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Abstract 

In this article we introduce and study a new four-parameter distribution, called the odd 
generalized exponential power function distribution. The proposed model is a particular case from 
the odd generalized exponential family. Expressions for the moments, probability weighted 
moments, quantile function, Bonferroni and Lorenz curves, Rényi entropy and order statistics are 
obtained. The model parameters are estimated via the maximum likelihood and percentiles 
methods of estimation. A simulation study is carried out to evaluate and compare the performance 
of estimates in terms of their biases, standard errors and mean square errors. Eventually, the 
practical importance and flexibility of the proposed distribution in modelling real data application 
is checked.  It can be concluded that the new distribution works better than some other known 
distributions. 
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1. INTRODUCTION 

 

Statistical distributions are very useful in describing the real world phenomena. The exponential, Pareto, 

power function and Weibull distributions are of interest and very attractive in lifetime literature due to their 

simplicity, easiness and flexible features to model various types of data in different fields. The power 

function (PF) distribution is reasonably tractable model to evaluate the reliability of real life data such as 

electrical components including semiconductors devices [1]. The PF is one of the most important univariate 

and parametric models. This distribution is derived from Pareto distribution using the inverse 

transformation. Also, the PF is a special case from beta distribution. As mentioned in [2] the PF distribution 

is better than the exponential, Weibull and log-normal distributions to examine the reliability of any 

electrical component. The moments of order statistics for a PF distribution have been derived in [3]. The 

characterizations of the PF distribution were discussed in [4]. For more information about statistical 

properties of the PF distribution and its applications, can be found in [5-9]. A new characterization of the 

PF based on lower records was discussed in [10]. Parameter estimates of the PF distribution using different 

estimation procedures were found in [11]. For Bayesian estimation of the PF distribution, see for example, 

[12,13]. Probability weighted moments and generalized probability weighted moments estimators of PF 

distribution were discussed in [14].    

 

The probability density function (pdf) and cumulative distribution function (cdf) of the PF with scale 

parameter ,  and shape parameter   
are given, respectively, by 
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Some extensions of the PF have been discussed by several authors. For example; beta PF [15], Weibull PF 

[16], Kumaraswamy PF (KwPF) [17], Transmuted PF (TPF) [18], exponentiated Kumaraswamy PF 

(EKwPF) [19], exponentiated Weibull PF [20] and transmuted Weibull PF (TPF) [21], McDonald PF 

(McPF) [22]. 

 
Generated families of continuous distributions are recent development which provide great flexibility in 

modelling real data.  These families are obtained by introducing one or more additional shape parameter(s) 

to the baseline distribution. Some of the generated families are listed as follows;  the beta- genertaed (B-G) 

[23, 24], gamma-G (type 1)  [25], Kumaraswamy-G [26], McDonald-G [27], gamma-G (type 2)  [28],  

transformed-transformer-G [29], Weibull-G [30], odd generalized exponential-G (OGE-G) [31], 

Kumaraswamy Weibull-G [32], exponentiated Weibull-G [33] and additive Weibull-G [34],  among others. 

 

Our interest here, with the OGE-G family which is flexible because of the hazard rate shapes: increasing, 

decreasing, J, reversed-J, bathtub and upside-down bathtub. The cdf and pdf of the OGE-G are defined as 

follows  
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where, ( );g x   is the baseline pdf and ( ) ( ); 1 ;G x G x = − . The main motivations for using the OGE-

G family are to make the kurtosis more flexible (compared to the baseline model). In addition to construct 

heavy-tailed distributions that are not long-tailed for modeling real data. The class of OGE-G distributions 

shares an attractive physical interpretation of X when   is an integer.  Consider a system formed by   

independent components following the odd exponential-G class ([30]) given by 
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Suppose the system fails if all   components fail and let X denote the lifetime of the entire system. Then, 

the cdf of X is ( )( ; , , ) ( ; , ) ,F x H x     =  which is identical to (3). 

 

To increase the flexibility for modeling purposes it will be useful to consider further alternatives to PF 

distribution. Our purpose is to provide  a new four-parameter model, named as odd generalized exponential 

power function (OGEPF) using the OGE-G family. The suggsted model is quite flexible in terms of hazard 

rate could be increasing, decreasing, U and J-shaped. Also, we show its flexibility on the basis of three real 

life data. 

 

This paper is organized as follows. The pdf, cdf, survival function, hazard rate function (hrf), reversed-

hazard rate function and cumulative hazard rate function of the OGEPF are defined in Section 2. 

Mathematical properties including, expansions of its pdf and cdf, quantile function, moments, probability 
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weighted moments, incomplete moments, entropy and order statistics are studied in Section 3. In Section 

4, maximum likelihood and percentiles estimators are derived for the population parameters of the OGEPF 

distribution. A simulation study is established for evaluating parameter estimates in Section 5. Three real 

data sets are analyzed and compared with other fitted models in Section 6. At the end, concluding remarks 

are presented in Section 7. 

 

2. THE OGEPF DISTRIBUTION  

 
In this section, we introduce the odd generalized exponential power function distribution. The pdf, cdf, 

reliability function, hrf, reversed-hazard rate function and cumulative hazard rate function of the OGEPF 

distribution are derived. 

 

The cdf of OGEPF distribution, denoted by OGEPF ( ) ,, , ,     is obtained by inserting the pdf (1) and 

cdf (2) in cdf (3) as follows 
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where, , , ,( ).    The pdf of OGEPF distribution is obtained by inserting the pdf (1) and cdf (2) into 

(4) as the following  
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For 1, =   the pdf of OGEPF model reduces to the odd exponential- PF model. Figure 1 displays some 

plots of the pdf and cdf of OGEPF distribution for some selected parameter values. Figure 1 indicates that 

the densities of the OGEPF take different shapes. 

 

  
(a) (b) 

Figure 1. Plots of (a) pdf and (b) cdf of OGEPF for some selected values of parameters 

 

Furthermore, the survival function, hrf, reversed-hazard rate function and cumulative hazard rate function 

of OGEPF distribution are respectively given by 
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Figure 2 indicates that OGEPF hrfs can have increasing, decreasing, J and U-shaped. This fact implies that 
the OGEPF can be very useful for fitting data sets with various shapes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. Plots hrf of OGEPF for some selected values of parameters 
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3. SOME MATHEMATICAL PROPERTIES 

 
In this section, some mathematical properties of the OGEPF distribution, including, pdf and cdf expansions, 

quantile function, moments and incomplete moments, probability weighted moments, order statistics and 

entropy measure are derived. 

 

3.1. Quantile Measures  

 

The quantile function, say 
1( ) ( )x Q u F u−= =  of  X can be obtained by inverting (5) as follows  
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where, u is a uniform variate on the unit interval (0,1).  In particular,  the first quartile, median and third 
quartile are obtained by subsituting u=0.25,0.5 and 0.75 in (7). 
 

The Bowley skewness (see [35]), based on quantiles, is given by 
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Further, the Moors kurtosis (see [36]) is defined as 
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where Q (.) denotes the quantile function. The graphs of Bowley skewness (B) and Moors kurtosis (M) are 

given below for different values of the parameters. Plots of the skewness and kurtosis for some choices of 

the parameter   as function of  , and for some choices of the parameter  as function of  are illustrated 

in Figures 3 and 4. These plots show that the skewness decreases when   increases for fixed  and when 

  increases for fixed .  Figures 4 reveal that there is great flexibility of kurtosis curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Skewnees of the OGEPF with different values of α and θ 
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Figure 4. Kurtosis of the OGEPF with different values of α and θ 

 

3.2. Useful Expansion 

 

Here, useful expansions are derived. Since, the pdf (6) can be rewritten as follows 
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By using the binomial expansion for the last term in (8) and further the exponential expansion, then the pdf 

(8) can be expressed as follows 
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Using the following series expansion 
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Then the pdf (9) takes the following form  
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and ( )1 + +k i
g denotes the pdf of the PF distribution with parameters ( )1 + +k i and γ.  

 

Further, an expansion for ( ); s
F x , where s  is an integer and  is a real non integer,  takes the following 

form 
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and ( )( ) +l pG x is the cdf of PF with parameters ( ) +l p  and γ.  
 

3.3. Probability Weighted Moments  

 
The probability weighted moments (PWMs) can be used to derive estimators of the parameters and quantiles 

of generalized distributions. The PWM of X is defined by 
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where, s and r  are positive integers. Inserting pdf (11) and cdf (12) in (13), then the PWM of the OGEPF 

distribution is obtained as follows 
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Let ,z x dz dx =  =   then ,r s  is written as follows 
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Therefore, the PWM of OGEPF distribution is given by 
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3.4. Moments  

 

Moments are necessary and important in any statistical analysis especially in applications. It can used to 

study the most important characteristics and features of distribution (e.g, dispersion, skewness, kurtosis and 

tendency). The rth moment of OGEPF is derived by using pdf (11) as follows  
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Let , =  =z x dz dx  then the previous equation takes the following form  
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After simplification, the rth moment of OGEPF is obtained as follows 
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In particular, the mean and variance of the OGEPF distribution are given by 
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Furthermore, the moment generating function of the OGEPF distribution is obtained as follows  
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3.5. Incomplete Moments 

 
The answers to many important questions in economics require more than just knowing the mean of the 

distribution, but its shape as well. The sth  incomplete moment, say ( )£ ;Φ ,s t  is defined by 
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Hence, the sth incomplete moment of OGEPF is derived by using pdf (11) as follows  
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In particular, the first incomplete moment of the OGEPF distribution can be obtained by putting s =1 in 

(16), as follows 
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The mean deviations provide useful information about the characteristics of a population and it can be 

calculated from the first incomplete moment. Indeed, the amount of dispersion in a population may be 

measured to some extent by the totality of the deviations from the mean and median. The mean deviations 

of X about the meanscan be calculated from the following relation ) m(median and about the  ( )   
 

1( ) 2 ( ) 2 ( )X F T   = −  and 
2( ) 2 ( ),X T m = −  

 

where, m is obtained from (7) by setting u = 0.5,   is defined  in (14),   
0

( ) ( )

q

T q xf x dx=   which is the 

first incomplete moment, then from (16);swollof sa ,ylevitcepser ,deniatbo era ( )T m  dna ( )T    
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Another application of the first incomplete moment refers to the Bonferroni and Lorenz curves. These 

curves are very useful in economics, reliability, demography, insurance and medicine. The Lorenz and 

Bonferroni curves are obtained, respectively, as follows 
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3.6. Rényi Entropy 

 

The entropy of a random variable X with density function f (x)  is a measure of the uncertainty variation. 

The Rényi entropy is defined as 

 

1
( ) ( ) ,

1
RI ln f x dx
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                                                                                                     (18) 
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where 0  and 1  . Using the binomial theory and exponential expansion, then the pdf ( ; )f x  can 

be expressed as follows 
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Applying the binomial expansion (10) in (19), then ( ; )f x  can be written as follows 
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Hence, the Rényi entropy of the OGEPF model is obtained as follows  
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3.7. Order Statistics 

 
Let X(1) < X(2) <...< X(n) denote the order statistics for a random sample X1, X2,.., Xn

 
 from OGEPF distribution 

with cdf (12) and pdf (11). The pdf of rth order statistics is given by 
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Again, by using binomial expansion for   1
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r
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+ − and replacing s in (12) with 1.r + −   Hence the 

pdf (21) takes the following form  
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 and ( )( 1)k i l pg x + + + +  is the pdf of the PF distribution with parameters ( )( 1), .k i l p + + + +   

 

In particular, the pdf of the smallest order statistics is obtained by substituting r =1 in (22) as follows 
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Also, the pdf of largest order statistics is obtained by substituting r = n   in (22) as follows  
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4. PARAMETER ESTIMATION  

 
In this section, the estimators of the OGEPF model parameters are obtained based on maximum likelihood 

(ML), and percentiles methods. 

 

4.1. Maximum Likelihood Estimators 

 
In this subsection, we consider the estimation of the unknown parameters of the OGEPF distribution using 
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Then the ML estimators of the parameters, , , and  are obtained by setting , ,U U   and U  to be 

zeros and solving them numerically.  

 
4.2. Percentiles Estimator  

 
Let X1, X2,.., Xn

 
 be a random sample from the OGEPF distribution and X(i) denotes the ith  order statistic, 

i.e, X(1) < X(2) <...< X(n) . If ip  denotes some estimators of ( )( );
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obtained by minimizing the following equation with respect to the unknown parameters  
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In percentiles method (PM) of estimate, ip  takes a several possible choice as estimates for ( );F x  , in 

this study, we use the formula 
1

i

i
p

n
=

+
 . 

 

5. NUMERICAL STUDY 

 

In this section, we perform simulation study to evaluate and compare the performance of the estimates with 

respect to their biases, standard errors (SEs) and mean square errors (MSEs) for different sample sizes 

and for different parameter values.  The numerical procedures are described through the following 

algorithm. 

 

Step(1): A random sample X1,.., Xn
 
 of sizes n =10,20,30,50 and 100 are selected, these random samples 

are generated from the OGEPF distribution.  

 

Step(2): Assume that the scale parameter   is known and equal one throughout the experiment. Eight 

different set values of the parameters are selected as, Set1 ( )0.2,  0.5, 0 , .5  = = =

( ) ( )2 0.2,  0.5,  1 3 0.2,  0.5,  .5, ,1Set etS     = = = == =   

( ) ( ) ( )4 0.2,  0.5,  2 5 0.7,  0.5,  1 6 1.2,  0.5, , ,  1 ,Set e tS t Se        = = = = = = = = =   

( )7 1.7,  0.5,  1Set   = = =
 
 and

 
( )8 2.2,  0.5,  1 .Set    = = =  
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Step(3): For each model parameters and for each sample size, the ML and percentiles estimates of ,   

and   are computed.  

 

Step(4): Steps from 1 to 3 are repeated 1000 times for each sample size and for selected sets of parameters. 

Then, the biases, SEs and MSEs of the estimates of the unknown parameters are computed. 

 

Numerical results are listed in Tables 1 and 2.  

 

Table 1. Biases, SEs and MSEs for Set1, Set 2, Set 3 and Set 4 of parameters 

Set of parameters 

 Set1≡(α=0.2, λ=0.5, θ=0.5) Set2≡(α=0.2, λ=0.5, θ=1) Set3≡(α=0.2, λ=0.5, θ=1.5) Set4≡(α=0.2, λ=0.5, θ=2) 

N Method Properties α λ Θ α Λ θ α λ θ α λ θ 

10 

ML 

MSE 1.995 0.246 0.215 1.255 0.327 0.719 0.235 1.837 0.660 0.209 1.504 2.866 

Bias 1.204 -0.435 -0.459 0.463 0.242 0.036 0.348 0.968 -0.244 0.277 0.773 0.164 

SE 0.074 0.024 0.007 0.102 0.052 0.085 0.034 0.095 0.077 0.036 0.095 0.168 

PM 

MSE 1.579 0.245 0.236 0.665 0.314 0.893 1.442 0.277 1.922 0.944 0.275 3.621 

Bias 1.069 -0.494 -0.049 0.071 -0.530 -0.815 0.317 -0.501 1.335 0.244 -0.475 -1.796 

SE 0.066 0.001 0.001 0.081 0.018 0.048 0.116 0.016 0.038 0.094 0.022 0.063 

20 

ML 

MSE 0.918 0.229 0.209 0.318 0.199 0.287 0.163 1.026 0.404 0.140 0.846 1.184 

Bias 0.851 -0.421 -0.453 0.215 0.186 -0.008 0.299 0.747 -0.378 0.221 0.558 -0.091 

SE 0.022 0.011 0.003 0.026 0.020 0.027 0.014 0.034 0.026 0.015 0.037 0.054 

PM 

MSE 0.774 0.244 0.239 0.219 0.291 0.859 0.342 0.261 1.937 0.348 0.246 3.522 

Bias 0.822 -0.494 -0.489 -0.067 -0.521 -0.848 0.110 -0.503 -1.372 0.118 -0.492 -1.871 

SE 0.016 0.000 0.000 0.023 0.007 0.019 0.029 0.004 0.012 0.029 0.003 0.007 

30 

ML 

MSE 0.642 0.242 0.195 0.164 0.233 0.175 0.129 0.725 0.383 0.118 0.648 0.847 

Bias 0.720 -0.387 -0.435 0.142 0.158 -0.028 0.279 0.657 -0.422 0.195 0.466 -0.164 

SE 0.012 0.010 0.003 0.013 0.015 0.014 0.008 0.018 0.015 0.009 0.022 0.030 

PM 

MSE 0.613 0.243 0.240 0.200 0.273 0.829 0.246 0.266 1.959 0.209 0.251 3.561 

Bias 0.743 -0.493 -0.490 -0.105 -0.513 -0.878 0.059 -0.506 -1.376 0.074 -0.498 -1.884 

SE 0.008 0.000 0.000 0.014 0.003 0.008 0.016 0.003 0.009 0.015 0.002 0.004 

50 

ML 

MSE 0.416 0.215 0.195 0.046 0.062 0.105 0.102 0.548 0.328 0.087 0.478 0.612 

Bias 0.594 -0.388 -0.433 0.056 0.078 0.002 0.253 0.574 -0.449 0.156 0.362 -0.181 

SE 0.005 0.005 0.002 0.004 0.005 0.006 0.004 0.009 0.007 0.005 0.012 0.015 

PM 

MSE 0.446 0.242 0.241 0.133 0.269 0.827 0.080 0.253 1.959 0.066 0.256 3.595 

Bias 0.634 -0.492 -0.491 -0.162 -0.511 -0.885 0.001 -0.502 -1.397 0.018 -0.502 -1.887 

SE 0.004 0.000 0.000 0.007 0.002 0.004 0.006 0.001 0.002 0.005 0.001 0.004 

100 

ML 

MSE 0.272 0.213 0.205 0.007 0.031 0.047 0.086 0.449 0.303 0.073 0.371 0.455 

Bias 0.940 -0.041 -0.446 0.017 0.037 0.014 0.241 0.539 -0.473 0.123 0.277 -0.155 

SE 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.004 0.003 0.002 0.005 0.007 

PM 

MSE 0.300 0.240 0.243 0.082 0.255 0.825 0.043 0.251 1.970 0.013 0.250 3.612 

Bias 0.522 -0.490 -0.493 -0.174 -0.503 -0.903 -0.020 -0.500 -1.403 -0.004 -0.500 -1.900 

SE 0.002 0.000 0.000 0.002 0.000 0.001 0.002 0.000 0.000 0.001 0.000 0.000 
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Table 2. Biases, SEs and MSEs for Set 5, Set 6, Set 7 and Set 8 of parameters 

Set of parameters 

 Set5≡(α=0.7, λ=0.5, θ=1) Set6≡(α=1.2, λ=0.5, θ=1) Set7≡(α=1.7, λ=0.5, θ=1) Set8≡(α=2.2, λ=0.5, θ=1) 

n Method Properties α λ Θ α λ Θ α λ θ α λ θ 

10 

ML 

MSE 1.603 0.664 1.856 1.421 0.250 1.215 2.889 0.250 0.816 4.839 0.250 1.001 

Bias 0.423 0.299 0.498 -1.186 -0.493 -0.817 -1.700 -0.500 -0.764 -2.200 -0.500 -0.978 

SE 0.119 0.076 0.127 0.012 0.008 0.074 0.000 0.000 0.048 0.000 0.000 0.021 

PM 

MSE 0.460 0.250 0.900 1.436 0.246 0.998 2.890 0.240 0.960 4.840 0.239 0.996 

Bias -0.678 -0.500 -0.948 -1.198 -0.496 -0.999 -1.700 -0.490 -0.980 -2.200 -0.489 -0.998 

SE 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

20 

ML 

MSE 1.035 0.373 0.929 1.421 0.250 1.523 2.889 0.250 0.815 4.839 0.250 0.982 

Bias 0.236 0.132 0.335 -1.186 -0.494 -0.804 -1.700 -0.500 -0.782 -2.200 -0.500 -0.976 

SE 0.049 0.030 0.045 0.006 0.004 0.047 0.000 0.000 0.023 0.000 0.000 0.009 

PM 

MSE 0.460 0.250 0.899 1.435 0.248 0.998 2.890 0.240 0.960 4.840 0.239 0.996 

Bias -0.678 -0.500 -0.948 -1.198 -0.498 -0.999 -1.700 -0.490 -0.980 -2.200 -0.489 -0.998 

SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

30 

ML 

MSE 0.860 0.295 0.531 1.404 0.244 1.543 2.889 0.250 0.803 4.839 0.250 0.977 

Bias 0.209 0.104 0.234 -1.182 -0.491 -0.811 -1.700 -0.500 -0.795 -2.200 -0.500 -0.981 

SE 0.030 0.018 0.023 0.003 0.002 0.031 0.000 0.000 0.014 0.000 0.000 0.004 

PM 

MSE 0.460 0.250 0.899 1.435 0.248 0.998 2.890 0.240 0.960 4.840 0.239 0.996 

Bias -0.678 -0.500 -0.948 -1.198 -0.498 -0.999 -1.700 -0.490 -0.980 -2.200 -0.489 -0.998 

SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50 

ML 

MSE 0.558 0.188 0.385 1.421 0.251 1.294 2.889 0.250 0.822 4.839 0.250 0.976 

Bias 0.056 0.006 0.231 -1.187 -0.494 -0.822 -1.700 -0.500 -0.835 -2.200 -0.500 -0.959 

SE 0.015 0.009 0.012 0.002 0.002 0.016 0.000 0.000 0.007 0.000 0.000 0.005 

PM 

MSE 0.460 0.250 0.898 1.435 0.249 0.998 2.890 0.240 0.960 4.840 0.239 0.996 

Bias -0.678 -0.500 -0.948 -1.198 -0.499 -0.999 -1.700 -0.490 -0.980 -2.200 -0.489 -0.998 

SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

100 

ML 

MSE 0.275 0.105 0.244 1.402 0.243 1.206 2.889 0.250 0.877 4.839 0.250 0.960 

Bias -0.080 -0.067 0.224 -1.181 -0.491 -0.809 -1.700 -0.500 -0.890 -2.200 -0.500 -0.956 

SE 0.005 0.003 0.004 0.001 0.000 0.007 0.000 0.000 0.003 0.000 0.000 0.002 

PM 

MSE 0.460 0.250 0.898 1.435 0.250 0.997 2.890 0.240 0.960 4.840 0.239 0.996 

Bias -0.678 -0.500 -0.948 -1.198 -0.500 -0.999 -1.700 -0.490 -0.980 -2.200 -0.489 -0.998 

SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

From the above tables, the following conclusions can be observed on the properties of estimated parameters 

of OGEPF distribution. 

1. For the two methods of estimation, it is clear that biases and MSEs decrease as sample sizes 

increase (see Tables 1 and 2). 

2. For fixed values of ,   and as the values of   increase, the biases and MSEs are decreasing, in 

approximately most of situations (see Table 1). As the values of   increase and for fixed values 

of  and , the biases and MSEs decrease in approximately, most sample sizes (see Tables 1 and 

2). 

 
6. APPLICATIONS 

 

In this section, three real data sets are considered to illustrate that the OGEPF model can be a good lifetime 

distribution comparing with main five models; McPF, KwPF, EKwPF, TPF and PF. In each real data set, 

the ML estimate and their corresponding SEs (in parentheses) of the model parameters are obtained. The 

model selection is carried out using -2 log-likelihood (-2LogL), Akaike information criterion (AIC), 

Bayesian information criterion (BIC), the correct Akaike information criterion (CAIC) and Hannan-Quinn 
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information criterion (HQIC).  However, the better distribution corresponds to the smaller values of -

2LogL, AIC, BIC, CAIC, and HQIC criteria. Furthermore, we plot the histogram for each data set and the 

estimated pdf for the six models. Moreover, the plots of empirical cdf of the data sets and estimated cdf for 

the six models are displayed. 

 

Data set 1: The first data represent the survival times (in days) of 72 guinea pigs infected with virulent 

tubercle bacilli, observed and reported by [37]. The data are: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 

1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 

1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 

2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55 

 

Data set 2: The second data represent the time to failure (103h) of turbocharger of one type of engine [38]. 

The data are:  

1.6,  2.0,  2.6,  3.0,  3.5,  3.9, 4.5,  4.6,  4.8,  5.0,  5.1,  5.3,  5.4,  5.6,  5.8,  6.0,  6.0,  6.1,  6.3,  6.5,  6.5, 6.7, 

7.0, 7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3,  8.4, 8.4, 8.5, 8.7, 8.8, 9.0. 

 

Data set 3: The third data have been used in [39].The data represent the strengths of 1.5 cm glass fibers, 

measured at the National Physical Laboratory, England. The data are:  
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 

1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 

2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 

1.61, 1.63, 1.67, 1.70, 1.78, 1.89. 

 

Tables 3, 5 and 7 give the ML estimates of the model parameters and their SEs (in the parentheses) for the 

three real data sets. The results in Tables 4, 6 and 8 indicate that the OGEPF model is suitable for these 

data set based on the selected criteria. The OGEPF model has the smallest;  -2 LogL, AIC, BIC, CAIC and 

HQIC. It is also clear from Figures 5, 6 and 7 that the OGEPF distribution provides a better fit and therefore 

be one of the best models for these data sets. 

 

Table 3. ML estimates of the model parameters and the corresponding SEs (in parentheses) for the first 
data set 

Distribution ̂  ̂  ̂  ̂  ̂  â  b̂  ĉ  

OGEPF 
2.787 1.210 1.219 5.55 - - - - 
(0.234) (0.293) (0.098) - - - - - 

McPF - 0.698 - - 5.55 0.95 1 2.140 

- (0.549) - - - (0.740) 0.000 (1.681) 

KwPF 5.55 0.760 - - - 1.52 2.222 - 
- (0.324) - - - (0.652) (0.380) - 

EkwPF - 11.216 0.434 - 5.55 0.488 1.847 - 
- (6.769) (0.373) - - (0.419) (0.222) - 

PF 5.55 - 0.663 - - - - - 
- -  (0.0781) - - - - - 

TPF 5.55 1 1.089 - - - - - 
- (0.095) (0.0954) - - - - - 
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Table 4. The statistics, -2LogL, AIC, BIC, CAIC and HQIC for the first data set 
Distribution 2LogL- AIC BIC CAIC HQIC 
OGEPF 211.014 217.014 223.844 217.367 219.733 

McPF 949.170 957.170 966.276 957.767 960.795 

KwPF 220.317 226.317 233.147 226.770 229.036 

EKwPF 216.355 224.355 233.462 224.952 227.980 

PF 256.590 260.590 265.143 260.764 262.403 

TPF 227.836 231.836 236.389 232.010 233.649 

 

Table 5. ML estimates of the model parameters and the corre sponding SEs (in parentheses) for the second 

data set  

Distribution ̂  ̂  ̂  ̂  ̂  â  b̂  ĉ  

OGEPF 
2.93 0.397 6.555 9 - - - - 
(0.542) (0.115) (1.134) - - - - - 

 

McPF 
- 1.145 - - 9 1.631 1 2.808 

- (4.061) - - - (5.786) (0.00087) (14.851) 

KwPF 
9 0.182 - - - 17.308 2.492 - 
- (0.162) - - - (15.487) (0.642) - 

EKwPF 
- 62.376 0.138 - 9 0.823 1.519 - 
- (0.00227) (13.419) - - (2.269) (0.191) - 

PF 
9 - 1.867 - - - - - 
- - (0.295) - - - - - 

TPF 
9 152.128 0.145 - - - - - 
- (35.602) (0.0084) - - - - - 

 

 

Table 6. The statistics,-2LogL, AIC, BIC, CAIC and HQIC for the second data set 
Distribution 2LogL- AIC BIC CAIC HQIC 
OGEPF 156.326 164.326 162.734 165.468 157.963 

McPF 555.230 563.230 561.639 564.373 556.868 

KwPF 159.526 165.526 160.754 166.192 160.754 

EKwPF 162.493 170.493 163.311 171.636 164.130 

PF 171.419 175.419 174.623 175.744 172.238 

TPF 324.886 328.886 328.090 329.211 325.705 

 

Table 7. ML estimates of the model parameters and the corresponding SEs (in parentheses)  for the third 

data set 

Distribution ̂  ̂  ̂  ̂  ̂  â  b̂  ĉ  

OGEPF 
1.913 1.414 2.774 2.24 - - - - 
(0.164) (0.344) (0.254) - - - - - 

McPF 
- 0.865 - - 2.24 1.456 1 3.803 

- (2.218) - - - (3.735) (0.00058) (5.163) 

KwPF 
2.24 1.396 - - - 2.76 2.434 - 
- (1.5) - - - (2.9549) (0.461) - 

EKwPF 
- 142.385 0.119 - 2.24 2.988 1.519 - 
- (0.0063) (21.122) - - (1.354) (0.398) - 
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PF 
2.24 - 1.259 - - - - - 
- -  (0.1586) - - - - - 

TPF 
2.24 53.147 0.071 - - - - - 
- (5.131) (0.0015) - - - - - 

 

Table 8. The statistics, -2LogL, AIC, BIC, CAIC and HQIC for the third data set 
Distribution 2LogL- AIC BIC CAIC HQIC 
OGEPF 42.993 50.993 50.191 51.683 45.034 

McPF 225.420 233.420 232.617 234.109 227.461 

KwPF 46.937 52.937 52.335 53.344 48.468 

EKwPF 53.501 61.501 54.521 62.190 55.542 

PF 145.030 149.030 148.629 149.230 146.051 

TPF 610.580 614.580 614.179 614.780 611.601 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5. Estimated densities and estimated distributions of models for the first data 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Estimated densities and estimated distributions of models for the second data 
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Figure 7. Estimated densities and estimated distributions of models for the third data 

 

7. CONCLUDING REMARKS 

 

In this paper, we introduce a new probability distribution called the odd generalized exponential power 

function distribution. The structural properties of this distribution are studied. The estimation of the model 

parameters is approached by maximum likelihood and percentiles methods. Simulation study is conducted 

in order to compare the performance of ML estimates with percentiles estimates for different sample sizes. 

It can be conclude that the behavior of the percentiles estimates is better than the corresponding ML 

estimates.  An application of the OGEPF to three real data shows that the new distribution can be used quite 

effectively to provide better fits than, McPF, KwPF, EKwPF, TPF and PF distributions. We expect that the 

proposed model may be an interesting alternative model for a wider range of statistical research. 
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