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Abstract: This paper introduces a general family of continuous distributions, based on the exponential-
logarithmic distribution and the odd transformation. It is called the “odd exponential logarithmic
family”. We intend to create novel distributions with desired qualities for practical applications, using
the unique properties of the exponential-logarithmic distribution as an initial inspiration. Thus, we
present some special members of this family that stand out for the versatile shape properties of their
corresponding functions. Then, a comprehensive mathematical treatment of the family is provided,
including some asymptotic properties, the determination of the quantile function, a useful sum
expression of the probability density function, tractable series expressions for the moments, moment
generating function, Rényi entropy and Shannon entropy, as well as results on order statistics and
stochastic ordering. We estimate the model parameters quite efficiently by the method of maximum
likelihood, with discussions on the observed information matrix and a complete simulation study.
As a major interest, the odd exponential logarithmic models reveal how to successfully accommodate
various kinds of data. This aspect is demonstrated by using three practical data sets, showing that an
odd exponential logarithmic model outperforms two strong competitors in terms of data fitting.

Keywords: exponential-logarithmic distribution; T-X transformation; moments; entropy; maximum
likelihood estimation; simulation; data sciences

1. Introduction

There has been a growing interest in defining new flexible distributions in the modern
age, which has been submerged by the volume of data arriving from all disciplines. To de-
fine such mathematical objects, “thoroughly changing” a baseline (continuous) distribution
is a straightforward and fast method. The addition of parameters has been shown to be
useful in investigating tail properties as well as increasing the goodness-of-fit of the related
models. Among the proposed distributions, the T-X family of continuous distributions
(focds) by [1] is the most popular one. An exhaustive review of it can be found in [2]. Also,
one of the most useful transformers for the T-X focds is the following odd transformation:
W[G(x;=)] = G(x;=)/[1− G(x;=)], where G(x;=) denotes the cumulative density func-
tion (cdf) and = the parameters of the cdf. That is, the focds defined by G(x;=) is modified,
defining a new focd based on a transformed cdf through the use of W[G(x;=)]. Such a
transformed focds is generally called an “odd family” of distributions. Some odd families
available in the modern literature are the odd log-logistic (OLL) focds by [3], odd-gamma
generated type 3 (OGGT3) focds by [4], odd exponentiated generated (odd exp-G) focds
by [5], odd Weibull generated (OW-G) focds by [6], odd generalized exponential (OGE)
focds by [7], odd generalized exponential log-logistic (OGELL) focds by [8], odd log-logistic
normal (OLLN) focds by [9], new generalized odd log-logistic (NGOLL) focds by [10],
odd Fréchet generated (OF-G) focds by [11], generalized odd gamma generated (GOG-G)
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focds by [12], generalized odd Lindley generated (GOL-G) focds by [13], Marshall-Olkin
odd Lindley generated (MOOL-G) focds by [14], extended odd generated (EO-G) focds
by [15], generalized odd inverted exponential generated (GOIE-G) focds by [16], odd
flexible Weibull-H (OFW-H) family by [17], transmuted odd Fréchet generated (TOF-G)
focds by [18], odd generalized gamma generated (OGG-G) focds by [19], modified odd
Weibull generated (MOW-G) focds by [20], Topp-Leone odd Fréchet generated (TLOF-G)
focds by [21], weighted odd Weibull generated (WOW-G) focds by [22], additive odd (AO)
focds by [23], exponentiated odd Chen-G (EOC-G) focds by [24], generalized odd linear
exponential (GOLE) focds by [25], and sine extended odd Fréchet generated (SEOF-G)
focds by [26].

The new idea in this paper is centered around the notorious exponential-logarithmic
(EL) distribution introduced by [27]. The EL distribution plays a fundamental role in
reliability in several disciplines such as manufacturing, finance, biological sciences, and en-
gineering. It is mathematically defined as follows. Let p ∈ (0, 1) and β > 0. Then, the EL
distribution with parameters p and β is defined by the following cdf:

F∗(x; p, β) = 1− 1
log(p)

log
[
1− (1− p)e−βx

]
, x > 0. (1)

Thus, it has the feature of combining exponential and logarithmic functions.
The related probability density function (pdf) is given by

f∗(x; p, β) =

(
1

− log(p)

)
β(1− p)e−βx

1− (1− p)e−βx , x > 0.

This pdf has the following notable properties: it is strictly decreasing with respect
to x, it tends to zero as x → +∞, it is unimodal with a modal value at x = 0 and it is
reduced to the pdf of the exponential distribution with rate parameter β as p → 1. Also,
as a complementary key function, the corresponding hazard rate function (hrf) is given by

h∗(x; p, β) =
−β(1− p)e−βx

[1− (1− p)e−βx] log[1− (1− p)e−βx]
, x > 0.

It is proved to be decreasing (contrary to the former exponential distribution having a
constant hrf). As an advantage for statistical analysis, the quantile function (qf) of the EL
distribution has a closed-form expression; it is given by

Q∗(u; p, β) =
1
β

log
(

1− p
1− p1−u

)
, u ∈ [0, 1).

Also, the EL distribution has a solid physical interpretation. Indeed, consider
T = (Tn)n∈N∗ to be a sequence of independent and identically distributed random vari-
ables with an exponential distribution and a common parameter, β. Let N be a random
variable following the discrete logarithmic distribution with parameter 1− p, also indepen-
dent of T. Then, the random variable X = inf(T1, . . . , TN) follows the EL distribution with
parameters p and β. As an example, such a random variable can model the lifetime of a
system that failed when one of its components failed, assuming that it is dependent on a
random number of independent components represented by N and that the lifetime of the
i-th component is represented by Ti.

We leverage these characteristics of the EL distribution to create a new odd focds
based on it. We present three special four-parameter distributions of the family that
have very desirable statistical properties, such as versatile hazard rate shapes; increasing,
decreasing, J, reversed-J, and bathtub shapes. Then, a complete mathematical treatment
of the focds is derived, with several results on the pdf, moments, entropy (Rényi and
Shannon entropy), order statistics, and stochastic ordering. By turning out some special
distributions as models, we prove that they are more adequate to fit some data sets than
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notable competitors, with the same or more numbers of parameters, and the same baseline
distribution as well. We explain this success by the original exponential-logarithmic
definitions of the corresponding functions, offering some ability in the modeling that can
be reached by other families.

The paper is composed of the following sections. In Section 2, we introduce the
odd exponential-logarithmic focds. We present some special distributions in Section 3.
The mathematical properties of the focds are derived in Section 4. For the inferential aspect,
the maximum likelihood method is discussed in Section 5. The analysis of two real data
sets is presented to illustrate the modeling potential of the focds in Section 6. Finally,
the conclusion of the paper appears in Section 7.

2. The New Family

The proposed focds, called the odd EL generated (OEL-G) focds, is characterized by
the cdf given by

F(x; p, β,=) = 1− 1
log(p)

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)

]
, x ∈ R, (2)

where G(x;=) denotes the cdf of an absolutely continuous distribution based on a pa-
rameter vector denoted by =. We recall that p ∈ (0, 1). Its definition is based on the
T-X transformation introduced by [1], the EL distribution previously presented and the
odd transformation, i.e., we can write F(x; p, β,=) as F(x; p, β,=) = F∗(W[G(x;=)]; p, β),
where F∗(y; p, β) is the cdf of the EL distribution given by (1) and W(y) is the following
odd transformation: W(y) = y/(1− y). One can also notice some compounding relations
between the OEL-G and the OW-G and Pappas and Loukas generated (PAL-G) families
by [6,28], respectively. Indeed, we can write F(x; p, β,=) as

F(x; p, β,=) = 1− 1
log(p)

log[1− (1− p)So(x; β,=)],

where So(x; β,=) denotes the survival function (sf) of the OW-G focds with parameters β
and =, which also corresponds to the cdf of the PAL-G focds, with parameter p and the cdf
of the OW-G focds as a baseline. However, to the best of our knowledge, the OEL-G focds
as defined by (2) is new in the literature.

The sf of the OEL-G focds is given by S(x; p, β,=) = 1− F(x; p, β,=), hence

S(x; p, β,=) = 1
log(p)

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)

]
, x ∈ R,

The appropriate pdf is given by deriving F(x; p, β,=) from x; we get

f (x; p, β,=) =
(

1
− log(p)

)
g(x;=)

[1− G(x;=)]2
(1− p)βe−β

G(x;=)
1−G(x;=)

1− (1− p)e−β
G(x;=)

1−G(x;=)

, x ∈ R, (3)

where g(x;=) refers to the pdf related to G(x;=).
Also, the hrf of the OEL-G focds is specified by h(x; p, β,=) = f (x; p, β,=)/S(x; p, β,=),

hence

h(x; p, β,=) = g(x;=)
[1− G(x;=)]2

−(1− p)βe−β
G(x;=)

1−G(x;=)[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]
log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)

] , x ∈ R.

These two last functions are crucial to handling some statistical features of the OEL-G
focds, such as the possible adequateness of the related models to various kinds of data.
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3. Special Distributions

Three special four-parameter distributions of the OEL-G focds are described in this
section, all defined with well-established baseline distributions, namely: the Weibull,
gamma, and Fréchet distributions.

3.1. The OELW Distribution

The OEL Weibull (OELW) distribution is now introduced. It is defined by the cdf
given by (2) with the Weibull distribution as baseline distribution, i.e., with the cdf given by
G(x; a, b) = 1− e−(x/b)a

and the pdf given by g(x; a, b) = (a/b)(x/b)a−1e−(x/b)a
, a, b, x > 0.

When x ≤ 0, the cdf and pdf are equal to 0. Thus, the cdf of the OELW distribution is
given by

F(x; p, β, a, b) = 1− 1
log(p)

log
[

1− (1− p)e−β
{

e(
x
b )a
−1
}]

, x > 0.

In this setting, the pdf is expressed as

f (x; p, β, a, b) =
(

1
− log(p)

)
a
b

( x
b

)a−1
e(

x
b )

a (1− p)βe−β
{

e(
x
b )a
−1
}

1− (1− p)e−β
{

e(
x
b )a
−1
} , x > 0.

The hrf is obtained as

h(x; p, β, a, b) =
a
b

( x
b

)a−1
e(

x
b )

a −(1− p)βe−β
{

e(
x
b )a
−1
}

[
1− (1− p)e−β

{
e(

x
b )a
−1
}]

log
[

1− (1− p)e−β
{

e(
x
b )a
−1
}] , x > 0.

The functions above are equal to 0 when x ≤ 0. As graphical illustrations, Figure 1
shows some plots of f (x; p, β, a, b) and h(x; p, β, a, b), for selected values of the parameters
p, β, a and b. These plots show that the pdf of the OELW distribution has a great shape
flexibility. It can be left skewed, right skewed, J-shaped, reversed J-shape, and symmetric.
Furthermore, the corresponding hrf can be increasing, decreasing, J, or bathtub in shape.
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Figure 1. Examples of plots of the (a) pdf and (b) hrf of the OELW distribution for various values of
p, β, a and b.

The applicability of the OLEW distribution will be highlighted in the application part
of the paper (see Section 6).

3.2. Two Other Examples

To show other perspectives of lifetime modeling, two other special cases are briefly
described below.
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3.2.1. The OELGa Distribution

We now introduce the OEL gamma (OELGa) distribution. It is defined by the cdf
given by (2) with the gamma distribution as baseline distribution, i.e., with the cdf given
by G(x; a, b) = (1/Γ(a))γ(a, bx) and the pdf given by g(x; a, b) = (ba/Γ(a))xα−1e−bx,
a, b, x > 0, where Γ(a) =

∫ +∞
0 ta−1e−tdt and γ(a, bx) =

∫ bx
0 ta−1e−tdt. When x ≤ 0, the cdf

and pdf are equal to 0. So, the cdf of the OELGa distribution is given by

F(x; p, β, a, b) = 1− 1
log(p)

log
[

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

]
, x > 0.

The related pdf is given as

f (x; p, β, a, b) =
(

1
− log(p)

)
baxα−1e−bx γ(a, bx)

[Γ(a)− γ(a, bx)]2
(1− p)βe−β

γ(a,bx)
Γ(a)−γ(a,bx)

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

, x > 0.

The hrf is given by

h(x; p, β, a, b) = baxα−1e−bx γ(a, bx)
[Γ(a)− γ(a, bx)]2

×

−(1− p)βe−β
γ(a,bx)

Γ(a)−γ(a,bx)[
1− (1− p)e−β

γ(a,bx)
Γ(a)−γ(a,bx)

]
log
[

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

] , x > 0.

The functions above are equal to 0 when x ≤ 0. Figure 2 shows some plots of
f (x; p, β, a, b) and h(x; p, β, a, b), for selected values of the parameters p, β, a and b. The plots
indicate that the pdf of the OELGa distribution can be reverse J-shaped, symmetric, right
skewed, left-skewed, and unimodal, whereas the hrf of the OELGa has J and increas-
ing shapes.
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Figure 2. Examples of plots of the (a) pdf and (b) hrf of the OELGa distribution for various values of
p, β, a and b.

3.2.2. The OELF Distribution

We now introduce the OEL Fréchet (OELF) distribution. It is defined by the cdf given
by (2) with the Fréchet distribution as baseline distribution, i.e., with the cdf given by
G(x; a, b) = e−(x/b)−a

and the pdf given by g(x; a, b) = (a/b)(x/b)−a−1e−(x/b)−a
, a, b, x > 0.

When x ≤ 0, the cdf and pdf are equal to 0. Hence, the cdf of the OELF distribution is
given by

F(x; p, β, a, b) = 1− 1
log(p)

log

1− (1− p)e
−β e

−( x
b )−a

1−e
−( x

b )−a

, x > 0.
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The pdf can be deduced as

f (x; p, β, a, b) =
(

1
− log(p)

)
a
b

( x
b

)−a−1 e−(
x
b )
−a

[1− e−(
x
b )
−a
]2

(1− p)βe
−β e

−( x
b )−a

1−e
−( x

b )−a

1− (1− p)e
−β e

−( x
b )−a

1−e
−( x

b )−a

, x > 0.

The hrf is expressed as

h(x; p, β, a, b) =
a
b

( x
b

)−a−1 e−(
x
b )
−a

[1− e−(
x
b )
−a
]2
×

−(1− p)βe
−β e

−( x
b )−a

1−e
−( x

b )−a1− (1− p)e
−β e

−( x
b )−a

1−e
−( x

b )−a

 log

1− (1− p)e
−β e

−( x
b )−a

1−e
−( x

b )−a

 , x > 0.

The functions above are equal to 0 when x ≤ 0. Figure 3 shows some plots of
f (x; p, β, a, b) and h(x; p, β, a, b), for selected values of the parameters p, β, a and b. The plots
indicate that the OELF distribution can be reverse J-shaped, right skewed, left-skewed,
and unimodal. On the other hand, the corresponding hrf has decreasing, increasing, J,
reverse J- shapes.
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Figure 3. Examples of plots of the (a) pdf and (b) hrf of the OELF distribution for various values of p,
β, a and b.

4. Mathematical Features

This section is devoted to some mathematical properties of the OEL-G focds. In the
following, it is assumed that the criterion for interchanging summation and integration
and the criterion for interchanging summation and differentiation are satisfied. Also, let
us mention that most of the presented formulas can be handled in standard mathematical
software (Mathematica, Maple, . . . ).

4.1. Asymptotic Results

Here, we investigate some asymptotic results of the pdf and hrf of the OEL-G focds.
First of all, as x → −∞ (or G(x;=)→ 0), we have

f (x; p, β,=) ∼
(

1− p
−p log(p)

)
βg(x;=), h(x; p, β,=) ∼

(
1− p
−p log(p)

)
βg(x;=).
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When x → +∞ (or G(x;=)→ 1), we have

f (x; p, β,=) ∼
(

1− p
− log(p)

)
β

g(x;=)
[1− G(x;=)]2 e−β

G(x;=)
1−G(x;=) , h(x; p, β,=) ∼ β

g(x;=)
[1− G(x;=)]2 .

We thus see the role of the parameters β and p in the possible asymptotes for these
functions. In particular, when x → +∞, we see that β has large impact on the conver-
gence of f (x; p, β,=) due to the exponential term, whereas p has no effect on the limit of
h(x; p, β,=). Also, the function u(p) = (1− p)/[−p log(p)] appearing multiple times is
decreasing in p and convex, with limp→0 u(p) = +∞ and limp→1 u(p) = 0.

4.2. Shapes of the pdf and hrf

The shapes of the pdf and hrf of the OEL-G focds can be described analytically. The
critical point(s) of the pdf (also called mode(s)) of the OEL-G focds is(are) the root(s) of the
following equation: d[log( f (x; p, β,=))]/dx = 0, i.e.,

dg(x;=)/dx
g(x;=) + 2

g(x;=)
1− G(x;=) − β

g(x;=)
[1− G(x;=)]2

1[
1− (1− p)e−β

G(x;=)
1−G(x;=)

] = 0.

Similarly, the critical point(s) of the hrf of the OEL-G focds is(are) the root(s) of the
following equation: d[log(h(x; p, β,=))]/dx = 0, i.e.,

dg(x;=)/dx
g(x;=) + 2

g(x;=)
1− G(x;=) − β

g(x;=)
[1− G(x;=)]2

1[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]×
1 + (1− p)

e−β
G(x;=)

1−G(x;=)

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)

]
 = 0.

Mathematical software (R, Python, Mathematica, . . . ) can be used to solve these
two equations and determine whether the critical points are local maximums, minimums,
or inflexion points for a given cdf G(x;=). It is the case for the proposed OELW, OELGa,
and OELF distributions, where the equations above have no analytical solutions. For them,
Figures 1–3, are informative on their global mode properties; these special distributions
can be unimodal, with various hrf shapes.

4.3. Quantile Function

The qf of the OEL-G focds, say Q(u; p, β,=), satisfies the following functional equation:
F(Q(u; p, β,=); p, β,=)) = Q(F(u; p, β,=); p, β,=)) = u, u ∈ (0, 1). After some alge-

braic manipulations, we get

Q(u; p, β,=) = QG

 log
(

1−p
1−p1−u

)
β + log

(
1−p

1−p1−u

) ;=

 u ∈ (0, 1), (4)

where QG(u;=) denotes the qf related to G(x;=). As a result, with appropriate values of u,
quantiles of interest can be obtained. In particular, the median is reduced to

M = Q(0.5; p, β,=) = QG

(
log
(
1 +
√

p
)

β + log
(
1 +
√

p
) ;=

)
.
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One can also use the quantile function for simulating values for a special OEL-
G distribution. For any random variable U with the standard uniform distribution,
X = Q(U; p, β,=) has the cdf given by (2).

4.4. Expansions of the cdf and pdf

The cdf and pdf of the OEL-G focds are expressed here using exp-G cdfs and pdfs as
defined by [29]. Then, the structural properties of the exp-G focds can be used to derive
those of the OEL-G focds.

The following result is about the series expansion of the cdf.

Proposition 1. Let F(x; p, β,=) be the cdf given by (2). Then, assuming that G(x;=) ∈ (0, 1),
the following series expansion is valid:

F(x; p, β,=) =
+∞

∑
k,`=1

+∞

∑
m=0

ak,`,mG(x;=)`+m,

where

ak,`,m =
1

log(p)
(−1)`+m

(
−`
m

)
1
k

1
`!
(1− p)kβ`k`. (5)

Proof. It follows from the Taylor theorem applied to the logarithmic function that

log(1− x) = −
+∞
∑

k=1

1
k xk, x ∈ (−1, 1), and some sum manipulations, that

F(x; p, β,=) = 1 +
1

log(p)

+∞

∑
k=1

1
k
(1− p)ke−βk G(x;=)

1−G(x;=)

=
1

log(p)

+∞

∑
k=1

1
k
(1− p)k

[
e−βk G(x;=)

1−G(x;=) − 1
]

.

For the term in brackets, the Taylor theorem applied to the exponential function,

i.e., ex =
+∞
∑

k=0

1
k! xk, x ∈ R, gives

e−βk G(x;=)
1−G(x;=) − 1 =

+∞

∑
`=1

1
`!
(−1)`β`k`G(x;=)`[1− G(x;=)]−`.

Now, the generalized binomial theorem, i.e., (1− x)υ =
+∞
∑

k=0
(υ

k)(−1)kxk, x ∈ (−1, 1),

υ ∈ R, gives

[1− G(x;=)]−` =
+∞

∑
m=0

(
−`
m

)
(−1)mG(x;=)m.

By combining all of the foregoing equalities, we get the desired result. The proof of
Proposition 1 is now complete.

Corollary 1. Owing to Proposition 1, upon differentiation of the involved functions, a series
expansion for f (x; p, β,=) is given by

f (x; p, β,=) =
+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mg(x;=)G(x;=)`+m−1,

where bk,`,m = (`+ m)ak,`,m.
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In comparison to the former analytical definition, for practical purposes (integra-
tion. . . ), the expression of f (x; p, β,=) in Corollary 1 can be more easy to handle through
the following approximation:

f (x; p, β,=) ≈
M

∑
k,`=1

M

∑
m=0

bk,`,mg(x;=)G(x;=)`+m−1,

where M is a carefully chosen number.

4.5. Moments

Hereafter, we denote by X a random variable having the cdf of the OEL-G focds
given by (2). Corollary 1 can be used to have a tractable expression for the moments of X,
among other things. Indeed, for any integer r, the rth moment of X is given by

µ′r = E(Xr) =
∫ +∞

−∞
xr f (x; p, β,=)dx =

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mτ`,m,r,

where τ`,m,r =
∫ +∞
−∞ xrg(x;=)G(x;=)`+m−1dx =

∫ 1
0 u`+m−1[QG(u;=)]rdu. For a given

G(x;=), this integral can be calculated or computed numerically. We refer to [30], where
τ`,m,r has been determined for some standard distributions (normal, beta, Weibull . . . ).
For practical purposes, another remark concerns the infinity limit in the sums; as mentioned
before, it can be substituted by a large positive integer.

As usual, the mean of X is obtained directly by µ = µ′1. Also, the variance of X can be
calculated using the following formula: σ2 = µ′2 − µ2.

In a similar vein, for y ∈ R, the rth incomplete moment of X is given by

µ′r(y) = E(Xr1{X≤y}) =
∫ y

−∞
xr f (x; p, β,=)dx =

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mτ`,m,r(y),

where τ`,m,r(y) =
∫ y
−∞ xrg(x;=)G(x;=)`+m−1dx =

∫ G(y;=)
0 u`+m−1[QG(u;=)]rdu. Then,

one can express the mean deviations about the mean and about the median, as well as
Bonferroni and Lorenz curves, which play a central role in life testing, reliability, and re-
newal theory.

Similarly, the moment generating function of X is given by

M(t) = E(etX) =
∫ +∞

−∞
etx f (x; p, β,=)dx =

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mυ`,m(t),

where υ`,m(t) =
∫ +∞
−∞ etxg(x;=)G(x;=)`+m−1dx =

∫ 1
0 u`+m−1etQG(u;=)du.

4.6. Skewness and Kurtosis

The skewness and kurtosis properties of the OEL-G focds can be explored via the four
first moments or the use of the qf given by (4). The main measures defined by moments are
the skewness and kurtosis parameters defined by

S = E

[(
X− µ

σ

)3
]
=

µ′3 − 3µ′2µ + 2µ3

σ3

and

K = E

[(
X− µ

σ

)4
]
=

µ′4 − 4µ′3µ + 6µ′2µ2 − 3µ4

σ4 .

They can be expressed for a given baseline cdf G(x;=).
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Alternatively, if the moments do not exist (or in full generality), one can consider the
measures defined with the qf. Examples are the Bowley skewness and the Moors kurtosis
defined by, respectively,

S∗ =
Q( 1

4 ; p, β,=) + Q( 3
4 ; p, β,=)− 2Q( 1

2 ; p, β,=)
Q( 3

4 ; p, β,=)−Q( 1
4 ; p, β,=)

,

and

K∗ =
Q( 7

8 ; p, β,=)−Q( 5
8 ; p, β,=) + Q( 3

8 ; p, β,=)−Q( 1
8 ; p, β,=)

Q( 6
8 ; p, β,=)−Q( 2

8 ; p, β,=)
.

We refer to [31,32] for more information on these quantile measures.
Table 1 provides the mean, variance, skewness S and kurtosis K (defined with the

moments) of one of the members of the OEL-G focds, the OELW distribution, for different
choices of parameter values.

Table 1. Moment measures of the OELW distribution for various choices of parameters.

Parameter Mean Variance Skewness Kurtosis

a = 0.5
b = 1.5 0.1375667 0.05076667 12.77926 21.5475
β = 3

p = 0.5

a = 0.5
b = 1.5 0.06894464 0.03067229 27.02119 42.1311
β = 3

p = 0.05

a = 0.5
b = 1.5 0.04940314 0.02260463 38.03328 57.77719
β = 3

p = 0.012

a = 0.5
b = 2 1.324836 6.267231 8.523013 13.13688

β = 0.3
p = 0.2

a = 0.5
b = 0.02 7.938928× 10−8 1.69951× 10−10 26,964.99 26,960.99
β = 30

p = 0.012

a = 0.5
b = 5 0.1737497 0.09645452 15.83522 27.64176

β = 6.25
p = 0.96

Table 1 indicates that, for fixed a, b and β, the mean and variance of the OELW
distribution are decreasing functions with respect to p. Also, the OELW distribution tends
to be skewed more to the right as p decreases.

4.7. Entropy

Entropy is a measure of the variation of uncertainty that finds numerous applications
in various areas such as engineering, mathematical physics, and probability. One of the
most famous useful entropy measures is the Rényi entropy, introduced by [33] and the
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Shannon entropy by [34]. In the context of the OEL-G focds, the Rényi entropy of X is
defined by

Iδ(X) =
1

1− δ
log
[∫ +∞

−∞
f (x; p, β,=)δdx

]
,

where δ > 0 and δ 6= 1. As an alternative to direct computation, we now present an
expression that depends on a tractable series expansion. In this regard, let us present and
prove the following proposition, which can be viewed as an extension of Corollary 1.

Proposition 2. Let δ ∈ R and f (x; p, β,=) be the pdf given by (3). Then, the following series
expansion is valid:

f (x; p, β,=)δ =
+∞

∑
k,`,m=0

ck,`,m(δ)g(x;=)δG(x;=)`+m,

where

ck,`,m(δ) =

(
1

− log(p)

)δ(−δ

k

)(
−(2δ + `)

m

)
(−1)k+`+m 1

`!
(1− p)δ+kβδ+`(δ + k)`.

Proof. We have

f (x; p, β,=)δ =

(
1

− log(p)

)δ g(x;=)δ

[1− G(x;=)]2δ

(1− p)δβδe−δβ
G(x;=)

1−G(x;=)[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]δ
.

The generalized binomial formula demonstrates that[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]−δ

=
+∞

∑
k=0

(
−δ

k

)
(−1)k(1− p)ke−kβ

G(x;=)
1−G(x;=) .

By the Taylor series of the exponential function, we get

e−(δ+k)β
G(x;=)

1−G(x;=) =
+∞

∑
`=0

1
`!
(−1)`(δ + k)`β`G(x;=)`[1− G(x;=)]−`.

Furthermore, the generalized binomial formula gives

[1− G(x;=)]−(2δ+`) =
+∞

∑
m=0

(
−(2δ + `)

m

)
(−1)mG(x;=)m.

By combining all of the aforementioned equality, we get the desired result.

As a direct application of Proposition 2, the Rényi entropy is given by

Iδ(X) =
1

1− δ
log

[
+∞

∑
k,`,m=0

ck,`,m(δ)
∫ +∞

−∞
g(x;=)δG(x;=)`+mdx

]
.

On the other side, the Shannon entropy of X is defined by

η(X) = −E{log[ f (X; p, β,=)]}.

It can be determined via the limit result: η(X) = limδ→1 Iδ(X). However, this limit is
not easy to handle. Some sum expressions can also be proved as an alternative. Indeed,
we have
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η(X) = − log
[

1
− log(p)

]
− log(1− p)− log(β)− E{log[g(X;=)]}+ 2E{log[1− G(X;=)]}

+ βE
[

G(X;=)
1− G(X;=)

]
− log(p){E[F(X; p, β,=)]− 1}.

Now, by using Corollary 1, we have

E{log[g(X;=)]} =
+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mκ`,m,

where κ`,m =
∫ +∞
−∞ log[g(x;=)]g(x;=)G(x;=)`+m−1dx =

∫ 1
0 log[g(QG(u;=);=)]u`+m−1dx.

By using the Taylor series of the logarithmic function, we have

E{log[1− G(X;=)]} = −
+∞

∑
i=1

1
i

E
[

G(X;=)i
]
.

By using the geometric series, it comes

E
[

G(X;=)
1− G(X;=)

]
=

+∞

∑
i=0

E
[

G(X;=)i+1
]
.

By using Proposition 1, we have

E[F(X; p, β,=)] =
+∞

∑
k,`=1

+∞

∑
m=0

ak,`,mE
[

G(X;=)`+m
]
.

All the terms involving the expectation of exponentiated G(X;=) are expressible by
using the following results. For any ζ ≥ 0, by Corollary 1, we have

E
[

G(X;=)ζ
]
=

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,m

∫ +∞

−∞
g(x;=)G(x;=)ζ+`+m−1dx

=
+∞

∑
k,`=1

+∞

∑
m=0

bk,`,m
1

ζ + `+ m
.

By putting all the above equalities together, we get a tractable expression for the
Shannon entropy, and possible approximations can be derived for practical purposes.

4.8. Order Statistics

The following result concerns a distributional property of a mth order statistic related
to the OEL-G focds.

Proposition 3. Let X1, . . . , Xn be a random sample of size n from X and Xm:n be the corresponding
mth order statistic, i.e., the mth random variable satisfying the inequalities X1:n ≤ X2:n ≤
. . . Xm:n ≤ . . . ≤ Xn:n, almost surely. The pdf of Xm:n is then linearly represented in terms of pdfs
of the exp-G focds.

Proof. By definition, the pdf of Xm:n is given by

fm:n(x; p, β,=) = n!
(m− 1)!(n−m)!

F(x; p, β,=)m−1[1− F(x; p, β,=)]n−m f (x; p, β,=).

Owing to the binomial formula, we can write
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fm:n(x; p, β,=) = n!
(m− 1)!(n−m)!

m−1

∑
d=0

(
m− 1

d

)
(−1)d[1− F(x; p, β,=)]d+n−m f (x; p, β,=).

It follows from Corollary 1 that f (x; p, β,=) can be expressed as a sum of pdfs of the
exp-G focds. As a result, the proof concludes by demonstrating that [1− F(x; p, β,=)]d+n−m

can be expressed as a sum of cdfs of the exp-G focds, by exploiting the fact that the
multiplication of a pdf and a cdf of the exp-G focds is a pdf of the exp-G focds, up to a
constant factor. We have

[1− F(x; p, β,=)]d+n−m =

(
1

− log(p)

)d+n−m{
− log

[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]}d+n−m
.

By the Taylor series of the integer power of the logarithmic function (see, for instance,
http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/, accessed on 4
July 2022), we have{

− log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)

]}d+n−m

= (d + n−m)
+∞

∑
k=0

k

∑
j=0

(
k− (d + n−m)

k

)(
k
j

)
(−1)j+k 1

d + n−m− j
×

uj,k(1− p)d+n−m+ke−(d+n−m+k)β
G(x;=)

1−G(x;=) ,

where uj,k can be determined recursively by uj,0 = 1 and, for k ∈ N∗,

uj,k =
1
k

k

∑
s=1

[k− s(j + 1)]
(−1)s+1

s + 1
uj,k−s.

We will now proceed in the same manner that we did in the proof of Proposition 1.
The Taylor theorem applied to the exponential function gives

e−(d+n−m+k)β
G(x;=)

1−G(x;=) =
+∞

∑
`=0

1
`!
(−1)`β`(d + n−m + k)`G(x;=)`[1− G(x;=)]−`.

It follows from the general binomial theorem that

[1− G(x;=)]−` =
+∞

∑
m=0

(
−`
m

)
(−1)mG(x;=)m.

By combining the aforementioned equalities, we arrive at

[1− F(x; p, β,=)]d+n−m =
+∞

∑
k,`,m=0

wk,`,mG(x;=)`+m,

where

wk,`,m =

(
1

− log(p)

)d+n−m
(d + n−m)

k

∑
j=0

(
k− (d + n−m)

k

)(
k
j

)(
−`
m

)
(−1)j+k+`+m×

1
d + n−m− j

uj,k(1− p)d+n−m+k 1
`!

β`(d + n−m + k)`.

We thus have a linear representation of [1− F(x; p, β,=)]d+n−m in terms of cdfs of the
exp-G focds, ending the proof of Proposition 3.

http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
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Thanks to Proposition 3, one can determine various mathematical properties for the
mth order statistic, such as moments, incomplete moments, entropy, and so on.

4.9. Stochastic Ordering

Here, a stochastic ordering result involving the OEL-G focds is investigated. First of
all, some elementary relations are presented below. The complete theory can be found
in [35]. Let X1 and X2 be two random variables having the sfs and pdfs given by S1(x) and
S2(x), and f1(x) and f2(x), respectively. Then, X1 is said to be “smaller than X2” in the
following senses:

1. stochastic order, denoted by X1 ≤st X2, if S1(x) ≤ S2(x) for all x,
2. hazard rate order, denoted by X1 ≤hr X2, if S1(x)/S2(x) is decreasing in x,
3. likelihood ratio order, denoted by X1 ≤lr X2, if f1(x)/ f2(x) is decreasing in x.

Then, we have the following implications:

(X1 ≤lr X2)⇒ (X1 ≤hr X2)⇒ (X1 ≤st X2).

A stochastic ordering result on the OEL-G focds is presented below.

Proposition 4. Let X1 having the cdf given by (2) with p = p1 and X2 having the cdf given by (2)
with p = p2. Then, if p1 ≤ p2, we have X1 ≤lr X2 (implying X1 ≤hr X2 and X1 ≤st X2). The
equality in the likelihood ratio order is satisfied if and only if p1 = p2.

Proof. Let f (x; p1, β,=) and f (x; p2, β,=) be the pdfs of X1 and X2, respectively. Then,
by using (3), we have

f (x; p1, β,=)
f (x; p2, β,=) =

(
log(p2)

log(p1)

)(
1− p1

1− p2

)
1− (1− p2)e

−β
G(x;=)

1−G(x;=)

1− (1− p1)e
−β

G(x;=)
1−G(x;=)

.

Hence, by differentiation, we obtain

d
dx

f (x; p1, β,=)
f (x; p2, β,=) =

(
log(p2)

log(p1)

)(
1− p1

1− p2

)
β(p1 − p2)

g(x;=)
[1− G(x;=)]2

e−β
G(x;=)

1−G(x;=)[
1− (1− p1)e

−β
G(x;=)

1−G(x;=)

]2 .

Now, observe that the sign of d[ f (x; p1, β,=)/ f (x; p2, β,=)]/dx is the same to the
sign of p1 − p2. So, if p1 ≤ p2, f (x; p1, β,=)/ f (x; p2, β,=) is decreasing with respect to x,
implying the desired result. The proof of Proposition 4 is now complete.

5. Maximum Likelihood Estimation

In this section, we examine the statistical practice of the OEL-G model.

5.1. Method

To begin, we determine the (standard) maximum likelihood estimates (MLEs) of the
parameters p, β, and =.

Let x1, . . . , xn be observed values from X. Then, the log-likelihood function for
Θ = (p, β,=) is given by

`n = n log
[

1
− log(p)

]
+ n log(1− p) + n log(β) +

n

∑
i=1

log[g(xi;=)]− 2
n

∑
i=1

log[1− G(xi;=)]

− β
n

∑
i=1

G(xi;=)
1− G(xi;=)

−
n

∑
i=1

log

[
1− (1− p)e

−β
G(xi ;=)

1−G(xi ;=)

]
.
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The first derivatives of `n with respect to p, β and = are

∂`n

∂p
= − n

p log(p)
− n

1− p
−

n

∑
i=1

e
−β

G(xi ;=)
1−G(xi ;=)

1− (1− p)e
−β

G(xi ;=)
1−G(xi ;=)

,

∂`n

∂β
=

n
β
−

n

∑
i=1

G(xi;=)
1− G(xi;=)

1

1− (1− p)e
−β

G(xi ;=)
1−G(xi ;=)

and

∂`n

∂= =
n

∑
i=1

g(=)(xi;=)
g(xi;=)

+ 2
n

∑
i=1

G(=)(xi;=)
1− G(xi;=)

− β
n

∑
i=1

G(=)(xi;=)
[1− G(xi;=)]2

1

1− (1− p)e
−β

G(xi ;=)
1−G(xi ;=)

,

where g(=)(xi;=) = ∂g(xi;=)/∂= and G(=)(xi;=) = ∂G(xi;=)/∂=.
The MLEs of Θ, say Θ̂ = ( p̂, β̂, =̂), are the simultaneous solutions of the following

equations: ∂`n/∂p = 0, ∂`n/∂β = 0 and ∂`n/∂= = 0. These MLEs do not have analytical
expressions, but they can be computed numerically using well-established algorithms
available in mathematical software. Moreover, assuming that there are r components in
=, with = = (=1, . . . ,=r), the corresponding observed information matrix at Θ = Θ∗ is
given by

J(Θ∗) = −



∂2`n
∂p2

∂2`n
∂p∂β

∂2`n
∂p∂=1

. . . ∂2`n
∂p∂=r

. ∂2`n
∂β2

∂2`n
∂β∂=1

. . . ∂2`n
∂β∂=r

. . ∂2`n
∂=2

1
. . . ∂2`n

∂=1∂=r

. . . . . . .

. . . . . . .

. . . . . . ∂2`n
∂=2

r



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Θ=Θ∗

.

Under some standard conditions of regularity, when n is large, the sub-jacent distri-
bution of Θ̂ can be assimilated to the following Gaussian distribution: Nr+2(Θ, J(Θ̂)−1),
where J(Θ̂) is the observed information matrix at Θ = Θ̂. Confidence intervals and statisti-
cal tests for the model parameters can be constructed from this result. Further details on
the maximum likelihood estimation in the setting of odd focds can be found in [16,36].

5.2. Simulation

Here, we perform a simulation study evaluating the performance of the MLEs pre-
sented above for the OELW distribution for selected values of the parameters a, b, p, and β.
The simulation experiment was repeated 1000 times each with sample sizes of 30, 60, and
100, and parameter combinations are

(I) a = 0.5, b = 0.2, p = 0.05 and β = 0.01
(II) a = 0.55, b = 0.3, p = 0.04 and β = 0.01
(III) a = 0.5, b = 0.4, p = 0.8 and β = 0.1

Table 2 presents the average estimates (AEs), average bias (Bias), and mean square
error (MSE) values of parameters for different sample sizes.
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Table 2. AEs, Bias, and MSE of parameters based on 1000 simulations of the OELW distribution.

n Parameter AEs Bias MSE

I 30 a 0.4917 −0.0083 0.0138
b 0.2122 0.0122 0.0032
p 0.1716 0.1216 0.4697
β 0.0174 0.0074 0.0315

60 a 0.4983 −0.0017 0.0003
b 0.2015 0.0015 0.0002
p 0.0614 0.0114 0.0108
β 0.0121 0.0021 0.0004

100 a 0.5002 0.0002 3.9531× 10−5

b 0.1998 −0.0002 3.9531× 10−5

p 0.0487 −0.0013 0.0017
β 0.0094 −0.0006 0.0004

II 30 a 0.0373 −0.5127 0.2823
b 0.0211 −0.2789 0.0840
p 0.0075 −0.0324 0.0174
β 0.0007 −0.0092 0.0012

60 a 0.5481 −0.0019 0.0020
b 0.3002 0.0002 0.0009
p 0.0460 0.0060 0.0751
β 0.0106 0.0006 0.0028

100 a 0.5498 −0.0002 3.3018× 10−5

b 0.3001 8.4933× 10−6 3.9531× 10−5

p 0.0410 0.0010 0.0009
β 0.0102 0.0002 4.8256× 10−5

III 30 a 0.0327 −0.4673 0.2377
b 0.0230 −0.3770 0.1507
p 0.0467 −0.7532 0.3422
β 0.0044 −0.0956 0.0105

60 a 0.3342 −0.1658 0.0930
b 0.2598 −0.1402 0.0559
p 0.5333 −0.2666 0.2138
β 0.0621 −0.0379 0.0058

100 a 0.5013 0.0013 0.0017
b 0.3998 −0.0002 4.2791× 10−5

p 0.8053 0.0053 0.0703
β 0.0995 −0.0005 0.0003

It can be noted that as the sample size increases, the bias decays towards zero and the
MSE decreases. That is, the random versions of the MLEs are asymptotically unbiased and
consistent. Therefore, the maximum likelihood method works quite well to estimate the
parameters of the OELW distribution.

6. Applications

In this section, we show how the OELW model can be used in real-world data analysis
applications. We fit the OELW distribution to two data sets and compare the results with
those of the fitted four or five-parameter distributions also based on the Weibull distri-
bution, namely the log-logistic Weibull (LLoGW) distribution by [37] and exponentiated
generalized modified Weibull (EGMW) distribution by [38]. The Akaike information cri-
terion (AIC), Bayesian information criterion (BIC), Anderson-Darling (A*), Cramér-von
Mises (W*) and the values of the Kolmogorov-Smirnov (K-S) statistic and the correspond-
ing p-values (p-Vs) are used to compare the three models after we estimate the unknown
parameters of each model using the maximum likelihood method of estimation. In addi-
tion, for three data sets, the observed Fisher information matrix for the OELW distribution
is provided.
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6.1. The Survival Data Sets

The first real data set is a subset of the findings of [39]. It is based on the survival peri-
ods (in years) of 46 patients who received just chemotherapy. The data are provided below.

{0.047; 0.115; 0.121; 0.132; 0.164; 0.197; 0.203; 0.260; 0.282; 0.296; 0.334; 0.395; 0.458;
0.466; 0.501; 0.507; 0.529; 0.534; 0.540; 0.641; 0.644; 0.696; 0.841; 0.863; 1.099; 1.219; 1.271;
1.326; 1.447; 1.485; 1.553; 1.581; 1.589; 2.178; 2.343; 2.416; 2.444; 2.825; 2.830; 3.578; 3.658;
3.743; 3.978; 4.003; 4.033}

A summary of measures of descriptive statistics is provided in Table 3.

Table 3. Descriptive statistics of the survival data set.

Minimum Mean Median Variance Skewness Kurtosis Maximum

0.047 1.341 0.841 1.5540 0.9721 2.6638 4.033

Table 4 gives the relevant numerical summaries for the three fits based on the survival
data set.

Table 4. Estimated values, log-likelihood, AIC, and BIC for the survival data set.

Distribution Estimates − log(L) AIC BIC A* W* K-S p-V

â = 1.2911 55.6795 119.3589 126.5856 0.5029 0.0794 0.1000 0.7213

OELW b̂ = 1.8757
p̂ = 0.0086
β̂ = 0.1485

ŝ = 5.4074 58.1248 124.2497 131.4763 0.5297 0.0802 0.1086 0.6245

LLoGW ĉ = 0.9984
β̂ = 1.0963
α̂ = 0.5519

α̂ = 0.0262 58.0787 126.1574 135.1907 0.5339 0.0813 0.109 0.6197

EGMW
θ̂ = 23.6778
β̂ = 1.1346
µ̂ = 7.4771
λ̂ = 0.9329

Figure 4 gives the graphs of the estimated pdfs and cdfs of the considered distributions.
Figure 5 gives the probability-probability (PP) plot of the OELW distribution.

The observed Fisher information matrix for the OELW distribution is given by

J(Θ∗) =


46614.05 −4027.669 1022.565 460.6903

. 715.1325 49.82654 −149.2407

. . 80.76499 −136.9867

. . . 33.75663

.
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Figure 4. Obtained plots of the (a) estimated pdfs and (b) estimated cdfs of the considered distribu-
tions for the survival data set.
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Figure 5. PP plot of the survival data set.

6.2. The Vinyl Chloride Data Set

The second data set represents 34 observations of the vinyl chloride data (in mg/L)
that was obtained from clean-up gradient groundwater monitoring wells. The data are
obtained from by [40] and are given below.

{5.1; 1.2; 1.3; 0.6; 0.5; 2.4; 0.5; 1.1; 8; 0.8; 0.4; 0.6; 0.9; 0.4; 2; 0.5; 5.3; 3.2; 2.7; 2.9; 2.5; 2.3; 1;
0.2; 0.1; 0.1; 1.8; 0.9; 2; 4; 6.8; 1.2; 0.4; 0.2}

A summary of measures of descriptive statistics is provided in Table 5.

Table 5. Descriptive statistics of the vinyl chloride data set.

Minimum Mean Median Variance Skewness Kurtosis Maximum

0.100 1.879 1.150 3.8126 1.6037 5.0054 8.000
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Table 6 gives the relevant numerical summaries for the three fits based on the vinyl
chloride data set.

Table 6. Estimated values, log-likelihood, AIC, and BIC for the vinyl chloride data set.

Distribution Estimates − log(L) AIC BIC A* W* K-S p-V

â = 1.9409 54.2109 116.4218 122.5273 0.2002 0.0289 0.0785 0.9849

OELW b̂ = 8.7259
p̂ = 0.0023
β̂ = 2.0977

ŝ = 9.7787 55.354 118.708 124.8134 0.2881 0.0438 0.0931 0.9301

LLoGW ĉ = 5.0155
β̂ = 0.9910
α̂ = 0.5270

α̂ = 0.0158 55.3950 120.79 128.4218 0.3159 0.0517 0.0973 0.9043

EGMW
θ̂ = 33.6386
β̂ = 1.0908
µ̂ = 2.2873
λ̂ = 0.8806

Figure 6 gives the graph of the estimated pdfs and cdfs of the considered distributions.
Figure 7 gives the PP plot of the OELW distribution.
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Figure 6. Obtained plots of the (a) estimated pdfs and (b) estimated cdfs of the considered distribu-
tions for the vinyl chloride data set.

The observed Fisher information matrix for the OELW distribution is

J(Θ∗) =


357010.6 −570.5293 3586.215 267.4771

. 2.083823 −5.523455 −1.17793

. . 37.51406 432.3013

. . . 0.3955599

.
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Figure 7. PP plot of the vinyl chloride data set.

6.3. Carbon Dioxide Data Sets

The third data set contains the annual mean growth rate of carbon dioxide during the
period of 1959 to 2016 in Mauna Loa, Hawaii. The measurements are given in parts per
million by year (ppm/yr). These data are taken from the given website https://www.esrl.
noaa.gov/gmd/ccgg/trends/gr.html/, accessed on 4 July 2022. They are given below.

{0.94; 0.50; 0.96; 0.64; 0.71; 0.32; 1.06; 1.28; 0.70; 1.06; 1.35; 1.00; 0.81; 1.74; 1.18; 0.95;
1.06; 0.83; 2.15; 1.31; 1.82; 1.68; 1.43; 0.86; 2.36; 1.51; 1.21; 1.47; 2.06; 2.24; 1.24; 1.20; 1.05; 0.49;
1.36; 1.95; 2.01; 1.24; 1.91; 2.97; 0.92; 1.62; 1.62; 2.51; 2.27; 1.59; 2.57; 1.69; 2.31; 1.54; 2.00; 2.30;
1.92; 2.65; 1.99; 2.17; 2.95; 3.03}

A summary of measures of descriptive statistics is provided in Table 7.

Table 7. Descriptive statistics of the carbon dioxide data set.

Minimum Mean Median Variance Skewness Kurtosis Maximum

0.320 1.556 1.490 0.4457 0.3413 2.3618 3.030

Table 8 gives the relevant numerical summaries for the three fits based on the carbon
dioxide data set.

Figure 8 gives the graph of the estimated pdfs and cdfs of the considered distributions.
Figure 9 gives the PP plot of the OELW distribution.

 https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html/
 https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html/
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Table 8. Estimated values, log-likelihood, AIC, BIC, A*, W*, K-S and p-V for the carbon dioxide
data set.

Distribution Estimates − log(L) AIC BIC A* W* K-S p-V

â = 3.7419 55.6190 119.2381 127.4798 0.1204 0.0132 0.0461 0.9997

OELW b̂ = 2.8634
p̂ = 0.0143
β̂ = 1.2442

ŝ = 5.7793 56.68579 121.3716 129.6134 0.2053 0.0339 0.0682 0.9499

LLoGW ĉ = 2.5283
β̂ = 2.5456
α̂ = 0.2272

α̂ = 0.0601 56.16804 122.3361 132.6383 0.2144 0.0271 0.0650 0.967

EGMW
θ̂ = 25.4632
β̂ = 6.3678
µ̂ = 0.0151
λ̂ = 6.6891
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Figure 8. Obtained plots of the (a) estimated pdfs and (b) estimated cdfs of the considered distribu-
tions for the carbon dioxide data set.

The observed Fisher information matrix for the OELW distribution is

J(Θ∗) =


18811.95 −362.08 444.2855 606.4949

. 13.93288 −6.794833 −30.04717

. . 11.62585 626.3218

. . . 25.90807

.
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Figure 9. PP plot of the carbon dioxide data set.

In Tables 4, 6 and 8, the MLEs of the parameters for the fitted distributions, along with
log-likelihood, AIC, BIC, A*, (W*) and K-S with p-V values are presented for three different
data sets, respectively. From these tables, it is quite obvious that for the three data sets,
the OELW distribution is the best model with the lowest values of AIC, BIC, A*, W*, K-S,
and highest p-V of the K-S statistics. Hence, the OELW distribution turns out to be a better
model than the LLoGW and EGMW models. A visual comparison of the closeness of the
fitted pdfs with the observed histogram of the data, fitted cdfs with empirical cdfs, and PP
plots for different data is presented in Figures 4–9, respectively. These plots indicate that
the proposed distributions provide a closer fit to these data.

7. Conclusions

The OEL-G family of continuous distributions is a new family that we introduced
and analyzed in this research. It has the feature of combining the functionalities of the
logarithmic and odd transformations, of the EL distributions, and odd transformations,
respectively. We gave explicit formulations for the moments, generating function, skewness,
kurtosis, entropies, and order statistics, as well as a convenient linear representation for
the probability density function. The OELW distribution, which is a subset of the OEL-G
family, has been given special attention. Then there are statistical applications. The OELW
model parameters are estimated using the maximum likelihood method, and the observed
Fisher information matrix is explained. When compared to the famous LLoGW and EGMW
distributions, three examples of real-life data fitting demonstrate good results in favor of
the suggested distribution. Based on the findings, the proposed family might be regarded
as a valuable addition to the field’s existing knowledge.
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