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Abstract

Active crystals are highly ordered structures that emerge from the self-organization of motile
objects, and have been widely studied in synthetic [1, 2] and bacterial [3, 4] active matter. Whether
collective crystallization phenomena can occur in groups of autonomously developing multicellular
organisms is currently unknown. Here, we show that swimming starfish embryos spontaneously
assemble into chiral crystals that span thousands of spinning organisms and persist for tens of hours.
Combining experiments, theory, and simulations, we demonstrate that the formation, dynamics,
and dissolution of these living crystals are controlled by the hydrodynamic properties and natural
development of embryos. Remarkably, living chiral crystals exhibit self-sustained chiral oscillations
as well as various unconventional deformation response behaviors recently predicted for odd elastic
materials [5, 6]. Our results provide direct experimental evidence for how nonreciprocal interactions
between autonomous multicellular components may facilitate novel nonequilibrium phases of chiral
active matter.
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Symmetry breaking [7, 8] is a hallmark of living [9] and synthetic [1, 10, 11, 12] active matter.
From the asymmetric growth of multicellular organisms [9, 13, 14] to the coherent motions of
swimming cells [15, 16] and self-propelled colloids [1, 10, 17, 18], active systems form self-organized
structures [19, 20, 21] with unusual material properties [22, 23, 24] that can only emerge far from
thermal equilibrium. In spite of major experimental [1, 10, 3, 16, 23, 18] and theoretical [25, 26, 27]
progress over the last decade, we are only beginning to understand how complex collective behav-
iors of multicellular [28, 29, 30, 31] and multiorganismal [32, 33] systems arise from the broken
symmetries and nonequilibrium dynamics of their individual constituents.

A particularly interesting class of nonequilibrium symmetry-breaking phenomena comprises the
active crystallization processes recently discovered in colloidal [1] and bacterial [3] systems. Unlike
conventional passive crystals, which form upon lowering temperature and often require attractive
forces, active crystallization arises from the particles’ self-propulsion and can occur even in purely
repulsive dilute systems [1]. A long-standing related, unanswered question is whether groups of
multicellular organisms can self-organize into states of crystalline order and, if so, what emergent
material properties they might exhibit.

Here, we report the discovery of spontaneous crystallization in large assemblies of developing
starfish Patiria miniata embryos (Fig. 1a). Our experimental observations show how, over the
course of their natural development, thousands of swimming embryos come together to form living
chiral crystal (LCC) structures that persist for many hours. In contrast to externally actuated
colloidal systems, the self-assembly, dynamics, and dissolution of these LCCs are controlled entirely
by the embryos’ internal developmental program (Fig. 1a,b). A quantitative theoretical analysis
reveals that LCC formation arises from the complex hydrodynamic interactions [34, 35] between
the starfish embryos. Once formed, these LCCs exhibit striking collective dynamics, consistent
with predictions from a recently proposed theory of odd elasticity [5].

Self-assembly, growth, and dissolution of living chiral crystals

During early development, starfish embryos exhibit substantial morphological changes. From the
onset of gastrulation (Fig. 1b, 0 h), embryos elongate along their anterior-posterior (AP) axis (0-
44 h) while progressively developing folds that further break shape symmetry. In parallel, the
self-generated fluid flow near the embryo’s surface changes (Fig. 1b), reflecting spatial reconfig-
urations of cilia during growth [36] similar to other ciliated organisms [37]. Remarkably, when
embryos come close to the fluid surface, they can attain a stable bound state in which their AP
axes are oriented perpendicular to the fluid-air interface. Groups of surface-bound embryos can
spontaneously self-organize into two-dimensional hexagonal clusters (Fig. 1a, 2-5 h). Over time,
these clusters grow into larger crystals, reaching sizes of hundreds to thousands of embryos (Fig. 1a,
26 h) and persisting for tens of hours. As embryos develop further (Fig. 1b, 38–44 h) crystals begin
to disassemble (Fig. 1a, 35 h) and eventually dissolve completely (Fig. 1a, 38 h).

Viewed from above, both small and large crystals rotate clockwise (Fig. 1c), consistent with the
chiral spinning motions of individual embryos about their AP axis (Fig. 2a). Large LCCs typically
exhibit a high degree of hexagonal order, while also harboring lattice defects (Fig. 1d). The
assembly, rotational dynamics and dissolution of LCCs can be rationalized by a hydrodynamic
analysis that accounts for the flow fields generated by individual embryos (Figs. 1e and 2a-c).

From single embryo properties to crystal formation, chiral rotation, and dissolution

To understand the hydrodynamic interactions underlying the cluster dynamics, we first analyzed
the fluid flow around individual embryos bound below the air-water interface (Fig. 2a,b). Observed
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Figure 1: Developing starfish embryos self-organize into living chiral crystals. a, Time
sequence of still images showing crystal assembly and dissolution. Scale bar, 1 mm. t = 0
hours corresponds to the onset of clustering. b, Embryo morphology and flow fields
change with developmental time. Shape scale bar, 100µm. Flow field scale bar, 200µm.
See Extended Data Figure 1 for uncropped morphology images. c, Embryos assembled
in a crystal perform a global collective rotation. Scale bar, 2 mm. d, Spinning embryos
(yellow arrows) in the crystal form a hexagonal lattice, containing 5-fold (purple) and
7-fold (orange) defects. Scale bar, 0.5 mm. e, Schematic of embryo dynamics and fluid
flows. Crystals of spinning embryos form near the air-water interface. Self-generated
hydrodynamic flows lead to an effective attraction between surface-bound embryos.
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Figure 2: Single embryo properties facilitate formation, rotations and dissolution of
clusters. a, Single embryo top view. Yellow arrow indicates spinning direction, gray
dotted lines visualize streamlines (SI Sec. 1.2). b, Measured radial in-flow velocities (gray
dots) are well-described by Stokeslet flow below a free surface (blue line) (SI Sec. 2.1.6).
c, Flow fields surrounding bound pairs (Experiment, SI Sec. 3.2.1) fitted by a solution of
the Stokes equation (Theory, SI Sec. 3.2.2) that takes into account hydrodynamic inter-
actions (d). d, Hydrodynamic interactions cause nearby embryos to orbit around each
and reduce individual spinning frequencies. e, Stokeslet-mediated attraction (a,b) and
hydrodynamic near-field interactions of spinning particles (d) in an experimentally con-
strained minimal model (SI Sec. 2.2) reproduce crystal formation and rotation dynamics
seen in the experiments. f, Single embryo spinning frequencies in small clusters (≤ 4
embryos) and in larger clusters (≈ 100 embryos). Error bars denote standard deviations
of measurements (Experiment) and from simulations (Model) (SI Sec. 2.2.3). g, Assum-
ing a cluster-size dependent reduction of the individual embryo’s spinning activity (SI
Sec. 2.2.2) leads to good agreement with measured whole-cluster rotation frequencies.
h, Ellipticity of embryo shapes (right: top-view outlines in red, SI Sec. 3.5) increases
during development, leading to increasingly noisy steric interactions among spinning em-
bryos in clusters. Gray band depicts standard deviation. i, Embryos at cluster boundaries
exhibit increasing AP axis tilt angles as development progresses (right: projection out-
lines in yellow, SI Sec. 3.5). Dashed line: critical angle at which bound states of late
embryos become unstable. j, Stationary orientations and stability of a microswimmer
with hydrodynamic properties akin to developing embryos (SI Secs. 2.1.1–2.1.5). A de-
creasing critical angle (gray line) and the increase in effective noise (h,i) increase the rate
of embryos leaving cluster boundary and fluid surface, ultimately driving the dissolution
of clusters. Scale bar, 200µm (a,c), 100µm (d), 1 mm (e), 500µm (h,i).
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along the AP axis, fluid moves radially inward towards the embryo, reaches maximum speed 0.1–
0.2 mm/s lateral to the embryo surface (Fig. 2b), and eventually moves toward the bottom of the
well (Fig. 1e). The radial in-flow generated by isolated embryos can be described as a Stokeslet
flow (Fig. 2b, blue curve), a solution of the Stokes equation that describes the generic fluid flow
around an external force (SI Sec. 3.2.2). This force is related to the negative buoyancy of embryos.
Indeed, the buoyant weight force Fg = 1.7 ± 0.4 nN estimated from sedimentation speeds of im-
mobilized embryos (SI Sec. 1.4) is close to the Stokeslet strength Fst = 2.6± 0.3 nN obtained from
fitting radial in-plane flow fields (Fig. 1b, SI Sec. 2.1.6).

The self-generated Stokeslet flow stabilizes the upright AP-axis orientation of embryos below the
fluid surface (SI Sec. 2.1.6). In addition, it induces an effective long-ranged hydrodynamic attrac-
tion between embryos, facilitating the assembly of clusters. Similar effects have been observed
previously for bacterial and algal microswimmers near rigid surfaces [3, 34]. Once two embryos are
close together, their intrinsic spinning motions lead to an additional exchange of hydrodynamic
forces and torques (Fig. 2d). Similar to pairs of Volvox colonies near a rigid surface [34, 38], nearby
starfish embryos orbit each other, and their spinning frequency decreases compared to that of a
freely spinning embryo. The excess cilia-generated torque from slower rotating embryos [34] man-
ifests itself in systematic azimuthal flow contributions (Fig. 2c). To confirm our understanding of
these hydrodynamic interactions, we complemented the Stokeslet flow of each embryo with addi-
tional contributions that reflect the effects of hydrodynamic interactions (SI Sec. 3.2.2, SI Fig. S5).
Flow fields fitted via this approach show good quantitative agreement with experimental measure-
ments (Fig. 2c, SI Fig. S6).

Based on these insights, we experimentally constrained a minimal model in which upright spinning
embryos are represented by rigid disks interacting through hydrodynamic Stokeslet-mediated pair-
wise attraction, and through pairwise transverse force and torque exchanges (SI Sec. 2.2). Using
the Stokeslet strength determined from fits as in Fig. 2b, and a parameterization of transverse
interactions based on rotation frequency measurements of bound pairs and triplets (SI Sec. 2.2.2),
this minimal model predicts the self-organized formation of rotating clusters similar to those seen in
the experiments (Fig. 2e). Assuming a cluster-size dependent reduction of the individual embryo’s
spinning activity to match whole-cluster rotation rates (SI Sec. 2.2.2), the model quantitatively
captures the experimentally observed reduction of individual embryo rotation frequencies in both
small and large clusters (Fig. 2f), as well as their collective translation into global cluster rotation
rates (Fig. 2g).

To investigate how developmental changes of embryos contribute to the dissolution of a cluster, we
followed the time-dependent morphology and hydrodynamics of embryos. Body shape anisotropies
perpendicular to the AP axis increase almost five-fold over the course of experiments (Fig. 2h).
Such anisotropies cause neighboring embryos to ’bump’ into each other when closely packed and
spinning within a cluster, introducing an effective source of noise in the LCC lattice. The increased
interaction noise is particularly visible at cluster boundaries, where embryos become more and more
tilted as their morphological development progresses (Fig. 2i), increasing their tendency to leave
or to be scattered off a cluster. Using additional flow field measurements of single embryos at
different time points (SI Sec. 3.3), we parameterized an orientational stability diagram that reveals
a bistable nature of bound state orientations (Fig. 2j, SI Sec. 2.1): In addition to a stable upright
orientation (θ = 0◦), downwards oriented stable orientations (θ > 90◦) exist for which embryos
are expected to swim away from the surface. These two orientations are separated by an unstable
critical angle (Fig. 2j, gray). The increase of effective noise as characterized in Fig. 2j,h contributes
to an increased rate at which embryos tilt beyond this critical angle and therefore represents a key
factor in the eventual dissolution of clusters.
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Figure 3: Crystalline order first increases and then decreases as embryos develop. a, Em-
bryo centroids at different time points color-coded by the magnitude of the orientational
order parameter |ψ6| (SI Sec. 3.6). Scale bar, 2mm. b – c, The measured probability
distribution of |ψ6| spreads to smaller values after about 20 hours, indicating a loss of
bond-orientational order (b). The ensuing drift of the mean phase angle (c) signals dy-
namical restructuring of the crystal. d, Embryo centroids at different times color-coded
by the phase of ψ6. Scale bar, 2mm. Time slices corresponding to snapshots (i-v) in
a and d are indicated by white dotted lines. e, Average magnitude of ψ6 decays after
∼ 10 hours, confirming a decrease in orientational order. Error bars indicate standard
deviation. f, The widening of the first peak of the radial pair distribution function g(r)
indicates increased variation in the distance between nearest neighbors. Error bars indi-
cate 95% confidence interval from Gaussian fit. Inset: Example pair distribution function,
g(r), and Gaussian fit to the first peak (SI Sec. 3.7). g, The increase of the dynamic
Lindemann parameter with developmental time signals a progressive destabilization of
the crystal lattice. Error bars indicate standard deviation of 20 consecutive time points
(SI Sec. 3.8).
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Increase and decrease of crystalline order with development

A striking feature of the LCCs is that they nucleate, grow and dissolve naturally as embryos pro-
gressively develop (Fig. 1a). To quantify the evolution of crystalline order, we calculated the local
order parameter ψ6(ri) = |ψ6|ieiφi at embryo positions ri in the co-rotating frame of the clus-
ter (SI Secs. 3.1 and 3.6). Measurements of ψ6(ri) determine the local phase φi representing the
crystal orientation, as well as the magnitude of hexagonal order |ψ6|i [39]. Initially, small clusters
merge together along different crystal axes, resulting in grain boundaries and broad distributions
of |ψ6|i and φi (Fig. 3a-d, (i)). Within 5 hours of crystal formation, LCCs undergo rapid internal
restructuring during which subdomains align. This results in large, nearly defect-free crystals with
a high degree of hexagonal order (〈|ψ6|i〉 ≈ 0.9) and a narrow distribution of local bond orientation
(Fig. 3a-d, (ii-iii)). This highly ordered state persists for several hours.

As development progresses, changes in morphology and surrounding flow fields (Figs. 1b and 2h)
lead to a decreased crystalline order. Specifically, the probability density of |ψ6|i spreads to smaller
values (Fig. 3b,e t > 20 hours), quantitatively indicating a loss of orientational order. A similar
spread is observed in the average phase angle φi, indicating the loss of a well-defined, global crys-
tal orientation (Fig. 3c, t > 20 hours). After about 30 hours, disorder dominates and the crystal
dissolves over a period of 10 hours (Fig. 3a-d, (iv-v)).

Furthermore, we identified a progressive loss of translational order prior to dissolution as quantified
by the radial pair distribution function g(r) (inset Fig. 3f, SI Sec. 3.7). Specifically, the first peak
width of g(r) – representing the variability of nearest neighbor distances – was found to increase
with development (Fig. 3f). Consequently, deviations from an ideal hexagonal lattice become more
frequent and translational order is reduced as embryos develop.

To examine whether the evolution of orientational and translational order is also reflected in dy-
namic crystal properties, we determined the dynamic Lindemann parameter (SI Sec. 3.8), which
characterizes the strength of fluctuations in the crystal lattice [40]. In the crystalline phase (5-
25h), the dynamic Lindemann parameter increases with time (Fig. 3g) and indicates a progressive
destabilization of the crystal lattice, consistent with the observed loss of orientational (Fig. 3e)
and translational order (Fig. 3f), and with the increased interaction noise due to changes in the
embryo morphology (Fig. 2h,i). Large fluctuations of the dynamic Lindemann parameter at early
and late times are due to the small crystal sizes and the highly dynamic nature of growing and
dissolving clusters.

Taken together, the systematic decay of orientational, translational and dynamic order with de-
velopmental time shows how morphological changes at the single-embryo level (Figs. 1b, 2h) can
autonomously drive LCCs through a dissolution transition reminiscent of solid-gas phase transi-
tions.

Signatures of odd elasticity and emergence of chiral displacement waves

Starfish embryos are inherently chiral and spin about their AP axis in a left-handed manner
(Figs. 1d, 2a). This chiral spinning motion leads to distance-dependent, transverse lubrication in-
teractions between pairs of embryos (Fig. 2d). A coarse-graining of our minimal model (SI Sec. 2.3)
suggests that these interactions could lead to effective material properties of LCCs that emulate an
odd elastic material [5, 6]. Odd elasticity theory complements the conventional elastic response of
passive isotropic solids to compression and shear – a bulk modulus B and a shear modulus µ – by
odd bulk and shear moduli A and Ko, respectively. Odd elasticity can emerge in active isotropic
solids that are chiral [5].
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Figure 4: Defect strains and displacement waves exhibit signatures of odd elasticity.
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Left: Delaunay triangulation overlaid with crystal. Right: Embryo centroid positions
(gray dots) collected over 80 min, black dots depict average positions identified as lat-
tice sites (SI Sec. 3.11.1). Scale bar, 500µm. b, Measured shear angle αs seen along φ
for data in a (gray dots) and averages at lattice sites (black symbols, error bars de-
pict standard deviation). Dashed line: αs(φ) predicted for passive elastic solids (no fit
parameter). Solid line: Best fit including contributions from an isotropic odd elastic
solid [6] (SI Sec. 3.11.4). c, Odd elastic moduli obtained from fits of spatial shear strain
profiles predict measured divergence and curl strain components with good quantitative
agreement (SI Sec. 3.11.5). Scale bar, 0.4 mm. d, Snapshot of embryo displacements
during cluster oscillations (SI Sec. 3.9). Inset: x- and y- displacement components of
a representative embryo indicate robust oscillations with frequency ≈ 0.26 min−1. Scale
bar, 1 mm. e, Space-time kymographs of the strain components divergence and curl
along the boundary (SI Sec. 3.9). Oscillation with similar amplitude are also present in
the bulk (SI Fig. S10). f, Spatial map of the partial entropy production rate computed
in the strain component space of curl and divergence (SI Sec. 3.12.1). Scale bar, 1 mm.
Inset: Probability density current in the curl-divergence strain component space com-
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yields similar results as in e and f.
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To identify signatures of odd elasticity in our experimental data, we use the fact that LCCs typi-
cally harbor lattice defects (Figs. 1d, 4a). The defects locally deform LCCs, with the deformation
field encoding information about the effective material properties. We quantify deformations in the
frame co-rotating with the cluster by measuring the displacement u(ri, t) = (ux, uy)

> of embryos
at position ri and time t from a regular lattice (SI Sec. 3.9). By computing the displacement
gradient tensor uij = ∂iuj (i = x, y) (SI Secs. 3.9, 3.11), relative deformations can be expressed in
terms of four strain components [5]: divergence (u0 = uxx + uyy), curl/rotations (u1 = uyx − uxy),
and shear strain components “shear 1” (u2 = uxx − uyy) and “shear 2” (u3 = uyx + uxy). We
first analyzed profiles of the local shear elongation angle αs(φ) = arg(u2 + iu3)/2 (Fig. 4a, inset)
measured at different lattice sites (Fig. 4a) surrounding a defect pair. In a general isotropic linearly
elastic solid, α(φ) is independent of the distance from the defect [6] and in a conventional passive
solid, where all moduli except B and µ vanish, αs is parameter-free [6] (dashed line, Fig. 4b). In
contrast, our measured values of αs (Fig. 4b, gray dots) averaged at lattice sites (black symbols)
show a more complex pattern that can only be explained by allowing for a more exotic mate-
rial response that may include nonvanishing odd moduli [6] (solid line, Fig. 4b, SI Sec. 3.11.4).
We then fit in a second step the full spatial profiles of the shear strain components u2 and u3

(SI Sec. 3.11.5), which yields results consistent with the shear angle analysis (Fig. 4b), and in
addition provides the relative odd moduli estimates A/µ ≈ 8 and Ko/µ ≈ 7. Finally, we validate
these fit results by predicting the remaining strain components u0 and u1 (Fig. 4c, top) that had
not been used so far and find very good quantitative agreement with experiments (Fig. 4c, bottom).

The presence of odd moduli raises the possibility that LCCs can support self-sustained chiral waves
and strain cycles, similar to those recently predicted in odd elastic materials [5]. In the displace-
ment fields u(ri, t) introduced above, we indeed observe the propagation of chiral displacement
waves (Fig. 4d, SI Secs. 3.9, 3.10) that persist for more than an hour. The existence of such waves
in an overdamped LCC is a direct manifestation of its nonequilibrium nature. The frequency of the
dominant, chiral modes (SI Fig. S10), 0.28 min−1, is close to the spinning frequency of individual
embryos within the cluster, 0.33 min−1, (SI Sec. 3.4), suggesting that these modes are directly
linked to the spinning motion of embryos.

A generic feature of systems with nonreciprocal interactions is that mechanical work can be ex-
tracted from quasistatic cyclic processes. Specifically, in materials with an odd elastic response,
work can be extracted from cyclic deformations (strain cycles) [5] (SI Sec. 2.2.1). To investigate
whether strain cycles exist in an LCC, we determined the displacement gradient tensor, uij = ∂iuj
with i, j ∈ {x, y}. As evident from kymographs measured along the boundary (Fig. 4e,g) and in
the bulk (SI Sec. 3.9) of the LCC, all strain components exhibit long-lived oscillation that span the
whole cluster. Moreover, in the space of suitable strain component pairs (insets Fig. 4f,h), strain
cycles are found that have the same handedness almost everywhere in the cluster (SI Sec. 3.12.2).
Such strain cycles are theoretically predicted as part of the chiral waves that odd elastic solids can
support [5]. Together with the signs of the measured odd moduli, A, Ko > 0, we conclude that
oscillating LCCs are effectively doing work on the surrounding fluid (SI Sec. 2.3.1).

Strain waves in materials with finite odd elastic moduli can give rise to work and dissipation cy-
cles [5]. To quantify the lower bounds of the associated entropy production rates, we estimated the
statistical irreversibility of strain cycles using recently developed frameworks of stochastic thermo-
dynamics [41, 42]. By calculating the local phase-space currents in strain space (SI Sec. 3.12), we
constructed spatial maps of the local entropy production rates arising in the relevant strain com-
ponent spaces (Fig. 4f,h). These maps reveal spatio-temporal variations of the entropy production
rates, with higher rates appearing mostly in the vicinity of vacancy defects and boundary regions.
Spatially integrated entropy production rates exhibit in both spaces temporal maxima during the
period of most active wave propagation (SI Fig. S15).
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Discussion

Our combined experimental and theoretical results demonstrate how morphological changes in
developing multicellular organisms can lead to the self-assembly and dissolution of living crystals
with broken chiral symmetry. By observing starfish embryos over two days post gastrulation, we
have identified hydrodynamic and morphological single-embryo properties that facilitate these self-
organized processes. Over the course of several hours, thousands of embryos can come together to
form a macroscopic non-equilibrium material that carries signatures of odd elasticity. Driven by
the embryos’ inherent activity, these living crystal structures support self-sustained chiral waves
that exemplify upward energy transport from the individual microscopic constituents to the macro-
scale. More broadly, such living chiral crystals can serve as a paradigmatic active matter system
to elucidate principles of collective self-organization, nonequilibrium thermodynamics, and exotic
material properties that emerge from nonreciprocal interactions.
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1 Experiment

1.1 Preparation of starfish embryos

Starfish Patiria Miniata were procured from South Coast Bio-Marine LLC. The animals were
kept in salt water fish tanks maintained at 15 ◦C. To fertilize embryos, we first extracted oocytes
and sperm separately. Ovaries were extracted through a small incision made at the bottom of
the starfish and were then carefully fragmented using a pair of scissors to release the oocytes.
Extracted oocytes were washed twice with calcium free seawater to prevent maturation and
incubated in artificial filtered seawater (FSW) at 15 ◦C. The testes were extracted similarly and
kept in a 1 mL Eppendorf tube at 4 ◦C. To fertilize embryos, we first matured the oocytes by
adding the hormone 1-methyladenine. After one hour, sperm extract was added to the culture
at a 1:10000 dilution. Fertilized embryos were cultured in FSW at 15 ◦C for the first 24 hours
before being moved to 20 ◦C.

1.2 Clustering and flow field experiments

All experiments have been performed at 20 ◦C. For clustering experiments, the appropriate
number of embryos was transferred to a well of a 24-well plate (VWR sterilized tissue culture
plates, Catalog Number 10861-558, single well diameter: 15.7 mm). The total water level height
was, in all well-experiments, approximately 14 mm. Images were taken in 10 s intervals using a
dissection scope (Nikon SMZ745) with a high-speed CMOS digital camera (Amscope MU500)
attached at the eyepiece.
To measure flow fields around embryos, 2µm sized polystyrene beads (Bangs Lab, Catalog
Number PS05001) were added to the medium. “Top-view” cross-sectional flow field experiments
(main text Fig. 2a–c, Fig. S6) were performed with embryos oriented vertically near the fluid-air
interface. Maximum projections of the bead dynamics are used to visualize stream lines (main
text Fig. 1a). The corresponding data analysis is detailed in Sec. 3.2. “Side-view” flow field
experiments (main text Fig 1b, Fig. S7) were performed by confining embryos and beads in a
flow cell, where double-sided tape was used as a spacer to generate a flat channels with a height
of ≈ 100µm. The flow cell was sealed with Valap, and flows were imaged using bright-field
illumination on a Leica microscope (DMIL LED) at a 50 ms interval with either a 10x/0.25 (N
PLAN CY) or a 4x/0.10 (HI PLAN) objective. The corresponding data analysis is detailed in
Sec. 3.3. Embryo morphology images (main text Fig. 1b and Fig. S1) at different time points
were obtained using the same experimental setup.

1.3 Verification of proper development after cluster formation

To verify that the embryos develop properly after they formed a living chiral crystal, we per-
formed a standard clustering experiment (see Sec. 1.2) until about 72 hours post fertilization
(hpf) when clusters have dissolved. The embryo solution was then diluted down to a low con-
centration of less than 10 embryos/ml and randomly selected embryos were regularly imaged for
up to 10 days following cluster dissolution (Fig. S1, bottom row). At this point, embryos had
developed well into the bipinnaria stage (≈ 3 days post fertilization). As a control, we cultured
embryos right after fertilization at a low density (< 10 embryos/ml). The morphology of these
control embryos (Fig. S1, top row), is comparable to the morphology of embryos that underwent
cluster formation, indicating that the formation of living chiral crystal does not interfere with
the development into more advanced larval stages. We note that, even when embryo suspensions
were kept at high density up to day 13 post fertilization, no additional collective phenomena
comparable to the cluster formation during the first 2 to 3 days post fertilization were observed.
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Figure S1: Embryo development after cluster formation. Cluster formation and dissolu-
tion takes place during the first 3 days post fertilization (dpf). Top row: Morpholo-
gies of embryos that were right after fertilization cultured at low density (< 10 em-
bryos/ml). Time points indicate dpf. Bottom row: Embryos that underwent cluster
formation were transferred at 3 dpf to a dilute well for further culturing and imaging
up to 13 dpf. Morphologies of embryos that formed living chiral crystals show no no-
table differences when compared to the control (top-row). For experimental details
see Sec. 1.3. Scale bar, 100µm.

1.4 Sedimentation of inactive embryos

To estimate the embryo’s negatively buoyant weight force Fg, we performed a sedimentation
experiment. Embryos were immobilized by treatment with 1 mM of the metabolic inhibitor [1]
Sodium Azide NaN3. They were then transferred to a long Pasteur pipette (diameter 7 mm)
and released from the top position. The process of immobilized embryo sedimentation was
video-recorded and embryos were tracked to determine sedimentation velocities vs. Using the
measured velocities, vs = (0.6 ± 0.1) mm/s (mean± standard deviation, n = 7), an effective
embryo size of L = (`min + `maj)/2 ≈ (150 ± 30)µm during mid to later stages of experiments
(see Fig. S2c,d), we find Fg/η = (1.7± 0.4) mm2/s from equating the approximate Stokes drag
6πηLvs with the weight force Fg. Using viscosity of water (η = 1 mPa·s at 20 ◦C) the negatively
buoyant weight force is therefore of the order Fg ≈ 1− 2 nN.

2 Theory

The length and time scales, L ∼ 150µm (typical embryo size, see Fig. S2c,d) and v ∼ 0.1 mm/s
(typical flow speed), relevant for the embryo dynamics correspond to a Reynolds number of
Re ∼ 1.5 × 10−2 and therefore allow for a theoretical description of our system in terms of
overdamped Stokesian hydrodynamics. Within this framework, we provide in this section a
quantitative description of the hydrodynamics and orientational stability of surface-bound em-
bryos (Sec. 2.1), introduce an experimentally parametrized minimal model of cluster forma-
tion (Sec. 2.2) and discuss effective macroscopic material properties expected to arise from the
microscopic interactions among embryos (Sec. 2.3).

2.1 Hydrodynamics of single embryos and their bound states

The fluid flows surrounding embryos are generated by the beating of cilia that cover the embryo’s
body. Such an interactions with the fluid can lead to the propulsion and rotation of embryos, and
it affects how embryos interact with each other. For low-Reynolds number microswimmers it is
well-established that their dynamics and hydrodynamic interactions can be modulated by nearby
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fluid-substrate interfaces [2, 3, 4, 5] or free fluid surfaces [6]. Building on the corresponding
ideas, we aim to develop in this section a quantitative and mechanistic understanding of how
starfish embryos form stable surface bound states and how interactions between them lead to the
observed phenomenology of cluster formation and dissolution. While the analysis presented here
focuses exclusively on hydrodynamic effects, we note that also nonhydrodynamic effects, such as
bottom- or top-heaviness, can in principle affect the orientational stability of microswimmers [4].
The theoretical analysis of hydrodynamic embryo properties and bound states proceeds in sev-
eral steps: First, using Stokes flow singularities, we introduce a generic description of the
flow fields surrounding a microswimmer below a free fluid surface as a function of its body
axis orientation (Secs. 2.1.1 and 2.1.2). Second, using Faxen’s law, we derive a criterion
for the orientational stability of such a generic microswimmer as function of the singularity
amplitudes (Sec. 2.1.3). In the last step, we explain how the singularity amplitudes can be
parametrized by experiments as a function of developmental time (Sec. 2.1.4) and evaluate the
derived stability criterion (2.1.5). Finally, we focus on the dominant Stokeslet singularity and
show that it is essential for both the upright bound state stability and for generating an effective
hydrodynamic attraction that facilitates the formation of clusters (2.1.6).

2.1.1 Far-field description of fluid flow surrounding microswimmers

To understand the hydrodynamic effects that contribute to bound state stabilization and desta-
bilization near a fluid-air interface, we require a tractable parametrization of the fluid flows that
surround embryos. Here, we use a systematic expansion in terms of flow singularities that are
constructed from the Green’s function of the Stokes equation η∇2v − ∇p = 0, where η is the
viscosity and the pressure p is determined by the incompressibility condition ∇ · v = 0. Up to
order 1/r3, the relevant axisymmetric flow singularities are given by [5, 7]

vst(r; p) = a
R0

r
[p + (p · er)er] (Stokeslet) (1a)

vfd(r; p) = b
R2

0

r2

[
3(p · er)2 − 1

]
er (Force-dipole) (1b)

vfq(r; p) = c
R3

0

r3

[
p− 3(p · er)2p− 9(p · er)er + 15(p · er)3er

]
(Force-quadrupole) (1c)

vsd(r; p) = d
R3

0

r3

[
3(p · er)2er − p

]
(Source-dipole). (1d)

Here, r = (x, y, z)>, r = |r|, er = r/r, and p is a unit vector (|p| = 1) that will be identified
below with the embryo’s major body axis. The length scale R0 is in general related to the size
of the microswimmer. However, its concrete value depends on the specific context in which the
singularities Eqs. (1) are used and may differ from the length L = (`min +`maj)/2 ≈ 150µm (see
Fig. S2c,d) that we use mostly for basic scale arguments. Due to the absence of systematic rotary
flows surrounding single embryos, rotlet contributions with |v| ∼ 1/r3 are not included in this
analysis and only become relevant in the case of embryo interactions (Sec. 3.2.2). The coefficients
a, b, c and d in Eqs. (1) are determined by the details of how the microswimmer interacts with
the fluid, in particular by the flows generated near the surface of the microswimmer’s body.
To make this connection explicit, we consider a nondeforming spherical surface of radius R0 at
rest, vr(r = R0) = 0 and v(r →∞) = 0, that is immersed in an unbound fluid and generates a
tangential surface flow

vθ(r = R0) = α sin θ + β sin 2θ + γ sin 3θ. (2)

Here, (r, θ, φ) define spherical coordinates that are related to the Cartesian coordinates above
by x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, and α, β and γ denotes parameters that will
later be determined from experiments (see Secs. 2.1.4 and 3.3). Using analytic solutions of the
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Stokes equation [8], implementing the boundary condition Eq. (2) and comparing the solution
with the singularities in Eqs. (1) for p = ez, one finds far field flows of the form

v = vst + vfd + vfq + vsd +O(R4
0/r

4) (3)

with coefficients given by

a =
γ

10
− α

2
b = −β c = −2γ

3
d =

α

2
− 11γ

30
. (4)

In Sec. 2.1.4, we describe how flow field measurements can be used to parametrize the coefficients
α, β and γ in Eq. (2) over the relevant developmental time frame.
The orientation p = ez used to derive the coefficients in Eq. (4) reflects the azimuthal symmetry
axis of the boundary condition Eq. (2) and therefore fully determines the symmetry axis of
this solution. Using the same coefficients a, b, c and d with another orientation p = p0 in
the flow singularities Eqs. (1) therefore yields a far field flow that solves an analog boundary
value problem to order O(R4

0/r
4) in which the boundary condition Eq. (2) is rotated such

that the azimuthal symmetry axis is given by p0. Hence, the singularity expansion Eq. (3)
with coefficients given in Eq. (4) provides a tractable parametrization of flows surrounding a
microswimmer with arbitrary orientation p.

2.1.2 Image construction near free fluid surfaces

In the next step, we describe how the far-field flows derived in the previous section are mod-
ified by the nearby fluid-air interfaces. We place the origin of the coordinate system on the
fluid surface and align the z-axis with the surface normal pointing away from the fluid. For
simplicity, we do not take into account shape changes of the fluid surface due to the presence
of embryos and treat it as a nondeforming and shear stress-free interface. This corresponds to
nondeforming, stress-free boundary conditions vz|z=0 = 0 and Exz|z=0 = Eyz|z=0 = 0, where
E = [∇v + (∇v)>]/2 is the strain rate tensor. Consider then any of the flow singularities in
Eqs. (1) at a position r0 = (x0, y0,−h)>, where h > 0 is the distance below the surface. Flow
fields v = v̄ that obey nondeforming, free boundary conditions at (x, y, 0) can be constructed by
complementing the singularity with a suitable image [6] above the surface at r′0 = (x0, y0, h)>.
For example, the flow field

v̄st(r; p, r0) = vst(r− r0; p) + vst(r− r′0; p′) (5)

with p′ = (px, py,−pz)> corresponds to a solution of the Stokes equation that describes fluid
flows originating from a Stokeslet at r0 = (x0, y0,−h)> below a nondeforming, stress-free fluid
surface at z = 0. The same construction as Eq. (5) also yields force-dipole, force-quadrupole
and source-dipole flows that solve the Stokes equation below a nondeforming, stress-free fluid
surface.

2.1.3 Stationary orientations and stability near free surfaces

Using the flow parametrization derived in Secs. 2.1.1 and 2.1.2, we can now study how hydro-
dynamic effects influence the orientation of microswimmers near a free surface. To this end,
we identify the unit vector p as the embryo’s major body axis pointing from posterior (P) to
anterior (A) and use the generalized Faxen’s law for a prolate ellipsoidal body [7, 5]:

dp

dt
=

1

2

[
∇× v′

]
× p + χ[p×

(
E′ · p

)
]× p. (6)

Equation (6) describes the dynamics of the body axis orientation p in response to external
flows v′, including image flow contributions. The corresponding strain rate tensor is given by
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E′ =
[
∇v′ + (∇v′)>

]
/2. The geometric parameter χ = (1 − e2)/(1 + e2), with e = `min/`maj

being the semi-minor (`min) to semi-major axis (`maj) ratio, captures shape anisotropies of the
immersed body with χ = 0 for a perfect sphere and χ > 0 for any elongated, ellipsoidal body.
For a single microswimmer below the fluid surface, v′ in Eq. (6) is given by the microswimmer’s
image flow. For the image flow v′ = v(r− r′0; p′) with v given in Eq. (3) and singularities listed
in Eqs. (1), we find from Eq. (6) the director dynamics

dpx
dt

=
3

16
f(pz)pzpx

dpy
dt

=
3

16
f(pz)pzpy

dpz
dt

=
3

16
f(pz)(p

2
z − 1), (7)

where

f(pz) =
2bR2

0

h3
pz+

cR3
0

h4
(5p2

z−1)+χ

(
4aR0

h2
pz +

2bR2
0

h3
p3
z +

cR3
0

h4
(p2
z − 1)(3p2

z + 2) +
dR3

0

h4
(1 + p2

z)

)
.

(8)
Here, a, b, c and d denote amplitudes of the different singularities listed in Eqs. (1) and h is the
distance to the fluid surface. Equations (7) imply d

dt(pxp
−1
y ) = 0, indicating that the dynamics

of p is at all times confined to a single plane that contains the z-axis and is fixed by initial
conditions. Without loss of generality, this plane is chosen in the following to be the xz-plane.
Together with the normalization of the director |p| = 1, only one dynamic degree of freedom
remains. Parameterizing the unit director as px = sin θp and pz = cos θp, Eqs. (7) finally yield

dθp

dt
=

3

16
f(pz) sin θp. (9)

Stationary orientations and linear stability: The dynamics Eq. (9) has stationary orientations
θ∗p = 0 and θ∗p = π, corresponding to p∗z = cos θ∗p = ±1 and therefore rationalizes the perfectly
upright oriented state p∗z = 1 seen in experiments. Additionally, skewed stationary orientations
with sin θ∗p 6= 0 exist that can be found numerically from f(p∗z) = 0. Stationary orientations are
stable if

− sin2 θ∗p
df

dpz

∣∣∣∣
p∗z

+ cos θpf(p∗z) < 0 (10)

and unstable if the left-hand side of Eq. (10) becomes larger than zero. The stability properties
of the stationary upright orientation θ∗p = 0 (p∗z = 1) can according to Eq. (10) directly be read
off the sign of f(1) for f(pz) given in Eq. (8), once the singularity amplitudes a, b, c and d have
been specified. The latter are parametrized through Eq. (4) by developmental changes of the
flows generated near embryo surfaces (Sec. 2.1.4), leading to different sationary orientations and
stability properties as embryo development progresses (Sec. 2.1.5).

2.1.4 Mode parametrization of embryo surface flows

The analysis from the previous section allows us to determine stationary body axis orienta-
tions and their linear stability properties and connects them through Eqs. (1)–(4) directly to
the fluid flows generated near the microswimmer’s body surface. In the next step, we want
to experimentally infer these near-surface embryo flows in a form that can be integrated via
Eq. (2) into the stability analysis. To this end, we have measured fluid flows in a “side-view”
plane along the AP body axis of confined embryos at different developmental stages (Fig. S7a)
and extracted a low-dimensional representation in terms of a mode expansion of Hele-Shaw flow
solutions (Sec. 3.3.2, Fig. S7b). Despite the embryo’s developmental body shape changes from
a close-to-spherical to more elongated shapes over the course of experiments (∼ 0 − 50 hours),
fluid flows in this plane retain a high level of symmetry and, as a result, are captured by a
small number of modes that can be specified in cylindrical coordinates (Eq. (43), Fig. S7c).
The following two observations allow us to further simplify the parametrization of embryo sur-
face flows (Fig. S2a): i) The modes Bn, in particular B1, B2 and B3 represent the dominant
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Figure S2: Developmental parametrization of lateral embryo surface flows and body
aspect ratios. a, Normalized mode coefficients over development (mean and stan-
dard deviation) used to parametrize flows generated on the embryo surface via
Eq. (2). Values were extracted from experimentally measured flows surrounding
confined embryos (see Sec. 3.3.2, Fig. S7) and correspond to generalized squirmer pa-
rameters [6]. b, Validating the minimal parametrization of embryo surface flows: So-
lutions of the Hele-Shaw flow Eq. (42) using boundary condition Eq. (11) with values
from a show good agreement with the characteristic streamline features seen in exper-
iments (insets, reproduced from Fig. S7b). c, Illustration of semi-minor length `min

and semi-major length `maj used to characterize embryo size. d, Measurements of
`min and `maj over development. For basic scale arguments, we use a characteristic
embryo size during mid to later stages L = (`min+`maj)/2 ≈ 150µm. e, The embryo’s
body elongation is characterized by the geometric parameter χ = (1 − e2)/(1 + e2)
with e = `min/`maj. Heuristic linear and power-law interpolations [Eqs. (12)] of data
in a and e (dashed line), respectively, are used to analyze orientational stability
over development of embryos below a free fluid surface (Secs. 2.1.1–2.1.5, main text
Fig. 2j).

contributions to the fits, and ii) due to the linearity of Eqs. (9) in fluid flows, stationary orien-
tations and their stability will only depend on relative values of mode amplitudes. Akin to the
definition of a squirmer parameter [6], we therefore focus in the following on the modes B1, B2

and B3 and normalize each of the pooled data sets (Early, Mid, Late) by the corresponding
mode amplitude |B1|. Note, for this normalization B2/|B1| corresponds to a classical squirmer
parameter [6] and Fig. S2a suggests starfish embryos are weak pushers (|B2|/|B1| � 1 with
B2/|B1| < 0).
Finally, we verify that such a simplified parametrization does recapitulate the flow profiles
seen in side-view PIV measurements of confined embryos (Fig. S7). Indeed, when solving the
Hele-Shaw Eq. (42) around a circular unit disk with boundary flow profile

Vϕ = α sinϕ+ β sin 2ϕ+ γ sin 3ϕ (11)

using α = 1 and the measured values of β and γ indicated in Fig. S2a, we find flow solutions
that exhibit the same evolution of features as seen in experiments (compare Fig. S7a,b with
Fig. S2b): Initially, an almost centered pair of vortices (closed streamlines) is present at the
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lateral sides (Early) and moves over time towards the posterior end of embryos (Mid), which is
a consequence of the increasing pusher amplitude |β|. At later stages an increasing contribution
from the quadrupole mode ∼ γ leads to the appearance of a second vortex pair near the embryo’s
anterior (Late).

2.1.5 Stationary orientations and stability as function of developmental time

To integrate the two-dimensional surface flow parametrization from the previous section through
the boundary condition Eq. (2) and corresponding singularity amplitudes Eqs. (4) into the three-
dimensional stability analysis, we assume lateral embryo surface flows are axisymmetric with
respect to the AP body axis. In this case, we can identify the azimuthal angle ϕ used in
Eq. (11) and defined in Fig. S2b with the polar angle used in the stability analysis Secs. 2.1.1–
2.1.3, i.e. θ ' ϕ for ϕ ∈ [0, π) and θ ' 2π − ϕ for ϕ ∈ [π, 2π), and may directly use the
the coefficients α = 1, β and γ (Fig. S2a) in Eqs. (4) to determine the different singularity
amplitudes. Combining this with measurements of minor and major embryo body axis lengths
that define the aspect ratio χ = (1−e2)/(1+e2), with e = `min/`maj (Fig. S2c,d), we can define
an interpolated developmental parametrization of the embryo’s properties in the form

β(xd) = −0.2xd γ(xd) = 0.6xd χ(xd) = 0.5x
1/2
d , (12)

where xd ∈ [0, 1] represents a developmental coordinate that maps to experimental time points
as td = xd × 50 h. The functions β(xd) and γ(xd) interpolate linearly towards the largest
mode amplitudes of min(B2/|B1|) ≈ −0.2 and max(B3/|B1|) ≈ 0.6 (Fig. S2a). The function
χ(xd) represents the best power-law fit to the data shown in Fig. S2e (black dashed line)
and heuristically parametrizes developmental changes of the embryo body shape. Using the
parametrization Eqs. (12) in Eqs. (9) and (10) with h/R0 = 1 in Eq. (8) then determines
stationary orientations and their linear stability as a function of developmental time td, as
depicted and discussed in Fig. 2j of the main text.

2.1.6 Stokeslet hydrodynamics of bound embryos

The analysis of the previous sections was based on fluid field measurements surrounding con-
fined embryos within an effectively two-dimensional geometry. We finally want to verify that
the basic orientational stability established by this analysis is compatible with flow fields sur-
rounding surface-bound and freely spinning embryos in the experimental setting used to study
cluster formation. In this case, we only have direct experimental access to “top-view” flow field
information recorded for bound embryos from above the fluid surface (main text Fig. 2a,b).
From the flow field measurements around confined embryos used in the analysis above, we ex-
pect relative contributions to dipole flows ∼ 1/r2 set by β in Fig. S2a are small. The next
potentially relevant singularity contribution is short-ranged (∼ 1/r3), such that the Stokeslet
flow (∼ 1/r) is expected to be the dominant contribution to “top-view” flow fields. We there-
fore focus here on direct measurements of the embryo’s Stokeslet strength and its independent
validation via sedimentation experiments. Additionally, we discuss in this section the impact
of a curved fluid-air interface.

Stokeslet strength and negative bouyancy
From sedimentation experiments (Sec. 1.4), we know that starfish embryos are negatively buoy-
ant. When bound and stationary below the surface, the weight force of embryos must then be
encoded in the flow fields surrounding the embryo. To test this, we have fitted experimental
measurements of top-view flow fields in the xy-plane using the image construction Eq. (5) with
Stokeslet singularity Eq. (1a) and p = ez (see Sec. 3.2.2 for details of the fitting procedure).
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The singularity parameter a in Eq. (1a) is related to the Stokeslet force Fst by

a = − Fst

8πR0η
, (13)

where η denotes the fluid viscosity. Consistent with our expectation that the Stokeslet represents
the dominant contribution to “top-view” flow fields, we find that the latter are indeed captured
well by the Stokeslet flow Eq. (5) below a fluid surface (Fig. 2b, main text). The fitted Stokeslet
strength Fst/η = (2.6±0.3) mm2/s is comparable to the negatively buoyant weight force Fg/η =
(1.7±0.4) mm2/s estimated from independent sedimentation experiments (Sec. 1.4) and does not
change substantially during the experimental time window (Fig. S3a). Assuming a viscosity of
water (η = 1 mPa·s at 20 ◦C), we therefore find Fst ≈ 2− 3 nN. The fact that Fst > Fg suggests
the presence of a small counter-force F∆ = Fst − Fg ≈ 1 nN. With the surface tension of a
water-air interface (σH2O ≈ 70× 10−3 N/m at 20◦C) and for an embryo area of approximately
`2min = 1002 µm2 (see Fig. S2c,d) pushing against the surface, any interface curvature radius
smaller than `2minσH2O/F∆ ≈ 70 cm is sufficient to provide such a counter-force. This value is
much larger than the well diameter of 1.6 cm, such that normal forces resulting from surface
tension are indeed a plausible source of the counter-force F∆, even if the fluid-air interface is
only weakly curved near the center of the well.
The flow seen in the xz-plane as described by these fits is shown in Fig. S3b. As in the case
of Stokeslet flow below a rigid surface [4], a strong lateral inwards flow will draw in nearby
embryos and thereby generates an effective attraction between them. A Stokeslet of strength
Fst/η captures the spatial profile and strength of this attraction [3]. Below, we will use this
experimental parametrization of hydrodynamic attraction to describe the corresponding embryo
interactions in a minimal hydrodynamic model (Sec. 2.2).
Finally, we note that the embryo’s spinning motion around its own AP axis as such has no
systematic effect on the surrounding fluid flow. Interestingly, a torque-free spherical body that
generates an azimuthally symmetric, rotary surface flow also rotates in the lab frame, but does
not drive any flow in its environment [6]. This solution remains valid in the vicinity of a non-
deforming shear stress-free interface and therefore provides a scenario that is consistent with
experimental observations.

Bound state orientations near curved fluid surfaces
The fluid-air interfaces in finite-sized wells used in experiments are weakly curved. In the fol-
lowing, we show that this can lead to slightly tilted, but still linearly stable embryo orientations
with an essentially upright AP axis. For simplicity, we describe fluid flows surrounding an
embryo as a pure Stokeslet flow, but note that qualitatively similar results can be found when
higher order singularities as described in Secs. 2.1.1–2.1.3 are included.
For a curved fluid surface, the surface normal along which image flow singularities are reflected
is in general not parallel to gravity, but may enclose a finite angle θg. We chose the plane
of this tilt without loss of generality to be parallel to the xz-plane (Fig. S3c, left) and then
study the orientation dynamics in a frame where the surface normal is parallel to the z-axis.
Specifically, we consider Eq. (6) for the image flow v′ of a Stokeslet with fixed total force
F = Fst(sin θg, 0,− cos θg)

> with Fst > 0 (Fig. S3c) – such an image flow is given by Eq. (1a)
with p = −(sin θg, 0, cos θg)

> and a as in Eq. (13) – which yields

dpx
dt

=
Fst

32πηh2

(
−pz sin θg + 3χp2

zpx cos θg
)

(14a)

dpy
dt

= − Fst

32πηh2
3χp2

zpy cos θg (14b)

dpz
dt

=
Fst

32πηh2

[
−px sin θg + 3χ

(
1− p2

z

)
pz cos θg

]
. (14c)
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Figure S3: Stokeslet description of single embryos bound below a free fluid surface.
a, Stokeslet strength Fst normalized by fluid viscosity η from fits of in-plane flow
fields (Sec. 3.2.2) over time course of experiments. Gray dots depict individual fit
values, blue dots and error bars represent mean and standard deviation, respectively.
b, Side-view of Stokeslet flow below a free surface (Eq. (5) with r0 = (0, 0,−R)>,
Fst/η = 2.6 mm2/s, R = 110µm). White lines depict stream lines in the xz-plane
and colors indicate the amplitude of flows parallel to the xy-plane. The dominantly
lateral in-flow leads to an effective attraction between embryos. c, Image Stokeslet
construction below a free surface (z = 0) that allows for an angle θg between surface
normal and gravity g (left) to represent embryos below a curved fluid surface present
in small wells (right). Under a surface that is locally not orthogonal to gravity, a
tilted stationary orientation enhances the accumulation of embryos near the well
center (Sec. 2.1.6).

Equations (14) are for θg = 0 equivalent to the Stokeslet contribution ∼ a in Eqs. (7)–(8). The
stationary orientation of interest (p mostly oriented along the z-axis) described by Eqs. (14) is
given by p∗y = 0 and

p∗x =
tan θg
3χp∗z

(15a)

p∗z =

√√√√1

2
+

√
1

4
−
(

tan θg
3χ

)2

, (15b)

which shows that the body axis p is at steady state oriented in the plane formed by the surface
normal and the direction of gravity. For this solution, two important scenarios can be discussed:

• Gravity aligned with the surface normal (θg = 0): Orientational stability of bound states

In this case, Eqs. (15) imply p∗ = ez if χ > 0 and a linearization of Eqs. (14) shows
this state is stable against orientational perturbations. Hence, below a free surface, an
anisotropic body shape χ > 0 (Fig. S2e) and the generation of a Stokeslet flow (Fig. S3a)
are in principle sufficient ingredients to stabilize the upright body axis orientation of a
microswimmer, consistent with the analysis in the previous sections and with experimental
observations.

• Gravity tilted relative to the surface normal (θg 6= 0): Hydrodynamic focusing in wells

Equation (15b) implies in this case that a stationary solution only exist for anisotropic
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surface shapes with

χ >
3

2
| tan θg|. (16)

Furthermore, assuming Eq. (16) holds, we see from Eqs. (15) that the stationary orien-
tation vector is itself tilted relative to the fluid surface normal (p∗x 6= 0). A linearization
of Eqs. (14) around the stationary state Eqs. (15) for arbitrary θg shows that such a
tilted state is still linearly stable. This has important consequences for swimmers that
are bound below a potentially curved fluid surface: Whenever embryos tilt relative to the
surface above them, part of the thrust that is generated by ciliary beating is converted
into translational motion parallel to the surface. The direction of this translation is set by
the direction of the embryo tilt, which in turn is set by the orientation of gravity relative
to the surface normal. From the sign of p∗x given in Eq. (15a) it follows that the body axis
tilt relative to the surface is always oriented such that, for a convexly curved fluid surface
in a well, bound embryos tend to translate towards the center of the well (Fig. S3c, right).
Complementing the Stokeslet-mediated attraction, this hydrodynamic focusing addition-
ally contributes to the accumulation of embryos and thereby supports the formation of
even larger clusters.

2.2 Minimal model of cluster formation and rotation

In this section, we describe a minimal model of interacting chiral disks that faithfully recapit-
ulates the phenomenology of cluster formation and quantitatively accounts for experimentally
observed single embryo spinning and whole cluster rotation frequencies (Fig. 2e–g, main text).
Notably, over the course of each experiment, system properties spread over almost three orders
of magnitude in frequencies and in the number of embryos contained in clusters. For simplicity,
our model aims at a description of the effectively two-dimensional dynamics in the xy-plane of
a fixed number of embryos that are bound below the surface. In this case, each embryo can
be represented as a disk and lateral interactions can be described by effective force and torque
balance equations.

2.2.1 Force and torque balance

Before formulating effective force and torque balance equations for a given embryo, we qual-
itatively describe the minimal set of interactions expected in our living chiral crystal system.
Besides a steric repulsion between nearby embryos, the essential lateral interactions are given by:

• Hydrodynamic attraction

The dominant long-ranged radial in-flow |v| ∼ 1/r from the Stokeslet generated by each
embryo (main text Fig. 2a,b, see Sec. 2.1.6), entrains surrounding embryos and thereby
leads to an effective attraction between them. An analogous effect near rigid no-slip
interfaces has been studied in various theoretical and experimental settings [2, 3, 4, 9].
Lateral hydrodynamic interactions from higher order flow singularities are subdominant
as they decay at least with 1/r2 in distance and are therefore neglected in the minimal
model that is presented below.

• Transverse hydrodynamic force and torque exchange

Two nearby rotating embryo surfaces will experience an additional exchange of forces and
torques due to hydrodynamic near-field interactions [7, 4, 9] (see Fig. 2d, main text). In
particular, transverse forces within the xy-plane due to the neighboring embryo’s spinning
effectively make a pair of embryos “roll” on each other. Together with the Stokeslet
attraction, this leads to an orbiting motion of groups of embryos. Similarly, each embryo
is subject to torques due to the spinning of nearby embryos, which leads to a slow-down
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of individual embryo spinning frequencies (Fig. 2f, main text). The forces and torques
contributing to these interactions are expected to affect the fluid flow around rotating
groups of embryos in a particular fashion, a prediction that was independently verified by
fitting suitable sets of singularities to measured flow fields (Sec. 3.2.2, main text Fig. 2c,
Figs. S5 and S6)

Representing an embryo i by a disk with centroid position ri = (xi, yi,−h), where h is the
distance between centroid and fluid surface, the above interactions translate into an effective
force balance of the form

dri
dt

=
∑

j 6=i

[
v̄st(ri; ez, rj) +

1

ηR
Frep(|ri − rj |) +R(ωi + ωj)Fnf(|ri − rj |) r̂⊥ij

]
, (17)

which describes an overdamped dynamics of the in-plane centroid coordinates, dxi/dt and dyi/dt.
The vector r̂⊥ij = [(r̂ij)y,−(r̂ij)x]> is orthogonal to the unit vector r̂ij = (ri − rj)/|ri − rj | that
points from the center of disk j to the center of disk i. The first term in Eq. (17) captures the
Stokeslet-mediated attraction through the flow v̄st [Eqs. (1a) and (5) with a = −Fst/(8πRη)]
generated by embryos at positions rj . The second term in Eq. (17) implements a steric repulsion
between embryos of the form Frep(r) = −dV (r)/dr, where r = |r| and

V (r) = frep
R13

r12
. (18)

Here, R is the average apparent radius of bound embryos when viewed along the z-axis from
above the fluid surface and the effective repulsion force frep was inferred from experiments
(Sec. 2.2.2). The last term in Eq. (17) introduces the transverse hydrodynamic near-field forces.
This transverse force is proportional to the relative velocity R(ωi + ωj) of two nearby embryo
surfaces, where ωi denotes the angular spinning frequency of embryo i. ωi > 0 (ωi < 0) cor-
responds to clockwise (counter-clockwise) single embryo spinning when viewed from above the
fluid surface. The amplitude of the transverse force depends on the distance dij = |ri − rj | − 2R
between embryo surfaces and takes the form

Fnf(|ri − rj |) =

{
f0 ln dc

dij
(dij < dc)

0 (dij ≥ dc)
, (19)

where the logarithmic distance dependence is a known result from lubrication theory [7, 4].
While the prefactor in Eq. (19) for purely hydrodynamic interactions in the lubrication limit is
also known [7], we introduce here a phenomenological dimensionless parameter f0 that is instead
determined from experiments to account for potential effects of flagella-flagella interactions or
of the nonspherical embryo shape. The parameter f0 then characterizes the effective overall
strength of the transverse force exchange (see also Sec. 2.2.2).
Anticipating the formation of clusters in experiments, where hydrodynamic attraction gets
screened by the presence of neighboring embryos, we distinguish two populations of disks de-
pending on the size of clusters they are part of at a given moment in time: A disk i that is isolated
or part of a small cluster of at most 3 disks interacts with all other disks j via the Stokeslet
flow v̄st in Eq. (17). A disk i that is part of a cluster with more than 3 disks only experiences
a Stokeslet-mediated attraction with disks j with |ri − rj | ≤ 3.8R, such that hydrodynamic
attraction in larger clusters is restricted to nearest and second nearest neighbor interactions –
corresponding to the set of neighboring disks with which a direct lateral line-of-sight exists.
To mimic the effect of hydrodynamic focusing of embryos towards the well center (see Sec. 2.1.6
and Fig. S3c) and facilitate the formation of a single large cluster in simulations within finite

time, the contribution vw = − |ri|τw r̂i with r̂i = ri/|ri| and τw = 15 min was added to Eq. (17),
effectively placing the center of the well at the in-plane coordinate origin x = 0 and y = 0.
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This model is closed by a torque balance that describes the evolution of each embryo’s spinning
frequency. We consider a fully overdamped scenario, in which the torque balance requires
for each embryo that the sum of torques from rotational drag, from the flagellar beating and
from lubrication interactions with nearby embryos vanish. For embryos interacting isotropically
in the xy-plane, this leads to an algebraic condition that determines instantaneous spinning
frequencies of each embryo as

ωi = ω0 −
∑

j 6=i
(ωi + ωj)Tnf(|ri − rj |). (20)

Single bound embryos are spinning with angular frequency ω0 and nearby embryos slow down
each other’s spinning. The distance-dependence of the latter interaction again borrows from
known results in lubrication theory [7, 4], which suggests the form

Tnf(|ri − rj |) =

{
τ0 ln dc

dij
(dij < dc)

0 (dij ≥ dc)
, (21)

for the near-field contribution in Eq. (20). Similar to Eq. (19), Eq. (21) uses a phenomenological
dimensionless parameter τ0 that is directly determined by experiments and characterizes the
strength of the torques that slow down the spinning of nearby embryo.

2.2.2 Determining model parameters from experimental data

The parameters contained in this model can be systematically determined from experimental
measurements and suitable fits to the dynamics of single embryos, rotating pairs and rotating
triplets. Similar to the Stokeslet strength Fst (Fig. S3a), apparent average radii R and spin-
ning frequencies ω0/(2π) of isolated bound embryos are determined from direct single embryo
measurements (Fig. S4a,b). While we noted a slight decrease of in-plane flow speeds around
single embryos towards the very end of the experimental time window, none of these parameters
showed substantial changes over about 40 hours of experiments. For given size R and attrac-
tion characterized by Fst, the repulsive force strength frep in Eq. (18) sets the surface distance
dij between equilibrated pairs of disks in the minimal model. This distance was measured in
experiments (≈ 20µm) and frep was set accordingly [see also Eq. (28)]. Finally, rotation fre-
quencies of pairs and triplets (Fig. S4c) in experiments can be used to set the transverse force
strength f0, while reduced embryo spinning frequencies within pairs and triplets (Fig. 2f, main
text) determine the lateral torque strength τ0. The final parameter values used in simulations
of the emergent cluster formation are listed in Tab. 1.

Parameter R (µm) ω0
2π (Hz) Fst/η (mm2/s) frep/η (mm2/s) f0 τ0 dc/R

Value 110 0.72± 0.17 2.6± 0.3 38± 6 0.06 0.12 0.5

Table 1: Parameters used in the minimal hydrodynamic model of cluster formation. Mean values
of apparent radii R, free spinning frequencies ω0/2π and Stokselet strength Fst/η were
set to averages of corresponding experimental measurements (Figs. S3a and S4a,b).
The variability of apparent radii is represented by a commensurate variability in the
repulsive force amplitude frep. In simulations the parameters ω0, Fst and frep have
been drawn from random distributions as described in the text below to reflect the
natural variability of embryo properties.

Introducing variability of single embryo parameters in the minimal model: Experimental mea-
surements of bound single embryo properties (Figs. S3a and S4a,b) provide insights into the
biological variability of microscopic parameters. Qualitatively, this parameter variability can be
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Figure S4: Measurements of embryo properties. a, Apparent radii R of embryos bound
below the fluid surface. b, Spinning frequencies ω0/(2π) of isolated bound embryos.
In a and b, each gray dot depicts value for a different embryo (same set of embryos
as in Fig. S3a), blue dots and error bars represent mean and standard deviation, re-
spectively. c, Rotation frequencies of bound pairs (left) and triplets (right) increase
linearly with the spinning frequency of embryos within these groups, as previously
observed for pairs of V olvox colonies [4]. Qualitatively, a given embryo spinning
frequency translates over time into gradually smaller group rotation frequencies,
suggesting a weakening of effective hydrodynamic interactions as development pro-
gresses. The variability of single embryo spinning frequencies (b) is consistent with
the variability of spinning frequencies within pairs and triplets and consequently
leads to variability in rotation frequencies of pairs and triplets. Black dashed lines
depict calibration of average embryo properties in the minimal model (see Sec. 2.2).

interpreted as a form of noise that is present in the system. Indeed, parameter variability in the
minimal model increases the likelihood of more comprehensive neighbor rearrangements when
clusters merge. In the absence of microscopic variability on the other hand, even small clusters
formed in the minimal model are rather static in their shape and nearest-neighbor topology,
which is in contrast to experimental observations. To include parameter variability into the
model, we proceeded as follows. Stokeslet strength Fst (Fig. S3a) and isolated bound embryo
spinning frequencies ω0/(2π) (Fig. S4b) were sampled for each disk from a normal distribution
with mean and standard deviation as determined from experiments (Tab. 1). To mimic a fi-
nite apparent size variability in a minimal fashion, we additionally sampled the repulsive force
strength frep homogeneously from the interval given in Tab. 1. Finally, to restore reciprocity of
attraction and repulsion between disks i and j for sampled parameters βi and βj (representing
corresponding values of Fst or frep), we symmetrized the linear coefficients of each pair-wise
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interaction in Eq. (17) as Fst, frep → (βi + βj)/2.

Phenomenological scaling of embryo spinning frequencies in large clusters: The emergent dy-
namics that our minimal model gives rise to can be tested by comparing spinning frequencies
of embryos within clusters and whole-cluster rotation frequencies with experiments. The min-
imal model reveals that, as more disks join a cluster, the average nearest-neighbor distance is
reduced, which leads to a slow-down of embryo spinning frequencies (ωi in our model) within
clusters due to torque exchanges (see experimental data in main text Fig. 2f). This causes a
reduction in lateral force exchanges and, together with the increased drag experienced by larger
clusters, slows down whole-cluster rotations (see experimental data in main text Fig. 2g). The
interactions described in Eqs. (17) and (20) with parameters from Tab. 1 quantitatively match
the corresponding experimental observations up to cluster sizes of about 40 to 50 embryos. For
larger clusters, we observed experimentally a more drastic reduction in the whole-cluster rotation
speeds than captured by the local interactions described so far (main text Fig. 2g). The simplest
way to take this into account without making assumptions about more complex spatial modula-
tions of embryo interactions is to assume that the embryo’s ability to generate a torque surface
density is increasingly impeded in larger clusters. Formally, this amounts to a cluster-size-
dependent reduction of ω0, where we heuristically found that a scaling ω0 → ω0/[1 + (Ncl/N0)2]
in Eq. (20) (N0 = 80 and Ncl ≥ 2 is the total number of disks in a given cluster) leads to whole-
cluster rotation rates that fit the experimental data (main text Fig. 2g). A nontrivial prediction
of the ω0-modulation are the emerging embryo spinning frequencies ωi in larger clusters, which
agree well with the experimental data (main text Fig. 2f).

2.2.3 Details of numerical simulations

The effective force and torque balance Eqs. (17) and (20) with parameters shown in Tab. 1 were
implemented in MATLAB and solved using the ordinary differential equation solver ode113.
Note that in practice Eq. (20) represents a separate linear system of equations for each connected
component of the graph that is generated by connecting all disks within a distance of |ri−rj | <
dc+2R. Because the weights of this linear system given by Eq. (21) depend only on positions ri,
it can be explicitly solved for the angular spinning frequencies ωi at arbitrary intermediate time
steps. The resulting values are directly used to evaluate the transverse interaction ∼ r̂>ij in
Eq. (17).
To simulate the cluster formation shown in Fig. 2e (main text), we initiated 700 disks with
individual parameters given in Tab. 1 and positioned them homogeneously on a circular domain
with an approximate radius of 8 cm.
To determine the data shown in Fig. 2f (main text) (“In small clusters”), we ran 30 simulations
of pairs, triplets and groups of four disks corresponding to one, two, and three direct neighbors,
respectively. 10 simulations of clusters with 100 disks were run to determine spinning frequencies
“In large clusters” Fig. 2f (main text). Mean and standard deviations of the spinning frequencies
extracted from these simulations are depicted by the symbols and error bars in Fig. 2f.
To determine the size-dependent whole-cluster rotation rates shown in Fig. 2g (main text),
we ran 5 simulations for each total numbers of disks Ncl ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 17, 25,
37, 54, 78, 114, 165, 220, 320} and extracted rotation frequencies of the final clusters that had
formed. The standard variation of these whole-cluster rotation frequencies in the minimal
model is smaller than the symbol size used in Fig. 2g (main text).

2.2.4 Discussion

In the following, we discuss the key assumptions and simplifications made in the minimal model
introduced above in more detail.
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To simplify the fluid dynamics, we have assumed hydrodynamic interactions are dominated
by the Stokeslet properties of single bound embryos. The corresponding singularity description
was used to describe a fixed attraction strength among embryos and therefore neglects potential
changes of the ciliary activity and more complex aspects of hydrodynamic interactions when
embryos come closer together. Similarly, we have considered an isotropic potential-like steric
repulsion in the xy-plane that implies a circular apparent shape of bound embryos. Taking more
details of embryo morphology (main text Fig. 1b and Fig. S1) and associated hydrodynamic
effects in tightly packed clusters faithfully into account will most likely require fully resolved,
three-dimensional hydrodynamic simulations [10, 11], as well additional knowledge about the
ciliary activity of embryos within clusters as compared to freely spinning ones.
We did not explicitly include contributions of cilia-cilia interactions between embryos that may
become relevant when embryos within clusters get very close to each other. In particular, the
latter effect could lead to additional terms that complement the hydrodynamically motivated
transverse near-field force and torques given in Eqs. (19) and (21). Using the phenomenologi-
cal coefficients f0 and τ0 and determining them from experimental measurements (Sec. 2.2.2)
partially accounts for this uncertainty. More generally, we restricted the force and torque bal-
ance equations to local interactions but note that hydrodynamic effects may lead, even among
embryos within clusters, to longer-ranged interactions.
The above mentioned factors – cilia-cilia interactions and spatial three-dimensional details of
the inter-embryonic fluid streaming – but also potential feedback of the latter on ciliary activity
might play a particularly important role in large clusters. While difficult to detect experimen-
tally, such feedbacks could underlie the phenomenological ω0-scaling (see Sec. 2.2.2) that is in
the present model required to quantitatively explain embryo and whole-cluster rotation rates
for large clusters.
For simplicity, we have considered a scenario with a constant number of interacting disks. In
experiments, embryos at the clusters boundaries can depart from clusters and incoming embryos
may fill up holes that arise, for example, when clusters merge. This additional level of effective
noise in experiments smoothens “sharp” edges of clusters, eliminates some of the vacancies or
fills up larger holes that have formed, but is otherwise not expected to change the essential
characteristics of cluster formation.

2.3 Effective material properties of living chiral crystals

Based on the minimal model described in Sec. 2.2, we derive in this section effective macroscopic
material properties that arise for a collection of disks interacting within a hexagonal lattice.
More complex details of interactions with the surrounding fluid, which may lead to effectively
viscoelastic material properties of living chiral crystals, were for simplicity not included in the
microscopic minimal model. Consequently, we focus here on the purely elastic response of such
a system. To provide the required background, we first introduce the continuum description
of isotropic elastic materials, closely following recent work on odd elasticity theory [12, 13]
(Sec. 2.3.1) and proceed with the linearization (Sec. 2.3.2) and coarse-graining (Sec. 2.3.3) of
the interactions given in minimal model Eqs. (17) and (20).

2.3.1 Linear elasticity and strain cycles in isotropic solids

The pair-wise interactions on the right-hand side of Eq. (17) describe a response to small
displacements u(x, y, t) = (ux, uy)

> from an equilibrium distance that is elastic and purely
distance-dependent (translationally invariant). Hence, to linear order, a mean-field theory of
effective stresses σij associated with crystal deformations will be of the form

σij = σ0
ij + Cijkl∂kul, (22)
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where σ0
ij is a pre-stress, Cijkl denotes the elastic moduli tensor, ∂kul is the displacement

gradient tensor (Einstein summation convention i, j, k, l = x, y). Using the matrix basis [12]

s0 =

(
1 0
0 1

)
s1 =

(
0 −1
1 0

)
s2 =

(
1 0
0 −1

)
s3 =

(
0 1
1 0

)
, (23)

with sαijs
β
ij = 2δαβ (α, β = 0, 1, 2, 3), Eq. (22) can be conveniently expressed as

σα = σα0 + Cαβuβ, (24)

which highlights the moduli Cαβ = 1
2Cijkls

α
ijs

β
kl that couple strain components uα = sαij∂iuj

(u0: Compression/Expansion; u1: Rotation; u2, u3: Shear components 1 and 2) to different
stress components σα = sαijσij (σ0: Compressive/Expansive stress; σ1: Torque, σ2, σ3: Shear
stress components). Based on the nature of the interactions and the hexagonal lattice geometry
in our system, we anticipate isotropic material properties to emerge at larger scales. Isotropy
restricts potential pre-stresses to take the form of a pressure σ0

ij ∼ δij and/or a torque density

σ0
ij ∼ εij , and the most general isotropic moduli tensor is given by [12, 13]

Cαβ =




B Λ 0 0
A Γ 0 0
0 0 µ Ko

0 0 −Ko µ


 . (25)

Besides the bulk and shear moduli B and µ commonly found in equilibrium solids, the moduli
tensor Eq. (25) contains additionally odd bulk and shear moduli A and Ko that can exist
in isotropic nonequilibrium materials [12]. While B,µ > 0 is required for mechanical stability,
there are in principle no restrictions on the signs of A and Ko. The moduli Γ and Λ respectively
represent equilibrium and nonequilibrium moduli that couple rotations to isotropic stresses and
torques, and therefore require interactions with a surrounding medium [13]. In general, all these
moduli are compatible with the properties of living chiral crystals, which are inherently out-of-
equilibrium, exhibit nonreciprocal transverse interactions and are embedded in and interacting
with a surrounding medium.
Anticipating the experimental observation of closed cycles in the strain component spaces
(u1, u0) and (u2, u3) (see Sec. 3.12, Fig. S15 and main text Fig. 4f,g), it is interesting to note
that the work that can be extracted from a material with stress-strain relation Eqs. (24)
and (25) during a strain cycle, W = −

∮
σijduij , can be expressed as [12, 14]

W = (A− Λ)×
{

Area enclosed by counter-clockwise cycle in (u1, u0)-space
}

+ 2Ko ×
{

Area enclosed by counter-clockwise cycle in (u2, u3)-space
}
. (26)

2.3.2 Linearization of pair-interactions in the minimal model

We now show that pair-interactions in the two-dimensional disk dynamics described by Eqs. (17)
and (20) can be mapped to odd elastic spring-like interactions [12] when considering small
displacements from an equilibrium distance. For convenience, we normalize forces and two-
dimensional stresses (tension) throughout by ηR, such that forces have units [Length/Time]
and tensions have units [1/Time].
We consider a pair of disks i = 1, 2 with centroid distance r12 = |r1−r2| interacting according to
Eqs. (17) and (20) and focus for simplicity on the scenario of equal disk radii R and free spinning
frequency ω0. Interactions in Eq. (17) coming from Stokeslet attraction v̄st and repulsion Frep

are both central forces acting along the vector r̂12 = (r1 − r2)/r12. To linear order around some
fixed relative distance x̃ = x/R, the effective force associated with these interactions reads

F ‖(r12) =
1

ηR

[
12
frep

x̃13
− Fstx̃

4π(x̃2 + 4)3/2

]
− 1

ηR2

[
156frep

x̃14
− Fst(x̃

2 − 2)

2π(x̃2 + 4)5/2

]
(r12 − x) +O(δr̃2),

(27)

18



where δr̃ = (r12 − x)/R. The first term in square brackets vanishes at the equilibrium distance

r0 := x∗ ≈ 2.2R, (28)

where we used the values for Fst and frep from Table. 1. We recall that the Stokeslet strength Fst

(relative to the viscosity) was determined from experimental measurements (Sec. 3.2.2) and frep

was chosen such the equilibrium distance between a pair of disks was equal to the experimentally
measured mean distance of an orbiting pair of embryos (Sec. 2.2.2). The latter is therefore self-
consistently recovered in Eq. (28). At this rest-length r0, the linear coefficient in Eq. (27) defines
an effective spring constant

k :=
1

ηR2

[
156frep

x̃14
− Fst(x̃

2 − 2)

2π(x̃2 + 4)5/2

]
≈ 8.1 s−1. (29)

To approximate the transverse interaction ∼ r̂⊥ij in Eq. (17), we have to determine the prefactor
ω1 + ω2 from the torque balance Eq. (20). By symmetry, the angular rotation frequencies of a
pair of interacting disks must be equal, ω1 = ω2 = ω. Equation (20) then implies

ω =
ω0

1 + 2τ0 ln dc
d12

, (30)

where d12 = r12 − 2R is the shortest distance between the two disk boundaries. The amplitude
of transverse interaction in Eq. (17) for a pair of interacting disks therefore becomes

2ωRFnf(r12) = 2Rω0f0

ln d12
dc

2τ0 ln d12
dc
− 1

= F⊥0 − ka (r12 − r0) +O(δr2), (31)

where the zeroth order transverse interaction F⊥0 and an effective elastic constant ka are given by

F⊥0 := 2Rω0f0 ln
d0

dc

(
2τ0 ln

d0

dc
− 1

)−1

≈ 0.04 mm/s (32a)

ka :=
2Rω0f0

d0

(
2τ0 ln

d0

dc
− 1

)−2

≈ 2.0 s−1. (32b)

In these expressions, d0 = r0 − 2R = 0.2R [see Eq. (28)] denotes the disk surface distance at
equilibrium, dc = 0.5R the cut-off length of lubrication-induced transverse interactions and we
used parameters from the experimentally calibrated disk model to determine concrete values
for F⊥0 and ka (see Tab. 1). All together, pairwise interactions in Eq. (17) imply in this limit
the centroid dynamics

dr1

dt
= −dr2

dt
= −k (r12 − r0) r̂12 +

[
F⊥0 − ka (r12 − r0)

]
r̂⊥12, (33)

where r̂⊥12 = [(r̂12)y,−(r̂12)x]> and the effective parameters k, ka and F⊥0 are given in Eqs. (29)
and (32).

2.3.3 Coarse-grained odd material parameters of living chiral crystals

The linearized pair-wise dynamics Eq. (33) corresponds to a spring-like interaction with linear
spring constant k and odd spring constant ka as introduced in [12] and analyzed further in [13].
While the exact values of r0, k and ka differ from the values given in Eqs. (29) and (32)
when more than two disks interact within a hexagonal lattice, linear and transverse interactions
will be qualitatively similar to Eq. (33). Hence, we can refer to the coarse-graining results
derived in ref. [13] for hexagonal lattices of particles interacting with nearest neighbors. The
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parameters given in Eqs. (32) then provide estimates for effective material moduli that emerge
from transverse lubrication interactions and are given by [13]

A =

√
3

2

(
ka +

F⊥0
r0

)
≈ 1.9 s−1 Ko =

√
3

4

(
ka −

F⊥0
r0

)
≈ 0.8 s−1. (34)

These moduli are comparable to the standard bulk and shear moduli

B =

√
3

2
k ≈ 7.0 s−1 µ =

√
3

4
k ≈ 3.5 s−1 (35)

of a coarse-grained hexagonal lattice connected by linear springs with spring constant given in
Eq. (29). Additionally, for a hexagonal lattice with nearest neighbor interactions the contribu-
tion F⊥0 in Eq. (33) yields in the long-wavelength limit an anti-symmetric pre-stress σ0

ij = σ0εij
with [13]

σ0 =

√
3F⊥0
r0

≈ 0.3 s−1. (36)

To express the parameter values in Eqs. (34)–(36) in units of tension, they have to be multiplied
by the effective friction parameter Rη.
Based on our minimal model, distance-dependent transverse lubrication interactions are there-
fore expected to give rise to effective odd material properties with A,Ko > 0 and broken
Maxwell-Betti reciprocity [13]. From this derivation, we see explicitly that signs of the odd
moduli are determined by the sign of ω0 and thus by the intrinsic handedness of active embryo
rotations. In agreement with this coarse-graining result, A > 0 and Ko > 0 is also found from
the experimental analysis of strains surrounding topological lattice defects (Fig. 4a–c in the
main text, Sec. 3.11). Finally, the sign of the anti-symmetric pre-stress σ0

ij = σ0εij with σ0 > 0
indicates an intrinsic tendency of the material to spin clockwise, consistent with the clockwise
rotations exhibited by living chiral crystals.

3 Data Analysis

This final section details the different data analysis approaches used to quantitatively living
chiral crystals.

3.1 Starfish embryo centroid localization and rotation correction

To identify starfish embryos, we first performed a circular Hough transform using the MATLAB
(2016b, MathWorks) function imfindcircles on inverted raw intensities of microscopy images.
To calculate the rotation frequency of clusters, we first identified all embryos within a cluster.
This was done by recursively finding all nearest neighbors within a 1.5 embryo diameter from
a predetermined seed position (for large clusters) or by using intensity thresholding to identify
clusters and identifying the embryo centroids that lie within a given cluster region (for small
clusters). Particle tracking was performed using the Hungarian linker algorithm [15] (for large
clusters) or Daniel Blair and Eric Dufresne’s MATLAB adaptation of the IDL Particle Tracking
software (for small clusters) [16]. The rotation angle between any two consecutive time points
was calculated by finding a rigid body transformation that maximizes the overlap of the embryo
centroid positions between two frames. We then applied the inverse transformation on subse-
quent time frames to obtain embryo centroid positions in the cluster’s co-rotating frame for
analysis, which we refer to as rotation-corrected centroid data. Measured rotation frequencies
of clusters as a function of the number of embryos are shown in Fig. 2g (main text).
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3.2 Analysis of top-view flow fields surrounding bound embryos, pairs and triplets

In the following, we describe a quantitative analysis of the stationary flow fields parallel to the
surface (xy-plane) as they can be seen around isolated bound embryos, as well as around pairs
and triplets rotating near the surface. To this end, we use experimental measurements of tracer
particle velocities (see Sec. 1.2 for experimental details) and hydrodynamic arguments to fit the
resulting flow fields.

3.2.1 Flow field measurements

Embryo centroid tracking: Embryos bound near the surface were segmented using Fiji’s [17]
built-in function “Threshold”. Subsequently, incomplete or touching edges of embryos were de-
lineated with the “Pencil Tool” and the operation “Fill Holes” was applied. Positions of embryo
centroids were then extracted from the resulting shapes using the “Analyze Particles” feature.

Tracer particle tracking: For all measurements, tracer particles were segmented using Fiji’s
“Threshold” (i) with and (ii) without applying a prior “FFT Bandpass Filter” step (filtering
structures over 100 pixel ≈ 200µm). Segmented particles from (i) and (ii) were then tracked
using the “TrackMate” plugin (Simple LAP tracker) [18]. Combining the results from (i) and
(ii) enabled segmentation and tracking of particles with high fidelity both near and far away
from the embryo surface.

Averaging tracer particle velocities: Before averaging the velocities found from particle track-
ing, we removed measurements that indicated particle movements away from single embryos
or cluster centers by more than 45◦ to narrow the depth of field. Furthermore, to determine
meaningful average flow fields surrounding embryo pairs and triplets, their rotation dynamics
had to be taken into account. To this end, the location of a given velocity measurement was ad-
ditionally registered with respect to the current orientation of the pair or triplet and duplicated
with respect to the corresponding cluster symmetry (See Code Availability). Thereby, the final
average field corresponds to the instantaneous flow field in the lab frame registered with respect
some fixed orientation of the given pair or triplet.

3.2.2 Flow field fitting

To connect average flow fields to the ciliary activity of the embryos, we approximated the flow
fields around isolated embryos, pairs and triplets using suitable sets of Stokes flow singulari-
ties [4, 19]:

Single embryos: The flow surrounding an isolated embryo was approximated by a Stokeslet
with force F = −Fstez at distance h below a free surface, which we write for purpose of defining
a general fit function in this data analysis section as

v̄st(r; F, r0) = vst(r; F, r0) + vst(r; F′, r′0), (37)

where F′ = (Fx, Fy,−Fz)>, r′0 = (x0, y0, h)> (fluid surface at z = 0) and

vst(r; F, r0) =
1

8πη

(
F

|r− r0|
+

F · (r− r0) (r− r0)

|r− r0|3
)
. (38)

The Stokeslet position r0 = (x0, y0,−h)> is centered at the (x, y)-coordinate of a given embryo
centroid. The parameters h, Fst, as well as the z-coordinate zv of the apparent xy-plane in
which the flow field is observed are determined by the fitting procedure described below.
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Figure S5: Fitting of experimental in-plane flow fields. a, Schematic of the locations r
(i)
0

of near-field Stokeslet forces F = F̂nfe
(i) (brown arrows, see Tab. 2) used to fit

flow fields around rotating pairs and triplets. Red arrows indicate corresponding
rotlet-associated torques T = T̂nfez. b, Relative least squares errors E(h, zv) =
〈|vfit−vexp|〉x,y/maxx,y |vexp| of fits to xy-plane flows around the rotating pair (left,
R̄ = 108µm) and triplet (right, R̄ = 111µm) shown in Fig. 2c (main text) and
in Fig. S6, respectively. Red dots indicate fit parameters that globally minimize
E(h, zv).

Additional contributions for rotating pairs and triplets: Rotations of two closely nearby embryos
give rise to additional hydrodynamic interactions (Fig. 2d, main text) that can in turn affect
the surrounding flow field [4]. Similar to the Stokeslet Eq. (38), the generic flow around a torque
T = (Tx, Ty, Tz)

> located at r0 = (x0, y0,−h)> in an unbound fluid (“rotlet”) is given by

vrot(r; T, r0) =
1

8πη

T× (r− r0)

|r− r0|3
. (39)

To meet the free-surface boundary conditions at r = (x, y, 0)> this flow has to be complemented
by a rotlet image. The rotlet below a free surface is given by

v̄rot(r,T, r0) = vrot(r; T, r0) + vrot(r; T′, r′0), (40)

where T′ = (−Tx,−Ty, Tz)> and r′0 = (x0, y0, h). To fit flow fields around pairs and triplets,
we assume each embryo centroid is the source of an “upright” Stokeslet flow with a common
strength Fst. Furthermore, we assume that the exchange of near-field forces is homogeneous
and pair-wise symmetric among embryos, such that it can be described by only one additional
Stokeslet and rotlet strength, F̂nf and T̂nf, respectively (Fig. S5a).

General fit function: The final flow field that is fitted to measured tracer particle velocity fields
around single embryos (Ncl = 1), pairs (Ncl = 2) and triplets (Ncl = 3) is given by a fit function

vfit(r) =

Ncl∑

i=1

[
v̄st

(
r;−Fstez, r

(i)
0

)
+ v̄st

(
r; F̂nfe

(i), r
(i)
0

)
+ v̄rot

(
r; T̂nfez, r

(i)
0

)]
, (41)

where v̄st and v̄rot are given in Eqs. (37) and (40) and F̂nf = T̂nf = 0 for isolated single embryos.
For a comparison with measurements, Eq. (41) is evaluated at r = (x, y, zv)

> and the parameters
Fst, F̂nf, T̂nf, h and zv are determined from a suitable fit procedure (see below). The positions r

(i)
0

of all flow singularities and the orientations e(i) of the near-field forces used for these fits are
listed in Tab. 2 and depicted in Fig. S5a.
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l
2

(
ex − 1√

3
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)
− hez −1

2

(
ex +

√
3ey
)
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2

(
ex + 1√

3
ey

)
− hez

1
2

(
−ex +

√
3ey
)

l√
3
ey − hez ex

Table 2: Positions r
(i)
0 and near-field force orientations e(i) of flow singularities used to fit vfit(r)

given in Eq. (41) to experimentally measured flow fields. l denotes average nearest
neighbor centroid distances. Fit parameters are given by the distance of the flow
singularities to the surface (h), the apparent z-coordinate of the xy-plane in which the
flow is observed (zv), as well as the strengths Fst, F̂nf and T̂nf of the different flow
singularities used in vfit(r) given in Eq. (41). (see Sec. 3.2.2 for details).

Least squares fit and nonlinear optimization: Fitting parameters that need to be determined
are in all cases given by the upright Stokeslet strength Fst, the distance of the flow singulari-
ties to the surface h, and the effective z-coordinate zv of the plane in which the xy-plane flow
is observed. Fits of flow fields surrounding pairs and triplets additionally include a near-field
Stokeslet and rotlet strength, F̂nf and T̂nf, respectively (Fig. S5a). To determine these fitting
parameters from flow fields vexp measured in the xy-plane, we proceeded in two steps. First, for
a given observation plane zv and distance of flow singularities below the surface h, we note that
the fit function vfit given in Eq. (41) depends linearly on the Stokes flow parameters Fst, F̂nf

and T̂nf. Hence, for given h and zv, these singularity strengths can be determined from an
exact least squares minimization of the error E(h, zv) = 〈|vfit − vexp|〉x,y/maxx,y |vexp|, where
only the in-plane x- and y-components of vfit contribute to this error. For an embryo (or pairs
and triplets) of apparent (average) radius R̄, the error E(h, zv) was determined on a 100× 100
parameter grid on which h/R̄ and zv/R̄ are varied in intervals [0, 4] and [−4, 0], respectively,
and Fst, F̂nf and T̂nf are determined by least squares fitting vfit to measured flow fields vexp at
each point of this (h, zv)-parameter grid (Fig. S5b). In a second step, the final fit parameters are
chosen from the fit that globally minimizes the error E(h, zv). Exemplary error maps E(h, zv)
of pair and triplet fits are shown in Fig. S5b.

Fit results: The single-embryo Stokeslet strengths Fst found by the fitting procedure described
above are shown in Fig. S3a and an exemplary fit represented as a radial projection is shown
in main text Fig. 2b. For the flow field around the rotating pair shown in Fig. 2c (main text),
we find Fst = 1.1 nN, F̂nf = 25.4 pN and T̂nf = 11 pN·R̄ (R̄ = 108µm) assuming a viscosity of
η = 1 mPa·s to estimate the involved forces and torques. For the flow field around the rotating
triplet shown in Fig. S6, we find Fst = 1.1 nN, F̂nf = 19.8 pN and T̂nf = 23.3 pN·R̄ (R̄ = 111µm).
Compared to fitting results for single embryos (Fig. S3a), the Stokeslet strength Fst is reduced,
which is most likely due to a lack of flow screening in a pure singularity description of multiple
swimmers. Importantly, the signs (=̂ orientations) of the fitted near-field contributions are con-
sistent with the orientations of forces and torques expected from the hydrodynamic interactions
(main text Fig. 2d, Sec. 2.2): Consistent with F̂nf > 0 (see Fig. S5a), clockwise spinning of
bound embryos indeed leads to a clockwise rotation of pairs and triplets, and consistent with
Tz = T̂nf > 0, excess torques that arises from the reduced embryo spinning frequencies are
expected to point along the positive z-direction. Furthermore, we note that the ratio of near-
field forces and torques from these fits, R̄F̂nf/T̂nf ≈ 2.3 (pair) and R̄F̂nf/T̂nf ≈ 0.8 (triplet), are
similar to the ratio f0/τ0 = 0.5 of near-field force and torque strengths used in the minimal
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Figure S6: Fitting of top-view flow fields around triplet bound near the fluid surface.
Measured radial and azimuthal flow field components surrounding a rotating triplets
(“Experiment”) can be quantitatively described with suitable solutions of the Stokes
equation (“Theory”, see Sec. 3.2.2) by invoking hydrodynamic interactions illustrated
in Fig. 2d (main text). Scale bar, 200µm.

model (Eqs. (19),(21), see Tab. 1), where the latter had been determined by matching rotation
frequencies of pairs and triplets between theory and experiment (Sec. 2.2.2, Fig. S4c).

3.3 Analysis of side-view flow fields surrounding confined embryos

Here, we describe the experimental procedures and fitting methods used to spatially resolved
the fluid flows generated along the lateral embryo surface. While the analysis described in
Sec. 3.2 captures flows from a top-view and provides a direct quantification of the Stokeslet
strength and effective hydrodynamic attraction, the analysis described here spatially resolves
flow properties along the embryo’s AP body axis and provides the quantitative basis for the
developmental stability analysis in Secs. 2.1.3–2.1.5.

3.3.1 Flow field measurements

Embryos were confined between a glass slide and a cover slip (separation distance ≈ 100µm)
such that their long axes were parallel to the imaging plane. Surrounding flow fields were
characterized by analyzing the motion of tracer beads though particle image velocimetry (PIV)
using the PIVlab plugin for MATLAB [20, 21, 22]. Default PIVlab setting were used, with
the exception that the “Pass 1 interrogation area” and “Step” were set to 128 and 64 pixels,
respectively, (corresponding to ≈ 164µm and ≈ 82µm) and the “Pass 2 interrogation area” was
set to 64 pixels (≈ 82µm). The resulting velocity fields were temporally averaged over either 100
or 500 frames (frame rate 20 fps). Exemplary maximum projections over 100 frames that reveal
the streamlines of these flow fields are shown in Fig. S7a. Additionally, the outer contour of each
embryo at a given time was found by first generating a binary mask using an intensity threshold
to identify pixels corresponding to the embryo. Holes in this mask were then filled, and the
mask was smoothed and spurious pixels removed through repeated erosion and dilation. The
largest connected region provides a binary mask of the embryo, and the gradient of this mask
approximates the embryo’s outer contour. A smooth representation of the latter was generated
by Fourier-transforming the radial-azimuthal representation r(ϕ) of the approximate contour
and using only the first 10 Fourier-modes for further analysis (blue outlines in Fig. S7b).

3.3.2 Flow field fitting

In the following, we describe how the mode decomposition of embryo surface flows used in
Sec. 2.1.4 was extracted from side-view PIV data. We denote the flows in this analysis by V(x̄, ȳ)
to emphasize that the Cartesian coordinate plane {x̄, ȳ} considered in these measurements is
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Figure S7: Fitting of experimental side-view flow fields. a, Flow field streamlines sur-
rounding embryos confined between glass slide and cover slip at different develop-
mental stages (maximum projections, see Sec. 3.3.1). Over development, an initially
symmetric vortex pair moves posteriorly (P) and a second vortex pair appears near
the anterior end (A). Scale bar, 100µm. b, Streamlines of Hele-Shaw flow solutions
Eqs. (43) fitted to experimental data in a (see Sec. 3.3.2). c, Mean and standard
deviations of fitted mode amplitudes in Eq. (43) for embryos during early (n = 7),
mid (n = 14) and late (n = 16) development. These coefficients suggest a minimal
parametrization of fluid flows near the embryo surface. Indeed, using only the first
three dominant modes B1, B2 and B3, is sufficient to capture the key properties of
measured surrounding flows (see Fig. S2).

distinct from the “top-view” xy-plane, where the latter is part of the three-dimensional domain
in which clusters were analyzed throughout most of this work. We define cylindrical coordinates
{ρ, ϕ} in this plane by x̄ = ρ cosϕ and ȳ = ρ sinϕ (see Fig. S7b). To take into account the
confinement under which flow data was acquired (see Sec. 3.3.1), we aim to describe measured
flows in terms of solutions of the Hele-Shaw equation [23]

η∆V −∇P = κ′V, (42)

where P (x̄, ȳ) is the pressure enforcing incompressibility ∇·V = 0 and κ′ = 12η/H2 is an effec-
tive friction parameter resulting from interactions of the fluid flow with top and bottom surface
of the channel of height H (≈ 100µm in experiments). The most general solution of Eq. (42)
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for which V, P → 0 at infinity can be written in cylindrical coordinates as V = Vρeρ + Vϕeϕ
with

Vρ =
∞∑

n=1

(An cosnϕ− Cn sinnϕ)
( ρ
L

)−n−1
+
∞∑

n=1

(Bn cosnϕ−Dn sinnϕ)
Kn+1 −Kn−1

2

(43a)

Vϕ =
∞∑

n=1

(An sinnϕ+ Cn cosnϕ)
( ρ
L

)−n−1
+
∞∑

n=0

(Bn sinnϕ+Dn cosnϕ)
Kn+1 +Kn−1

2
,

(43b)

where κ =
√
κ′/η =

√
12H−1, L = (`min + `maj)/2 is the characteristic embryo size, Kn(κρ)

denote modified Bessel functions of the second kind and the coefficients {An, Bn, Cn, Dn} repre-
sent integration constants that will be determined by fitting the measurement data described in
Sec. 3.3.1. Qualitatively, the coefficients An and Bn represent flows that are mirror-symmetric
with respect to the x-axis, the coefficients Bn and Dn describe flows whose mirror-symmetry
with respect to the x-axis is broken. To define the least-square optimization underlying these
fits, we additionally introduce the stream function

Ψ(ρ, ϕ) = L

∞∑

n=1

(
An
n

sinnϕ+
Cn
n

cosnϕ

)( ρ
L

)−n
+ κ−1

∞∑

n=0

(Bn sinnϕ+Dn cosnϕ)Kn(κρ)

(44)
that generates the flow field components in Eqs. (43) via Vρ = ρ−1∂ϕΨ and Vϕ = −∂ρΨ. We
then solve the least-square problem

min
An,Bn,Cn,Dn

‖V − vexp‖2 + ‖es · ∇Ψ|C‖2, (45)

where vexp denotes data from flow measurements (Sec. 3.3.1), es denotes the unit tangent vector
along the curve C prescribed by the embryo boundary (blue outlines in Fig. S7b). The norm ‖·‖2
indicates the square of the Euclidean norm at which experimental velocities vexp were measured.
The second term in Eq. (45) penalizes flow contributions from V that are not tangential at the
embryo surface. The prefactor of this term corresponds to a weight, which is set here to 1, while
we note that the final fits and conclusions drawn from them do not dependent on this particular
choice. Exemplary fits resulting from this approach for embryos are shown in Fig. S7b. The
corresponding mode amplitudes, pooled at three different developmental stages, are depicted
in Fig. S7c. Mode coefficients Bn (gray box in Fig. S7c) that describe mirror-symmetric flows
along the embryo’s AP axes are the dominating contribution to these fits and are used in
Sec. 2.1.4 to parametrize changes of near-surface flow fields surrounding developing embryos.

3.4 Embryo spinning frequencies

Analysis of embryo spinning frequencies in small clusters: Average embryo spinning frequencies
were determined from the manually measured duration of 10 embryo rotations (data “In small
clusters” in Fig. 2f, main text).

Automated analysis of embryo spinning frequencies in large clusters: To measure embryo spin-
ning frequencies within clusters containing ≈ 100 embryos, we took advantage of the inhomo-
geneous intensity profile within the embryo body that results from the uneven positioning of
developing internal organs. We first processed raw videos using Fiji [17] by inverting the pixel
intensity and performing a background subtraction. For each embryo, we shifted the origin of
the coordinate system to the embryo centroid, and considered pixels within a circular neighbor-
hood with radius equal to the apparent embryo radius. From these pixels, we constructed an
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angular intensity profile I(θ, t) at each time t by averaging the pixel intensity within sectors of
angular width π/90. We then smoothed the angular intensity profile using adjacent averaging
of 10 points in θ and 500 points in t to reduce noise and suppress slow global intensity varia-
tions, respectively. We then computed the cross-correlation between angular intensity profiles
I(θ + ∆θ, t+ ∆t) and I(θ, t) at two time points, and determined the angular lag ∆θ = ∆θmax
that maximizes this cross-correlation. While the analysis can be performed between successive
frames, performing a running average over ∆t frames yields a higher signal to noise ratio and
hence more accurate results. In practice, we chose ∆t = 3 frames and subsequently determined
the measured dynamics θ̄(t) from a cumulative sum over ∆θmax. Finally, we fitted θ(t) = ωt2/2
to the cumulative sum of θ̄(t) to determine a noise-robust estimate of the embryo’s spinning
frequency ω/(2π) (data “In larger clusters” in Fig. 2f, main text).

Analysis of embryo spinning frequencies in the oscillating cluster: Embryo spinning frequencies
inside oscillating clusters (main text Fig. 4d) were not amenable to automated tracking. There-
fore, we manually determined the spinning rates of 40 embryos within the cluster and found a
value of (0.33± 0.13) min−1 (mean± standard deviation, n = 40).

3.5 Quantifying sources of effective noise contributing to cluster dissolution

As embryos develop, they exhibit notable changes in their hydrodynamic properties (see Sec. 3.3.1
and Fig. S7) and in their morphology (see main text Fig. 1b, Fig. S2d,e for views in the plane
of the embryo’s anterior-posterior axis). These changes introduce sources of an effective noise
in embryo interactions that leads to a gradual loss of positional order (Fig. 3a,b) and eventually
facilities cluster dissolution. We quantified two features associated with this effective noise that
can be directly observed in top-view images of clusters: Body shape anisotropies perpendicular
to the anterior-posterior axis that make embryos “bump” into each other when closely packed
and spinning within a cluster, as well as the tilt angle of embryos at cluster boundaries that
increases their tendency to swim away from or to be scattered off the cluster boundary. The
corresponding data is shown in Fig. 2h,i (main text).

3.5.1 Shape anisotropy of embryo cross-sectional area

Of particular importance for interactions in clusters is the morphological symmetry breaking
in the dorsal/ventral-left/right (DV-LR) plane perpendicular to the embryo’s AP axis. When
embryos are bound below the fluid surface, this plane is parallel to the “top-view” xy-plane
defined in Fig. 1e. To quantify the anisotropy of embryo shape in the DV-LR plane, we have
fitted ellipses to outlines of embryos in the bulk of the crystal (red outlines in main text Fig. 2h).
To find outlines from brightfield images, we first identified the white spaces between the embryo
center and boundary using the pixel classification functionality of the software ilastik [24]. The
labeling of training data is done at different time points to improve the classification quality. We
then fit ellipses onto the identified region using MATLAB’s regionprops function. To eliminate
spuriously defined regions, we only consider regions with areas within 9000 and 26000µm2 (120
and 350 pixels squared). From fitted ellipses, we obtain the minor and major axis lengths `> and
`<, respectively, and compute the ellipticity of the embryo’s top-view cross section as 1− `>/`<
(data shown in main text Fig. 2h).

3.5.2 Tilt angle of embryos at cluster boundaries

Focusing now on embryos at cluster boundaries, we want to determine tilt angles of the embryo’s
AP axis away from the z-axis (see main text Fig. 1e and Fig. 2j inset for definition of z-axis and
tilt angle). With basic shape information given, tilt angles can be inferred from projected embryo
outlines in the xy-plane. Similar to the approach in Sec. 3.5.1, outlines were characterized by the
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principal axis lengths ¯̀
> and ¯̀

< of ellipses that we placed manually over embryo outlines. An
automated segmentation could not be realized for this analysis due to the increasingly complex
embryo morphology at later developmental stages.
While 3D embryo shapes are approximately given by ellipsoids with possibly three distinct
principal axes (see Fig. S2 and main text Fig. 2h for shape anisotropies in the AP-LR- and in the
DV-LR-plane, respectively), we found that the projected minor axis ¯̀

< of tilted embryos hardly
changed across different measurement time points. In this case, tilt angles can be systematically
determined from the projected major axis 2¯̀

>, if the embryo’s actual AP axis length 2`maj

(see Fig. S2c) is known. We estimated the latter independently from horizontally swimming
embryos (`maj = [155, 186, 212]µm for the 3 time points td = [11, 28, 33] hours in Fig. 2i). We
then determined a “look-up table” `xy(θ) by projecting a correspondingly rotated ellipsoid with
minor and major axis lengths 2¯̀

< and 2`maj, respectively, onto the xy-plane and compared the
values `xy(θ) to measurements of ¯̀

> to infer the tilt angle θ shown in Fig. 2i (main text).

3.6 Orientational order parameter

To compute the local bond orientational order for each embryo i, the nearest neighbor embryo is
first determined by a delaunay triangulation of embryos within the cluster (using the MATLAB
function delaunay). A threshold of 1.5a with lattice constant ā ≈ 207µm was applied to
exclude cases where nearest neighbors are anomalously determined at the cluster boundary due
to irregular cluster shapes. The local bond orientational order parameter [25] is then defined as

ψ6(ri) =
1

Ni

Ni∑

j=1

ei6φij ≡ |ψ6|ieiφi , (46)

where the sum is over the Ni nearest neighbors of embryo i, and φij is the angle between the
x-axis of the co-rotated cluster frame and the bond connecting embryos i and j. |ψ6|i quantifies
the magnitude of local hexagonal order and φi = argψ6 measures the angle of the local bond
orientational order parameter.

3.7 Pair distribution function

Following [26], we define the radial pair distribution function g(r) as

g(r) =
1

2πrNcl〈n〉

〈∑

i 6=j
δ(r − |ri − rj |)

〉
, (47)

where Ncl is the total number of centroids in a cluster and 〈·〉 denotes the average over all
centroids at positions ri and rj . The number density 〈n〉 in Eq. (47) was estimated from the
rotation-corrected centroid data (see Sec. 3.1) by identifying boundary centroids using the MAT-
LAB function boundary, finding the area defined by these boundary centroids using polyarea,
and dividing the total number of centroids by this area. A time course of the number density 〈n〉
is shown in Fig. S8a. The pair distribution g(r), e.g. as shown in the inset of Fig 3f (main text),
was then computed at 100 s intervals by approximating Eq. (47) at discrete points rk = k∆r
(k = 1, 2, 3, ...) as

g(rk) =
1

2πkNcl〈n〉 (∆r)2

∑

i 6=j
1rk≤|ri−rj |<rk+1

, (48)

which uses an indicator function

1rk≤|ri−rj |<rk+1
=

{
1 if rk ≤ |ri − rj | < rk+1

0 else.
. (49)
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Figure S8: Time course of average lattice properties. a, Number density 〈n〉 of embryos
in a crystal over the time course of the experiment. This information was used to
compute the radial pair distribution function g(r) given in Eq. (48) and shown as an
inset in Fig. 3f (main text). b, Lattice constant ā as a function of time from fitting
the first, nearest-neighbors peak of g(r) (see also main text Fig. 3f, inset).

The bin width was ∆r ≈ 8.6µm. Finally, the nearest neighbor peak of g(rk) was fit to a
Gaussian function G(r) = C exp

[
−(r − rµ)2/

(
2σ2
)]

(Fig. 3f, inset) with fitting parameters
describing the amplitude C, mean rµ, and width σ of the peak. That latter was used as the
“First Peak Width” shown in Fig. 3f (main text), and rµ was taken as the lattice constant ā
(Fig. S8b).

3.8 Dynamic Lindemann parameter

Following [27] and using rotation-corrected centroid positions (see Sec. 3.1), we define the dy-
namic Lindemann parameter as

γL(τ) =
1

2ā2

∑

j,j+1

〈
[∆rj(τ, t)−∆rj+1(τ, t)]2

〉
t
, (50)

where ∆ri(τ, t) = ri(t+τ)−ri(t) denotes the displacement of embryo i between two time points
of duration τ apart. Index pairs j and j + 1 in Eq. (50) correspond to nearest neighbor pairs,
and a is the lattice constant. The analysis takes into account variation of a with developmental
time (Fig. S8b). Two embryos were considered to be nearest neighbors if their initial positions
were separated by a distance smaller than 1.2a.
To generate Fig. 3g in the main text, we considered a subset of consecutive developmental
time points td that are 100 s apart from each other. The Lindemann parameter γL(τ) is then
computed for each td within a centered 1000 s interval, i.e. the average in Eq. (50) was performed
over times t ∈ [td − 500 s, td + 500 s]. Fig. S9 shows representative examples of γL(τ) computed
at different developmental time points td. For each td, the mean and standard deviation of
γL(τ) over the range 800 s < τ ≤ 1000 s (20 consecutive time points in total) are plotted as data
points and error bars in Fig. 3g (main text), respectively. At very late times > 30 h, due to
dissolution of the cluster, embryo trajectories do not last over 1000 s, and hence, the dynamic
Lindemann parameter cannot be calculated in this regime.

3.9 Displacement field and strain components

To determine displacement and strain fields of oscillating clusters (Fig. 4), rotation-corrected
centroid trajectories ri(t) (see Sec. 3.1) of embryos i = 1, 2, ... were first smoothed with a 5-frame
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Figure S9: Dynamic Lindemann parameter. Representative plots for the dynamic Linde-
mann parameter γL(τ) (see Sec. 3.8) for developmental times td of 8 h (red), 12 h
(orange), 16 h (yellow), 20 h (green), 24 h (light blue) and 28 h (dark blue). The aver-
age values and variance of γL(τ) within the shaded region for different developmental
times td are shown in Fig. 3g (main text).

(50 s) moving average to remove noise. We then determined long-time averaged embryo positions
Ri(t) = 〈ri(t)〉[t−25,t+25] by using a 50-frame (500 s) moving average. The displacement of each
embryo from its average position is given by u(ri, t) := ui(t) = ri(t)−Ri(t) and an exemplary
displacement time series is shown in the inset of Fig. 4a (main text). A Fourier-analysis of
u(ri, t) for all embryos that were continuously tracked throughout a time window of 4000 s
revealed an average displacement oscillation frequency of (0.26± 0.04) min−1 (mean± standard
deviation, n = 389).
A continuous displacement field u(r, t) was approximated from all embryo displacements ui(t) by
applying a 2D Gaussian filter of radius ā ≈ 216µm (approximately one lattice constant). From
u(r, t), we computed the displacement gradient tensor uij = ∂iuj in the xy-plane (i, j ∈ {x, y}).
As described in Sec. 2.3.1 and following the convention in [12], the displacement gradient ten-
sor can be decomposed into four independent strain components given by (i) the divergence
u0(r, t) = uxx + uyy, (ii) the curl u1(r, t) = uyx − uxy, as well as by the two shear components
(iii) u2(r, t) = uxx − uyy (shear 1), and (iv) u3(r, t) = uyx + uxy (shear 2).
To determine space-time kymographs of the strain component dynamics along the boundary
shown in maint text Fig. 4e,g, we first determined a parametrization rs of the cluster boundary
(MATLAB function bwboundaries) in terms of the boundary arc length s. Finally, compo-
nents of the displacement gradient tensor uij were projected onto a local basis composed of
the boundary tangent ∂srs and the boundary normal pointing away from the cluster to com-
pute transformed strain components uα (α = 0, 1, 2, 3) analog to the definitions above. This
transformation leaves the divergence and curl components u0 and u1, respectively, invariant and
corresponds to a rotation of the strain component vector (u2, u3)> that conserves the total shear
strain amplitude us =

√
[u2]2 + [u3]2 ([uα]2 with α = 2, 3 denotes squared shear strain compo-

nents). Strain components computed in the co-rotating Cartesian basis along a section through
the bulk (dashed line in Fig. S10a) are shown in Fig. S10b and exhibit similar amplitudes and
wavelengths, indicating that the corresponding excitations are present at the boundary and in
the bulk of the cluster.
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Figure S10: Strain waves in bulk. a, Exemplary snapshots of the four strain components:
divergence, curl, shear 1 and shear 2 during cluster oscillations. b, Space-time ky-
mographs of the four principal strain components measured along the black dashed
lines in a. Details of the analysis are described in Sec. 3.9.

3.10 Mode chirality analysis of displacement waves

To characterize the bulk dynamics of cluster oscillations discussed in Fig. 4d–h (main text) with
respect to their chiral symmetry, we consider a complex representation of the displacement field
given by

U(r, t) = ux(r, t) + iuy(r, t). (51)

Here, i denotes the imaginary unit, and ux(r, t) and uy(r, t) represent the Cartesian components
of the smoothed, dynamic displacement field u(r, t) described in Sec. 3.9. Using the spatio-
temporal Fourier transform of U(r, t) given by

Ũ(q, ω) =

∫
dr

∫
dtU(r, t) exp [−i (q · r + ωt)] , (52)

a mode chirality parameter can be defined as

C(ω) =
〈|Ũ(q, ω)| − |Ũ(−q,−ω)|〉BZ

〈|Ũ(q, ω)|+ |Ũ(−q,−ω)|〉BZ

. (53)

Averages 〈·〉BZ over wave vectors q are taken within the first Brillouin zone defined by the lattice
constant ā ≈ 220µm of the hexagonal embryo cluster. The quantity |C(ω)| characterizes the
symmetry of the displacement field’s Fourier spectrum Ũ(q, ω) with respect to point-reflections
at the Fourier space origin. It vanishes if the spectrum is perfectly point-symmetric and becomes
unity if the point-symmetry of a given mode is maximally broken. In practice, C(ω) given in
Eq. (53) can be used to detect and quantify signatures of chirality in oscillating displacement
fields. To see this explicitly, it is instructive to consider a minimal displacement wave of the
form

ux(r, t) = u(0)
x cos (Ωt− λx) (54a)

uy(r, t) = u(0)
y sin (Ωt− λx) , (54b)

for some frequency Ω and wavelength λ. The wave described by Eqs. (54) represents a pure

longitudinal (transverse) wave if u
(0)
x 6= 0 and u

(0)
y = 0 (u

(0)
x = 0 and u

(0)
y 6= 0). In either

case, the Fourier amplitude of the complex representation Eq. (51) is point-symmetric, i.e.
|Ũ(q, ω)| = |Ũ(−q,−ω)| and consequently C(ω) = 0 [see Eq. (53)] for purely longitudinal or
transverse waves. However, if both amplitudes of the minimal wave in Eq. (54) are finite,

u
(0)
x 6= 0 and u

(0)
y 6= 0, the wave acquires a chiral character, as seen by the well-defined rotation
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Figure S11: Mode chirality analysis of displacement waves. a, The mode chirality analysis
described in Sec. 3.10 was performed on a 7.8× 3.9 mm region of interest indicated
by the gray box over a time window of 135 min. Scale bar, 1 mm. b, Mode chirality
parameter C(ω) given in Eq. (53) before the onset of (blue dots) and during (yellow
dots) visible oscillations. A smoothed representation of this mode data is depicted
by solid lines and serves as guide to the eye. The black dashed line indicates most
prominent chiral oscillations at a frequency of approximately 0.28 min−1.

sense of displacement vectors at every point r. In this case, the point-symmetry in Fourier-

space is lost and |C(ω = Ω)| 6= 0. Interestingly, for u
(0)
x = u

(0)
y the displacement vector Eq. (54)

draws out perfect cirlces at every point r, a characteristic of emergent displacement waves that
can appear in purely odd elastic materials [12]. In this case, the chirality measure defined in
Eq. (53) becomes maximal at the wave frequency, i.e. |C(ω = Ω)| = 1.
We have determined C(ω) from displacement field information u(r, t) located in the domain
shown in Fig. S11a (gray box, 900 × 450 pixel, corresponding to 7.8 × 3.9 mm). Points of this
domain outside the cluster were zero-padded. We then considered temporal sections of 800
consecutive time points (≈ 135 min in total) before the onset of and during cluster oscillations.
For each section, we computed a fast Fourier transform (MATLAB function fftn [28]) of the re-
sulting 900×450×800 data-cubes to approximate the Fourier transform Eq. (52) and determine
C(ω) given in Eq. (53). During oscillations, a broad spectrum of frequencies shows chiral signa-
tures (yellow curve in Fig. S11b), including a distinct peak with frequency ≈ 0.28 min−1 (black
dashed line). An almost identical frequency (0.26 min−1) is found from a direct analysis of the
space-time kymographs that characterize strain component oscillation along the cluster bound-
ary (see main text Fig. 4e,g and Sec. 3.9). In the absence of visible cluster oscillations |C(ω)|
flattens substantially (blue curve in Fig. S11b).

3.11 Extracting elastic moduli from strain fields near crystal lattice defects

Interactions between embryos within clusters give rise to emergent mechanical properties
(Sec. 2.3.3). To analyze these properties experimentally, we use the fact that living chiral
crystals typically contain topological lattice defects, such as edge dislocations, that locally dis-
place embryos away from a regular hexagonal arrangement. The associated displacement and
strain fields contain information about the effective mechanical properties of a living chiral crys-
tal (Fig. 4a–c, main text). In this section, we characterize these properties in terms of suitable
elastic moduli. To this end, we compare experimental measurements with recently derived pre-
dictions about strain fields around edge dislocations in the most general linearly elastic isotropic
material [13] that can also be out of equilibrium [12]. As suggested by the minimal model of the
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microscopic embryo interactions (Sec. 2.3.2), and consistent with experimental observations of
overdamped chiral displacement waves (Sec. 3.10) and strain cycles (Fig. 4d–h, main text), we
also allow for odd elastic moduli (see Sec. 2.3.1) when fitting experimental displacement fields.
Throughout this analysis, we use rotation-corrected centroid data (see Sec 3.1) and analyze
embryo crystals at time points in which oscillations are absent.

3.11.1 Determining strain fields around lattice defects

To properly resolve strain fields near defects, we follow the procedure suggested in [13] and
briefly described below. Away from any lattice defects, this approach is consistent with the
analysis in Sec. 3.9, while it does not require spatio-temporal smoothing and therefore provides
a more detailed characterization of strain fields in the vicinity of defects. We consider a Delauny
triangulation of embryo centroids to identify nearest neighbors (Fig. S12) and define the “local
displacement field” around embryo i as

ui(jn) = rjn(i) − rTem
jn(i), (55)

which corresponds to the set of six displacement vectors ui(jn) associated with the six nearest
neighbors j1(i), ..., j6(i) of embryo i, located at positions rjn(i). The positions rTem

jn(i) correspond
to the corners of a template hexagon that is defined as follows. First, we determine from the
Delaunay triangulation global averages of the lattice constant āTem and of the hexagonal bond
orientation φTem = arg〈ψ6〉/6 (mod π/3) with ψ6 defined in Eq. (46), where edges connecting to
embryos without 6 neighbors or near the cluster boundary (closer than 650µm) are excluded.
Template positions surrounding each embryo i are then given by the corners of a hexagon
located at

rTem
jn(i) = ri + āTem


cos

(
(n−1)π

3 + φTem
)

sin
(

(n−1)π
3 + φTem

)

 . (56)

Neighbor positions rjn(i) in Eq. (55) are indexed in counter-clockwise order and such that the

bond angle between embryos ri and rj1(i) is the one closest to φTem. Finally, we perform a linear
regression (using MATLAB’s polyfitn function) and fit the 6 local displacement vectors by

ui,fit(jn) = u0 + S(ri)
> · rTem

jn(i), (57)

to determine a vector u0 that captures any residual translations, while the fitted matrix

S(ri) =

(
S11 S12

S21 S22

)
(58)

approximates the local displacement gradient tensor Sij ≈ ∂iuj in the basis in which the com-
ponents the of ui,fit(jn) and rTem

jn(i) are provided. From this matrix, we can therefore extract
strain components at position ri in analogy to the definitions in Sec. (3.9): u0

fit = S11 + S22

(compression/expansion), u1
fit = S21−S12 (rotation), u2

fit = S11−S22 and u3
fit = S12 +S21 (shear

components).

3.11.2 Identification, tracking and characterization of edge dislocations

The defects we are interested in for this analysis are edge dislocations. In a hexagonal lattice,
they can be identified as a bound pair of 5- and 7-fold coordinated embryos (orange and purple
dots in Fig. S12). The coordination number of an embryo corresponds to the number of its
edges in the Delaunay triangulation. To minimize the influence of other dislocations or from
cluster boundaries, we restrict the strain analysis to defects that are isolated and located in the
crystal bulk (dislocation A in Fig. S12). Other than the “ideal” edge dislocation A, a second
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Figure S12: Strain analysis around edge dislocations. From a Delaunay triangulation
(grey lines) four edge dislocations – 5,7-coordinated embryo pairs – labeled A,B,C,
and D can be identified that move little and are present throughout most of the
time window of the strain analysis. The Burgers vector b associated with a dis-
location (see Sec. 3.11.2) defines the x-axis direction of a local coordinate system
with azimuthal angle φ. Shear elongation axis orientations αs of embryos colored
in gray and black seen along φ are shown in Fig. S14. To minimize spurious effects
from crystal boundaries and nearby dislocations, we focus the fitting in Secs. 3.11.4
and 3.11.5 on dislocation A, specifically on the 21 embryos colored in black. Scale
bar, 1 mm.

fairly isolated defect (B in Fig. S12) was the result of an abnormally positioned embryo and
therefore not considered for further analysis. Due to their close proximity to each other, edge
dislocations C and D also had to be excluded from the analysis.
Focusing on the edge dislocation A, we track its center – defined as the average position of the
two constituent 5- and 7-coordinated embryos – over 500 frames (≈ 80 min) using MATLAB’s
simpletracker function [29]. For each frame, the dislocation can be characterized by a Burgers
vector [26, 13]

b :=

∮

C
S> · dr, (59)

where the contour C represents a counter-clockwise loop enclosing the defect, and the fitted
strain matrix S given at embryo positions ri was introduced in Sec. 3.11.1. In practice, we
take C to be a circular contour of radius ≈ 500µm centered at the edge dislocation, interpolate
S(ri) on 1000 equidistant points along C using MATLAB’s scatteredInterpolant function
(method setting “natural”) and approximate the integral Eq. (59) numerically using a Riemann
sum with midpoint rule.

3.11.3 Registration and averaging of strain measurements around edge dislocations

Due to positional fluctuations of dislocations and embryos around it even in the rotation-
corrected data and in the absence of whole-cluster oscillations, the amplitude |b| and orien-
tation φb of the Burgers vector b = |b|(cosφb, sinφb)> defined in Eq. (59) changes between
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frames. However, to define meaningful averages of strain profiles around a dislocation they have
to be measured in a common reference frame with respect to the dislocation. Specifically, we
want to analyze and average strain fields in a frame in which the Burgers vector defines at all
times the x-axis of a local coordinate system (see Fig. S12). The correspondingly rotated strain
matrix S′ is given by S′ = R(φb) · S ·R(φb)>, where we use the rotation matrix

R(φb) =

(
cosφb − sinφb
sinφb cosφb

)
. (60)

This transformation leaves the fitted strain components related to compression and rotation
defined below Eq. (58) unchanged, u′ 0fit = u0

fit and u′ 1fit = u1
fit, and rotates the strain component

vector according to (u′ 2fit, u
′ 3
fit)
> = R(2φb) · (u2

fit, u
3
fit)
>. Accordingly rotated embryo positions ri

surrounding the edge dislocation fall nicely onto a common hexagonal lattice (black dots in
Fig. 4a, main text), demonstrating that this registration and the following calculation of averages
are meaningful. From here on, we work with the registered strain components u′αfit (α = 0, 1, 2, 3),
but drop primes ′ and “fit”-labels again to simplify the notation.
After these pre-processing steps, we arrive at a time series of well-defined strain components
given at each 6-fold coordinated embryo positions close to the edge dislocation A (black and
gray dots in Fig. S12). In the following, we will use these strain components to estimate effective
elastic material properties of living chiral crystals.

3.11.4 Estimating effective material parameters from shear orientations

We first analyze the local axis of shear elongation near the dislocation. In particular, we are in-
terested in the angle αs of local shear elongations, which is defined by
(u2, u3)> = us(cos 2αs, sin 2αs)

>, where us =
√

[u2]2 + [u3]2 ([uα]2 with α = 2, 3 denotes
squared shear strain components) is the total shear strain amplitude. Note that the shear axis
of elongation has nematic symmetry and therefore uniquely defined in the interval αs ∈ [0, π).
Rotations described in the previous section transformed measured strain components into a
coordinate system in which the Burgers vector is parallel to the x-axis, i.e. b = |b|ex, and
we use in the following the azimuthal angle φ ∈ [0, 2π) defined in this coordinate system (see
Fig. S12). We then plot the values of αs as determined from u2 and u3 for each embryo and
for each frame as a function of this azimuthal angle φ, where it is instructive to periodically
extent the axis orientation data up to αs = 2π (Fig. S13; gray dots: individual measurements,
black dots/error bars: circular means and standard deviation of strain orientations averaged
over times).
For the most general linearly elastic isotropic solid the profile of shear elongation axis ori-
entations αs surrounding a dislocation is predicted to be independent of the distance to the
dislocation. The general profile is given by [13]

αs(φ) = φ+
π

4
sgn(cosφ) + δαs(φ), (61)

with

δαs(φ) =
1

2
arg {(1 + ν + 2iνo) cosφ+ [2γ1 + i(γ2 − 1)] sinφ} − 1

2
arg(cosφ). (62)

This expression is a function of the (effective) material parameters

ν =
(B − µ)(µ+ Γ) + (A−Ko)(Ko − Λ)

(B + µ)(µ+ Γ) + (A+Ko)(Ko − Λ)
(63a)

νo =
BKo −Aµ

(B + µ)(µ+ Γ) + (A+Ko)(Ko − Λ)
(63b)

γ1 =
KoΓ + Λµ

(B + µ)(µ+ Γ) + (A+Ko)(Ko − Λ)
(63c)
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Figure S13: Orientation of αs the shear elongation axis around a dislocation. Each
gray dot represents a “measurement” of the shear elongation axis orientation αs
(see Sec. 3.11.4) in an azimuthal direction φ relative to the Burgers vector b of
the dislocation (Fig. S12). Black dots and errorbars denote means and standard
deviation of data pooled at each of the 42 nearby lattice sites (depicted in gray and
black in Fig. S12). For reference, red dashed lines depict orientations αs expected
in a passive isotropic elastic solid (Eq. (61) with δαs = 0). To test the theoretically
expected symmetry Eq. (64), we periodically extent the shear elongation axis orien-
tation, which is uniquely defined in an interval [0, π). Equation (64) then predicts
the data in box II are a copy of those in box I. The fact that this symmetry is not
clearly present is most likely due to the presence of other nearby dislocations (B−D
in Fig. S12) in the direction π < φ < 2π of the local coordinate system associated
with dislocation A. Fits are therefore restricted to data in the interval 0 ≤ φ ≤ π
(data shown in Fig. 4b, main text).

γ2 =
(B + µ)(µ− Γ) + (A+Ko)(Ko + Λ)

(B + µ)(µ+ Γ) + (A+Ko)(Ko − Λ)
, (63d)

which are related to the 6 independent elastic moduli B, µ, A, Ko, Γ, Λ introduced in Sec. 2.3.1.
Hence, the profile of elongation axis orientations can encode information about material prop-
erties. For standard passive elastic solids (B,µ > 0, and A, Ko, Γ, Λ = 0) one finds δαs = 0;
in this case αs(φ) is independent of material parameters (red dashed lines in Fig. S13 and in
Fig. 4b, main text). More generally, the symmetry of an edge dislocation implies for any value
of the 6 elastic moduli that

αs(φ+ π) = αs(φ) +
π

2
. (64)

Graphically, we therefore expect from the theory Eq. (61) that the values in the blue box II
in Fig. S13 are merely a copy of those in box I. The fact that this symmetry is not clearly
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present in the data and standard deviations in box II are larger than in box I is most likely due
to the presence of other nearby dislocations (B − D in Fig. S12) that face the dislocation A
approximately in the direction π < φ < 2π of the local coordinate system. We thus restrict the
fitting in this and in the following Sec. 3.11.5 to data from the interval 0 ≤ φ ≤ π (see also
Fig. 4b of the main text) that contains the azimuthal position φ and shear axis orientations αs
from 21 lattice sites surrounding the defect (black dots in Fig. S12).
Finally, we fit the theoretical prediction Eq. (61) to the measured shear elongation orientations.
To this end, define in accordance with Eqs. (61)–(62) a fit function αfit(φ) = φ+ π

4 sgn(cosφ) +
δαfit(φ) with

δαfit(φ) =
1

2
arg [(1 + ip1) cosφ+ (p2 + ip3) sinφ]− 1

2
arg(cosφ). (65)

Weighted estimates and standard errors of the three dimensionless fitting parameters
p1 = 2νo/(1 + ν), p2 = 2γ1/(1 + ν) and p3 = (γ2 − 1)/(1 + ν) (assuming ν > −1) are de-
termined using MATLAB’s nlmfit function (Tab. 3). The curve αfit(φ) corresponding to the
best fit is shown as a red solid line in Fig. 4b of the main text.
In a standard passive linearly elastic solid with B,µ > 0 and all other moduli zero, one expects
p1 = p2 = p3 = 0, which seems – despite a fairly large standard error – not sufficient to fit
strain elongation axis orientation (main text Fig. 4b, Tab. 3). The fact that p3 is notably
different from zero suggests that stress-strain couplings mediated through interactions with the
surrounding fluid [Γ,Λ, see Eq. (63d)] are contributing to the effective mechanical response of
the crystal. In addition, we note that for a coarse-grained hexagonal network with ideal linearly
elastic odd interactions one finds p1 ∼ νo = 0 [12]. It is therefore not possible to directly
infer unambiguous information about odd bulk and shear moduli A and Ko, respectively, from
fits to the shear elongation axis alone. A complementary fitting approach that overcomes this
limitation is described in the following section.

3.11.5 Estimating elastic moduli from shear strain fields

The fits from the previous section are consistent with the presence of odd moduli in the elas-
tic response of a living chiral crystal, but do not provide unambiguous information about the
relative magnitude and signs of such moduli. To determine the latter, we now explicitly fit
theoretical predictions of the spatial dependence of strain components to measurements. Im-
portantly, these fits specify magnitude and signs of odd moduli, which in turn can be compared
against predictions based on embryo-embryo interactions within the crystal (see Sec. 2.3.3).
Using the coordinate system in which b = |b|ex and centering the dislocation at the coordinate
origin as before, the spatial dependence of strain components in a general isotropic linearly
elastic solid is given by [13]

uα =
|b|

2πr2
ũα (66)

Fit Parameter Fit value Standard Error

p1 := 2νo/(1 + ν) 0.048 0.098

p2 := 2γ1/(1 + ν) 0.11 0.094

p3 := (γ2 − 1)/(1 + ν) -0.16 0.085

Table 3: Best fit parameters of the shear elongation axis orientation α(φ) (see Sec. 3.11.4) around
a dislocation (Figs. S12 and S13). The resulting fit αfit(φ) = φ+ π

4 sgn(cosφ) + δαfit(φ)
with δαfit(φ) given in Eq. (65) is shown as a solid red curve in main text Fig. 4b.
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with

ũ0(x, y) = −2γ1x− (1− ν)y (67a)

ũ1(x, y) = (1 + γ2)x− 2νoy (67b)

ũ2(x, y) = −[2νox+ (γ2 − 1)y]
x2 − y2

x2 + y2
− [(1 + ν)x+ 2γ1y]

2xy

x2 + y2
(67c)

ũ3(x, y) = −[2νox+ (γ2 − 1)y]
2xy

x2 + y2
− [(1 + ν)x+ 2γ1y]

y2 − x2

x2 + y2
. (67d)

The goal is then to determine ν, νo, γ1 and γ2 by fitting measured spatial profiles of strain
around the dislocation. To make this analysis comparable to the fitting of shear orientations
described the previous section, we determine ν, νo, γ1 and γ2 by fitting spatial profiles of the
shear strain components u2 and u3 (Eq. (66) with ũ2 and ũ3). As before, we restrict the fitting to
a specific subset of embryo positions around the dislocation (black dots in Fig. S12) to mitigate
spurious effects from other nearby dislocations and from domain boundaries (see Sec. 3.11.2 for
details). The shear component fits are implemented using MATLAB’s lsqcurvefit function.
The mean and the standard error of each fit parameter, computed from the collection of single-
frame fits, are depicted in Tab. 4. The strain components u2 and u3 corresponding to this best
fit are plotted for comparison with measurements in Fig. S14a.
As a consistency check for this alternative fitting approach, we compute the parameters p1 , p2

and p3 found from strain elongation orientation fits (see Sec. 3.11.4) using the effective material
parameters from Tab. 4, where we find p1 ≈ 0.1, p2 ≈ 0.02 and p3 ≈ −0.25. These values
deviate, but are still within the error margins of the fit values listed Tab. 3.
The fit results in Tab. 4 lead to nontrivial predictions for divergent and rotary strain compo-
nents surrounding a dislocation (Eq. (66) with ũ0 and ũ1), which so far had not been included
into our analysis. Importantly, these predictions can be compared against independent exper-
imental measurements of the corresponding strain components in the crystal, where we find
good quantitative agreement (see main text Fig. 4c, reproduced for convenience in Fig. S14b).
Finally, we explicitly determine elastic moduli by inverting Eqs. (63) for given fit parameters ν,
νo, γ1 and γ2 from Tab. 4. From dimensionless strain measurements, we can only expect to find
relative values of elastic moduli, where we choose the passive shear modulus µ to make all other
moduli dimensionless. To make the inversion result of Eqs. (63) unique, we additionally impose
B = 2µ, which holds for a linearly elastic hexagonal spring network with nearest neighbor
interactions [12, 13]. Using MATLAB’s solve function, we can then determine from the values
Tab. 4 and Eqs. (63) a unique solution for the parameters A/µ and Ko/µ (odd bulk and shear
moduli), as well as for Γ/µ and Λ/µ (equilibrium and nonequilibrium moduli coupling rotations

Fit Parameter Fit value Standard Error

ν 0.049 0.0097

νo 0.053 0.0039

γ1 0.010 0.0046

γ2 0.74 0.0088

Table 4: Mean and standard errors for fits of the shear strain components u2 and u3 using
theoretical predictions [13] Eq. (66) with ũ2 and ũ3 given in Eqs. (67c) and (67d). The
corresponding spatial shear strain profiles together with experimental measurements
are depicted in Fig. S14a. Predictions for divergent and rotary strain components using
these fitting parameters in Eq. (66) with ũ0 and ũ1 are shown in Fig. S14b (same data
as shown in main text Fig. 4c).
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Figure S14: Spatial strain component analysis near a dislocation. a, Shear components
measured (top, see Sec. 3.11.1–3.11.3) and fitted (bottom, see Sec. 3.11.5) using
Eq. (66) with ũ2 (Shear 1) and ũ3 (Shear 2). Each disk represents an average
strain measurement or value of the fitting function centered at the average position
of lattice sites near the dislocation (depicted black in Fig. S12). The resulting
fit parameters are given in Tab. 4. b, Comparison of measured divergent and
rotary strain components (top) with predictions (bottom) from Eq. (66) with ũ0

(Divergence) and ũ1 (Curl) using the fitting paramers determined in a (same data
as shown in main text Fig. 4c). Scale bar, 0.4 mm. c, Spatial profiles of strain
components on a continuous domain as computed from Eq. (66) with ũα given in
Eqs. (67a)–(67d) using parameters given in Tab. 4 found from fitting data in a
(top). Scales and color bars same as in panels a and b.

to torque and pressure). The final parameter values and standard errors of these moduli are
given in Tab. 5.
According to the fit results Tab. 5, strain measurements around a dislocation suggest that odd

Modulus Estimate Standard Error

A/µ 7.7 0.61

Ko/µ 7.1 0.59

Γ/µ 0.32 0.082

Λ/µ -1.0 0.097

Table 5: Relative values of elastic moduli determined from an inversion of Eqs. (63) for given
fit parameters ν, νo, γ1 and γ2 from Tab. 4. The signs of the odd bulk and shear
moduli A > 0 and Ko > 0 (µ > 0 required for stability) are consistent with predictions
based on the handedness of transverse embryo interactions (see Sec. 2.3.3) and indicate
broken Maxwell-Betti reciprocity [13].
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bulk and shear moduli A and Ko, respectively, contribute to the effective material properties
of a living chiral crystal. Their relative values compared to the shear modulus µ are larger
than estimated from the coarse-graining of the microscopic model [see Sec. 2.3.3, Eqs. (34) and
(35)]. However, the latter was based on interactions among an isolated pair of embryos, which
neglects interaction modulations that are most likely present within clusters. Importantly, the
signs determined for A and Ko agree between the coarse-graining and the strain measurement
approaches. Ultimately, these signs result from the handedness of the microscopic transverse
interactions and therefore represent a macroscopic signature of the well-defined handedness of
embryo rotations within the cystal. Furthermore, A,Ko > 0 (together with Λ < 0) implies
broken Maxwell-Betti reciprocity [13] and suggests that strain cycles observed during the emer-
gence of chiral displacement waves (main text Fig. 4d–h, Sec. 3.12.2, Fig. S17a,b) do work on
the surrounding [see Eq. (26)], highlighting once again the nonequilibrium nature of living chi-
ral crystals. In addition, we find the equilibrium (Γ) and nonequlibrium (Λ) moduli coupling
rotations to stress (see Sec. 2.3.1) are nonzero, which is most likely due to interactions of the
crystal with the surrounding fluid.

3.12 Phase space analysis of strain cycles

In this section, we describe the systematic statistical analysis of the living chiral crystal dynamics
in strain space. In particular, we find closed cycles in strain space that provide information about
contributions to entropy production [30] and, in the context of effective odd elastic properties,
can be related to mechanical work that is done on the environment [12].

3.12.1 Phase space currents and partial entropy production

The entropy production rate Ṡ of an overdamped stochastic system that follows Langevin
dynamics can be determined from [30]

Ṡ = kB

∫
dx

j(x) ·D−1(x) · j(x)

ρ(x)
, (68)

where ρ(x) and j(x) denote the probability density and corresponding probability current of
a particular system configuration x, respectively. D(x) is an effective diffusion matrix with
inverse D−1(x). In the following, we describe how ρ(x), j(x) and D(x) can be approximated
from experimental data of the strain component dynamics to estimate the system’s partial
entropy production rate shown in main text Fig. 4f,h.
For the spatially resolved analysis shown in Fig. S15b,d, we tiled the cluster domain into square
regions of 200µm (approximately one embryo diameter). The center of each tile is located at
some position r̂. In each of these squares, we spatially average the strain components uα(r, t)
(α = 0, 1, 2, 3, see Sec. 3.9) to determine local strain component values ûα(r̂, t). We then
introduce a strain component pair vector û(r̂, t) = [ûα(r̂, t), ûβ(r̂, t)]>. Inspired by the curl-
divergence and shear 1-shear 2 cycles that were suggested as signatures of odd elastic oscilla-
tions [12], we considered for our analysis the corresponding pairs α = 1, β = 0 (Fig. 4f in the
main text) and α = 2, β = 3 (Fig. 4h in the main text).
To estimate partial entropy production rates, we used time series of strain component pairs
{û1, û2, ..., ûN}, where ûk := û(r̂, k∆t) with k = 1, 2, ..., N denotes pairs of strain compo-
nents at N = 200 successive time points in ∆t = 10 s intervals. The continuous probability
density ρ(x) and the associated current j(x) were then estimated as [31]:

ρ̂(x) =
1

N

N∑

i=1

K(x, ûi,Σ), (69a)

ĵ(x) =
ρ̂(x)

2∆t

∑N−1
i=2 K(x, ûi,Σ)(ûi+1 − ûi−1)

∑N−1
i=2 K(x, ûi,Σ)

, (69b)
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Figure S15: Partial entropy production rate during cluster oscillations. a, Spatial map
the local partial entropy production rate in the curl-divergence space before the
emergence of strain waves (left) and in the presence of strain waves (right). Details
of the analysis are described in Sec. 3.12.1. b, Spatially integrated entropy produc-
tion rate in the curl-divergence space. Error bars indicate standard deviation over
100 bootstraps (see Sec. 3.12.1). The time point of maximum entropy production
rate t2 is defined as 0 min. c, d, Same analysis as a and b in the shear strain
component space. Scale bar, 1 mm.

where system configurations x = (uα, uβ)> are defined in the space of a strain component
pair. In Eqs. (69), K(x,µ,Σ) = exp[−(x− µ)>Σ−1(x− µ)/2]/[2π det(Σ)]−1/2 is the bivariate
Gaussian with a bandwidth Σ determined using the so-called “rule of thumb” [32, 30]. The
latter aims to heuristically minimize the asymptotic mean squared error of the estimated fields
ρ̂(x) and ĵ(x) under the assumption of a standard normal distribution as reference distribution.
In two dimensions, it suggests the bandwidth Σ is a diagonal 2 × 2 matrix with components
Σαβ = 1

2N
−1/6σαδαβ (no summation), where N denotes the total number of time points and σα

is the standard deviation of the local strain component values {ûα1 , ûα2 , . . . , ûαN} defined above.
Examples of the probability densities and fluxes estimated at some position in the cluster using
Eqs. (69) are shown in the insets of Fig. 4f and h (main text). Similarly, the effective diffusion
matrix is estimated as [31]

D̄(x) =
ρ̂(u)

∆t

∑N−1
i=1 K(x, ûi,Σ)(ûi+1 − ûi)⊗ (ûi+1 − ûi)∑N−1

i=1 K(x, ûi,Σ)
, (70)

where ⊗ denotes a dyadic product. To ensure an inverse diffusion matrix required in Eq. (68) is
well-defined, we finally use D̄(x) given in Eq. (70) to define a constant, weighted mean diffusion
matrix D̂ as

D̂ =

∫
dx D̄(x)ρ̂(x)1ρ̂(x)>c. (71)

Here, 1ρ̂(x)>c is the indicator function defined analog to Eq. (49) and c is chosen such that
only sufficiently well populated regions of the phase space with ρ̂dx > 0.01 are included in the
analysis. The estimates Eqs. (69) and Eq. (71) are then used in Eq. (68) to approximate a
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Figure S16: Dynamics of total defect number and partial entropy production rate.
The increase and decrease of the spatially integrated partial entropy production
rate (see Sec. 3.12.1 for details of the analysis) is accompanied by a corresponding
increase and decrease of the total number of defects.

local partial entropy production rate ˆ̇S(r̂). Fig. S15a and c each show two exemplary spatial
maps of the partial entropy production rate before (left) and during (right) the presence of
displacement waves.
Finally, we consider the spatially integrated entropy production rate for the whole cluster

ˆ̇Stot =
∑

r̂

ˆ̇S(r̂). (72)

In Fig. S15b,d shows that the integrated entropy production rate calculated in both strain
component spaces peaks when the displacement waves are most prominent.
To quantify the robustness of the spatially integrated entropy production rate, we performed
the same analysis on bootstrapped [33, 34] time series of the strain component pairs. In par-
ticular, we randomly sampled N − 2 elements from the time series of strain component pair
vectors {û2, û3, ..., ûN−1}. With each sampled vector ûk, we additionally stored ûk−1 and ûk+1

to be able to compute the flux and diffusion matrix given in Eqs. (69b) and (71). Entropy pro-
duction rates were finally determined from this bootstrapped configuration space information.
Repeating this procedure 100 times yields a standard deviation that is depicted by error bars
in Fig. S15b,d.

Combining the dynamic analysis of lattice defects (Sec. 3.11.2) with the quantification of partial
entropy production (Fig. S15 and Sec. 3.12.1), we can study the correlation of entropy produc-
tion with the crystalline order of the cluster. Specifically, we plot the total number of defects
over time together with the spatially integrated entropy production in Fig. S16, which reveals a
striking correlation between increasing (and decreasing) defect numbers with the increase (and
decrease) in the entropy production rate. Qualitatively, we suspect that the presence of de-
fects provides additional space for embryos to fluctuate around their mean positions within the
crystal and thereby facilitates the emergence of substantial strain waves. Once the defects are
expelled through embryo rearrangements from the finite crystal domain (Fig. S15), this extra
space – and consequently strain waves – cease to exists.

3.12.2 Strain cycle handedness

The handedness of the phase space currents in strain space computed in Sec. 3.12.1 corresponds
to the handedness of strain cycles observed during cluster oscillations. To quantify cycle handed-
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Figure S17: Handedness maps of strain cycles during cluster oscillations. a–b, Hand-
edness maps of strain cycles computed via Eq. (73) during cluster oscillations at
the time of maximum partial entropy production (denoted t2 in Fig. S15b,d). In
both strain spaces x = (u1, u0)> (curl–divergence, a) and x = (u2, u3)> (shear
1–shear 2, b), cycles are oriented mostly counter-clockwise. c, Correlation between
the handedness maps in a and b, confirming the visual impression that the cycle
handedness in both strain spaces is strongly correlated. Scale bar, 1 mm.

ness, we define a counter-clockwise reference unit current field as jref(x) = {− sinφαβ, cosφαβ},
where φαβ ∈ [0, 2π] represents the azimuthal angle in the strain spaces spanned by x = (u1, u0)>

(α = 1, β = 0) and x = (u2, u3)> (α = 2, β = 3, see insets in Fig. S17a,b). The strain cycle
handedness is then at each point in the embryo cluster empirically defined as

Hαβ =
1

max(|̂j|)

∫
ĵ · jref dx, (73)

such that Hαβ = 1 and Hαβ = −1 indicate perfectly counter-clockwise and clockwise cycles,
respectively. Strain cycles handedness maps, computed at the time of maximum partial entropy
production of strain wave oscillations (t2 in Fig. S15b,d), are shown in Fig. S17a and b. These
maps reveal a predominant counter-clockwise cycle handedness (Hαβ > 0). Comparing the
handedness distribution with the local partial entropy production rate map in Fig. S15, we found
that handedness amplitudes |Hαβ| are larger in regions with high partial entropy production
rate. Finally, we analyzed the map of local correlation of the handedness in either of the two
strain spaces. Specifically, Fig. S17c depicts the handedness product H10H23, which is largely
positive and therefore indicates a strong correlation between counter-clockwise oriented strain
cycles in both strain component spaces x = (u1, u0)> and x = (u2, u3)>.
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4 Table of symbols

v Fluid velocity
η Viscosity
vs Sedimentation velocity of inactive embryos
Re Reynolds number

r = (x, y, z)> Position vector with magnitude r = |r|
a, b, c, d Stokeslet, force-dipole, force-quadrupole, source-dipole singularity amplitude

p Embryo AP body-axis orientation
α, β, γ Coefficients to describe flows near the surface of a microswimmer

An, Bn, Cn, Dn Mode coefficients in solution of the Hele-Shaw equation
ri Centroid position of a disk/particle i
td Developmental time, td = 0: onset of cluster formation
h Distance of flow singularities from the fluid-air interface

g/θg Gravity/Orientation of gravity relative to fluid surface normal
rij = ri − rj Relative coordinate between disk i and j

r̂ij , r̂
⊥
ij Normalized relative coordinate and orthogonal normalized relative coordinate

ω0 Single embryo angular spinning frequency
R Apparent top-view radius of surface-bound embryos (in the disk model)
ωi Angular spinning frequency of disk/particle i

Frep, frep Effective repulsion force and effective repulsion force strength
Fnf(|ri − rj |) Effective lubrication forces in the disk model
Tnf(|ri − rj |) Effective lubrication torques in the disk model

f0, τ0 Strength of lubrication forces and torques in the disk model
dc Cut-off length of lubrication interactions
dij Shortest disk surface distance between disks i and j
Ncl Total number of embryos or disks bound in a cluster

ex, ey, ez 3D Cartesian basis
er, eθ, eφ 3D spherical coordinates basis, x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ
eρ, eϕ 2D cylindrical coordinate basis, x̄ = ρ cosϕ, ȳ = ρ sinϕ.
l Average nearest neighbor centroid distance in bound pairs and triplets

`maj, `min Semi-major and semi-minor embryo body axis
e = `min/`maj Body axis ratio

χ = (1− e2)/(1 + e2) Microswimmer body shape anisotropy
L = (`maj + `min)/2 Characteristic embryo size, L = 150µm

Fst, Fg Stokeslet force amplitude, Negatively buoyant weight force
r0, r′0 Position of flow singularity and of image flow singularity
E, E′ Symmetric strain rate tensor/Image above free fluid surface
F, F′ Stokeslet force and image Stokeslet force/Image above free fluid surface
T, T′ Rotlet torque and image rotlet torque/Image above free fluid surface

v̄(r;p, r0) Singularity construction below free, nondeforming fluid surfaces
u, uij = ∂iuj Displacement field and displacement gradient tensor

uα 2D strain components: dilation (α = 0), rotation (α = 1), shear (α = 2, 3)
σα 2D stress components: pressure (α = 0), torque (α = 1), shear (α = 2, 3)
B, µ Bulk modulus, Shear modulus
A, Ko Odd bulk modulus, Odd shear modulus
Λ, Γ Elastic moduli coupling rotations to stresses
ν, νo Poisson’s ratio, Odd ratio
γ1, γ2 Effective material parameters of an isotropic elastic solid

F̂nf, T̂nf Stokeslet and rotlet fitting parameters for flows surrounding bound pairs and triplets
ā Living chiral crystal lattice constant (≈ 220µm)

ψ6(ri) Local hexagonal bond orientation parameter of embryo i
g(r) Radial pair distance distribution function
γL(τ) Dynamic Lindemann parameter as a function of lag time τ
b Burgers vector
φb Azimuthal Burgers vector orientation in cluster frame

us, αs Magnitude and orientation of the shear elongation axis

x = (uα, uβ)> Strain space coordinate
ρ(x), j(x), D(x) Probability density, probability current and diffusion matrix in strain space

ρ̂(x), ĵ(x), D̂(x) Corresponding functions estimated from data

Hαβ Strain cycle handedness averaged in the strain space x = (uα, uβ)>
ˆ̇S(r), ˆ̇Stot Local and spatially integrated partial entropy production rate estimated from data
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5 Extended Data Figures

0h 26h12h 38h 44h

Extended Data Figure 1: Uncropped embryo morphology images shown in Fig. 1b in the main
text.
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