contact force measurement during the “pushing-down” experi-
ment, where the ODAR system can exert a 64 N downward force, sub-
stantially larger than its own weight (2.6 kg).

Fig. 10. Peg-in-hole teleoperation. (Top) System position x and human
command xd . (Bottom) Measured external force fe and haptic force
feedback fh .

also perform the “pushing-down” experiment, where the ODAR

system position is held while increasing its downward force.

The measurement of this contact force is shown in Fig. 9, where

we can see that the ODAR system can exert up to 64 N, which

significantly exceeds its own weight (2.6 kg), an impossible feat

for standard drone-manipulator systems only with unidirectional

thrust generation.

The results of the PSPM-based peg-in-hole teleoperation are

shown in Fig. 10, where the ODAR system is teleoperated by

a human user in such a way that the end of its carbon-fiber

tube with the diameter of 20 mm is inserted into a 3-D-printed

hole of a diameter of 21 mm. This level of task precision (i.e.,

radial tolerance of 0.5 mm) is by far beyond the achievable by

some fully autonomous control as demonstrated in the above-

mentioned hybrid control experiment (i.e., RMS positioning
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Fig. 11. Pitching-rotation with the center-of-mass position and other at-
titudes hold: without selective mapping (top two plots) and with selective
mapping (bottom two plots).

error of 3.04 cm). This we believe is because the system dynam-

ics with rotor aerodynamics, fluid–structure interaction, motor

dynamics, unmodeled structural dynamics, etc. is too compli-

cated to be modeled in a mathematically tractable way. Even so,

with the teleoperation, the human user can succeed this preci-

sion peg-in-hole task from the first contact (around 22 s) to its

full insertion (around 36 s). This we believe is because human

users somehow can “learn” those complicated physics and in-

corporate that into their commanding strategy to properly react

to those complicated physics of the system, thereby, success-

fully guiding its dynamics into the peg-in-hole completion. For

this, we also find the 3-D visual information and the force feed-

back are imperative, without which the human users find it very

difficult to achieve this task.

The last experiment is to show the efficacy of the selective

mapping in Section IV-B to subdue the instability stemming

from the ESC-induced singularity. For this, the ODAR system

is controlled to rotate from 90◦ pitch angle (i.e., vertical posture)

to 0◦ pitch angle (i.e., horizontal posture), while maintaining its

center-of-mass position and other attitude angles stationary, and

inducing the zero-thrust crossing of four rotors at the same

time, as shown in Fig. 4. The experiment results in Fig. 11

show that without the selective mapping, the behavior of the

ODAR systems becomes so shaky (e.g., wobbling around 17

and 21 s), resulting in the failure of the pitching rotation exper-

iment (eventually unstable crash if not stopped by hands); and

with the selective mapping, this shaky and unstable behavior

is successfully subdued and the ODAR system can finish the

vertical-to-horizontal pitching rotation.

VI. CONCLUSION

We propose a new aerial manipulation platform, ODAR,

which can produce omnidirectional motion and wrench (i.e.,

full-actuation in SE(3)). To address the tight thrust margin

and weight budget of current motor and battery technologies,

we present a design optimization framework, which incor-

porates such important aspects as interrotor aerointerference,

anisotropic task requirement, etc. Closed-form infinity-norm

optimal control allocation and selective mapping algorithm are

also proposed to address the tight thrust saturation margin and

the ESC-induced singularity of sensorless BLDC rotors. With

all these, the ODAR system exhibits the following unprece-

dented level of performance and capability: separate position

and orientation control on SE(3); hybrid pose/wrench control

with downward force of 60 N much larger than its own weight

(2.6 kg); and peg-in-hole force feedback teleoperation with ra-

dial tolerance of 0.5 mm. Some possible future research topics

include the following: sensor fusion using a camera or a global

navigation satellite system for MOCAP-less flying; a control

algorithm to fully address “dynamic” ESC-induced singularity;

and miniaturization and swarming of multiple ODAR systems.
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