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Abstract

We present Ordinary Differential Equation Variational Auto-Encoder (ODE2VAE),
a latent second order ODE model for high-dimensional sequential data. Lever-
aging the advances in deep generative models, ODE2VAE can simultaneously
learn the embedding of high dimensional trajectories and infer arbitrarily complex
continuous-time latent dynamics. Our model explicitly decomposes the latent
space into momentum and position components and solves a second order ODE
system, which is in contrast to recurrent neural network (RNN) based time series
models and recently proposed black-box ODE techniques. In order to account for
uncertainty, we propose probabilistic latent ODE dynamics parameterized by deep
Bayesian neural networks. We demonstrate our approach on motion capture, image
rotation and bouncing balls datasets. We achieve state-of-the-art performance in
long term motion prediction and imputation tasks.

1 Introduction

Representation learning has always been one of the most prominent problems in machine learning.
Leveraging the advances in deep learning, variational auto-encoders (VAEs) have recently been
applied to several challenging datasets to extract meaningful representations. Various extensions to
vanilla VAE have achieved state-of-the-art performance in hierarchical organization of latent spaces,
disentanglement and semi-supervised learning (Tschannen et al., 2018).

VAE based techniques usually assume a static data, in which each data item is associated with a
single latent code. Hence, auto-encoder models for sequential data have been overlooked. More
recently, there have been attempts to use recurrent neural network (RNN) encoders and decoders for
tasks such as representation learning, classification and forecasting (Srivastava et al., 2015; Lotter
et al., 2016; Hsu et al., 2017; Li and Mandt, 2018). Other than neural ordinary differential equations
(ODEs) (Chen et al., 2018b) and Gaussian process prior VAEs (GPPVAE) (Casale et al., 2018),
aforementioned methods operate in discrete-time, which is in contrast to most of the real-world
datasets, and fail to produce plausible long-term forecasts (Karl et al., 2016).

In this paper, we propose ODE2VAEs that extend VAEs for sequential data with a latent space
governed by a continuous-time probabilistic ODE. We propose a powerful second order ODE that
allows modelling the latent dynamic ODE state decomposed as position and momentum. To handle
uncertainty in dynamics and avoid overfitting, we parameterise our latent continuous-time dynamics
with deep Bayesian neural networks and optimize the model using variational inference. We show
state-of-the-art performance in learning, reproducing and forecasting high-dimensional sequential
systems, such as image sequences. An implementation of our experiments and generated video
sequences are provided at https://github.com/cagatayyildiz/ODE2VAE.
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2 Probabilistic second-order ODEs

We tackle the problem of learning low-rank latent representations of possibly high-dimensional
sequential data trajectories. We assume data sequences x0:N := (x0,x1, . . . ,xN ) with individual
frames xk ∈ R

D observed at time points t0, . . . , tN . We will present the methodology for a single
data sequence x0:N for notational simplicity, but it is straighforward to extend our method to multiple
sequences. The observations are often at discrete spacings, such as individual images in a video
sequence, but our model also generalizes to irregular sampling.

We assume that there exists an underlying generative low-dimensional continuous-time dynamical
system, which we aim to uncover. Our goal is to learn latent representations zt ∈ R

d of the sequence
dynamics with d ≪ D, and reconstruct observations xt ∈ R

D for missing frame imputation and
forecasting the system past observed time tN .

2.1 Ordinary differential equations

In discrete-time sequential systems the state sequence z0, z1, . . . is indexed by a discrete variable
k ∈ Z, and the state progression is governed by a transition function on the change ∆zk = zk−zk−1.
Examples of such models are auto-regressive models, Markov chains, recurrent models and neural
network layers.

In contrast, continuous-time sequential systems model the state function zt : T → R
d of a continuous,

real-valued time variable t ∈ T = R. The state evolution is governed by a first-order time derivative

żt :=
dzt
dt

= h(zt), (1)

that drives the system state forward in infinitesimal steps over time. The differential h : Rd → R
d

induces a differential field that covers the input space. Given an initial location vector z0 ∈ R
d, the

system then follows an ordinary differential equation (ODE) model with state solutions

zT = z0 +

∫ T

0

h(zt)dt. (2)

The state solutions are in practise computed by solving this initial value problem with efficient
numericals solvers, such as Runge-Kutta (Schober et al., 2019). Recently several works have
proposed learning ODE systems h parametrised as neural networks (Chen et al., 2018b) or as
Gaussian processes (Heinonen et al., 2018).

2.2 Bayesian second-order ODEs

First-order ODEs are incapable of modelling high-order dynamics1, such as acceleration or the motion
of a pendulum. Furthermore, ODEs are deterministic systems unable to account for uncertainties in
the dynamics. We tackle both issues by introducing Bayesian neural second-order ODEs

z̈t :=
d2zt
d2t

= fW(zt, żt), (3)

which can be reduced to an equivalent system of two coupled first-order ODEs
{
ṡt = vt

v̇t = fW(st,vt)
,

[
sT

vT

]

=

[
s0

v0

]

+

∫ T

0

[
vt

fW(st,vt)

]

︸ ︷︷ ︸

f̃W(zt)

dt, (4)

where (with a slight abuse of notation) the state tuple zt = (st,vt) decomposes into the state position
st, which follows the state velocity (momentum) vt. The velocity or evolution of change is governed
by a neural network fW(st,vt) with a collection of weight parameters W = {Wℓ}

L
ℓ=1 over its L

layers and the bias terms. We assume a prior p(W) on the weights resulting in a Bayesian neural
network (BNN). Each weight sample, in turn, results in a deterministic ODE trajectory (see Fig. 1).

The BNN acceleration field fW : Rd ×R
d → R

d depends on both state and velocity. For instance, in
a pendulum system the acceleration z̈ depends on both its current location and velocity. The system
is now driven forward from starting position s0 and velocity v0, with the BNN determining only how
the velocity vt evolves.

1Time-dependent differential functions f(z, t) can indirectly approximate higher-order dynamics.
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Figure 1: Illustration of dynamical systems. A continuous-time system underlying a discrete-time
model (a) can be extended to a 2nd-order ODE with velocity component (b). A Bayesian ODE
characterises uncertain differential dynamics (c), with the corresponding position-velocity phase
diagram (d). The gray arrows in (d) indicate the BNN fW(st,vt) mean field wrt p(W).

2.3 Second order ODE flow

The ODE systems are denoted as continuous normalizing flows when they are applied on random
variables zt (Rezende et al., 2014; Chen et al., 2018a; Grathwohl et al., 2018). This allows following
the progression of its density through the ODE. Using the instantaneous change of variable theorem
(Chen et al., 2018a), we obtain the instantaneous change of variable for our second order ODEs as

∂ log q(zt|W)

∂t
= −Tr

(

df̃W(zt)

dzt

)

dt = −Tr

(
∂vt

∂st

∂vt

∂vt

∂fW(st,vt)
∂st

∂fW(st,vt)
∂vt

)

= −Tr

(
∂fW(st,vt)

∂vt

)

,

(5)

which results in the log densities over time,

log q(zT |W) = log q(z0|W)−

∫ T

0

Tr

(
∂fW(st,vt)

∂vt

)

dt. (6)

3 ODE2VAE model

In this section we propose a novel dynamic VAE formalism for sequential data by introducing a
second order Bayesian neural ODE model in the latent space to model the data dynamics. We start by
reviewing the standard VAE models and then extend it to our ODE2VAE model.

With auto-encoders, we aim to learn latent representations z ∈ R
d for complex observations x ∈ R

D

parameterised by θ, where often d ≪ D. The posterior pθ(z|x) ∝ pθ(x|z)p(z) is proportional to
the prior p(z) of the latent variable and the decoding likelihood pθ(x|z). Parameters θ could be
optimized by maximizing the marginal log likelihood but that generally involves intractable integrals.
In variational auto-encoders (VAE) an amortized variational approximation qφ(z|x) ≈ pθ(z|x) with
parameters φ is used instead (Jordan et al., 1999; Kingma and Welling, 2013; Rezende et al., 2014).
Variational inference that minimizes the Kullback-Leibler divergence, or equivalently maximizes the
evidence lower bound (ELBO), results in efficient inference.

3.1 Dynamic model

s0 ∼ p(s0) (7)

v0 ∼ p(v0) (8)

st = s0 +

∫ t

0

vτdτ (9)

vt = v0 +

∫ t

0

ftrue(sτ ,vτ )dτ (10)

xi ∼ p(xi|si) i ∈ [0, N ] (11)

Building upon the ideas from black-box ODEs and varia-
tional auto-encoders, we propose to infer continuous-time
latent position and velocity trajectories that live in a much
lower dimensional space but still match the data well (see
Fig. 2 for illustration). For this, consider a generative
model that consists of three components: (i) a distribution
for the initial position p(s0) and velocity p(v0) in the la-
tent space , (ii) true (unknown) dynamics defined by an
acceleration field, and (iii) a decoding likelihood p(xi|si).
The generative model is given in Eqs. 7-11. Note that the decoding likelihood is defined only from
the position variable. Velocity thus serves as an auxiliary variable, driving the position forward.
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Figure 2: A schematic illustration of ODE2VAE model. Position encoder (µs,σs) maps the first item
x0 of a high-dimensional data sequence into a distribution of the initial position s0 in a latent space.
Velocity encoder (µv,σv) maps the first m high-dimensional data items x0:m into a distribution of
the initial velocity v0 in a latent space. Probabilistic latent dynamics are implemented by a second

order ODE model f̃W parameterised by a Bayesian deep neural network (W). Data points in the
original data domain are reconstructed by a decoder.

3.2 Variational inference

As with standard auto-encoders, optimization of ODE2VAE model parameters with respect to
marginal likelihood would result in intractability and thus we resort to variational inference (see
Fig. 2). We first combine the latent position and velocity components into a single vector zt :=
(st,vt) for notational clarity, and assume the following factorized variational approximation for the
unobserved quantities q(W, z0:N |x0:N ) = q(W)qenc(z0|x0:N )qode(z1:N |x0:N , z0,W). As decribed
in subsection 2.2, true dynamics are approximated by a BNN parameterized by W with the following
variational approximation: q(W) = N (W|m, sI). We use an amortized variational approximation
for the latent initial position and velocity

qenc(z0|x0:N ) = qenc

((
s0

v0

) ∣
∣
∣
∣
x0:N

)

= N

((
µs(x0)

µv(x0:m)

)

,

(
diag(σs(x0)) 0

0 diag(σv(x0:m))

))

,

(12)

where µs,µv,σs,σv are encoding neural networks. The encoder for the initial position depends
solely on the first item in the data sequence x0, whereas the encoder for the initial velocity depends
on multiple data points x0:m, where m ≤ N is the amortized inference length. We use neural
network encoders and decoders whose architectures depend on the application (see the supplementary
document for details). The variational approximation for the latent dynamics qode(z1:N |x0:N , z0,W)
is defined implicitly via the instantaneous change of variable for the second order ODEs shown in
Eq. 5. The initial density is given by the encoder qenc(z0|x0), and density for later points can be
solved by numerical integration using Eq. 6. Note that we treat the entire latent trajectory evaluated
at observed time points, Z ≡ z0:N , as a latent variable, and the latent trajectory samples z1:N are
solved conditioned on the ODE initial values z0 and BNN parameter values W . Finally, evidence
lower bound (ELBO) becomes as follows (for brevity we define X ≡ x0:N ):

log p(X) ≥ − KL[q(W, Z|X)||p(W, Z)] + Eq(W,Z|X)[log p(X|W, Z)]
︸ ︷︷ ︸

ELBO

(13)

= −Eq(W,Z|X)

[

log
q(W)q(Z|W, X)

p(W)p(Z)

]

+ Eq(W,Z|X)[log p(X|W, Z)] (14)

= − KL[q(W)||p(W)] + Eq(W,Z|X)

[

− log
q(Z|W, X)

p(Z)
+ log p(X|W, Z)

]

(15)

= − KL[q(W)||p(W)]
︸ ︷︷ ︸

ODE regularization

+Eqenc(z0|X)

[

− log
qenc(z0|X)

p(z0)
+ log p(x0|z0)

]

︸ ︷︷ ︸

VAE loss
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+
N∑

i=1

Eqode(W,zi|X,z0)

[

− log
qode(zi|W, X)

p(zi)
+ log p(xi|zi)

]

︸ ︷︷ ︸

dynamic loss

(16)

where the prior distribution p(W, z0) is a standard Gaussian. The prior density follows Eq. 6 with
fW replaced by the unknown ftrue, which causes p(zt), t > 1 to be intractable.2 Thus, we resort to a
simplifying assumption and place a standard regularizing Gaussian prior over z1:N .

We now examine each term in Eq. 16. The first term is the BNN weight penalty, which helps avoiding
overfitting. The second term is the standard VAE bound, meaning that VAE is retrieved for sequences
of length 1. The only (but major) difference between the second and the third terms is that the
expectation is computed with respect to the variational distribution induced by the second order ODE.
Finally, we optimize the Monte Carlo estimate of Eq. 16 with respect to variational posterior {m, s},
encoder and decoder parameters, and also make use of reparameterization trick to tackle uncertanties
in both the initial latent states and in the acceleration dynamics (Kingma and Welling, 2013).

3.3 Penalized variational loss function

A well-known pitfall of VAE models is that optimizing the ELBO objective does not necessarily
result in accurate inference (Alemi et al., 2017). Several recipes have already been proposed to
counteract the imbalance between the KL term and reconstruction likelihood (Zhao et al., 2017;
Higgins et al., 2017). In this work, we borrow the ideas from Higgins et al. (2017) and weight the
KL[q(W)||p(W)] term resulting from the BNN with a constant factor β. We choose to fix β to the
ratio between the latent space dimensionality and number of weight parameters, β = |q|/|W|, in
order to counter-balance the penalties on latent variables W and zi.

Our variational model utilizes encoders only for obtaining the initial latent distribution. In cases
of long input sequences, dynamic loss term can easily dominate VAE loss, which may cause the
encoders to underfit. The underfitting may also occur in small data regimes or when the distribution
of initial data points differs from data distribution. In order to tackle this, we propose to minimize the
distance between the encoder distribution and the distribution induced by the ODE flow (Eqs. 12 and
6). At the end, we have an alternative, penalized target function, which we call ODE2VAE-KL:

LODE2VAE = −β KL[q(W)||p(W)] + Eq(W,Z|X)

[

− log
q(Z|W, X)

p(Z)
+ log p(X|W, Z)

]

(17)

− γEq(W) [KL[qode(Z|X)||qenc(Z|W, X)]] .

We choose the constant γ by cross-validation. In practice, we found out that an annealing scheme in
which γ is gradually increased helps optimization, which is also used in (Karl et al., 2016; Rezende
and Mohamed, 2015).

3.4 Related work

Despite the recent VAE and GAN breakthroughs, little attention has been paid to deep generative
architectures for sequential data. Existing VAE-based sequential models rely heavily on RNN
encoders and decoders (Chung et al., 2015; Serban et al., 2017), with very few interest in stochastic
models (Fraccaro et al., 2016). Some research has been carried out to approximate latent dynamics by
LSTMs (Lotter et al., 2016; Hsu et al., 2017; Li and Mandt, 2018), which results in observations to
be included in latent transition process. Consequently, the inferred latent space and dynamics do not
fully reflect the observed phenomena and usually fail to produce decent long term predictions (Karl
et al., 2016). In addition, RNNs are shown to be incapable of accurately modeling nonuniformly
sampled sequences (Chen et al., 2018b), despite the recent efforts that incorporate time information
in RNN architectures (Li et al., 2017; Xiao et al., 2018).

Recently, neural ODEs introduced learning ODE systems with neural network architectures, and
proposed it for the VAE latent space as well for simple cases (Chen et al., 2018b). In Gaussian
process prior VAE, a GP prior is placed in the latent space over a sequential index (Casale et al.,
2018). To the best of our knowledge, there is no work connecting second order ODEs and Bayesian
neural networks with VAE models.

2Although our variational approximation model assumes deterministic second-order dynamics, the underlying
true model may also have more complex or stochastic dynamics.
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Table 1: Comparison of VAE-based models

Stochastic
Method Higher order Continuous-time dynamics state Reference

VAE ✗ ✗ ✗ ✓ Kingma and Welling (2013)
VRNN ✗ ✗ ✗ ✓ Chung et al. (2015)
SRNN ✗ ✗ ✓ ✓ Fraccaro et al. (2016)
GPPVAE ✗ ✓∗ ✗ ✓ Casale et al. (2018)
DSAE ✗ ✗ ✓ ✓ Li and Mandt (2018)
Neural ODE ✗ ✓ ✗ ✓ Chen et al. (2018b)

ODE2VAE ✓ ✓ ✓ ✓ current work
∗ GPPVAE uses a latent GP prior but only a discrete case was demonstrated in Casale et al. (2018).

4 Experiments

We illustrate the performance of our model on three different datasets: human motion capture (see
the acknowledgements), rotating MNIST (Casale et al., 2018) and bouncing balls (Sutskever et al.,
2009). Our goal is twofold: First, given a walking or bouncing balls sequence, we aim to predict the
future sensor readings and frames. Second, we would like to interpolate an unseen rotation angle
from a sequence of rotating digits. The competing techniques are specified in each section. For all
methods, we have directly applied the public implementations provided by the authors. Also, we
have tried several values for the hyper-parameters with the same rigor and we report the best results.
To numerically compare the models, we sample 50 predictions per test sequence and report the mean
and standard deviation of the mean squared error (MSE) over future frames. We include the mean
MSE of mean predictions (instead of trajectory samples) in the supplementary.

We implement our model in Tensorflow (Abadi et al., 2016). Encoder, differential function and
the decoder parameters are jointly optimized with Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001. We use Tensorflow’s own odeint fixed function, which implements fourth
order Runge-Kutta method, for solving the ODE systems on a time grid that is five times denser than
the observed time points. Neural network hyperparameters, chosen by cross-validation, are detailed
in the supplementary material. We also include ablation studies with deterministic NNs and first
order dynamics in the appendix.

4.1 CMU walking data

To demonstrate that our model can capture arbitrary dynamics from noisy observations, we experiment
on two datasets extracted from CMU motion capture library. First, we use the dataset in Heinonen
et al. (2018), which consists of 43 walking sequences of several subjects, each of which is fitted
separately. The first two-third of each sequence is reserved for training and validation, and the
rest is used for testing. Second dataset consists of 23 walking sequences of subject 35 (Gan et al.,
2015), which is partitioned into 16 training, 3 validation and 4 test sequences. We followed the
preprocessing described in Wang et al. (2008), after which we were left with 50 dimensional joint
angle measurements.

We compare our ODE2VAE against a GP-based state space model GPDM (Wang et al., 2008), a
dynamic model with latent GP interpolation VGPLVM (Damianou et al., 2011), two black-box
ODE solvers npODE (Heinonen et al., 2018) and neural ODEs (Chen et al., 2018b), as well as an
RNN-based deep generative model DTSBN-S (Gan et al., 2015). In test mode, we input the first
three frames and the models predict future observations. GPDM and VGPLVM are not applied to
the second dataset since GPDM optimizes its latent space for input trajectories and hence does not
allow simulating dynamics from any random point, and VGPLVM implementation does not support
multiple input sequences.

The results are presented in Table 2. First, we reproduce the results in Heinonen et al. (2018) by
obtaining the same ranking among GPDM, VGPLVM and npODE. Next, we see that DTSBN-S is not
able to predict the distant future accurately, which is a well-known problem with RNNs. As expected,
all models attain smaller test errors on the second, bigger dataset. We observe that neural ODE usually
perfectly fits the training data but failed to extrapolate on the first dataset. This overfitting problem
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Table 2: Average MSE on future frames

Test error

Model Mocap-1 Mocap-2 Reference

GPDM 126.46 ± 34 N/A Wang et al. (2008)
VGPLVM 142.18 ± 1.92 N/A Damianou et al. (2011)
DTSBN-S 80.21 ± 0.04 34.86 ± 0.02 Gan et al. (2015)
NPODE 45.74 22.96 Heinonen et al. (2018)
NEURALODE 87.23 ± 0.02 22.49 ± 0.88 Chen et al. (2018b)

ODE2VAE 93.07 ± 0.72 10.06 ± 1.4 current work

ODE2VAE-KL 15.99 ± 4.16 8.09 ± 1.95 current work

is not surprising considering the fact that only ODE initial value distribution is penalized. On the
contrary, our ODE2VAE regularizes its entire latent trajectory and also samples from the acceleration
field, both of which help tackling overfitting problem. We demonstrate latent state trajectory samples
and reconstructions from our model in the supplementary.

4.2 Rotating MNIST

Next, we contrast our ODE2VAE against recently proposed Gaussian process prior VAE (GPPVAE)
(Casale et al., 2018), which replaces the commonly iid Gaussian prior with a GP and thus performs
latent regression. We repeat the experiment in Casale et al. (2018) by constructing a dataset by
rotating the images of handwritten “3” digits. We consider the same number of rotation angles (16),
training and validation sequences (360&40), and leave the same rotation angle out for testing (see the
first row of Figure 4b for the test angle). In addition, four rotation angles are randomly removed from
each rotation sequence to introduce non-uniform sequences and missing data (an example training
sequence is visualized in the first row of Figure 4a).

Test errors on the unseen rotation angle are given in Table 3. During test time, GPPVAE encodes
and decodes the images from the test angle, and the reconstruction error is reported. On the other
hand, ODE2VAE only encodes the first image in a given sequence, performs latent ODE integration
starting from the encoded point, and decodes at given time points - without seeing the test image
even in test mode. In that sense, our model is capable of generating images with arbitrary rotation
angles. Also note that both models make use of the angle/time information in training and test mode.
An example input sequence with missing values and corresponding reconstructions are illustrated in
Figure 4a, where we see that ODE2VAE nicely fills in the gaps. Also, Figure 4b demonstrates our
model is capable of accurately learning and rotating different handwriting styles.

Table 3: Average prediction errors on test angle

MODEL TEST ERROR

GPPVAE-DIS
⋄ 0.0309 ± 0.00002

GPPVAE-JOINT
⋄ 0.0288 ± 0.00005

ODE2VAE 0.0194 ± 0.00006

ODE2VAE-KL 0.0188 ± 0.0003
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Figure 3: Bouncing balls errors.

4.3 Bouncing balls

As a third showcase, we test our model on bouncing balls dataset, a standard benchmark used in
generative temporal modeling literature (Gan et al., 2015; Hsieh et al., 2018; Lotter et al., 2015). The
dataset consists of video frames of three balls bouncing within a rectangular box and also colliding
with each other. The exact locations of the balls as well as physical interaction rules are to be inferred
from the observed sequences. We make no prior assumption on visual aspects such as ball count,
mass, shape or on the underlying physical dynamics.
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Figure 4: Panel (a) shows a training sequence with missing values (first row) and its reconstruction
(second row). First row in panel (b) demonstrates test angles from different sequences, i.e., hand-
writing styles, and below are model predictions.

We have generated a training set of 10000 sequences of length 20 frames and a test set of 500
sequences using the implementation provided with Sutskever et al. (2009). Each frame is 32x32x1
and pixel values vary between 0 and 1. We compare our method against DTSBN-S (Gan et al., 2015)
and decompositional disentangled predictive auto-encoder (DDPAE) (Hsieh et al., 2018), both of
which conduct experiments on the same dataset. In test mode, first three frames of an input sequence
are given as input and per pixel MSE on the following 10 frames are computed. We believe that
measuring longer forecast errors is more informative about the inference of physical phenomena than
reporting one-step-ahead prediction error, which is predominantly used in current literature (Gan
et al., 2015; Lotter et al., 2015).

Predictive errors and example reconstructions are visualized in Figures 3 and 5. The RNN-based
DTSBN-S nicely extrapolates a few frames but quickly loses track of ball locations and the error
escalates. DDPAE achieves a much smaller error over time; however, we empirically observed that
the reconstructed images are usually imperfect (here, generated balls are bigger than the originals),
and also the model sometimes fails to simulate ball collisions as in Figure 5. Our ODE2VAE generates
long and accurate forecasts and significantly improves the current state-of-the-art by almost halving
the error. We empirically found out that a CNN encoder that takes channel-stacked frames as input
yields smaller prediction error than an RNN encoder. We leave the investigation of better encoder
architectures as an interesting future work.

5 Discussion

We have presented an extension to VAEs for continuous-time dynamic modelling. We decompose the
latent space into position and velocity components, and introduce a powerful neural second order
differential equation system. As shown empirically, our variational inference framework results
in Bayesian neural network that helps tackling overfitting problem. We achieve state-of-the-art
performance in long-term forecasting and imputation of high-dimensional image sequences.

There are several directions in which our work can be extended. Considering divergences different
than KL would lead to Wasserstein auto-encoder formulations (Tolstikhin et al., 2017). The latent
ODE flow can be replaced by stochastic flow, which would result in an even more robust model.
Proposed second order flow can also be combined with generative adversarial networks to produce
real-looking videos.

Figure 5: An example test sequence from bouncing ball experiment. Top row is the original sequence.
Each model takes the first three frames as input and predicts the further frames.
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Michael Schober, Simo Särkkä, and Philipp Hennig. A probabilistic model for the numerical solution
of initial value problems. Statistics and Computing, 29(1):99–122, 2019.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. A hierarchical latent variable encoder-decoder model for generating dialogues.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video
representations using lstms. arXiv preprint arXiv:1502.04681, 2015.

Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The recurrent temporal restricted boltzmann
machine. In Advances in neural information processing systems, pages 1601–1608, 2009.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558, 2017.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-based
representation learning. arXiv preprint arXiv:1812.05069, 2018.

Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models for human
motion. IEEE transactions on pattern analysis and machine intelligence, 30(2):283–298, 2008.

Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang, Le Song, and Hongyuan
Zha. Learning conditional generative models for temporal point processes. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational
autoencoders. arXiv preprint arXiv:1706.02262, 2017.

10


	Introduction
	Probabilistic second-order ODEs
	Ordinary differential equations
	Bayesian second-order ODEs
	Second order ODE flow

	ODE2VAE model
	Dynamic model
	Variational inference
	Penalized variational loss function
	Related work

	Experiments
	CMU walking data
	Rotating MNIST
	Bouncing balls

	Discussion

