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Abstract

In the systems biology field, algorithms for structural identification of ordinary differential
equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on
methods that require sufficiently good data so that derivatives can be accurately estimated.
There is therefore a lack of methods and software that can handle more general models
and realistic data.

We present ODEion, a software module for structural identification of ODEs. Main char-
acteristic features of the software are:

• The model space is defined by arbitrary user-defined functions that can be non-linear
in both variables and parameters, such as for example chemical rate reactions.

• ODEion implements computationally efficient algorithms that have been shown to
efficiently handle sparse and noisy data. It can run a range of realistic problems that
previously required a supercomputer.

• ODEion is easy to use and provides SBML output.

We describe the mathematical problem, the ODEion system itself, and provide several
examples of how the system can be used.
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1 Introduction

Identification of both the structure (the form of the equations) and the parameters of
ordinary differential equations (ODEs) is a fundamental problem, and there has in recent
years been a significant increase in the number of reported methods approaching this
problem in the biological literature.[1] However, it is also a challenging problem, and
existing research typically considers restricted model spaces, and algorithms with very
high computational requirements.

We present ODEion, a computational software module for structural identification of
ODEs in a more general framework, see Fig. 1A. The aim is to identify a dynamic model
as a system of ODEs, from sparse and noisy time-series data.
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Figure 1: Identification of ODE models. A. Identification can be seen as the opposite to simulation
- time-series data is input and a solution model is output. To enable identification, some additional
information about the model space and the error function is required, see Section 2 for details. For
evaluation purposes, simulated data from a known source model can be used, allowing the solution
model to be compared to the source model. B. Example of time-series data for one experiment.
C. The output of a successful identification algorithm is an ODE model that minimizes the error
function.

For each variable Xi, the generic form of the ODE reads

X ′
i(t) =

Ni∑

j=1

fij(X, θ, t) (1)
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where X is the state vector of the system, θ is a vector of parameters, t is time, fij
are arbitrary functions that can be non-linear in both variables and parameters, and Ni

represents the number of terms on the right-hand side of equation i. The problem we
consider differs from a standard regression problem in two fundamental ways. We need
to find a best subset of terms in the ODEs, taken from a very large set of possible terms
implicitly defined by the user. Then, to make the most of sparse and noisy data, we cannot
simply estimate the derivative in the left hand side of Eq. 1 directly from data, but the
model fit needs to be evaluated by simulating the ODEs.

The main contribution of ODEion is to make the highly efficient identification algorithms
previously described and extensively evaluated[1, 2, 3, 4], available in the form of a software
module. This integrates our previous work, and enables anyone to use and evaluate the
developed methods. This is useful for direct applications, and for comparisons with other
approaches, which is normally not possible when algorithms are just informally described.
Compared to our original research implementations, which could only be used by ourselves
in a specific test setting, we have added the significant new ability to allow arbitrary user-
defined functions as input. We have invested considerable additional effort for stability in
this more general case, and in making the ODEion software easy to use.

Related software include well known statistical software such as R, SAS and SPSS, which
typically have tools for non-linear and stepwise regression. We also mention the Eureqa
system[5, 6, 7] and Inferelator[8] for finding mathematical relationships in data. Poten-
tially, such systems could be used for similar tasks, especially if the derivatives can be
sufficiently well estimated from data. This is however not the typical situation in systems
biology where data is sparse and noisy, and these tools have not been designed to pro-
vide the functionality or performance of our software module. Furthermore, the software
ModelMaGe presents a semi-automatic top-down approach where the solution model is
searched for by removing interactions from a pre-defined super-model containing all plausi-
ble interactions.[9] This approach can be very helpful, but is fundamentally different from
our fully automatic bottom-up approach. Finally, some experimental software codes can
be requested from researchers in the field, mainly applicable to specialized models such
as S-systems and GMA systems, see Gennemark and Wedelin (2009)[1] for detailed refer-
ences. A framework for dynamic flux estimation was used for identification of a metabolic
system with chemical rate reactions[10], but did not investigate how to best handle noisy
data by avoiding direct estimation of the derivatives.

To our knowledge, ODEion is unique in the sense that no other software exists for identi-
fication of ODEs when the model space is general (not restricted to e.g. S-systems) and
when time-series data is sparse and noisy (excluding methods that infer parameters from
estimated derivatives of time series data). Compared to existing algorithms for S-systems
our approach is significantly more efficient - no supercomputing is required (see Section 3
for a benchmark summary).

2 Software input and output

To fully specify the identification problem we require the following inputs:[1]

• Time-series data. This can be for one or several experiments. In the case of several
experiments, they may differ with respect to initial values and/or input functions
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(Fig. 1B).

• Model space and constraints. The model space, M, defines the allowed forms of
the function(s) on the right-hand side of the ODEs, ∀i,j : fi,j ∈ M. These functions
are defined by the user and M may differ between the state variables. For example,
for one of the state variables, M can de defined as

M =







M1

︷ ︸︸ ︷

θ11Xk(t),

M2

︷ ︸︸ ︷

θ21Xk(t)Xl(t),

M3

︷ ︸︸ ︷

θ31Xk(t)

θ32 +Xk(t)
,

M4

︷ ︸︸ ︷

θ41Xk(t)

(θ42 +Xk(t))
(

1 + Xl(t)
θ43

)







, (2)

where k, l ∈ [1, 2 . . . n], k 6= l, (3)

where θ.1 ∈ [0, 50], θ.2, θ.3 ∈ [0.1, 50], (4)

and where n is the number of variables in the system. Here, the upper expression
specifies the allowed forms of the functions: M1 represents a unimolecular linear
reaction, M2 a bimolecular linear reaction, M3 a Michaelis-Menten reaction, and
M4 represents a Michaelis-Menten reaction with non-competitive inhibition. The
middle expression defines which variables are allowed in the functions, and the lower
expression defines the parameter ranges.

Finally, lower and upper bounds for the initial data-point in each time-series can
also be defined.

• Initial model. The initial model corresponds to prior knowledge of the structure
of the system and is included as reactions (terms) from the model space on the right
hand side of the ODEs. Also terms from outside the model space can be included
in the initial model. If no prior structural information is available, all ODEs are
initially set to 0.

• Error function. The error function is defined as

−L(X̂| θ) + h
(

λ, |θ|, |X̂ |
)

. (5)

The first term is the negative log-likelihood of the experimental data (X̂ denotes
experimental data, θ is the vector of parameters), and the second term penalizes
structural complexity of the model (h is an arbitrary function, λ is a local parameter
in the function h, |θ| is the number of model parameters, and |X̂ | is the number of
data points). This makes it possible to use AIC and BIC/MDL.

It is important to note that by specifying the model space and the error function as part
of the problem, the problem is unambiguously defined as an optimization problem, giving
a clear conceptual separation between modelling and solving identification problems.

The output is a solution model, i.e. a specific ODE of the form Eq. 1 for each variable
(Fig. 1C).
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3 Overview of the software

The software is available at www.odeidentification.org, together with detailed documen-
tation and sample scripts for a variety of tasks. It is distributed under the GNU general
public license. The Java Runtime Environment and a Fortran compiler are required. All
source code is provided.

The software is implemented in a form common for specialized computational software,
and is easy to use as a standalone program, with input and output in human-readable
text files[1, 3], or in other formats such as SBML. It can be integrated in a workflow or
other system as desired.

The software offers four main functionalities:

• Verify syntax and consistency of a problem. Potential errors and reasonable solutions
to these are reported.

• Visualize data from an experiment of a problem.

• Generate a Fortran program designed to solve a specific problem. The resulting
program is self-contained, and can be compiled and run immediately, or saved for
future execution.

• Generate a Systems Biology Markup Language (SBML) file of the solution model,
allowing visualization, simulation and further analysis on a range of software.[11]
Output is also given in a simple human readable format.

Input data manipulation is implemented in Java for flexibility, and time-critical code
is generated in Fortran to allow for best performance and access to efficient numerical
libraries.

The Fortran program implements the actual identification algorithm, which consists mainly
of a search algorithm for the structure, and a parameter estimation algorithm optimized
for this context, see Gennemark and Wedelin (2007)[2] for full detail. A heuristic algo-
rithm performs a bottom-up search of the model space for a model that minimizes the error
function. It is based on a local search that incrementally adds terms (one fij at a time)
to individual ODEs from the model space, locally (and occasionally globally) estimating
the parameters for the different models considered. The search algorithm also removes
terms that no longer appear significant. For example, the solution model in Fig. 1C was
incrementally built from an initial empty model structure (each ODE was equal to zero),
to the resulting model with up to four terms on the right hand sides of the equations.

To provide a complete candidate model that can be evaluated with the error function, the
search algorithm in turn uses an accurate and efficient parameter estimation algorithm. For
sparse and noisy data it is not adequate to base parameter estimation on straightforward
estimation of derivatives directly from data. For significantly better accuracy, models are
evaluated by simulating their output which is compared with the given time-series data.

In addition, the parameter estimation is very time-critical, since parameters need to be
estimated for a very large number of candidate models, so it is a significant design challenge
to provide both the desired accuracy and speed. The main approach for speed is to match
the bottom-up search and compute locally as much as possible, resorting to full global
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computation only when necessary. This local computation is an important factor in the
competitiveness of the implemented methods. It follows that the total number of variables
is not the most critical factor with respect to how the implemented methods scale with
problem size. Rather, it is the structure and nature of the equations themselves, and
the number of variables in each subexpression that are the major factors with respect to
execution time. On a lower level, our parameter estimation uses well known methods and
implementations such as dn2gb (see http://www.netlib.org).

The performance of the algorithms have previously been evaluated and found competitive
on a large set of benchmark problems, both with models based on chemical rate reac-
tions, S-systems and GMA systems.[1, 3, 4] The new ODEion implementation has been
extensively tested on the same benchmark set. Fig. 2 illustrates the current performance
of ODEion for problems where results of other methods have been reported (see Table 1
for further details about these problems). It is to be noted that ODEion often is several
orders of magnitude faster.
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Figure 2: Comparison between ODEion and other methods on problems where results of other
methods have been reported (specification of all problems and complete references are given on
www.odeidentification.org). The bars correspond to the computational time (logarithmic scale) in
seconds, scaled to a single 1GHz processor. If the correct structure was found, parameter accuracy
is given on top of each bar as the relative error (%) of the parameter with greatest relative error.
If the true structure was not found, FP and FN indicate the number of false positive and negative
interactions, respectively.
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Table 1: Main characteristics of the problems considered in Fig. 2. Here, #Var refers to the
number of variables in the system, #React refers to the number of reactions (interactions) between
variables in the source model, and #Param refers to the number of parameters in the source model.

Problem(s) #Var #React #Param Description

ss cascade1 3 5 14 Source model with two negative feedbacks act-
ing on the same variable.

ss branch1–
4,6 (5 prob-
lems)

4 6 18 Source model with one negative feedback, and
one very weak interaction. Problems differ
with respect to amount of data, sampling
times, and prior structural information.

ss 5genes1,4,6,7
(4 problems)

5 8 23 Source model with four negative feedbacks
(two acting on the same variable). Sparse sam-
pling in the time region of interest. Problems
differ with respect to amount of data, sampling
times, and prior structural information.

ss 5genes8 8 13 28 Larger model space compared to
ss 5genes1,4,6,7.

ss 30genes2 30 38 128 Large source model and model space. Several
weak interactions combined with noisy data.

ss 30genes3 30 38 128 Large source model and model space.

4 Examples

In order to illustrate the use of ODEion, and explain how ODEion can be used to explore
identifiability issues in practice, we consider three examples. The purpose of the examples
is to show the kind of information one can easily obtain from ODEion, and these are not
intended as independent research in their own right.

4.1 A metabolic network

The metabolic pathway depicted in Fig. 3 has previously been studied by Arkin and Ross
(1994, 1995)[12, 13] and by Gennemark and Wedelin (2007).[2] The system has two input
variables X1 and X2 and five dependent variables X3–X7. The variables X3–X5 corre-
spond to fructose interconversion (fructose 6-phosphate with fructose 1,6-bisphosphate and
fructose 2,6-bisphosphate, respectively), and the variables X6–X7 represent a phosphory-
lation/dephosphorylation cycle commonly found in many systems. The input variables
correspond to regulators of phosphofructokinase 1 and 2, e.g. phosphoenolpyruvic acid,
citrate, and glucagon. The reactions v1–v6 are modelled by Michaelis-Menten kinetics
with non-competitive inhibition and are catalyzed by different enzymes which are assumed
present at constant levels.[13] Fig. 1C writes out complete ODEs of X3 and X7.

Based on previously reported problems on this system, metabol1-3[1], we created a set
of new problems with varying amount and quality of time-series data but with the same
model space. To generate time-series data is a straightforward simulation task and example
scripts that simulate and write data in the ODEion file format are included in the ODEion
download.

In order to generate a problem for ODEion we also need a specification of the model space
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Figure 3: The metabolic system representing a biochemical NAND gate.

in terms of possible reactions for each variable, and some other details in accordance with
Section 2. This is written in a self-documenting format which is easy to read both by the
human and the computer. An extract of the format is given below:

// VARIABLES

variable_1 has name = x1 is inputVariable

variable_2 has name = x2 is inputVariable

variable_3 has name = x3 is dependent

...

// REACTION TYPES

reaction_1

has name = biMolecularMassAction

has localVariableName_1 = X1

has localVariableName_2 = X2

has localParameterName_1 = k1

has equation = k1*X1*X2

reaction_2

has name = michaelisMenten

has localVariableName_1 = X1

has localParameterName_1 = k1

has localParameterName_2 = k2

has equation = k1*X1/(k2+X1)

...

// MODEL SPACE OF VARIABLE 3

possibleReaction_3 of variable_3

has type = biMolecularMassAction

8



has spaceOfVariable X1 = memberOfSet_2

has spaceOfVariable X2 = memberOfSet_1

has rangeOfParameter k1 = range_1

...

// EXPERIMENT 1

sample_1 of experiment_1

has time = 0.00

has variable_ = 3.00 2.00 ...

has sdev of variable_ = 0.00 0.00 ...

...

This particular extract describes first some variables, and then the definitions of two reac-
tion terms (exemplifying how arbitrary reactions are input to ODEion). This is followed
by a possible reaction in the model space. Finally, a sample from the first experiment
is given. Complete files for the identification problems (metabol1–3 and modifications
thereof) based on this system – and associated scripts – are available in the ODEion
download package, using a model space for all variables as in Eq. 2.[1, 2] A detailed user’s
manual makes it easy to define and execute own problems.

We next ran all problems in ODEion and monitored the number of false positive and
false negatives interactions obtained, respectively, see Table 2. Given information about
measurement precison, such data is valuable when planning a study: what results can be
expected for systems of a particular kind and with various experimental designs? Since
a complete dynamic model is obtained by ODEion, more advanced measures than simply
reporting false positives/negatives can be considered, e.g. simulation based measures. We
note that false interactions are usually weak, so if simulation is the main purpose a model
can work well even if the structure is not perfect.

Table 2: Number of false positive and false negative interactions, respectively, obtained by ODEion
when identifying test system metabol with various amount and quality of data (7 sample points for
each variable and experiments as in Fig. 1B). Noise is added from a Gaussian distribution with
standard deviation given as a certain percentage of each experimental value. The best result is
taken from several runs with various random seeds.

Number of experiments Noise level=0 % Noise level=10 % Noise level=20 %

12 0/0 0/0 2/1
10 0/0 0/0 2/1
8 0/0 4/2 4/2
6 3/2 5/2 4/2
4 3/2 5/3 12/9

In general, when the true system is unknown and several systems are plausible, the com-
putational analysis can be repeated for a range of hypothetical systems for increased
robustness. Naturally, if bias in data is an issue such data can be generated and analyzed
in the same way.
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4.2 A genetic network

In the previous example, prior structural information was not considered. Here, we will use
a genetic network to illustrate identification with different amounts of data and different
prior information. The system was introduced by Maki et al. (2001)[14] and applied in
Kimura et al. (2005)[15] and Kutalik et al. (2007)[16]. It represents a genetic network
with 30 variables, see Fig. 4A for the structure of the network.

This model is defined as a so called S-system model. The S-system formalism is based
on approximating kinetic laws with multivariate power-law functions.[17, 18] A model
consists of n non-linear ODEs and the generic form of equation i reads

X ′
i(t) = αi

∏

j=1..n

Xj(t)
gij − βi

∏

j=1..n

Xj(t)
hij (6)

where X is a vector (length n) of dependent variables, α and β are vectors (length n) of
non-negative rate constants and g and h are matrices (n × n) of kinetic orders, that can
be negative as well as positive. We note that Eq. 6 fits the generic model space of ODEion
given in Eq. 1.

We will start by considering the problem ss 30genes2[1], which includes 20 experiments
with varying initial conditions and with noise from a Gaussian distribution with stan-
dard deviaton given as 20 % of each experimental value. This problem contains no prior
information about the structure, all ODEs are assumed equal to zero.

Assuming that some interactions are known from literature, we can define a prior structure
as depicted in Fig. 4B, and create a new problem using syntax like this (see the ODEion
user manual for details):

// MODEL SPACE OF G

g has defaultLowerBound = -3.

g has defaultUpperBound = 3.

:

g_5_1 has lowerBound = 0.0001

g_6_1 has lowerBound = 0.0001

:

This means that we force some interactions to be present in the model. Rather than fixing
parameter values for these interactions, we choose to only specify wide bounds for the
parameters, so all parameters in the model are still estimated by the system. The prior
information is therefore in this case qualitative and not quantitative.

We also created problems with fewer experiments and ran all problems in ODEion, see
Table 3 for summary data. We first note that it is not unexpected to obtain false pos-
itives/negatives for problems with noisy data, and that the number of falsely identified
interactions increases as the number of experiments gets smaller. We can also see, in
Table 3, how prior structural information significantly improves inference of the topology.

The results contribute to better understanding of the expected magnitude of the gain as
well as the dependence of the gain on various amounts of data. Again, this is valuable when
designing experiments in a learning-confirming cycle. This kind of analysis with repeated
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Figure 4: A. The true structure of the genetic network, ss 30genes. B. The structural prior
information in cases where it was assumed. In both figures, positive regulations are indicated by
arrows, whereas negative regulations are indicated by blunt arrows.
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Table 3: Number of false positive and false negative interactions, respectively, obtained by ODEion
when identifying test system ss30genes with various prior information and amount of data. The
best result is taken from several runs with various random seeds.

Number of experiments No structural prior information Structural prior information (Fig. 4B)

20 6/6 5/3
15 10/14 8/10
10 13/22 8/16

identification of several relatively large problems (tens of variables) was previously not
feasible without supercomputing (compare execution times in Fig. 2). Using ODEion the
complete analysis can be run on a single computer in a couple of days. This is not possible
with any other software that we are aware of.

4.3 Inferring a model for ethanol fermentation

In a final example, we consider a problem based on real data from a batch fermentation
process presented in Wang et al (2001) and Liu and Wang (2008).[19, 20] The goal is
to infer an S-system model using two experiments with varying start concentrations of
glucose, see Fig. 5A and B. ODEion infers the following model:

B′(t) = 2.17 − 1.25 ×B(t)−0.422,

G′(t) = 0.0584 ×B(t)2.40 − 2.40×B(t)1.12 ×G(t)0.0306,

E′(t) = 4.98 ×B(t)0.292 − 3.21,

L′(t) = 0.440 × L(t)0.559 − 0.000349 ×B(t)2.80,

B(0) = {0.287, 0.270},

G(0) = {98.4, 151},

E(0) = {0.106 × 10−2, 0.164 × 10−5},

L(0) = {0.990 × 10−3, 0.512 × 10−8}, (7)

where B, G, E and L refer to biomass, glucose, ethanol, and glycerol, respectively, and
where initial conditions are given for experiments 1 and 2, respectively. Simulated tra-
jectories of the model fit data reasonably well as depicted in Fig. 5A and B. As Wang
et al., we validate the inferred model by predicting a third experiment not part of the
training set, see Fig. 5C for data and predicted trajectories. Clearly, the model predicts
an unrealistic glucose trajectory, which increases after 14 hours.

The S-system inferred by Liu and Wang has a different structure than the model inferred
by ODEion. However, the two models behave similarly when visually comparing the
simulated trajectories on experiment 1 and 2. A quantitative comparison was not feasible
since initial conditions are not specified in the Liu and Wang paper (an attempt to take
initial conditions from data was not successful).

The inferred S-system structure is partly hard to interpret mechanistically, and gives
unrealistic predictions. To further analyze this inference problem in a more mechanistic
way, we use a model space, M, composed of reactions of Monod type [21, 22] as

M = {M1,M2,M3,M4} ,
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Figure 5: Data from a batch fermentation process and simulated trajectories of mathematical models
representing this system. A and B: data for experiments 1 and 2, respectively, and simulated
trajectories of an S-system model inferred from these two experiments (problem ss ethanolferm3).
C: data for experiment 3, used as validation data, and prediction of this third experiment using the
S-system model. D and E: data for experiments 1 and 2, respectively, and simulated trajectories of
a reaction kinetics model inferred from these two experiment (problem ethanolferm3). C: data for
experiment 3, used as validation data, and prediction of this third experiment using the reaction
kinetics model.
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M1 = µ
G(t)

KS +G(t)
B(t),

M2 = µ
G(t)

KS +G(t)

(

1−
E(t)− Pi

Pm − Pi

)

B(t),

M3 = µ
G(t)

KS +G(t)

Ki

Ki −G(t)
B(t),

M4 = µ
G(t)

KS +G(t)

(

1−
E(t)− Pi

Pm − Pi

)
Ki

Ki −G(t)
B(t),

µ ∈ [−100, 100], KS ,Ki ∈ [0.1, 200], Pi ∈ [0.1, 100], Pm ∈ [80, 100]. (8)

Here, glucose is considered the growth limiting substrate. M1 introduces µ which corre-
sponds to the maximum overall specific rate (of growth for biomass; of substrate utilization
for glucose, and of production for ethanol and glycerol). Furthermore, KS is a substrate
limitation constant. In M2, an etahnol inhibition factor is added, where Pm is maximum
ethanol concentration, and Pi is the ethanol inhibition constant. Alternatively, in M3,
a substrate inhibition factor is added, where Ki the substrate inhibition constant. M4

combines substrate inhibition and ethanol inhibition. In constrast to the S-system model
space, the parameters are interpretable, and we can assign parameter bounds from data
(e.g. KS should be in the observed data range for glucose).

The model spaceM is applied to all variables. It is straightforward to replace the S-system
model space with M and run the new problem in ODEion. The model space is coded in
the input file in analogy to the metabolic network previously described (Section 4.1). The
inferred model was:

B′(t) = 2.04
G(t)

84.8 +G(t)

(

1−
E(t)− 8.60

80.0 − 8.60

)
81.5

81.5 +G(t)
B(t),

G′(t) = −6.38
G(t)

53.6 +G(t)
B(t),

E′(t) = 3.11
G(t)

66.5 +G(t)
B(t),

L′(t) = 0.122
G(t)

22.8 +G(t)
B(t),

B(0) = {0.356, 0.234},

G(0) = {98.5, 153},

E(0) = {0.654 × 10−4, 0.00},

L(0) = {0.747 × 10−9, 0.161}. (9)

See Fig. 5D–E for the fitted curves. The inferred model is then used to predict a third
experiment not part of the training set, see Fig. 5F. The mechanistic approach does not
extrapolate perfectly in this case. However, in the mechanistic approach, the predicted
concentration time profile of glucose approaches zero at the end of the experiment, while
the corresponding S-system trajectory makes a bend upwards after about 14 hours as
previously mentioned. Therefore, the prediction of the mechanistic model can be seen as
more sound than the S-system prediction. The result may also be helpful in reconsidering
the model space, in an iterative fashion. In general, ODEion allows for flexible exploration
of both S-systems and chemical rate reaction models.
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5 Discussion

Mathematical models of phenomena in nature are commonly defined as systems of ordinary
differential equations. Such models can be viewed to have a structure specifying the form
of the equations – typically chosen manually – and parameters which can be automatically
estimated from data.

ODEion gives access to very efficient identification algorithms, which go beyond parame-
ter estimation and allow algorithmic modelling support also with structural uncertainty,
enabling the user to represent uncertainty in both structure and parameters. ODEion
considers many different structures and attempts to find the best model given the data
and an error criterion (model selection). ODEion is general in the sense that the user
can define a wide range of functions in the model space. The software is therefore not
restricted to any particular model type or application.

Concerning limitations, these exist both with respect to the nature of the problem itself,
and with respect to the used methods and their implementation. Output from a software
of this kind must therefore be interpreted with care, see Gennemark and Wedelin (2007)[2]
for a longer discussion. A fundamental difficulty in the identification of biological systems
is that data is sparse, highlighting the issue that there is no guarantee that available data
is sufficient in a given case, or that a system is uniquely identifiable with a particular type
of data. From a practical perspective, this can be handled by providing more data, and/or
alternative data from a modified system, or by breaking it up in parts. As illustrated in the
examples, ODEion itself can be used to explore and give hints about what data is required
for successfully identifying a particular kind of system, and generally to investigate ways
to successfully formulate and solve problems in a particular area. If required, it is possible
to further analyse solution models by other methods e.g. by the observability test and
software suggested in Sedoglavic (2002).[23]

Then, due to the combinatorial complexity and the heuristic nature of the search, the
software does not guarantee that the best solution to a given problem is found, and it is
difficult to give exact bounds on execution time. However, thanks to the main algorithmic
strategies of simulation and local computation, ODEion has been shown to successfully
identify many relatively large and realistic problems, using biologically realistic amounts
of data, and with reasonable computational effort.[1]

The ODEion software is easy to use as it is, as we have shown in the examples. The
examples illustrate how ODEion can be used to solve and analyze identification problems,
providing information that would be very hard to obtain without ODEion. We assess this
to be useful not only in research, but also for educational purposes. Additionally, since
source code is provided, the software can be freely adapted and integrated.
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